

i

Software
Architecture
in Practice

Second Edition

Bass.book Page i Thursday, March 20, 2003 7:21 PM

Third Edition

The SEI Series in Software Engineering represents is a collaborative
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and

Addison-Wesley to develop and publish books on software engineering and
related topics. The common goal of the SEI and Addison-Wesley is to provide
the most current information on these topics in a form that is easily usable by
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems, or
delivering services more effectively. Other books focus on software and system
architecture and product-line development. Still others, from the SEI’s CERT
Program, describe technologies and practices needed to manage software
and network security risk. These and all books in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.

The SEI Series in
Software Engineering

Software
Architecture
in Practice
Third Edition

Len Bass
Paul Clements
Rick Kazman

▼
▲
▼ Addison-Wesley

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset,
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP;
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor;
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed
on page 588, is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
 Software architecture in practice / Len Bass, Paul Clements, Rick Kazman.—3rd ed.
 p. cm.—(SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-321-81573-6 (hardcover : alk. paper) 1. Software architecture. 2. System
design. I. Clements, Paul, 1955– II. Kazman, Rick. III. Title.
 QA76.754.B37 2012
 005.1—dc23
 2012023744

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, pho-
tocopying, recording, or likewise. To obtain permission to use material from this work, please submit
a written request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road, Old
Tappan, New Jersey 07657, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81573-6
ISBN-10: 0-321-81573-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Fifth printing, September 2015

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset,
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP;
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor;
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of works copyright by Carnegie Mellon University, as listed
on page 588, is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
 Software architecture in practice / Len Bass, Paul Clements, Rick Kazman.—3rd ed.
 p. cm.—(SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-321-81573-6 (hardcover : alk. paper) 1. Software architecture. 2. System
design. I. Clements, Paul, 1955– II. Kazman, Rick. III. Title.
 QA76.754.B37 2012
 005.1—dc23
 2012023744

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. To obtain permission to use material from this work, please submit a
written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-81573-6
ISBN-10: 0-321-81573-4

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, May 2013

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with ini-
tial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordination Center
are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolutionary
Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Soft-
ware Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI;
SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of CMMI for Development (CMU/SEI-2010-TR-035), © 2010 by Carnegie Mellon
 University, has been granted by the Software Engineering Institute.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
 connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Chrissis, Mary Beth.
CMMI for development : guidelines for process integration and product

improvement / Mary Beth Chrissis, Mike Konrad, Sandy Shrum.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-71150-2 (hardcover : alk. paper)

1. Capability maturity model (Computer software) 2. Software
engineering. 3. Production engineering. 4. Manufacturing processes.
I. Konrad, Mike. II. Shrum, Sandy. III. Title.

QA76.758.C518 2011
005.1—dc22

2010049515

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-71150-2
ISBN-10: 0-321-71150-5

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, March 2011

00FMBass.indd 4 5/6/13 12:38 PM

v

Contents

Preface xv

Reader’s Guide xvii

Acknowledgments xix

 Part ONE INtrOductION 1
cHaPtEr 1 What Is Software architecture? 3

1.1 What Software Architecture Is and What It
Isn’t 4

1.2 Architectural Structures and Views 9

1.3 Architectural Patterns 18

1.4 What Makes a “Good” Architecture? 19

1.5 Summary 21

1.6 For Further Reading 22

1.7 Discussion Questions 23

cHaPtEr 2 Why Is Software architecture Important? 25

2.1 Inhibiting or Enabling a System’s Quality
Attributes 26

2.2 Reasoning About and Managing
Change 27

2.3 Predicting System Qualities 28

2.4 Enhancing Communication among
Stakeholders 29

2.5 Carrying Early Design Decisions 31

2.6 Defining Constraints on an
Implementation 32

2.7 Influencing the Organizational Structure 33

2.8 Enabling Evolutionary Prototyping 33

vi Contents

2.9 Improving Cost and Schedule Estimates 34

2.10 Supplying a Transferable, Reusable
Model 35

2.11 Allowing Incorporation of Independently
Developed Components 35

2.12 Restricting the Vocabulary of Design
Alternatives 36

2.13 Providing a Basis for Training 37

2.14 Summary 37

2.15 For Further Reading 38

2.16 Discussion Questions 38

cHaPtEr 3 the Many contexts of Software
architecture 39

3.1 Architecture in a Technical Context 40

3.2 Architecture in a Project Life-Cycle
Context 44

3.3 Architecture in a Business Context 49

3.4 Architecture in a Professional Context 51

3.5 Stakeholders 52

3.6 How Is Architecture Influenced? 56

3.7 What Do Architectures Influence? 57

3.8 Summary 59

3.9 For Further Reading 59

3.10 Discussion Questions 60

 Part tWO QualIty attrIbutES 61
cHaPtEr 4 understanding Quality attributes 63

4.1 Architecture and Requirements 64

4.2 Functionality 65

4.3 Quality Attribute Considerations 65

4.4 Specifying Quality Attribute
Requirements 68

4.5 Achieving Quality Attributes through
Tactics 70

4.6 Guiding Quality Design Decisions 72

4.7 Summary 76

Contents vii

4.8 For Further Reading 77

4.9 Discussion Questions 77

cHaPtEr 5 availability 79

5.1 Availability General Scenario 85

5.2 Tactics for Availability 87

5.3 A Design Checklist for Availability 96

5.4 Summary 98

5.5 For Further Reading 99

5.6 Discussion Questions 100

cHaPtEr 6 Interoperability 103

6.1 Interoperability General Scenario 107

6.2 Tactics for Interoperability 110

6.3 A Design Checklist for Interoperability 114

6.4 Summary 115

6.5 For Further Reading 116

6.6 Discussion Questions 116

cHaPtEr 7 Modifiability 117

7.1 Modifiability General Scenario 119

7.2 Tactics for Modifiability 121

7.3 A Design Checklist for Modifiability 125

7.4 Summary 128

7.5 For Further Reading 128

7.6 Discussion Questions 128

cHaPtEr 8 Performance 131

8.1 Performance General Scenario 132

8.2 Tactics for Performance 135

8.3 A Design Checklist for Performance 142

8.4 Summary 145

8.5 For Further Reading 145

8.6 Discussion Questions 145

cHaPtEr 9 Security 147

9.1 Security General Scenario 148

9.2 Tactics for Security 150

viii Contents

9.3 A Design Checklist for Security 154

9.4 Summary 156

9.5 For Further Reading 157

9.6 Discussion Questions 158

cHaPtEr 10 testability 159

10.1 Testability General Scenario 162

10.2 Tactics for Testability 164

10.3 A Design Checklist for Testability 169

10.4 Summary 172

10.5 For Further Reading 172

10.6 Discussion Questions 173

cHaPtEr 11 usability 175

11.1 Usability General Scenario 176

11.2 Tactics for Usability 177

11.3 A Design Checklist for Usability 181

11.4 Summary 183

11.5 For Further Reading 183

11.6 Discussion Questions 183

cHaPtEr 12 Other Quality attributes 185

12.1 Other Important Quality Attributes 185

12.2 Other Categories of Quality Attributes 189

12.3 Software Quality Attributes and System
Quality Attributes 190

12.4 Using Standard Lists of Quality Attributes—
or Not 193

12.5 Dealing with “X-ability”: Bringing a New
Quality Attribute into the Fold 196

12.6 For Further Reading 200

12.7 Discussion Questions 201

cHaPtEr 13 architectural tactics and Patterns 203

13.1 Architectural Patterns 204

13.2 Overview of the Patterns Catalog 205

13.3 Relationships between Tactics and
Patterns 238

Contents ix

13.4 Using Tactics Together 242

13.5 Summary 247

13.6 For Further Reading 248

13.7 Discussion Questions 249

cHaPtEr 14 Quality attribute Modeling and analysis 251

14.1 Modeling Architectures to Enable Quality
Attribute Analysis 252

14.2 Quality Attribute Checklists 260

14.3 Thought Experiments and
Back-of-the-Envelope Analysis 262

14.4 Experiments, Simulations, and
Prototypes 264

14.5 Analysis at Different Stages of the Life
Cycle 265

14.6 Summary 266

14.7 For Further Reading 267

14.8 Discussion Questions 269

 Part tHrEE arcHItEcturE IN tHE lIfE
cyclE 271

cHaPtEr 15 architecture in agile Projects 275

15.1 How Much Architecture? 277

15.2 Agility and Architecture Methods 281

15.3 A Brief Example of Agile Architecting 283

15.4 Guidelines for the Agile Architect 286

15.5 Summary 287

15.6 For Further Reading 288

15.7 Discussion Questions 289

cHaPtEr 16 architecture and requirements 291

16.1 Gathering ASRs from Requirements
Documents 292

16.2 Gathering ASRs by Interviewing
Stakeholders 294

16.3 Gathering ASRs by Understanding the
Business Goals 296

x Contents

16.4 Capturing ASRs in a Utility Tree 304

16.5 Tying the Methods Together 308

16.6 Summary 308

16.7 For Further Reading 309

16.8 Discussion Questions 309

cHaPtEr 17 designing an architecture 311

17.1 Design Strategy 311

17.2 The Attribute-Driven Design Method 316

17.3 The Steps of ADD 318

17.4 Summary 325

17.5 For Further Reading 325

17.6 Discussion Questions 326

cHaPtEr 18 documenting Software architectures 327

18.1 Uses and Audiences for Architecture
Documentation 328

18.2 Notations for Architecture
Documentation 329

18.3 Views 331

18.4 Choosing the Views 341

18.5 Combining Views 343

18.6 Building the Documentation Package 345

18.7 Documenting Behavior 351

18.8 Architecture Documentation and Quality
Attributes 354

18.9 Documenting Architectures That Change
Faster Than You Can Document Them 355

18.10 Documenting Architecture in an Agile
Development Project 356

18.11 Summary 359

18.12 For Further Reading 360

18.13 Discussion Questions 360

cHaPtEr 19 architecture, Implementation, and
testing 363

19.1 Architecture and Implementation 363

19.2 Architecture and Testing 370

Contents xi

19.3 Summary 376

19.4 For Further Reading 376

19.5 Discussion Questions 377

cHaPtEr 20 architecture reconstruction and
conformance 379

20.1 Architecture Reconstruction Process 381

20.2 Raw View Extraction 382

20.3 Database Construction 386

20.4 View Fusion 388

20.5 Architecture Analysis: Finding
Violations 389

20.6 Guidelines 392

20.7 Summary 393

20.8 For Further Reading 394

20.9 Discussion Questions 395

cHaPtEr 21 architecture Evaluation 397

21.1 Evaluation Factors 397

21.2 The Architecture Tradeoff Analysis
Method 400

21.3 Lightweight Architecture Evaluation 415

21.4 Summary 417

21.5 For Further Reading 417

21.6 Discussion Questions 418

cHaPtEr 22 Management and Governance 419

22.1 Planning 420

22.2 Organizing 422

22.3 Implementing 427

22.4 Measuring 429

22.5 Governance 430

22.6 Summary 432

22.7 For Further Reading 432

22.8 Discussion Questions 433

xii Contents

 Part fOur arcHItEcturE aNd
buSINESS 435

cHaPtEr 23 Economic analysis of architectures 437

23.1 Decision-Making Context 438

23.2 The Basis for the Economic Analyses 439

23.3 Putting Theory into Practice:
The CBAM 442

23.4 Case Study: The NASA ECS Project 450

23.5 Summary 457

23.6 For Further Reading 458

23.7 Discussion Questions 458

cHaPtEr 24 architecture competence 459

24.1 Competence of Individuals: Duties, Skills, and
Knowledge of Architects 460

24.2 Competence of a Software Architecture
Organization 467

24.3 Summary 475

24.4 For Further Reading 475

24.5 Discussion Questions 477

cHaPtEr 25 architecture and Software Product lines 479

25.1 An Example of Product Line
Variability 482

25.2 What Makes a Software Product Line
Work? 483

25.3 Product Line Scope 486

25.4 The Quality Attribute of Variability 488

25.5 The Role of a Product Line
Architecture 488

25.6 Variation Mechanisms 490

25.7 Evaluating a Product Line
Architecture 493

25.8 Key Software Product Line Issues 494

25.9 Summary 497

25.10 For Further Reading 498

25.11 Discussion Questions 498

Contents xiii

 Part fIVE tHE braVE NEW WOrld 501
cHaPtEr 26 architecture in the cloud 503

26.1 Basic Cloud Definitions 504

26.2 Service Models and Deployment
Options 505

26.3 Economic Justification 506

26.4 Base Mechanisms 509

26.5 Sample Technologies 514

26.6 Architecting in a Cloud Environment 520

26.7 Summary 524

26.8 For Further Reading 524

26.9 Discussion Questions 525

cHaPtEr 27 architectures for the Edge 527

27.1 The Ecosystem of Edge-Dominant
Systems 528

27.2 Changes to the Software Development Life
Cycle 530

27.3 Implications for Architecture 531

27.4 Implications of the Metropolis Model 533

27.5 Summary 537

27.6 For Further Reading 538

27.7 Discussion Questions 538

cHaPtEr 28 Epilogue 541

References 547

About the Authors 561

Index 563

This page intentionally left blank

xv

Preface

I should have no objection to go over the same
life from its beginning to the end: requesting only

the advantage authors have, of correcting in a
[third] edition the faults of the first [two].

— Benjamin Franklin

It has been a decade since the publication of the second edition of this book.
During that time, the field of software architecture has broadened its focus
from being primarily internally oriented—How does one design, evaluate,
and document software?—to including external impacts as well—a deeper
understanding of the influences on architectures and a deeper understanding of
the impact architectures have on the life cycle, organizations, and management.

The past ten years have also seen dramatic changes in the types of systems
being constructed. Large data, social media, and the cloud are all areas that, at
most, were embryonic ten years ago and now are not only mature but extremely
influential.

We listened to some of the criticisms of the previous editions and have
included much more material on patterns, reorganized the material on quality
attributes, and made interoperability a quality attribute worthy of its own chapter.
We also provide guidance about how you can generate scenarios and tactics for
your own favorite quality attributes.

To accommodate this plethora of new material, we had to make difficult
choices. In particular, this edition of the book does not include extended
case studies as the prior editions did. This decision also reflects the maturing
of the field, in the sense that case studies about the choices made in software
architectures are more prevalent than they were ten years ago, and they are less
necessary to convince readers of the importance of software architecture. The
case studies from the first two editions are available, however, on the book’s
website, at www.informit.com/title/9780321815736. In addition, on the same
website, we have slides that will assist instructors in presenting this material.

We have thoroughly reworked many of the topics covered in this edition.
In particular, we realize that the methods we present—for architecture design,
analysis, and documentation—are one version of how to achieve a particular
goal, but there are others. This led us to separate the methods that we present

http://www.informit.com/title/9780321815736

xvi Preface

in detail from their underlying theory. We now present the theory first with
specific methods given as illustrations of possible realizations of the theories.
The new topics in this edition include architecture-centric project management;
architecture competence; requirements modeling and analysis; Agile methods;
implementation and testing; the cloud; and the edge.

