MVE035/600 Exercise session 1.2.

.

Wednesday, 20 January 2021 15:04

/

$$\frac{2 \cdot 1}{f(x,y)} = \int 2 e^{-\frac{1}{2}kma} a da foreful ordinational derivator and foreful and foreful ordination derivator derivator and foreful ordination derivator derivator and foreful ordination derivator and foreful ordination derivator and foreful ordination derivator derivator and foreful ordination derivation d$$

Vi hade
$$f(x_i, y) = log N x^2 + y^2 = log (q(x_i, y))$$

$$\Rightarrow \frac{\partial f}{\partial x}(x_i, y) = \frac{d(log(q))}{dq} \cdot \frac{\partial q}{\partial x}(x_i, y)$$

$$= \frac{l}{q(x_i, y)} \cdot \frac{x}{q(x_i, y)} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{x^2 + y^2}$$

$$= \frac{z}{\sqrt{x^2 + y^2}}.$$

$$\left(\frac{1}{1}\left|\frac{1}{1-2}\frac{1}{2}\frac$$

$$\sum \Delta T \approx \frac{1}{2} \Delta U + \frac{1}{24} \Delta R.$$

$$\int \frac{\partial P}{\partial U} = \frac{2}{R} = -\frac{440}{7},$$

$$\int \frac{\partial P}{\partial R} = -\frac{\sqrt{2}}{R^2} = -\left(\frac{220}{4}\right)^2,$$

$$= \Delta P \approx \frac{440}{7}, 5 - \left(\frac{220}{4}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{4}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{4}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{220}{7}\right)^2, 5 \approx 65\%.$$

$$\frac{dP \approx \frac{440}{7}, 5 - \left(\frac{2}{7}\right)^2, 5 - \left(\frac{2}$$

$$T = \frac{1}{2} \frac{3k^{2}}{2} = \frac{1}{2}k^{4}z^{2} \frac{1}{2} = 0 \quad \forall q \neq 0.$$
2) $\frac{3f}{3y}(0,0) = 0 \quad di \quad f(0,y) = \frac{(1-y)^{2}}{y^{10}} = 0 \quad \forall q \neq 0.$

Tete) Our vi bare tester kontinuitet h.a.g. $linjer g_{k} och y - szela \quad ar$

(f $g_{k}^{2}(4) = \frac{k^{4}t^{2}}{t^{4}+t^{4}} = \frac{k^{4}t^{2}}{1+k^{4}t^{4}} = \frac{1}{2}$

Set $T = r$ houtineerling ?? $fx = \frac{1}{2}x + \frac{1}{2}x^{2}(1-x)$

Deriverburket: $fx = \frac{1}{2}x + \frac{1}{2}x^{2}(1-x)$

Tag kurven $f: R = R^{2}$

 $T = (f \circ f)(H) = \frac{t^{2}(t^{2}y)^{H}}{t^{4}+(t^{4}y)^{H}} = \frac{t^{4}}{t^{4}+t^{4}} = \frac{1}{2}$

 $f \circ f \circ f(H) = f = f = \frac{1}{2} \text{ kont. eller } f = \frac{1}{2} \text{ kont.}$