As with the prior editions, we firmly believe that the topics are best discussed
in either reading groups or in classroom settings, and to that end we have included
a collection of discussion questions at the end of each chapter. Most of these
questions are open-ended, with no absolute right or wrong answers, so you, as a
reader, should emphasize how you justify your answer rather than just answer the
question itself.

xvii

Reader’s Guide

We have structured this book into five distinct portions. Part One introduces
architecture and the various contextual lenses through which it could be viewed.
These are the following:

 ■ Technical. What technical role does the software architecture play in the
system or systems of which it’s a part?

 ■ Project. How does a software architecture relate to the other phases of a
software development life cycle?

 ■ Business. How does the presence of a software architecture affect an
organization’s business environment?

 ■ Professional. What is the role of a software architect in an organization or a
development project?

Part Two is focused on technical background. Part Two describes how
decisions are made. Decisions are based on the desired quality attributes for a
system, and Chapters 5–11 describe seven different quality attributes and the
techniques used to achieve them. The seven are availability, interoperability,
maintainability, performance, security, testability, and usability. Chapter 12
tells you how to add other quality attributes to our seven, Chapter 13 discusses
patterns and tactics, and Chapter 14 discusses the various types of modeling and
analysis that are possible.

Part Three is devoted to how a software architecture is related to the other
portions of the life cycle. Of special note is how architecture can be used in Agile
projects. We discuss individually other aspects of the life cycle: requirements,
design, implementation and testing, recovery and conformance, and evaluation.

Part Four deals with the business of architecting from an economic
perspective, from an organizational perspective, and from the perspective of
constructing a series of similar systems.

Part Five discusses several important emerging technologies and how
architecture relates to these technologies.

This page intentionally left blank

xix

Acknowledgments

We had a fantastic collection of reviewers for this edition, and their assistance
helped make this a better book. Our reviewers were Muhammad Ali Babar, Felix
Bachmann, Joe Batman, Phil Bianco, Jeromy Carriere, Roger Champagne, Steve
Chenoweth, Viktor Clerc, Andres Diaz Pace, George Fairbanks, Rik Farenhorst,
Ian Gorton, Greg Hartman, Rich Hilliard, James Ivers, John Klein, Philippe
Kruchten, Phil Laplante, George Leih, Grace Lewis, John McGregor, Tommi
Mikkonen, Linda Northrop, Ipek Ozkaya, Eltjo Poort, Eelco Rommes, Nick
Rozanski, Jungwoo Ryoo, James Scott, Antony Tang, Arjen Uittenbogaard, Hans
van Vliet, Hiroshi Wada, Rob Wojcik, Eoin Woods, and Liming Zhu.

In addition, we had significant contributions from Liming Zhu, Hong-
Mei Chen, Jungwoo Ryoo, Phil Laplante, James Scott, Grace Lewis, and Nick
Rozanski that helped give the book a richer flavor than one written by just the
three of us.

The issue of build efficiency in Chapter 12 came from Rolf Siegers and John
McDonald of Raytheon. John Klein and Eltjo Poort contributed the “abstract
system clock” and “sandbox mode” tactics, respectively, for testability. The list
of stakeholders in Chapter 3 is from Documenting Software Architectures: Views
and Beyond, Second Edition. Some of the material in Chapter 28 was inspired by a
talk given by Anthony Lattanze called “Organizational Design Thinking” in 2011.

Joe Batman was instrumental in the creation of the seven categories of design
decisions we describe in Chapter 4. In addition, the descriptions of the security
view, communications view, and exception view in Chapter 18 are based on material
that Joe wrote while planning the documentation for a real system’s architecture.
Much of the new material on modifiability tactics was based on the work of Felix
Bachmann and Rod Nord. James Ivers helped us with the security tactics.

Both Paul Clements and Len Bass have taken new positions since the
last edition was published, and we thank their new respective managements
(BigLever Software for Paul and NICTA for Len) for their willingness to support
our work on this edition. We would also like to thank our (former) colleagues at
the Software Engineering Institute for multiple contributions to the evolution of
the ideas expressed in this edition.

Finally, as always, we thank our editor at Addison-Wesley, Peter Gordon,
for providing guidance and support during the writing and production processes.

This page intentionally left blank

1

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T O N E

INtrOductION

What is a software architecture? What is it good for? How does it come to be?
What effect does its existence have? These are the questions we answer in Part I.

Chapter 1 deals with a technical perspective on software architecture. We
define it and relate it to system and enterprise architectures. We discuss how the
architecture can be represented in different views to emphasize different perspec-
tives on the architecture. We define patterns and discuss what makes a “good”
architecture.

In Chapter 2, we discuss the uses of an architecture. You may be surprised
that we can find so many—ranging from a vehicle for communication among
stakeholders to a blueprint for implementation, to the carrier of the system’s
quality attributes. We also discuss how the architecture provides a reasoned basis
for schedules and how it provides the foundation for training new members on a
team.

Finally, in Chapter 3, we discuss the various contexts in which a software ar-
chitecture exists. It exists in a technical context, in a project life-cycle context, in
a business context, and in a professional context. Each of these contexts defines a
role for the software architecture to play, or an influence on it. These impacts and
influences define the Architecture Influence Cycle.

This page intentionally left blank

3

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

1
What Is Software
Architecture?

Good judgment is usually the result of experience.
And experience is frequently the result of bad
judgment. But to learn from the experience of

others requires those who have the experience to
share the knowledge with those who follow.

—Barry LePatner

Writing (on our part) and reading (on your part) a book about software architec-
ture, which distills the experience of many people, presupposes that

1. having a software architecture is important to the successful development
of a software system and

2. there is a sufficient, and sufficiently generalizable, body of knowledge
about software architecture to fill up a book.

One purpose of this book is to convince you that both of these assumptions are
true, and once you are convinced, give you a basic knowledge so that you can
apply it yourself.

Software systems are constructed to satisfy organizations’ business goals.
The architecture is a bridge between those (often abstract) business goals and
the final (concrete) resulting system. While the path from abstract goals to con-
crete systems can be complex, the good news is that software architectures can be
designed, analyzed, documented, and implemented using known techniques that
will support the achievement of these business and mission goals. The complex-
ity can be tamed, made tractable.

These, then, are the topics for this book: the design, analysis, documenta-
tion, and implementation of architectures. We will also examine the influences,
principally in the form of business goals and quality attributes, which inform
these activities.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

4 Part One Introduction 1—What Is Software Architecture?

In this chapter we will focus on architecture strictly from a software engineer-
ing point of view. That is, we will explore the value that a software architecture
brings to a development project. (Later chapters will take a business and organi-
zational perspective.)

1.1 What Software architecture Is and What It Isn’t

There are many definitions of software architecture, easily discoverable with
a web search, but the one we like is this one:

The software architecture of a system is the set of structures needed to
reason about the system, which comprise software elements, relations
among them, and properties of both.

This definition stands in contrast to other definitions that talk about the sys-
tem’s “early” or “major” design decisions. While it is true that many architectural
decisions are made early, not all are—especially in Agile or spiral-development
projects. It’s also true that very many decisions are made early that are not archi-
tectural. Also, it’s hard to look at a decision and tell whether or not it’s “major.”
Sometimes only time will tell. And since writing down an architecture is one of
the architect’s most important obligations, we need to know now which decisions
an architecture comprises.

Structures, on the other hand, are fairly easy to identify in software, and they
form a powerful tool for system design.

Let us look at some of the implications of our definition.

architecture Is a Set of Software Structures

This is the first and most obvious implication of our definition. A structure is sim-
ply a set of elements held together by a relation. Software systems are composed
of many structures, and no single structure holds claim to being the architecture.
There are three categories of architectural structures, which will play an import-
ant role in the design, documentation, and analysis of architectures:

1. First, some structures partition systems into implementation units, which
in this book we call modules. Modules are assigned specific computational
responsibilities, and are the basis of work assignments for programming
teams (Team A works on the database, Team B works on the business rules,
Team C works on the user interface, etc.). In large projects, these elements
(modules) are subdivided for assignment to subteams. For example, the da-
tabase for a large enterprise resource planning (ERP) implementation might
be so complex that its implementation is split into many parts. The structure
that captures that decomposition is a kind of module structure, the module

1.1 What Software Architecture Is and What It Isn’t 5

decomposition structure in fact. Another kind of module structure emerges
as an output of object-oriented analysis and design—class diagrams. If you
aggregate your modules into layers, you’ve created another (and very use-
ful) module structure. Module structures are static structures, in that they
focus on the way the system’s functionality is divided up and assigned to
implementation teams.

2. Other structures are dynamic, meaning that they focus on the way the el-
ements interact with each other at runtime to carry out the system’s func-
tions. Suppose the system is to be built as a set of services. The services,
the infrastructure they interact with, and the synchronization and interaction
relations among them form another kind of structure often used to describe
a system. These services are made up of (compiled from) the programs in
the various implementation units that we just described. In this book we
will call runtime structures component-and-connector (C&C) structures.
The term component is overloaded in software engineering. In our use, a
component is always a runtime entity.

3. A third kind of structure describes the mapping from software structures
to the system’s organizational, developmental, installation, and execution
environments. For example, modules are assigned to teams to develop, and
assigned to places in a file structure for implementation, integration, and
testing. Components are deployed onto hardware in order to execute. These
mappings are called allocation structures.

Although software comprises an endless supply of structures, not all of them
are architectural. For example, the set of lines of source code that contain the let-
ter “z,” ordered by increasing length from shortest to longest, is a software struc-
ture. But it’s not a very interesting one, nor is it architectural. A structure is archi-
tectural if it supports reasoning about the system and the system’s properties. The
reasoning should be about an attribute of the system that is important to some
stakeholder. These include functionality achieved by the system, the availability
of the system in the face of faults, the difficulty of making specific changes to the
system, the responsiveness of the system to user requests, and many others. We
will spend a great deal of time in this book on the relationship between architec-
ture and quality attributes like these.

Thus, the set of architectural structures is not fixed or limited. What is archi-
tectural is what is useful in your context for your system.

architecture Is an abstraction

Because architecture consists of structures and structures consist of elements1
and relations, it follows that an architecture comprises software elements and

1. In this book we use the term “element” when we mean either a module or a component, and don’t
want to distinguish.

6 Part One Introduction 1—What Is Software Architecture?

how the elements relate to each other. This means that architecture specifically
omits certain information about elements that is not useful for reasoning about
the system—in particular, it omits information that has no ramifications outside
of a single element. Thus, an architecture is foremost an abstraction of a system
that selects certain details and suppresses others. In all modern systems, elements
interact with each other by means of interfaces that partition details about an el-
ement into public and private parts. Architecture is concerned with the public
side of this division; private details of elements—details having to do solely with
internal implementation—are not architectural. Beyond just interfaces, though,
the architectural abstraction lets us look at the system in terms of its elements,
how they are arranged, how they interact, how they are composed, what their
properties are that support our system reasoning, and so forth. This abstraction
is essential to taming the complexity of a system—we simply cannot, and do not
want to, deal with all of the complexity all of the time.

Every Software System Has a Software architecture

Every system can be shown to comprise elements and relations among them to
support some type of reasoning. In the most trivial case, a system is itself a single
element—an uninteresting and probably non-useful architecture, but an architec-
ture nevertheless.

Even though every system has an architecture, it does not necessarily follow
that the architecture is known to anyone. Perhaps all of the people who designed
the system are long gone, the documentation has vanished (or was never pro-
duced), the source code has been lost (or was never delivered), and all we have is
the executing binary code. This reveals the difference between the architecture of
a system and the representation of that architecture. Because an architecture can
exist independently of its description or specification, this raises the importance
of architecture documentation, which is described in Chapter 18, and architec-
ture reconstruction, discussed in Chapter 20.

architecture Includes behavior

The behavior of each element is part of the architecture insofar as that behavior
can be used to reason about the system. This behavior embodies how elements
interact with each other, which is clearly part of our definition of architecture.

This tells us that box-and-line drawings that are passed off as architectures
are in fact not architectures at all. When looking at the names of the boxes (da-
tabase, graphical user interface, executive, etc.), a reader may well imagine the
functionality and behavior of the corresponding elements. This mental image
approaches an architecture, but it springs from the imagination of the observ-
er’s mind and relies on information that is not present. This does not mean that
the exact behavior and performance of every element must be documented in
all circumstances—some aspects of behavior are fine-grained and below the

1.1 What Software Architecture Is and What It Isn’t 7

architect’s level of concern. But to the extent that an element’s behavior influ-
ences another element or influences the acceptability of the system as a whole,
this behavior must be considered, and should be documented, as part of the soft-
ware architecture.

Not all architectures are Good architectures

The definition is indifferent as to whether the architecture for a system is a good
one or a bad one. An architecture may permit or preclude a system’s achievement
of its behavioral, quality attribute, and life-cycle requirements. Assuming that we
do not accept trial and error as the best way to choose an architecture for a sys-
tem—that is, picking an architecture at random, building the system from it, and
then hacking away and hoping for the best—this raises the importance of archi-
tecture design, which is treated in Chapter 17, and architecture evaluation, which
we deal with in Chapter 21.

System and Enterprise Architectures

Two disciplines related to software architecture are system architecture
and enterprise architecture. Both of these disciplines have broader con-
cerns than software and affect software architecture through the estab-
lishment of constraints within which a software system must live. In both
cases, the software architect for a system should be on the team that pro-
vides input into the decisions made about the system or the enterprise.

System architecture
A system’s architecture is a representation of a system in which there
is a mapping of functionality onto hardware and software components,
a mapping of the software architecture onto the hardware architecture,
and a concern for the human interaction with these components. That is,
system architecture is concerned with a total system, including hardware,
software, and humans.

A system architecture will determine, for example, the functionality that
is assigned to different processors and the type of network that connects
those processors. The software architecture on each of those processors
will determine how this functionality is implemented and how the various
processors interact through the exchange of messages on the network.

A description of the software architecture, as it is mapped to hardware
and networking components, allows reasoning about qualities such as per-
formance and reliability. A description of the system architecture will allow
reasoning about additional qualities such as power consumption, weight,
and physical footprint.

When a particular system is designed, there is frequently negotiation be-
tween the system architect and the software architect as to the distribution

8 Part One Introduction 1—What Is Software Architecture?

of functionality and, consequently, the constraints placed on the software
architecture.

Enterprise architecture
Enterprise architecture is a description of the structure and behavior of an
organization’s processes, information flow, personnel, and organizational
subunits, aligned with the organization’s core goals and strategic direction.
An enterprise architecture need not include information systems—clearly
organizations had architectures that fit the preceding definition prior to the
advent of computers—but these days, enterprise architectures for all but the
smallest businesses are unthinkable without information system support.
Thus, a modern enterprise architecture is concerned with how an enter-
prise’s software systems support the business processes and goals of the
enterprise. Typically included in this set of concerns is a process for deciding
which systems with which functionality should be supported by an enterprise.

An enterprise architecture will specify the data model that various sys-
tems use to interact, for example. It will specify rules for how the enter-
prise’s systems interact with external systems.

Software is only one concern of enterprise architecture. Two other com-
mon concerns addressed by enterprise architecture are how the software
is used by humans to perform business processes, and the standards that
determine the computational environment.

Sometimes the software infrastructure that supports communication
among systems and with the external world is considered a portion of the
enterprise architecture; other times, this infrastructure is considered one
of the systems within an enterprise. (In either case, the architecture of that
infrastructure is a software architecture!) These two views will result in dif-
ferent management structures and spheres of influence for the individuals
concerned with the infrastructure.

The system and the enterprise provide environments for, and constraints
on, the software architecture. The software architecture must live within
the system and enterprise, and increasingly it is the focus for achieving the
organization’s business goals. But all three forms of architecture share im-
portant commonalities: They are concerned with major elements taken as
abstractions, the relationships among the elements, and how the elements
together meet the behavioral and quality goals of the thing being built.

Are these in scope for this book? Yes! (Well, no.)
System and enterprise architectures share a great deal with software ar-
chitectures. All can be designed, evaluated, and documented; all answer
to requirements; all are intended to satisfy stakeholders; all consist of
structures, which in turn consist of elements and relationships; all have a
repertoire of patterns and styles at their respective architects’ disposal;
and the list goes on. So to the extent that these architectures share com-
monalities with software architecture, they are in the scope of this book.
But like all technical disciplines, each has its own specialized vocabulary
and techniques, and we won’t cover those. Copious other sources do.

1.2 Architectural Structures and Views 9

1.2 architectural Structures and Views

The neurologist, the orthopedist, the hematologist, and the dermatologist all have
different views of the structure of a human body. Ophthalmologists, cardiolo-
gists, and podiatrists concentrate on specific subsystems. And the kinesiologist
and psychiatrist are concerned with different aspects of the entire arrangement’s
behavior. Although these views are pictured differently and have very different
properties, all are inherently related, interconnected: together they describe the
architecture of the human body. Figure 1.1 shows several different views of the
human body: the skeletal, the vascular, and the X-ray.

fIGurE 1.1 Physiological structures (Getty images: Brand X Pictures [skeleton],
Don Farrall [woman], Mads Abildgaard [man])

So it is with software. Modern systems are frequently too complex to grasp
all at once. Instead, we restrict our attention at any one moment to one (or a
small number) of the software system’s structures. To communicate meaningfully
about an architecture, we must make clear which structure or structures we are
discussing at the moment—which view we are taking of the architecture.

10 Part One Introduction 1—What Is Software Architecture?

Structures and Views

We will be using the related terms structure and view when discussing architec-
ture representation.

 ■ A view is a representation of a coherent set of architectural elements, as
written by and read by system stakeholders. It consists of a representation
of a set of elements and the relations among them.

 ■ A structure is the set of elements itself, as they exist in software or
hardware.

In short, a view is a representation of a structure. For example, a module
structure is the set of the system’s modules and their organization. A module view
is the representation of that structure, documented according to a template in a
chosen notation, and used by some system stakeholders.

So: Architects design structures. They document views of those structures.

three Kinds of Structures

As we saw in the previous section, architectural structures can be divided into
three major categories, depending on the broad nature of the elements they show.
These correspond to the three broad kinds of decisions that architectural design
involves:

1. Module structures embody decisions as to how the system is to be struc-
tured as a set of code or data units that have to be constructed or procured.
In any module structure, the elements are modules of some kind (perhaps
classes, or layers, or merely divisions of functionality, all of which are units
of implementation). Modules represent a static way of considering the sys-
tem. Modules are assigned areas of functional responsibility; there is less
emphasis in these structures on how the resulting software manifests itself
at runtime. Module structures allow us to answer questions such as these:

 ■ What is the primary functional responsibility assigned to each module?
 ■ What other software elements is a module allowed to use?
 ■ What other software does it actually use and depend on?
 ■ What modules are related to other modules by generalization or special-

ization (i.e., inheritance) relationships?

Module structures convey this information directly, but they can also be
used by extension to ask questions about the impact on the system when the
responsibilities assigned to each module change. In other words, examining
a system’s module structures—that is, looking at its module views—is an
excellent way to reason about a system’s modifiability.

2. Component-and-connector structures embody decisions as to how the
system is to be structured as a set of elements that have runtime behav-
ior (components) and interactions (connectors). In these structures, the

1.2 Architectural Structures and Views 11

elements are runtime components (which are the principal units of compu-
tation and could be services, peers, clients, servers, filters, or many other
types of runtime elements) and connectors (which are the communication
vehicles among components, such as call-return, process synchronization
operators, pipes, or others). Component-and-connector views help us an-
swer questions such as these:

 ■ What are the major executing components and how do they interact at
runtime?

 ■ What are the major shared data stores?
 ■ Which parts of the system are replicated?
 ■ How does data progress through the system?
 ■ What parts of the system can run in parallel?
 ■ Can the system’s structure change as it executes and, if so, how?

By extension, component-and-connector views are crucially important
for asking questions about the system’s runtime properties such as
performance, security, availability, and more.

3. Allocation structures embody decisions as to how the system will relate
to nonsoftware structures in its environment (such as CPUs, file systems,
networks, development teams, etc.). These structures show the relationship
between the software elements and elements in one or more external envi-
ronments in which the software is created and executed. Allocation views
help us answer questions such as these:

 ■ What processor does each software element execute on?
 ■ In what directories or files is each element stored during development,

testing, and system building?
 ■ What is the assignment of each software element to development teams?

Structures Provide Insight

Structures play such an important role in our perspective on software architec-
ture because of the analytical and engineering power they hold. Each structure
provides a perspective for reasoning about some of the relevant quality attributes.
For example:

 ■ The module “uses” structure, which embodies what modules use what other
modules, is strongly tied to the ease with which a system can be extended
or contracted.

 ■ The concurrency structure, which embodies parallelism within the system,
is strongly tied to the ease with which a system can be made free of
deadlock and performance bottlenecks.

 ■ The deployment structure is strongly tied to the achievement of
performance, availability, and security goals.

12 Part One Introduction 1—What Is Software Architecture?

And so forth. Each structure provides the architect with a different insight
into the design (that is, each structure can be analyzed for its ability to deliver a
quality attribute). But perhaps more important, each structure presents the archi-
tect with an engineering leverage point: By designing the structures appropri-
ately, the desired quality attributes emerge.

Scenarios, described in Chapter 4, are useful for exercising a given structure
as well as its connections to other structures. For example, a software engineer
wanting to make a change to the concurrency structure of a system would need
to consult the concurrency and deployment views, because the affected mecha-
nisms typically involve processes and threads, and physical distribution might
involve different control mechanisms than would be used if the processes were
co-located on a single machine. If control mechanisms need to be changed, the
module decomposition would need to be consulted to determine the extent of the
changes.

Some useful Module Structures

Useful module structures include the following:

 ■ Decomposition structure. The units are modules that are related to each
other by the is-a-submodule-of relation, showing how modules are decom-
posed into smaller modules recursively until the modules are small enough
to be easily understood. Modules in this structure represent a common
starting point for design, as the architect enumerates what the units of
software will have to do and assigns each item to a module for subsequent
(more detailed) design and eventual implementation. Modules often have
products (such as interface specifications, code, test plans, etc.) associated
with them. The decomposition structure determines, to a large degree, the
system’s modifiability, by assuring that likely changes are localized. That
is, changes fall within the purview of at most a few (preferably small) mod-
ules. This structure is often used as the basis for the development project’s
organization, including the structure of the documentation, and the project’s
integration and test plans. The units in this structure tend to have names that
are organization-specific such as “segment” or “subsystem.”

 ■ Uses structure. In this important but overlooked structure, the units here are
also modules, perhaps classes. The units are related by the uses relation,
a specialized form of dependency. A unit of software uses another if the
correctness of the first requires the presence of a correctly functioning
version (as opposed to a stub) of the second. The uses structure is used to
engineer systems that can be extended to add functionality, or from which
useful functional subsets can be extracted. The ability to easily create a
subset of a system allows for incremental development.

1.2 Architectural Structures and Views 13

 ■ Layer structure. The modules in this structure are called layers. A layer
is an abstract “virtual machine” that provides a cohesive set of services
through a managed interface. Layers are allowed to use other layers in a
strictly managed fashion; in strictly layered systems, a layer is only allowed
to use the layer immediately below. This structure is used to imbue a system
with portability, the ability to change the underlying computing platform.

 ■ Class (or generalization) structure. The module units in this structure are
called classes. The relation is inherits from or is an instance of. This view
supports reasoning about collections of similar behavior or capability (e.g.,
the classes that other classes inherit from) and parameterized differences.
The class structure allows one to reason about reuse and the incremental
addition of functionality. If any documentation exists for a project that has
followed an object-oriented analysis and design process, it is typically this
structure.

 ■ Data model. The data model describes the static information structure in
terms of data entities and their relationships. For example, in a banking
system, entities will typically include Account, Customer, and Loan.
Account has several attributes, such as account number, type (savings or
checking), status, and current balance. A relationship may dictate that one
customer can have one or more accounts, and one account is associated to
one or two customers.

Some useful c&c Structures

Component-and-connector structures show a runtime view of the system. In these
structures the modules described above have all been compiled into executable
forms. All component-and-connector structures are thus orthogonal to the mod-
ule-based structures and deal with the dynamic aspects of a running system. The
relation in all component-and-connector structures is attachment, showing how
the components and the connectors are hooked together. (The connectors them-
selves can be familiar constructs such as “invokes.”) Useful C&C structures in-
clude the following:

 ■ Service structure. The units here are services that interoperate with each
other by service coordination mechanisms such as SOAP (see Chapter 6).
The service structure is an important structure to help engineer a system
composed of components that may have been developed anonymously and
independently of each other.

 ■ Concurrency structure. This component-and-connector structure allows the
architect to determine opportunities for parallelism and the locations where
resource contention may occur. The units are components and the connec-
tors are their communication mechanisms. The components are arranged
into logical threads; a logical thread is a sequence of computations that

14 Part One Introduction 1—What Is Software Architecture?

could be allocated to a separate physical thread later in the design process.
The concurrency structure is used early in the design process to identify the
requirements to manage the issues associated with concurrent execution.

Some useful allocation Structures

Allocation structures define how the elements from C&C or module structures
map onto things that are not software: typically hardware, teams, and file sys-
tems. Useful allocation structures include these:

 ■ Deployment structure. The deployment structure shows how software is
assigned to hardware processing and communication elements. The ele-
ments are software elements (usually a process from a C&C view), hard-
ware entities (processors), and communication pathways. Relations are
allocated-to, showing on which physical units the software elements reside,
and migrates-to if the allocation is dynamic. This structure can be used to
reason about performance, data integrity, security, and availability. It is of
particular interest in distributed and parallel systems.

 ■ Implementation structure. This structure shows how software elements
(usually modules) are mapped to the file structure(s) in the system’s devel-
opment, integration, or configuration control environments. This is critical
for the management of development activities and build processes. (In prac-
tice, a screenshot of your development environment tool, which manages
the implementation environment, often makes a very useful and sufficient
diagram of your implementation view.)

 ■ Work assignment structure. This structure assigns responsibility for im-
plementing and integrating the modules to the teams who will carry it out.
Having a work assignment structure be part of the architecture makes it
clear that the decision about who does the work has architectural as well as
management implications. The architect will know the expertise required
on each team. Also, on large multi-sourced distributed development proj-
ects, the work assignment structure is the means for calling out units of
functional commonality and assigning those to a single team, rather than
having them implemented by everyone who needs them. This structure will
also determine the major communication pathways among the teams: regu-
lar teleconferences, wikis, email lists, and so forth.

Table 1.1 summarizes these structures. The table lists the meaning of the
elements and relations in each structure and tells what each might be used for.

relating Structures to Each Other

Each of these structures provides a different perspective and design handle on a
system, and each is valid and useful in its own right. Although the structures give

1.2
A

rchitectural S
tructures and V

iew
s

15
tablE 1.1 Useful Architectural Structures

Software
Structure

Element
types

relations

useful for

Quality attributes
affected

Module
Structures

Decomposition Module Is a submodule of Resource allocation and project structuring and
planning; information hiding, encapsulation;
configuration control

Modifiability

Uses Module Uses (i.e., requires the correct
presence of)

Engineering subsets, engineering extensions “Subsetability,”
extensibility

Layers Layer Requires the correct presence
of, uses the services of,
provides abstraction to

Incremental development, implementing systems
on top of “virtual machines”

Portability

Class Class, object Is an instance of, shares access
methods of

In object-oriented design systems, factoring out
commonality; planning extensions of functionality

Modifiability,
extensibility

Data model Data entity {one, many}-to-{one, many},
generalizes, specializes

Engineering global data structures for consistency
and performance

Modifiability,
performance

c&c
Structures

Service Service, ESB, registry,
others

Runs concurrently with, may
run concurrently with, excludes,
precedes, etc.

Scheduling analysis, performance analysis Interoperability,
modifiability

Concurrency Processes, threads Can run in parallel Identifying locations where resource contention
exists, or where threads may fork, join, be created,
or be killed

Performance,
availability

allocation
Structures

Deployment Components, hardware
elements

Allocated to, migrates to Performance, availability, security analysis Performance,
security, availability

Implementation Modules, file structure Stored in Configuration control, integration, test activities Development
efficiency

Work assignment Modules, organizational
units

Assigned to Project management, best use of expertise and
available resources, management of commonality

Development
efficiency

16 Part One Introduction 1—What Is Software Architecture?

different system perspectives, they are not independent. Elements of one structure
will be related to elements of other structures, and we need to reason about these
relations. For example, a module in a decomposition structure may be manifested
as one, part of one, or several components in one of the component-and-con-
nector structures, reflecting its runtime alter ego. In general, mappings between
structures are many to many.

Figure 1.2 shows a very simple example of how two structures might relate
to each other. The figure on the left shows a module decomposition view of a
tiny client-server system. In this system, two modules must be implemented: The
client software and the server software. The figure on the right shows a compo-
nent-and-connector view of the same system. At runtime there are ten clients run-
ning and accessing the server. Thus, this little system has two modules and eleven
components (and ten connectors).

Whereas the correspondence between the elements in the decomposition
structure and the client-server structure is obvious, these two views are used for
very different things. For example, the view on the right could be used for perfor-
mance analysis, bottleneck prediction, and network traffic management, which
would be extremely difficult or impossible to do with the view on the left.

(In Chapter 13 we’ll learn about the map-reduce pattern, in which copies
of simple, identical functionality are distributed across hundreds or thousands
of processing nodes—one module for the whole system, but one component per
node.)

Individual projects sometimes consider one structure dominant and cast
other structures, when possible, in terms of the dominant structure. Often the
dominant structure is the module decomposition structure. This is for a good

Client

Server

Module

System

Decomposition View

Key:

Client-Server View

Key: Component
Request-Reply

C7

C8 C2

C3

C1

C4C6

C9
C10

C5

S1

fIGurE 1.2 Two views of a client-server system

1.2 Architectural Structures and Views 17

reason: it tends to spawn the project structure, because it mirrors the team struc-
ture of development. In other projects, the dominant structure might be a C&C
structure that shows how the system’s functionality and/or critical quality attri-
butes are achieved.

fewer Is better

Not all systems warrant consideration of many architectural structures. The larger
the system, the more dramatic the difference between these structures tends to be;
but for small systems we can often get by with fewer. Instead of working with
each of several component-and-connector structures, usually a single one will do.
If there is only one process, then the process structure collapses to a single node
and need not be explicitly represented in the design. If there is to be no distribu-
tion (that is, if the system is implemented on a single processor), then the deploy-
ment structure is trivial and need not be considered further. In general, design and
document a structure only if doing so brings a positive return on the investment,
usually in terms of decreased development or maintenance costs.

Which Structures to choose?

We have briefly described a number of useful architectural structures, and there
are many more. Which ones shall an architect choose to work on? Which ones
shall the architect choose to document? Surely not all of them. Chapter 18 will
treat this topic in more depth, but for now a good answer is that you should think
about how the various structures available to you provide insight and leverage
into the system’s most important quality attributes, and then choose the ones that
will play the best role in delivering those attributes.

Ask Cal

More than a decade ago I went to a customer site to do an architecture
evaluation—one of the first instances of the Architecture Tradeoff Analysis
Method (ATAM) that I had ever performed (you can read about the ATAM,
and other architecture evaluation topics, in Chapter 21). In those early
days, we were still figuring out how to make architecture evaluations re-
peatable and predictable, and how to guarantee useful outcomes from
them. One of the ways that we ensured useful outcomes was to enforce
certain preconditions on the evaluation. A precondition that we figured out
rather quickly was this: if the architecture has not been documented, we
will not proceed with the evaluation. The reason for this precondition was
simple: we could not evaluate the architecture by reading the code—we
didn’t have the time for that—and we couldn’t just ask the architect to

18 Part One Introduction 1—What Is Software Architecture?

sketch the architecture in real time, since that would produce vague and
very likely erroneous representations.

Okay, it’s not completely true to say that they had no architecture docu-
mentation. They did produce a single-page diagram, with a few boxes and
lines. Some of those boxes were, however, clouds. Yes, they actually used
a cloud as one of their icons. When I pressed them on the meaning of this
icon—Was it a process? A class? A thread?—they waffled. This was not, in
fact, architecture documentation. It was, at best, “marketecture.”

But in those early days we had no preconditions and so we didn’t stop
the evaluation there. We just blithely waded in to whatever swamp we
found, and we enforced nothing. As I began this evaluation, I interviewed
some of the key project stakeholders: the project manager and several of
the architects (this was a large project with one lead architect and several
subordinates). As it happens, the lead architect was away, and so I spent
my time with the subordinate architects. Every time I asked the subor-
dinates a tough question—“How do you ensure that you will meet your
latency goal along this critical execution path?” or “What are your rules for
layering?”—they would answer: “Ask Cal. Cal knows that.” Cal was the lead
architect. Immediately I noted a risk for this system: What if Cal gets hit by
a bus? What then?

In the end, because of my pestering, the architecture team did in fact
produce respectable architecture documentation. About halfway through
the evaluation, the project manager came up to me and shook my hand
and thanked me for the great job I had done. I was dumbstruck. In my
mind I hadn’t done anything, at that point; the evaluation was only partially
complete and I hadn’t produced a single report or finding. I said that to the
manager and he said: “You got those guys to document the architecture.
I’ve never been able to get them to do that. So . . . thanks!”

If Cal had been hit by a bus or just left the company, they would have
had a serious problem on their hands: all of that architectural knowledge
located in one guy’s head and he is no longer with the organization. In can
happen. It does happen.

The moral of this story? An architecture that is not documented, and not
communicated, may still be a good architecture, but the risks surrounding it
are enormous.

—RK

1.3 architectural Patterns

In some cases, architectural elements are composed in ways that solve particular
problems. The compositions have been found useful over time, and over many
different domains, and so they have been documented and disseminated. These
compositions of architectural elements, called architectural patterns, provide
packaged strategies for solving some of the problems facing a system.

1.4 What Makes a “Good” Architecture? 19

An architectural pattern delineates the element types and their forms of in-
teraction used in solving the problem. Patterns can be characterized according to
the type of architectural elements they use. For example, a common module type
pattern is this:

 ■ Layered pattern. When the uses relation among software elements is
strictly unidirectional, a system of layers emerges. A layer is a coherent
set of related functionality. In a strictly layered structure, a layer can only
use the services of the layer immediately below it. Many variations of this
pattern, lessening the structural restriction, occur in practice. Layers are
often designed as abstractions (virtual machines) that hide implementation
specifics below from the layers above, engendering portability.

Common component-and-connector type patterns are these:

 ■ Shared-data (or repository) pattern. This pattern comprises components
and connectors that create, store, and access persistent data. The repository
usually takes the form of a (commercial) database. The connectors are
protocols for managing the data, such as SQL.

 ■ Client-server pattern. The components are the clients and the servers, and
the connectors are protocols and messages they share among each other to
carry out the system’s work.

Common allocation patterns include the following:

 ■ Multi-tier pattern, which describes how to distribute and allocate the
components of a system in distinct subsets of hardware and software,
connected by some communication medium. This pattern specializes the
generic deployment (software-to-hardware allocation) structure.

 ■ Competence center and platform, which are patterns that specialize a
software system’s work assignment structure. In competence center, work
is allocated to sites depending on the technical or domain expertise located
at a site. For example, user-interface design is done at a site where usability
engineering experts are located. In platform, one site is tasked with
developing reusable core assets of a software product line (see Chapter 25),
and other sites develop applications that use the core assets.

Architectural patterns will be investigated much further in Chapter 13.

1.4 What Makes a “Good” architecture?

There is no such thing as an inherently good or bad architecture. Architectures
are either more or less fit for some purpose. A three-tier layered service-oriented
architecture may be just the ticket for a large enterprise’s web-based B2B system

20 Part One Introduction 1—What Is Software Architecture?

but completely wrong for an avionics application. An architecture carefully
crafted to achieve high modifiability does not make sense for a throwaway proto-
type (and vice versa!). One of the messages of this book is that architectures can
in fact be evaluated—one of the great benefits of paying attention to them—but
only in the context of specific stated goals.

Nevertheless, there are rules of thumb that should be followed when design-
ing most architectures. Failure to apply any of these does not automatically mean
that the architecture will be fatally flawed, but it should at least serve as a warn-
ing sign that should be investigated.

We divide our observations into two clusters: process recommendations and
product (or structural) recommendations. Our process recommendations are the
following:

1. The architecture should be the product of a single architect or a small
group of architects with an identified technical leader. This approach
gives the architecture its conceptual integrity and technical consistency.
This recommendation holds for Agile and open source projects as well
as “traditional” ones. There should be a strong connection between the
architect(s) and the development team, to avoid ivory tower designs that are
impractical.

2. The architect (or architecture team) should, on an ongoing basis, base the
architecture on a prioritized list of well-specified quality attribute require-
ments. These will inform the tradeoffs that always occur. Functionality mat-
ters less.

3. The architecture should be documented using views. The views should
address the concerns of the most important stakeholders in support of the
project timeline. This might mean minimal documentation at first, elaborat-
ed later. Concerns usually are related to construction, analysis, and main-
tenance of the system, as well as education of new stakeholders about the
system.

4. The architecture should be evaluated for its ability to deliver the system’s
important quality attributes. This should occur early in the life cycle, when
it returns the most benefit, and repeated as appropriate, to ensure that
changes to the architecture (or the environment for which it is intended)
have not rendered the design obsolete.

5. The architecture should lend itself to incremental implementation, to avoid
having to integrate everything at once (which almost never works) as well
as to discover problems early. One way to do this is to create a “skeletal”
system in which the communication paths are exercised but which at first
has minimal functionality. This skeletal system can be used to “grow” the
system incrementally, refactoring as necessary.

Our structural rules of thumb are as follows:

1. The architecture should feature well-defined modules whose functional
responsibilities are assigned on the principles of information hiding and

1.5 Summary 21

separation of concerns. The information-hiding modules should encapsulate
things likely to change, thus insulating the software from the effects of
those changes. Each module should have a well-defined interface that
encapsulates or “hides” the changeable aspects from other software
that uses its facilities. These interfaces should allow their respective
development teams to work largely independently of each other.

2. Unless your requirements are unprecedented—possible, but unlikely—your
quality attributes should be achieved using well-known architectural pat-
terns and tactics (described in Chapter 13) specific to each attribute.

3. The architecture should never depend on a particular version of a commer-
cial product or tool. If it must, it should be structured so that changing to a
different version is straightforward and inexpensive.

4. Modules that produce data should be separate from modules that consume
data. This tends to increase modifiability because changes are frequently
confined to either the production or the consumption side of data. If new
data is added, both sides will have to change, but the separation allows for a
staged (incremental) upgrade.

5. Don’t expect a one-to-one correspondence between modules and compo-
nents. For example, in systems with concurrency, there may be multiple in-
stances of a component running in parallel, where each component is built
from the same module. For systems with multiple threads of concurrency,
each thread may use services from several components, each of which was
built from a different module.

6. Every process should be written so that its assignment to a specific proces-
sor can be easily changed, perhaps even at runtime.

7. The architecture should feature a small number of ways for components
to interact. That is, the system should do the same things in the same way
throughout. This will aid in understandability, reduce development time,
increase reliability, and enhance modifiability.

8. The architecture should contain a specific (and small) set of resource con-
tention areas, the resolution of which is clearly specified and maintained.
For example, if network utilization is an area of concern, the architect
should produce (and enforce) for each development team guidelines that
will result in a minimum of network traffic. If performance is a concern, the
architect should produce (and enforce) time budgets for the major threads.

1.5 Summary

The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them, and
properties of both.

22 Part One Introduction 1—What Is Software Architecture?

A structure is a set of elements and the relations among them.
A view is a representation of a coherent set of architectural elements, as

written by and read by system stakeholders. A view is a representation of one or
more structures.

There are three categories of structures:

 ■ Module structures show how a system is to be structured as a set of code or
data units that have to be constructed or procured.

 ■ Component-and-connector structures show how the system is to be
structured as a set of elements that have runtime behavior (components) and
interactions (connectors).

 ■ Allocation structures show how the system will relate to nonsoftware
structures in its environment (such as CPUs, file systems, networks,
development teams, etc.).

Structures represent the primary engineering leverage points of an architec-
ture. Each structure brings with it the power to manipulate one or more quality
attributes. They represent a powerful approach for creating the architecture (and
later, for analyzing it and explaining it to its stakeholders). And as we will see
in Chapter 18, the structures that the architect has chosen as engineering lever-
age points are also the primary candidates to choose as the basis for architecture
documentation.

Every system has a software architecture, but this architecture may be docu-
mented and disseminated, or it may not be.

There is no such thing as an inherently good or bad architecture. Architec-
tures are either more or less fit for some purpose.

1.6 for further reading

The early work of David Parnas laid much of the conceptual foundation for what
became the study of software architecture. A quintessential Parnas reader would
include his foundational article on information hiding [Parnas 72] as well as his
works on program families [Parnas 76], the structures inherent in software sys-
tems [Parnas 74], and introduction of the uses structure to build subsets and sup-
ersets of systems [Parnas 79]. All of these papers can be found in the more easily
accessible collection of his important papers [Hoffman 00].

An early paper by Perry and Wolf [Perry 92] drew an analogy between soft-
ware architecture views and structures and the structures one finds in a house
(plumbing, electrical, and so forth).

Software architectural patterns have been extensively catalogued in the se-
ries Pattern-Oriented Software Architecture [Buschmann 96] and others. Chapter
13 of this book also deals with architectural patterns.

1.7 Discussion Questions 23

Early papers on architectural views as used in industrial development proj-
ects are [Soni 95] and [Kruchten 95]. The former grew into a book [Hofmeister
00] that presents a comprehensive picture of using views in development and
analysis. The latter grew into the Rational Unified Process, about which there is
no shortage of references, both paper and online. A good one is [Kruchten 03].

Cristina Gacek and her colleagues discuss the process issues surrounding
software architecture in [Gacek 95].

Garlan and Shaw’s seminal work on software architecture [Garlan 93]
provides many excellent examples of architectural styles (a concept similar to
patterns).

In [Clements 10a] you can find an extended discussion on the difference be-
tween an architectural pattern and an architectural style. (It argues that a pattern
is a context-problem-solution triple; a style is simply a condensation that focuses
most heavily on the solution part.)

See [Taylor 09] for a definition of software architecture based on decisions
rather than on structure.

1.7 discussion Questions

1. Software architecture is often compared to the architecture of buildings as a
conceptual analogy. What are the strong points of that analogy? What is the
correspondence in buildings to software architecture structures and views?
To patterns? What are the weaknesses of the analogy? When does it break
down?

2. Do the architectures you’ve been exposed to document different structures
and relations like those described in this chapter? If so, which ones? If not,
why not?

3. Is there a different definition of software architecture that you are familiar
with? If so, compare and contrast it with the definition given in this chapter.
Many definitions include considerations like “rationale” (stating the reasons
why the architecture is what it is) or how the architecture will evolve over
time. Do you agree or disagree that these considerations should be part of
the definition of software architecture?

4. Discuss how an architecture serves as a basis for analysis. What about
decision-making? What kinds of decision-making does an architecture
empower?

5. What is architecture’s role in project risk reduction?

24 Part One Introduction 1—What Is Software Architecture?

6. Find a commonly accepted definition of system architecture and discuss
what it has in common with software architecture. Do the same for enter-
prise architecture.

7. Find a published example of an architecture. What structure or structures
are shown? Given its purpose, what structure or structures should have
been shown? What analysis does the architecture support? Critique it: What
questions do you have that the representation does not answer?

8. Sailing ships have architectures, which means they have “structures” that
lend themselves to reasoning about the ship’s performance and other qual-
ity attributes. Look up the technical definitions for barque, brig, cutter,
frigate, ketch, schooner, and sloop. Propose a useful set of “structures” for
distinguishing and reasoning about ship architectures.

25

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

2
Why Is Software
Architecture Important?

Software architecture is the set of design
decisions which, if made incorrectly, may

cause your project to be cancelled.
—Eoin Woods

If architecture is the answer, what was the question?
While Chapter 3 will cover the business importance of architecture to an

enterprise, this chapter focuses on why architecture matters from a technical per-
spective. We will examine a baker’s dozen of the most important reasons.

1. An architecture will inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
3. The analysis of an architecture enables early prediction of a system’s

qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest and hence most fundamental,

hardest-to-change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for evolutionary prototyping.
9. An architecture is the key artifact that allows the architect and project man-

ager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model that forms

the heart of a product line.
11. Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
12. By restricting design alternatives, architecture channels the creativity of

developers, reducing design and system complexity.
13. An architecture can be the foundation for training a new team member.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

26 Part One Introduction 2—Why Is Software Architecture Important?

Even if you already believe us that architecture is important and don’t need the
point hammered thirteen more times, think of these thirteen points (which form
the outline for this chapter) as thirteen useful ways to use architecture in a project.

2.1 Inhibiting or Enabling a System’s Quality
attributes

Whether a system will be able to exhibit its desired (or required) quality attri-
butes is substantially determined by its architecture.

This is such an important message that we’ve devoted all of Part 2 of this
book to expounding that message in detail. Until then, keep these examples in
mind as a starting point:

 ■ If your system requires high performance, then you need to pay attention
to managing the time-based behavior of elements, their use of shared
resources, and the frequency and volume of inter-element communication.

 ■ If modifiability is important, then you need to pay careful attention to
assigning responsibilities to elements so that the majority of changes to the
system will affect a small number of those elements. (Ideally each change
will affect just a single element.)

 ■ If your system must be highly secure, then you need to manage and protect
inter-element communication and control which elements are allowed to
access which information; you may also need to introduce specialized
elements (such as an authorization mechanism) into the architecture.

 ■ If you believe that scalability will be important to the success of your
system, then you need to carefully localize the use of resources to facilitate
introduction of higher-capacity replacements, and you must avoid hard-
coding in resource assumptions or limits.

 ■ If your projects need the ability to deliver incremental subsets of the
system, then you must carefully manage intercomponent usage.

 ■ If you want the elements from your system to be reusable in other systems,
then you need to restrict inter-element coupling, so that when you extract
an element, it does not come out with too many attachments to its current
environment to be useful.

The strategies for these and other quality attributes are supremely architectural.
But an architecture alone cannot guarantee the functionality or quality required of
a system. Poor downstream design or implementation decisions can always under-
mine an adequate architectural design. As we like to say (mostly in jest): The archi-
tecture giveth and the implementation taketh away. Decisions at all stages of the
life cycle—from architectural design to coding and implementation—affect system
quality. Therefore, quality is not completely a function of an architectural design.

2.2 Reasoning About and Managing Change 27

A good architecture is necessary, but not sufficient, to ensure quality. Achiev-
ing quality attributes must be considered throughout design, implementation, and
deployment. No quality attribute is entirely dependent on design, nor is it entirely
dependent on implementation or deployment. Satisfactory results are a matter of
getting the big picture (architecture) as well as the details (implementation) correct.

For example, modifiability is determined by how functionality is divided
and coupled (architectural) and by coding techniques within a module (nonar-
chitectural). Thus, a system is typically modifiable if changes involve the fewest
possible number of distinct elements. In spite of having the ideal architecture,
however, it is always possible to make a system difficult to modify by writing
obscure, tangled code.

2.2 reasoning about and Managing change

This point is a corollary to the previous point.
Modifiability—the ease with which changes can be made to a system—is

a quality attribute (and hence covered by the arguments in the previous section),
but it is such an important quality that we have awarded it its own spot in the List
of Thirteen. The software development community is coming to grips with the
fact that roughly 80 percent of a typical software system’s total cost occurs after
initial deployment. A corollary of this statistic is that most systems that people
work on are in this phase. Many programmers and software designers never get
to work on new development; they work under the constraints of the existing
architecture and the existing body of code. Virtually all software systems change
over their lifetime, to accommodate new features, to adapt to new environments,
to fix bugs, and so forth. But these changes are often fraught with difficulty.

Every architecture partitions possible changes into three categories: local,
nonlocal, and architectural.

 ■ A local change can be accomplished by modifying a single element. For
example, adding a new business rule to a pricing logic module.

 ■ A nonlocal change requires multiple element modifications but leaves
the underlying architectural approach intact. For example, adding a new
business rule to a pricing logic module, then adding new fields to the
database that this new business rule requires, and then revealing the results
of the rule in the user interface.

 ■ An architectural change affects the fundamental ways in which the
elements interact with each other and will probably require changes all
over the system. For example, changing a system from client-server to
peer-to-peer.

28 Part One Introduction 2—Why Is Software Architecture Important?

Obviously, local changes are the most desirable, and so an effective architec-
ture is one in which the most common changes are local, and hence easy to make.

Deciding when changes are essential, determining which change paths have
the least risk, assessing the consequences of proposed changes, and arbitrating
sequences and priorities for requested changes all require broad insight into rela-
tionships, performance, and behaviors of system software elements. These activ-
ities are in the job description for an architect. Reasoning about the architecture
and analyzing the architecture can provide the insight necessary to make deci-
sions about anticipated changes.

2.3 Predicting System Qualities

This point follows from the previous two. Architecture not only imbues systems
with qualities, but it does so in a predictable way.

Were it not possible to tell that the appropriate architectural decisions have
been made (i.e., if the system will exhibit its required quality attributes) without
waiting until the system is developed and deployed, then choosing an architec-
ture would be a hopeless task—randomly making architecture selections would
perform as well as any other method. Fortunately, it is possible to make quality
predictions about a system based solely on an evaluation of its architecture. If we
know that certain kinds of architectural decisions lead to certain quality attributes
in a system, then we can make those decisions and rightly expect to be rewarded
with the associated quality attributes. After the fact, when we examine an archi-
tecture, we can look to see if those decisions have been made, and confidently
predict that the architecture will exhibit the associated qualities.

This is no different from any mature engineering discipline, where design
analysis is a standard part of the development process. The earlier you can find
a problem in your design, the cheaper, easier, and less disruptive it will be to fix.

Even if you don't do the quantitative analytic modeling sometimes necessary
to ensure that an architecture will deliver its prescribed benefits, this principle of
evaluating decisions based on their quality attribute implications is invaluable for
at least spotting potential trouble spots early.

The architecture modeling and analysis techniques described in Chap-
ter 14, as well as the architecture evaluation techniques covered in Chapter 21,
allow early insight into the software product qualities made possible by software
architectures.

2.4 Enhancing Communication among Stakeholders 29

2.4 Enhancing communication among Stakeholders

Software architecture represents a common abstraction of a system that most,
if not all, of the system’s stakeholders can use as a basis for creating mutual under-
standing, negotiating, forming consensus, and communicating with each other. The
architecture—or at least parts of it—is sufficiently abstract that most nontechnical
people can understand it adequately, particularly with some coaching from the archi-
tect, and yet that abstraction can be refined into sufficiently rich technical specifica-
tions to guide implementation, integration, test, and deployment.

Each stakeholder of a software system—customer, user, project manager,
coder, tester, and so on—is concerned with different characteristics of the system
that are affected by its architecture. For example:

 ■ The user is concerned that the system is fast, reliable, and available when
needed.

 ■ The customer is concerned that the architecture can be implemented on
schedule and according to budget.

 ■ The manager is worried (in addition to concerns about cost and schedule)
that the architecture will allow teams to work largely independently,
interacting in disciplined and controlled ways.

 ■ The architect is worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns can
be expressed, negotiated, and resolved at a level that is intellectually manageable
even for large, complex systems. Without such a language, it is difficult to under-
stand large systems sufficiently to make the early decisions that influence both
quality and usefulness. Architectural analysis, as we will see in Chapter 21, both
depends on this level of communication and enhances it.

Section 3.5 covers stakeholders and their concerns in greater depth.

“What Happens When I Push This Button?” Architecture as a
Vehicle for Stakeholder Communication

The project review droned on and on. The government-sponsored devel-
opment was behind schedule and over budget and was large enough that
these lapses were attracting congressional attention. And now the govern-
ment was making up for past neglect by holding a marathon come-one-
come-all review session. The contractor had recently undergone a buyout,
which hadn’t helped matters. It was the afternoon of the second day, and
the agenda called for the software architecture to be presented. The young
architect—an apprentice to the chief architect for the system—was bravely
explaining how the software architecture for the massive system would
enable it to meet its very demanding real-time, distributed, high-reliability

30 Part One Introduction 2—Why Is Software Architecture Important?

requirements. He had a solid presentation and a solid architecture to pres-
ent. It was sound and sensible. But the audience—about 30 government
representatives who had varying roles in the management and oversight of
this sticky project—was tired. Some of them were even thinking that per-
haps they should have gone into real estate instead of enduring another one
of these marathon let’s-finally-get-it-right-this-time reviews.

The viewgraph showed, in semiformal box-and-line notation, what the
major software elements were in a runtime view of the system. The names
were all acronyms, suggesting no semantic meaning without explanation,
which the young architect gave. The lines showed data flow, message
passing, and process synchronization. The elements were internally re-
dundant, the architect was explaining. “In the event of a failure,” he began,
using a laser pointer to denote one of the lines, “a restart mechanism
triggers along this path when—”

“What happens when the mode select button is pushed?” interrupted
one of the audience members. He was a government attendee represent-
ing the user community for this system.

“Beg your pardon?” asked the architect.
“The mode select button,” he said. “What happens when you push it?”
“Um, that triggers an event in the device driver, up here,” began the

architect, laser-pointing. “It then reads the register and interprets the event
code. If it’s mode select, well, then, it signals the blackboard, which in turns
signals the objects that have subscribed to that event. . . . ”

“No, I mean what does the system do,” interrupted the questioner. “Does
it reset the displays? And what happens if this occurs during a system
reconfiguration?”

The architect looked a little surprised and flicked off the laser pointer.
This was not an architectural question, but since he was an architect and
therefore fluent in the requirements, he knew the answer. “If the command
line is in setup mode, the displays will reset,” he said. “Otherwise an error
message will be put on the control console, but the signal will be ignored.”
He put the laser pointer back on. “Now, the restart mechanism that I was
talking about—”

“Well, I was just wondering,” said the users’ delegate. “Because I see
from your chart that the display console is sending signal traffic to the
target location module.”

“What should happen?” asked another member of the audience,
addressing the first questioner. “Do you really want the user to get mode
data during its reconfiguring?” And for the next 45 minutes, the architect
watched as the audience consumed his time slot by debating what the cor-
rect behavior of the system was supposed to be in various esoteric states.

The debate was not architectural, but the architecture (and the graphical
rendition of it) had sparked debate. It is natural to think of architecture as
the basis for communication among some of the stakeholders besides the
architects and developers: Managers, for example, use the architecture to
create teams and allocate resources among them. But users? The architec-
ture is invisible to users, after all; why should they latch on to it as a tool for
understanding the system?

2.5 Carrying Early Design Decisions 31

The fact is that they do. In this case, the questioner had sat through two
days of viewgraphs all about function, operation, user interface, and testing.
But it was the first slide on architecture that—even though he was tired and
wanted to go home—made him realize he didn’t understand something.
Attendance at many architecture reviews has convinced me that seeing
the system in a new way prods the mind and brings new questions to the
surface. For users, architecture often serves as that new way, and the
questions that a user poses will be behavioral in nature. In a memorable
architecture evaluation exercise a few years ago, the user representatives
were much more interested in what the system was going to do than in how
it was going to do it, and naturally so. Up until that point, their only contact
with the vendor had been through its marketers. The architect was the first
legitimate expert on the system to whom they had access, and they didn’t
hesitate to seize the moment.

Of course, careful and thorough requirements specifications would ame-
liorate this situation, but for a variety of reasons they are not always created
or available. In their absence, a specification of the architecture often
serves to trigger questions and improve clarity. It is probably more prudent
to recognize this reality than to resist it.

Sometimes such an exercise will reveal unreasonable requirements,
whose utility can then be revisited. A review of this type that emphasizes
synergy between requirements and architecture would have let the young
architect in our story off the hook by giving him a place in the overall review
session to address that kind of information. And the user representative
wouldn’t have felt like a fish out of water, asking his question at a clearly
inappropriate moment.

—PCC

2.5 carrying Early design decisions

Software architecture is a manifestation of the earliest design decisions about a
system, and these early bindings carry enormous weight with respect to the sys-
tem’s remaining development, its deployment, and its maintenance life. It is also
the earliest point at which these important design decisions affecting the system
can be scrutinized.

Any design, in any discipline, can be viewed as a set of decisions. When
painting a picture, an artist decides on the material for the canvas, on the media
for recording—oil paint, watercolor, crayon—even before the picture is begun.
Once the picture is begun, other decisions are immediately made: Where is the
first line? What is its thickness? What is its shape? All of these early design de-
cisions have a strong influence on the final appearance of the picture. Each deci-
sion constrains the many decisions that follow. Each decision, in isolation, might
appear innocent enough, but the early ones in particular have disproportionate
weight simply because they influence and constrain so much of what follows.

32 Part One Introduction 2—Why Is Software Architecture Important?

So it is with architecture design. An architecture design can also be viewed
as a set of decisions. The early design decisions constrain the decisions that fol-
low, and changing these decisions has enormous ramifications. Changing these
early decisions will cause a ripple effect, in terms of the additional decisions that
must now be changed. Yes, sometimes the architecture must be refactored or re-
designed, but this is not a task we undertake lightly (because the “ripple” might
turn into a tsunami).

What are these early design decisions embodied by software architecture?
Consider:

 ■ Will the system run on one processor or be distributed across multiple
processors?

 ■ Will the software be layered? If so, how many layers will there be? What
will each one do?

 ■ Will components communicate synchronously or asynchronously? Will
they interact by transferring control or data or both?

 ■ Will the system depend on specific features of the operating system or
hardware?

 ■ Will the information that flows through the system be encrypted or not?
 ■ What operating system will we use?
 ■ What communication protocol will we choose?

Imagine the nightmare of having to change any of these or a myriad other
related decisions. Decisions like these begin to flesh out some of the structures of
the architecture and their interactions. In Chapter 4, we describe seven categories
of these early design decisions. In Chapters 5–11 we show the implications of
these design decision categories on achieving quality attributes.

2.6 defining constraints on an Implementation

An implementation exhibits an architecture if it conforms to the design decisions
prescribed by the architecture. This means that the implementation must be im-
plemented as the set of prescribed elements, these elements must interact with
each other in the prescribed fashion, and each element must fulfill its responsibil-
ity to the other elements as dictated by the architecture. Each of these prescrip-
tions is a constraint on the implementer.

Element builders must be fluent in the specifications of their individual ele-
ments, but they may not be aware of the architectural tradeoffs—the architecture
(or architect) simply constrains them in such a way as to meet the tradeoffs. A
classic example of this phenomenon is when an architect assigns performance
budget to the pieces of software involved in some larger piece of functionality.
If each software unit stays within its budget, the overall transaction will meet its

2.8 Enabling Evolutionary Prototyping 33

performance requirement. Implementers of each of the constituent pieces may
not know the overall budget, only their own.

Conversely, the architects need not be experts in all aspects of algorithm
design or the intricacies of the programming language—although they should
certainly know enough not to design something that is difficult to build—but they
are the ones responsible for establishing, analyzing, and enforcing the architec-
tural tradeoffs.

2.7 Influencing the Organizational Structure

Not only does architecture prescribe the structure of the system being developed,
but that structure becomes engraved in the structure of the development project (and
sometimes the structure of the entire organization). The normal method for divid-
ing up the labor in a large project is to assign different groups different portions of
the system to construct. This is called the work-breakdown structure of a system.
Because the architecture includes the broadest decomposition of the system, it is
typically used as the basis for the work-breakdown structure. The work-breakdown
structure in turn dictates units of planning, scheduling, and budget; interteam com-
munication channels; configuration control and file-system organization; integration
and test plans and procedures; and even project minutiae such as how the project
intranet is organized and who sits with whom at the company picnic. Teams commu-
nicate with each other in terms of the interface specifications for the major elements.
The maintenance activity, when launched, will also reflect the software structure,
with teams formed to maintain specific structural elements from the architecture: the
database, the business rules, the user interface, the device drivers, and so forth.

A side effect of establishing the work-breakdown structure is to freeze some
aspects of the software architecture. A group that is responsible for one of the
subsystems will resist having its responsibilities distributed across other groups.
If these responsibilities have been formalized in a contractual relationship, chang-
ing responsibilities could become expensive or even litigious.

Thus, once the architecture has been agreed on, it becomes very costly—for
managerial and business reasons—to significantly modify it. This is one argu-
ment (among many) for carrying out extensive analysis before settling on the
software architecture for a large system—because so much depends on it.

2.8 Enabling Evolutionary Prototyping

Once an architecture has been defined, it can be analyzed and prototyped
as a skeletal system. A skeletal system is one in which at least some of the

34 Part One Introduction 2—Why Is Software Architecture Important?

infrastructure—how the elements initialize, communicate, share data, access re-
sources, report errors, log activity, and so forth—is built before much of the sys-
tem’s functionality has been created. (The two can go hand in hand: build a little
infrastructure to support a little end-to-end functionality; repeat until done.)

For example, systems built as plug-in architectures are skeletal systems: the
plug-ins provide the actual functionality. This approach aids the development
process because the system is executable early in the product’s life cycle. The
fidelity of the system increases as stubs are instantiated, or prototype parts are
replaced with complete versions of these parts of the software. In some cases the
prototype parts can be low-fidelity versions of the final functionality, or they can
be surrogates that consume and produce data at the appropriate rates but do little
else. Among other things, this approach allows potential performance problems
to be identified early in the product’s life cycle.

These benefits reduce the potential risk in the project. Furthermore, if the ar-
chitecture is part of a family of related systems, the cost of creating a framework
for prototyping can be distributed over the development of many systems.

2.9 Improving cost and Schedule Estimates

Cost and schedule estimates are important tools for the project manager both to
acquire the necessary resources and to monitor progress on the project, to know
if and when a project is in trouble. One of the duties of an architect is to help
the project manager create cost and schedule estimates early in the project life
cycle. Although top-down estimates are useful for setting goals and apportion-
ing budgets, cost estimations that are based on a bottom-up understanding of the
system’s pieces are typically more accurate than those that are based purely on
top-down system knowledge.

As we have said, the organizational and work-breakdown structure of a proj-
ect is almost always based on its architecture. Each team or individual responsi-
ble for a work item will be able to make more-accurate estimates for their piece
than a project manager and will feel more ownership in making the estimates
come true. But the best cost and schedule estimates will typically emerge from a
consensus between the top-down estimates (created by the architect and project
manager) and the bottom-up estimates (created by the developers). The discus-
sion and negotiation that results from this process creates a far more accurate
estimate than either approach by itself.

It helps if the requirements for a system have been reviewed and validated.
The more up-front knowledge you have about the scope, the more accurate the
cost and schedule estimates will be.

Chapter 22 delves into the use of architecture in project management.

2.11 Allowing Incorporation of Independently Developed Components 35

2.10 Supplying a transferable, reusable Model

The earlier in the life cycle that reuse is applied, the greater the benefit that can
be achieved. While code reuse provides a benefit, reuse of architectures provides
tremendous leverage for systems with similar requirements. Not only can code be
reused, but so can the requirements that led to the architecture in the first place,
as well as the experience and infrastructure gained in building the reused archi-
tecture. When architectural decisions can be reused across multiple systems, all
of the early-decision consequences we just described are also transferred.

A software product line or family is a set of software systems that are all
built using the same set of reusable assets. Chief among these assets is the archi-
tecture that was designed to handle the needs of the entire family. Product-line
architects choose an architecture (or a family of closely related architectures) that
will serve all envisioned members of the product line. The architecture defines
what is fixed for all members of the product line and what is variable. Software
product lines represent a powerful approach to multi-system development that
is showing order-of-magnitude payoffs in time to market, cost, productivity,
and product quality. The power of architecture lies at the heart of the paradigm.
Similar to other capital investments, the architecture for a product line becomes
a developing organization’s core asset. Software product lines are explained in
Chapter 25.

2.11 allowing Incorporation of Independently
developed components

Whereas earlier software paradigms have focused on programming as the prime
activity, with progress measured in lines of code, architecture-based development
often focuses on composing or assembling elements that are likely to have been
developed separately, even independently, from each other. This composition is
possible because the architecture defines the elements that can be incorporated
into the system. The architecture constrains possible replacements (or additions)
according to how they interact with their environment, how they receive and re-
linquish control, what data they consume and produce, how they access data, and
what protocols they use for communication and resource sharing.

In 1793, Eli Whitney’s mass production of muskets, based on the principle
of interchangeable parts, signaled the dawn of the industrial age. In the days be-
fore physical measurements were reliable, manufacturing interchangeable parts
was a daunting notion. Today in software, until abstractions can be reliably de-
limited, the notion of structural interchangeability is just as daunting and just as
significant.

36 Part One Introduction 2—Why Is Software Architecture Important?

Commercial off-the-shelf components, open source software, publicly avail-
able apps, and networked services are all modern-day software instantiations of
Whitney’s basic idea. Whitney’s musket parts had “interfaces” (having to do with
fit and durability) and so do today’s interchangeable software components.

For software, the payoff can be

 ■ Decreased time to market (it should be easier to use someone else’s ready
solution than build your own)

 ■ Increased reliability (widely used software should have its bugs ironed out
already)

 ■ Lower cost (the software supplier can amortize development cost across
their customer base)

 ■ Flexibility (if the component you want to buy is not terribly special-
purpose, it’s likely to be available from several sources, thus increasing
your buying leverage)

2.12 restricting the Vocabulary of design alternatives

As useful architectural patterns are collected, it becomes clear that although soft-
ware elements can be combined in more or less infinite ways, there is something
to be gained by voluntarily restricting ourselves to a relatively small number of
choices of elements and their interactions. By doing so we minimize the design
complexity of the system we are building.

A software engineer is not an artiste, whose creativity and freedom are
paramount. Engineering is about discipline, and discipline comes in part by re-
stricting the vocabulary of alternatives to proven solutions. Advantages of this
approach include enhanced reuse, more regular and simpler designs that are more
easily understood and communicated, more capable analysis, shorter selection
time, and greater interoperability. Architectural patterns guide the architect and
focus the architect on the quality attributes of interest in large part by restricting
the vocabulary of design alternatives to a relatively small number.

Properties of software design follow from the choice of an architectural pat-
tern. Those patterns that are more desirable for a particular problem should im-
prove the implementation of the resulting design solution, perhaps by making it
easier to arbitrate conflicting design constraints, by increasing insight into poorly
understood design contexts, or by helping to surface inconsistencies in require-
ments. We will discuss architectural patterns in more detail in Chapter 13.

2.14 Summary 37

2.13 Providing a basis for training

The architecture, including a description of how the elements interact with each
other to carry out the required behavior, can serve as the first introduction to the
system for new project members. This reinforces our point that one of the im-
portant uses of software architecture is to support and encourage communication
among the various stakeholders. The architecture is a common reference point.

Module views are excellent for showing someone the structure of a project:
Who does what, which teams are assigned to which parts of the system, and so
forth. Component-and-connector views are excellent for explaining how the sys-
tem is expected to work and accomplish its job.

We will discuss these views in more detail in Chapter 18.

2.14 Summary

Software architecture is important for a wide variety of technical and nontechni-
cal reasons. Our list includes the following:

1. An architecture will inhibit or enable a system’s driving quality attributes.
2. The decisions made in an architecture allow you to reason about and man-

age change as the system evolves.
3. The analysis of an architecture enables early prediction of a system’s

qualities.
4. A documented architecture enhances communication among stakeholders.
5. The architecture is a carrier of the earliest and hence most fundamental,

hardest-to-change design decisions.
6. An architecture defines a set of constraints on subsequent implementation.
7. The architecture dictates the structure of an organization, or vice versa.
8. An architecture can provide the basis for evolutionary prototyping.
9. An architecture is the key artifact that allows the architect and project man-

ager to reason about cost and schedule.
10. An architecture can be created as a transferable, reusable model that forms

the heart of a product line.
11. Architecture-based development focuses attention on the assembly of com-

ponents, rather than simply on their creation.
12. An architecture channels the creativity of developers, reducing design and

system complexity.
13. An architecture can be the foundation for training of a new team member.

38 Part One Introduction 2—Why Is Software Architecture Important?

2.15 for further reading

Rebecca Grinter has observed architects from a sociological standpoint. In
[Grinter 99] she argues eloquently that the architect’s primary role is to facilitate
stakeholder communication. The way she puts it is that architects enable com-
munication among parties who would otherwise not be able to talk to each other.

The granddaddy of papers about architecture and organization is [Conway
68]. Conway’s law states that “organizations which design systems . . . are con-
strained to produce designs which are copies of the communication structures of
these organizations.”

There is much about software development through composition that re-
mains unresolved. When the components that are candidates for importation and
reuse are distinct subsystems that have been built with conflicting architectural
assumptions, unanticipated complications can increase the effort required to inte-
grate their functions. David Garlan and his colleagues coined the term architec-
tural mismatch to describe this situation, and their paper on it is worth reading
[Garlan 95].

Paulish [Paulish 02] discusses architecture-based project management, and
in particular the ways in which an architecture can help in the estimation of proj-
ect cost and schedule.

2.16 discussion Questions

1. For each of the thirteen reasons articulated in this chapter why architecture
is important, take the contrarian position: Propose a set of circumstances
under which architecture is not necessary to achieve the result indicated.
Justify your position. (Try to come up with different circumstances for each
of the thirteen.)

2. This chapter argues that architecture brings a number of tangible benefits.
How would you measure the benefits, on a particular project, of each of the
thirteen points?

3. Suppose you want to introduce architecture-centric practices to your orga-
nization. Your management is open to the idea, but wants to know the ROI
for doing so. How would you respond?

4. Prioritize the list of thirteen points in this chapter according to some criteria
meaningful to you. Justify your answer. Or, if you could choose only two
or three of the reasons to promote the use of architecture in a project, which
would you choose and why?

39

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

3
The Many Contexts of
Software Architecture

People in London think of London as the center
of the world, whereas New Yorkers think the

world ends three miles outside of Manhattan.
—Toby Young

In 1976, a New Yorker magazine cover featured a cartoon by Saul Steinberg
showing a New Yorker’s view of the world. You’ve probably seen it; if not, you
can easily find it online. Looking to the west from 9th Avenue in Manhattan, the
illustration shows 10th Avenue, then the wide Hudson River, then a thin strip
of completely nondescript land called “Jersey,” followed by a somewhat thicker
strip of land representing the entire rest of the United States. The mostly empty
United States has a cartoon mountain or two here and there and a few cities hap-
hazardly placed “out there,” and is flanked by featureless “Canada” on the right
and “Mexico” on the left. Beyond is the Pacific Ocean, only slightly wider than
the Hudson, and beyond that lie tiny amorphous shapes for Japan and China and
Russia, and that’s pretty much the world from a New Yorker’s perspective.

In a book about architecture, it is tempting to view architecture in the same
way, as the most important piece of the software universe. And in some chapters,
we unapologetically will do exactly that. But in this chapter we put software ar-
chitecture in its place, showing how it supports and is informed by other critical
forces and activities in the various contexts in which it plays a role.

These contexts, around which we structured this book, are as follows:

 ■ Technical. What technical role does the software architecture play in the
system or systems of which it’s a part?

 ■ Project life cycle. How does a software architecture relate to the other
phases of a software development life cycle?

 ■ Business. How does the presence of a software architecture affect an orga-
nization’s business environment?

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

40 Part One Introduction 3—The Many Contexts of Software Architecture

 ■ Professional. What is the role of a software architect in an organization or a
development project?

These contexts all play out throughout the book, but this chapter introduces each
one. Although the contexts are unchanging, the specifics for your system may
change over time. One challenge for the architect is to envision what in their
context might change and to adopt mechanisms to protect the system and its de-
velopment if the envisioned changes come to pass.

3.1 architecture in a technical context

Architectures inhibit or enable the achievement of quality attributes, and one use
of an architecture is to support reasoning about the consequences of change in the
particular quality attributes important for a system at its inception.

architectures Inhibit or Enable the
achievement of Quality attributes

Chapter 2 listed thirteen reasons why software architecture is important and mer-
its study. Several of those reasons deal with exigencies that go beyond the bounds
of a particular development project (such as communication among stakehold-
ers, many of whom may reside outside the project’s organization). Others deal
with nontechnical aspects of a project (such as the architecture’s influence on a
project’s team structure, or its contribution to accurate budget and schedule esti-
mation). The first three reasons in that List of Thirteen deal specifically with an
architecture’s technical impact on every system that uses it:

1. An architecture will inhibit or enable the achievement of a system’s quality
attributes.

2. You can predict many aspects of a system’s qualities by studying its
architecture.

3. An architecture makes it easier for you to reason about and manage change.

These are all about the architecture’s effect on a system’s quality attributes,
although the first one states it the most explicitly. While all of the reasons enu-
merated in Chapter 2 are valid statements of the contribution of architecture,
probably the most important reason that it warrants attention is its critical effect
on quality attributes.

This is such a critical point that, with your indulgence, we’ll add a few more
points to the bullet list that we gave in Section 2.1. Remember? The one that
started like this:

3.1 Architecture in a Technical Context 41

 ■ If your system requires high performance, then you need to pay attention
to managing the time-based behavior of elements, their use of shared
resources, and the frequency and volume of interelement communication.

To that list, we’ll add the following:

 ■ If you care about a system’s availability, you have to be concerned with
how components take over for each other in the event of a failure, and how
the system responds to a fault.

 ■ If you care about usability, you have to be concerned about isolating the
details of the user interface and those elements responsible for the user
experience from the rest of the system, so that those things can be tailored
and improved over time.

 ■ If you care about the testability of your system, you have to be concerned
about the testability of individual elements, which means making their state
observable and controllable, plus understanding the emergent behavior of
the elements working together.

 ■ If you care about the safety of your system, you have to be concerned about
the behavioral envelope of the elements and the emergent behavior of the
elements working in concert.

 ■ If you care about interoperability between your system and another, you
have to be concerned about which elements are responsible for external
interactions so that you can control those interactions.

These and other representations are all saying the same thing in different
ways: If you care about this quality attribute, you have to be concerned with these
decisions, all of which are thoroughly architectural in nature. An architecture in-
hibits or enables a system’s quality attributes. And conversely, nothing else influ-
ences an architecture more than the quality attribute requirements it must satisfy.

If you care about architecture for no other reason, you should care about it for
this one. We feel so strongly about architecture’s importance with respect to achiev-
ing system quality attributes that all of Part II of this book is devoted to the topic.

Why is functionality missing from the preceding list? It is missing because
the architecture mainly provides containers into which the architect places func-
tionality. Functionality is not so much a driver for the architecture as it is a conse-
quence of it. We return to this point in more detail in Part II.

architectures and the technical Environment

The technical environment that is current when an architecture is designed will
influence that architecture. It might include standard industry practices or soft-
ware engineering techniques prevalent in the architect’s professional community.
It is a brave architect who, in today’s environment, does not at least consider
a web-based, object-oriented, service-oriented, mobility-aware, cloud-based,

42 Part One Introduction 3—The Many Contexts of Software Architecture

social-networking-friendly design for an information system. It wasn’t always so,
and it won’t be so ten years from now when another crop of technological trends
has come to the fore.

The Swedish Ship Vasa

In the 1620s, Sweden and Poland were at war. The king of Sweden,
Gustavus Adolphus, was determined to put a swift and favorable end to it
and commissioned a new warship the likes of which had never been seen
before. The Vasa, shown in Figure 3.1, was to be the world’s most formi-
dable instrument of war: 70 meters long, able to carry 300 soldiers, and
with an astonishing 64 heavy guns mounted on two gun decks. Seeking to
add overwhelming firepower to his navy to strike a decisive blow, the king
insisted on stretching the Vasa’s armaments to the limits. Her architect,
Henrik Hybertsson, was a seasoned Dutch shipbuilder with an impeccable
reputation, but the Vasa was beyond even his broad experience. Two-
gun-deck ships were rare, and none had been built of the Vasa’s size and
armament.

Like all architects of systems that push the envelope of experience,
Hybertsson had to balance many concerns. Swift time to deployment was
critical, but so were performance, functionality, safety, reliability, and cost.

fIGurE 3.1 The warship. Used with permission of The Vasa Museum,
Stockholm, Sweden.

3.1 Architecture in a Technical Context 43

He was also responsible to a variety of stakeholders. In this case, the
primary customer was the king, but Hybertsson also was responsible to
the crew that would sail his creation. Also like all architects, Hybertsson
brought his experience with him to the task. In this case, his experience
told him to design the Vasa as though it were a single-gun-deck ship and
then extrapolate, which was in accordance with the technical environment
of the day. Faced with an impossible task, Hybertsson had the good sense
to die about a year before the ship was finished.

The project was completed to his specifications, however, and on
Sunday morning, August 10, 1628, the mighty ship was ready. She set her
sails, waddled out into Stockholm’s deep-water harbor, fired her guns in sa-
lute, and promptly rolled over. Water poured in through the open gun ports,
and the Vasa plummeted. A few minutes later her first and only voyage
ended 30 meters beneath the surface. Dozens among her 150-man crew
drowned.

Inquiries followed, which concluded that the ship was well built but “badly
proportioned.” In other words, its architecture was flawed. Today we know
that Hybertsson did a poor job of balancing all of the conflicting constraints
levied on him. In particular, he did a poor job of risk management and a
poor job of customer management (not that anyone could have fared bet-
ter). He simply acquiesced in the face of impossible requirements.

The story of the Vasa, although more than 375 years old, well illustrates
the Architecture Influence Cycle: organization goals beget requirements,
which beget an architecture, which begets a system. The architecture flows
from the architect’s experience and the technical environment of the day.
Hybertsson suffered from the fact that neither of those were up to the task
before him.

In this book, we provide three things that Hybertsson could have used:

1. Examples of successful architectural practices that work under
demanding requirements, so as to help set the technical
playing field of the day.

2. Methods to assess an architecture before any system is built
from it, so as to mitigate the risks associated with launching
unprecedented designs.

3. Techniques for incremental architecture-based development,
so as to uncover design flaws before it is too late to correct
them.

Our goal is to give architects another way out of their design dilemmas
than the one that befell the ill-fated Dutch ship designer. Death before de-
ployment is not nearly so admired these days.

—PCC

44 Part One Introduction 3—The Many Contexts of Software Architecture

3.2 architecture in a Project life-cycle context

Software development processes are standard approaches for developing software
systems. They impose a discipline on software engineers and, more important,
teams of software engineers. They tell the members of the team what to do next.
There are four dominant software development processes, which we describe in
roughly the order in which they came to prominence:

1. Waterfall. For many years the Waterfall model dominated the field of
software development. The Waterfall model organized the life cycle into a
series of connected sequential activities, each with entry and exit conditions
and a formalized relationship with its upstream and downstream neighbors.
The process began with requirements specification, followed by design,
then implementation, then integration, then testing, then installation,
all followed by maintenance. Feedback paths from later to earlier steps
allowed for the revision of artifacts (requirements documents, design
documents, etc.) on an as-needed basis, based on the knowledge acquired
in the later stage. For example, designers might push back against overly
stringent requirements, which would then be reworked and flow back down.
Testing that uncovered defects would trigger reimplementation (and maybe
even redesign). And then the cycle continued.

2. Iterative. Over time the feedback paths of the Waterfall model became
so pronounced that it became clear that it was better to think of software
development as a series of short cycles through the steps—some
requirements lead to some design, which can be implemented and tested
while the next cycle’s worth of requirements are being captured and
designed. These cycles are called iterations, in the sense of iterating toward
the ultimate software solution for the given problem. Each iteration should
deliver something working and useful. The trick here is to uncover early
those requirements that have the most far-reaching effect on the design; the
corresponding danger is to overlook requirements that, when discovered
later, will capsize the design decisions made so far. An especially well-
known iterative process is called the Unified Process (originally named the
Rational Unified Process, after Rational Software, which originated it). It
defines four phases of each iteration: inception, elaboration, construction,
and transition. A set of chosen use cases defines the goals for each iteration,
and the iterations are ordered to address the greatest risks first.

3. Agile. The term “Agile software development” refers to a group of
software development methodologies, the best known of which include
Scrum, Extreme Programming, and Crystal Clear. These methodologies
are all incremental and iterative. As such, one can consider some iterative

3.2 Architecture in a Project Life-Cycle Context 45

methodologies as Agile. What distinguishes Agile practices is early
and frequent delivery of working software, close collaboration between
developers and customers, self-organizing teams, and a focus on adaptation
to changing circumstances (such as late-arriving requirements). All Agile
methodologies focus on teamwork, adaptability, and close collaboration
(both within the team and between team members and customers/end
users). These methodologies typically eschew substantial up-front work,
on the assumption that requirements always change, and they continue to
change throughout the project’s life cycle. As such, it might seem that Agile
methodologies and architecture cannot happily coexist. As we will show in
Chapter 15, this is not so.

4. Model-driven development. Model-driven development is based on the
idea that humans should not be writing code in programming languages,
but they should be creating models of the domain, from which code is
automatically generated. Humans create a platform-independent model
(PIM), which is combined with a platform-definition model (PDM) to
generate running code. In this way the PIM is a pure realization of the
functional requirements while the PDM addresses platform specifics and
quality attributes.

All of these processes include design among their obligations, and because
architecture is a special kind of design, architecture finds a home in each one.
Changing from one development process to another in the middle of a project re-
quires the architect to save useful information from the old process and determine
how to integrate it into the new process.

No matter what software development process or life-cycle model you’re
using, there are a number of activities that are involved in creating a software
architecture, using that architecture to realize a complete design, and then imple-
menting or managing the evolution of a target system or application. The process
you use will determine how often and when you revisit and elaborate each of
these activities. These activities include:

1. Making a business case for the system
2. Understanding the architecturally significant requirements
3. Creating or selecting the architecture
4. Documenting and communicating the architecture
5. Analyzing or evaluating the architecture
6. Implementing and testing the system based on the architecture
7. Ensuring that the implementation conforms to the architecture

Each of these activities is covered in a chapter in Part III of this book, and
described briefly below.

46 Part One Introduction 3—The Many Contexts of Software Architecture

Making a business case for the System

A business case is, briefly, a justification of an organizational investment. It is a
tool that helps you make business decisions by predicting how they will affect
your organization. Initially, the decision will be a go/no-go for pursuing a new
business opportunity or approach. After initiation, the business case is reviewed
to assess the accuracy of initial estimates and then updated to examine new or al-
ternative angles on the opportunity. By documenting the expected costs, benefits,
and risks, the business case serves as a repository of the business and market-
ing data. In this role, management uses the business case to determine possible
courses of action.

Knowing the business goals for the system—Chapter 16 will show you how
to elicit and capture them in a systematic way—is also critical in the creation of a
business case for a system.

Creating a business case is broader than simply assessing the market need
for a system. It is an important step in shaping and constraining any future re-
quirements. How much should the product cost? What is its targeted market?
What is its targeted time to market and lifetime? Will it need to interface with
other systems? Are there system limitations that it must work within?

These are all questions about which the system’s architects have specialized
knowledge; they must contribute to the answers. These questions cannot be de-
cided solely by an architect, but if an architect is not consulted in the creation of
the business case, the organization may be unable to achieve its business goals.
Typically, a business case is created prior to the initiation of a project, but it also
may be revisited during the course of the project for the organization to deter-
mine whether to continue making investments in the project. If the circumstances
assumed in the initial version of the business case change, the architect may be
called upon to establish how the system will change to reflect the new set of
circumstances.

understanding the architecturally Significant requirements

There are a variety of techniques for eliciting requirements from the stakeholders.
For example, object-oriented analysis uses use cases and scenarios to embody
requirements. Safety-critical systems sometimes use more rigorous approaches,
such as finite-state-machine models or formal specification languages. In Part II
of this book, which covers quality attributes, we introduce a collection of quality
attribute scenarios that aid in the brainstorming, discussion, and capture of qual-
ity attribute requirements for a system.

One fundamental decision with respect to the system being built is the extent
to which it is a variation on other systems that have been constructed. Because
it is a rare system these days that is not similar to other systems, requirements

3.2 Architecture in a Project Life-Cycle Context 47

elicitation techniques involve understanding these prior systems’ characteristics.
We discuss the architectural implications of software product lines in Chapter 25.

Another technique that helps us understand requirements is the creation of
prototypes. Prototypes may help to model and explore desired behavior, design
the user interface, or analyze resource utilization. This helps to make the system
“real” in the eyes of its stakeholders and can quickly build support for the project
and catalyze decisions on the system’s design and the design of its user interface.

creating or Selecting the architecture

In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully
and eloquently that conceptual integrity is the key to sound system design and
that conceptual integrity can only be had by a small number of minds coming
together to design the system’s architecture. We firmly believe this as well. Good
architecture almost never results as an emergent phenomenon.

Chapters 5–12 and 17 will provide practical techniques that will aid you in
creating an architecture to achieve its behavioral and quality requirements.

documenting and communicating the architecture

For the architecture to be effective as the backbone of the project’s design, it
must be communicated clearly and unambiguously to all of the stakeholders. De-
velopers must understand the work assignments that the architecture requires of
them, testers must understand the task structure that the architecture imposes on
them, management must understand the scheduling implications it contains, and
so forth.

Toward this end, the architecture’s documentation should be informative,
unambiguous, and readable by many people with varied backgrounds. Architec-
tural documentation should also be minimal and aimed at the stakeholders who
will use it; we are no fans of documentation for documentation’s sake. We dis-
cuss the documentation of architectures and provide examples of good documen-
tation practices in Chapter 18. We will also discuss keeping the architecture up to
date when there is a change in something on which the architecture documenta-
tion depends.

analyzing or Evaluating the architecture

In any design process there will be multiple candidate designs considered. Some
will be rejected immediately. Others will contend for primacy. Choosing among
these competing designs in a rational way is one of the architect’s greatest
challenges.

48 Part One Introduction 3—The Many Contexts of Software Architecture

Evaluating an architecture for the qualities that it supports is essential to
ensuring that the system constructed from that architecture satisfies its stake-
holders’ needs. Analysis techniques to evaluate the quality attributes that an ar-
chitecture imparts to a system have become much more widespread in the past
decade. Scenario-based techniques provide one of the most general and effective
approaches for evaluating an architecture. The most mature methodological ap-
proach is found in the Architecture Tradeoff Analysis Method (ATAM) of Chap-
ter 21, while the economic implications of architectural decisions are explored in
Chapter 23.

Implementing and testing the System
based on the architecture

If the architect designs and analyzes a beautiful, conceptually sound architec-
ture which the implementers then ignore, what was the point? If architecture is
important enough to devote the time and effort of your best minds to, then it is
just as important to keep the developers faithful to the structures and interaction
protocols constrained by the architecture. Having an explicit and well-commu-
nicated architecture is the first step toward ensuring architectural conformance.
Having an environment or infrastructure that actively assists developers in creat-
ing and maintaining the architecture (as opposed to just the code) is better.

There are many reasons why developers might not be faithful to the archi-
tecture: It might not have been properly documented and disseminated. It might
be too confusing. It might be that the architect has not built ground-level support
for the architecture (particularly if it presents a different way of “doing business”
than the developers are used to), and so the developers resist it. Or the developers
may sincerely want to implement the architecture but, being human, they occa-
sionally slip up. This is not to say that the architecture should not change, but it
should not change purely on the basis of the whims of the developers, because
they may not have the overall picture.

Ensuring that the Implementation
conforms to the architecture

Finally, when an architecture is created and used, it goes into a maintenance
phase. Vigilance is required to ensure that the actual architecture and its repre-
sentation remain faithful to each other during this phase. And when they do get
significantly out of sync, effort must be expended to either fix the implementation
or update the architectural documentation.

Although work in this area is still relatively immature, it has been an area of
intense activity in recent years. Chapter 20 will present the current state of recov-
ering an architecture from an existing system and ensuring that it conforms to the
specified architecture.

3.3 Architecture in a Business Context 49

3.3 architecture in a business context

Architectures and systems are not constructed frivolously. They serve some business
purposes, although as mentioned before, these purposes may change over time.

architectures and business Goals

Systems are created to satisfy the business goals of one or more organizations.
Development organizations want to make a profit, or capture market, or stay in
business, or help their customers do their jobs better, or keep their staff gainfully
employed, or make their stockholders happy, or a little bit of each. Customers
have their own goals for acquiring a system, usually involving some aspect of
making their lives easier or more productive. Other organizations involved in a
project’s life cycle, such as subcontractors or government regulatory agencies,
have their own goals dealing with the system.

Architects need to understand who the vested organizations are and what their
goals are. Many of these goals will have a profound influence on the architecture.

Many business goals will be manifested as quality attribute requirements.
In fact, every quality attribute—such as a user-visible response time or platform
flexibility or ironclad security or any of a dozen other needs—should originate
from some higher purpose that can be described in terms of added value. If we
ask, for example, “Why do you want this system to have a really fast response
time?” we might hear that this will differentiate the product from its competition
and let the developing organization capture market share.

Some business goals, however, will not show up in the form of requirements.
We know of one software architect who was informed by his manager that the
architecture should include a database. The architect was perplexed, because the
requirements for the system really didn’t warrant a database and the architect’s
design had nicely avoided putting one in, thereby simplifying the design and
lowering the cost of the product. The architect was perplexed, that is, until the
manager reminded the architect that the company’s database department was cur-
rently overstaffed and underworked. They needed something to do! The architect
put in the database, and all was well. That kind of business goal—keeping staff
gainfully employed—is not likely to show up in any requirements document, but
if the architect had failed to meet it, the manager would have considered the ar-
chitecture as unacceptable, just as the customer would have if it failed to provide
a key piece of functionality.

Still other business goals have no effect on the architecture whatsoever. A
business goal to lower costs might be realized by asking employees to work from
home, or turn the office thermostats down in the winter, or using less paper in the
printers. Chapter 16 will deal with uncovering business goals and the require-
ments they lead to.

50 Part One Introduction 3—The Many Contexts of Software Architecture

Figure 3.2 illustrates the major points from the preceding discussion. In the
figure, the arrows mean “leads to.” The solid arrows highlight the relationships of
most interest to us.

architectures and the development Organization

A development organization contributes many of the business goals that influ-
ence an architecture. For example, if the organization has an abundance of ex-
perienced and idle programmers skilled in peer-to-peer communications, then
a peer-to-peer architecture might be the approach supported by management. If
not, it may well be rejected. This would support the business goal, perhaps left
implicit, of not wanting to hire new staff or lay off existing staff, or not wanting
to invest significantly in the retraining of existing staff.

More generally, an organization often has an investment in assets, such as
existing architectures and the products based on them. The foundation of a de-
velopment project may be that the proposed system is the next in a sequence of
similar systems, and the cost estimates assume a high degree of asset reuse and a
high degree of skill and productivity from the programmers.

Additionally, an organization may wish to make a long-term business in-
vestment in an infrastructure to pursue strategic goals and may view the proposed
system as one means of financing and extending that infrastructure. For example,
an organization may decide that it wants to develop a reputation for supporting
solutions based on cloud computing or service-oriented architecture or high-per-
formance real-time computing. This long-term goal would be supported, in part,
by infrastructural investments that will affect the developing organization: a
cloud-computing group needs to be hired or grown, infrastructure needs to be
purchased, or perhaps training needs to be planned.

Business Goals Quality Attributes

ArchitectureNonarchitectural Solutions

fIGurE 3.2 Some business goals may lead to quality attribute requirements
(which lead to architectures), or lead directly to architectural decisions, or lead to
nonarchitectural solutions.

3.4 Architecture in a Professional Context 51

Finally, the organizational structure can shape the software architecture, and
vice versa. Organizations are often organized around technology and application
concepts: a database group, a networking group, a business rules team, a user-in-
terface group. So the explicit identification of a distinct subsystem in the archi-
tecture will frequently lead to the creation of a group with the name of the sub-
system. Furthermore, if the user-interface team frequently needs to communicate
with the business rules team, these teams will need to either be co-located or they
will need some regular means of communicating and coordinating.

3.4 architecture in a Professional context

What do architects do? How do you become an architect? In this section we talk
about the many facets of being an architect that go beyond what you learned in a
programming or software engineering course.

You probably know by now that architects need more than just technical
skills. Architects need to explain to one stakeholder or another the chosen prior-
ities of different properties, and why particular stakeholders are not having all of
their expectations fulfilled. To be an effective architect, then, you will need diplo-
matic, negotiation, and communication skills.

You will perform many activities beyond directly producing an architecture.
These activities, which we call duties, form the backbone of individual architec-
ture competence. We surveyed the broad body of information aimed at architects
(such as websites, courses, books, and position descriptions for architects), as
well as practicing architects, and duties are but one aspect. Writers about archi-
tects also speak of skills and knowledge. For example, architects need the ability
to communicate ideas clearly and need to have up-to-date knowledge about (for
example) patterns, or database platforms, or web services standards.

Duties, skills, and knowledge form a triad on which architecture compe-
tence rests. You will need to be involved in supporting management and deal-
ing with customers. You will need to manage a diverse workload and be able to
switch contexts frequently. You will need to know business considerations. You
will need to be a leader in the eyes of developers and management. In Chapter 24
we examine at length the architectural competence of organizations and people.

architects’ background and Experience

We are all products of our experiences, architects included. If you have had good
results using a particular architectural approach, such as three-tier client-server
or publish-subscribe, chances are that you will try that same approach on a new
development effort. Conversely, if your experience with an approach was disas-
trous, you may be reluctant to try it again.

52 Part One Introduction 3—The Many Contexts of Software Architecture

Architectural choices may also come from your education and training,
exposure to successful architectural patterns, or exposure to systems that have
worked particularly poorly or particularly well. You may also wish to experiment
with an architectural pattern or technique learned from a book (such as this one)
or a training course.

Why do we mention this? Because you (and your organization) must be
aware of this influence, so that you can manage it to the best of your abilities. This
may mean that you will critically examine proposed architectural solutions, to
ensure that they are not simply the path of least resistance. It may mean that you
will take training courses in interesting new technologies. It may mean that you
will invest in exploratory projects, to “test the water” of a new technology. Each
of these steps is a way to proactively manage your background and experience.

3.5 Stakeholders

Many people and organizations are interested in a software system. We call these
entities stakeholders. A stakeholder is anyone who has a stake in the success of
the system: the customer, the end users, the developers, the project manager, the
maintainers, and even those who market the system, for example. But stakehold-
ers, despite all having a shared stake in the success of the system, typically have
different specific concerns that they wish the system to guarantee or optimize.
These concerns are as diverse as providing a certain behavior at runtime, perform-
ing well on a particular piece of hardware, being easy to customize, achieving
short time to market or low cost of development, gainfully employing program-
mers who have a particular specialty, or providing a broad range of functions.
Figure 3.3 shows the architect receiving a few helpful stakeholder “suggestions.”

You will need to know and understand the nature, source, and priority of
constraints on the project as early as possible. Therefore, you must identify and
actively engage the stakeholders to solicit their needs and expectations. Early en-
gagement of stakeholders allows you to understand the constraints of the task,
manage expectations, negotiate priorities, and make tradeoffs. Architecture eval-
uation (covered in Part III of this book) and iterative prototyping are two means
for you to achieve stakeholder engagement.

Having an acceptable system involves appropriate performance, reliability,
availability, platform compatibility, memory utilization, network usage, security,
modifiability, usability, and interoperability with other systems as well as behav-
ior. All of these qualities, and others, affect how the delivered system is viewed
by its eventual recipients, and so such quality attributes will be demanded by one
or more of the system’s stakeholders.

The underlying problem, of course, is that each stakeholder has different
concerns and goals, some of which may be contradictory. It is a rare requirements

3.5 Stakeholders 53

document that does a good job of capturing all of a system’s quality requirements
in testable detail (a property is testable if it is falsifiable; “make the system easy
to use” is not falsifiable but “deliver audio packets with no more than 10 ms.
jitter” is falsifiable). The architect often has to fill in the blanks—the quality attri-
bute requirements that have not been explicitly stated—and mediate the conflicts
that frequently emerge.

Therefore, one of the best pieces of advice we can give to architects is this:
Know your stakeholders. Talk to them, engage them, listen to them, and put your-
self in their shoes. Table 3.1 enumerates a set of stakeholders. Notice the remark-
able variety and length of this set, but remember that not every stakeholder named
in this list may play a role in every system, and one person may play many roles.

Architect

Developing
Organization’s
Management
Stakeholder

Marketing
Stakeholder

End User
Stakeholder

Maintenance
Organization
Stakeholder

Customer
Stakeholder

low cost,
keeping people

employed!

behavior,
performance,

security,
reliability,
usability!

Neat features,
short time to market,
low cost, parity with
competing products!

Modifiability!

low cost, timely
delivery, not changed

very often!

Ohhhhhh...

fIGurE 3.3 Influence of stakeholders on the architect

54
P

art O
n

e
In

tro
d

u
ctio

n

3—
T

he M
any C

ontexts of S
oftw

are A
rchitecture

tablE 3.1 Stakeholders for a System and Their Interests

Name description Interest in architecture

Analyst Responsible for analyzing the architecture to make sure it meets certain
critical quality attribute requirements. Analysts are often specialized; for
instance, performance analysts, safety analysts, and security analysts
may have well-defined positions in a project.

Analyzing satisfaction of quality attribute requirements of the system
based on its architecture.

Architect Responsible for the development of the architecture and its
documentation. Focus and responsibility is on the system.

Negotiating and making tradeoffs among competing requirements
and design approaches. A vessel for recording design decisions.
Providing evidence that the architecture satisfies its requirements.

Business
Manager

Responsible for the functioning of the business/organizational entity
that owns the system. Includes managerial/executive responsibility,
responsibility for defining business processes, etc.

Understanding the ability of the architecture to meet business goals.

Conformance
Checker

Responsible for assuring conformance to standards and processes to
provide confidence in a product’s suitability.

Basis for conformance checking, for assurance that implementations
have been faithful to the architectural prescriptions.

Customer Pays for the system and ensures its delivery. The customer often speaks
for or represents the end user, especially in a government acquisition
context.

Assuring required functionality and quality will be delivered; gauging
progress; estimating cost; and setting expectations for what will be
delivered, when, and for how much.

Database
Administrator

Involved in many aspects of the data stores, including database design,
data analysis, data modeling and optimization, installation of database
software, and monitoring and administration of database security.

Understanding how data is created, used, and updated by other
architectural elements, and what properties the data and database
must have for the overall system to meet its quality goals.

Deployer Responsible for accepting the completed system from the development
effort and deploying it, making it operational, and fulfilling its allocated
business function.

Understanding the architectural elements that are delivered and
to be installed at the customer or end user’s site, and their overall
responsibility toward system function.

Designer Responsible for systems and/or software design downstream of the
architecture, applying the architecture to meet specific requirements of the
parts for which they are responsible.

Resolving resource contention and establishing performance and
other kinds of runtime resource consumption budgets. Understand-
ing how their part will communicate and interact with other parts of
the system.

Evaluator Responsible for conducting a formal evaluation of the architecture (and its
documentation) against some clearly defined criteria.

Evaluating the architecture’s ability to deliver required behavior and
quality attributes.

3.5
S

takeholders
55

Name description Interest in architecture

Implementer Responsible for the development of specific elements according to
designs, requirements, and the architecture.

Understanding inviolable constraints and exploitable freedoms on
development activities.

Integrator Responsible for taking individual components and integrating them,
according to the architecture and system designs.

Producing integration plans and procedures, and locating the source
of integration failures.

Maintainer Responsible for fixing bugs and providing enhancements to the system
throughout its life (including adaptation of the system for uses not originally
envisioned).

Understanding the ramifications of a change.

Network
Administrator

Responsible for the maintenance and oversight of computer hardware
and software in a computer network. This may include the deployment,
configuration, maintenance, and monitoring of network components.

Determining network loads during various use profiles, understanding
uses of the network.

Product-Line
Manager

Responsible for development of an entire family of products, all built using
the same core assets (including the architecture).

Determining whether a potential new member of a product family is in
or out of scope and, if out, by how much.

Project Manager Responsible for planning, sequencing, scheduling, and allocating
resources to develop software components and deliver components to
integration and test activities.

Helping to set budget and schedule, gauging progress against
established budget and schedule, identifying and resolving
development-time resource contention.

Representative of
External Systems

Responsible for managing a system with which this one must interoperate,
and its interface with our system.

Defining the set of agreement between the systems.

System Engineer Responsible for design and development of systems or system
components in which software plays a role.

Assuring that the system environment provided for the software is
sufficient.

Tester Responsible for the (independent) test and verification of the system or its
elements against the formal requirements and the architecture.

Creating tests based on the behavior and interaction of the software
elements.

User The actual end users of the system. There may be distinguished kinds of
users, such as administrators, superusers, etc.

Users, in the role of reviewers, might use architecture documentation
to check whether desired functionality is being delivered. Users might
also use the documentation to understand what the major system
elements are, which can aid them in emergency field maintenance.

56 Part One Introduction 3—The Many Contexts of Software Architecture

3.6 How Is architecture Influenced?

For decades, software designers have been taught to build systems based on the
software’s technical requirements. In the older Waterfall model, the requirements
document is “tossed over the wall” into the designer’s cubicle, and the designer
must come forth with a satisfactory design. Requirements beget design, which
begets system. In an iterative or Agile approach to development, an increment of
requirements begets an increment of design, and so forth.

This vision of software development is short-sighted. In any development
effort, the requirements make explicit some—but only some—of the desired
properties of the final system. Not all requirements are focused directly on de-
sired system properties; some requirements might mandate a development pro-
cess or the use of a particular tool. Furthermore, the requirements specification
only begins to tell the story. Failure to satisfy other constraints may render the
system just as problematic as if it functioned poorly.

What do you suppose would happen if two different architects, working in two
different organizations, were given the same requirements specification for a sys-
tem? Do you think they would produce the same architecture or different ones?

The answer is that they would very likely produce different ones, which im-
mediately belies the notion that requirements determine architecture. Other fac-
tors are at work.

A software architecture is a result of business and social influences, as well
as technical ones. The existence of an architecture in turn affects the technical,
business, and social environments that subsequently influence future architec-
tures. In particular, each of the contexts for architecture that we just covered—
technical, project, business, and professional—plays a role in influencing an ar-
chitect and the architecture, as shown in Figure 3.4.

Architect’s Influences

Architect

Business

Technical

Project

Professional

Stakeholders

Architecture

System

fIGurE 3.4 Influences on the architect

3.7 What Do Architectures Influence? 57

An architect designing a system for which the real-time deadlines are tight
will make one set of design choices; the same architect, designing a similar sys-
tem in which the deadlines can be easily satisfied, will make different choices.
And the same architect, designing a non-real-time system, is likely to make quite
different choices still. Even with the same requirements, hardware, support soft-
ware, and human resources available, an architect designing a system today is
likely to design a different system than might have been designed five years ago.

3.7 What do architectures Influence?

The story about contexts influencing architectures has a flip side. It turns out that
architectures have an influence on the very factors that influence them. Specifi-
cally, the existence of an architecture affects the technical, project, business, and
professional contexts that subsequently influence future architectures.

Here is how the cycle works:

 ■ Technical context. The architecture can affect stakeholder requirements
for the next system by giving the customer the opportunity to receive a
system (based on the same architecture) in a more reliable, timely, and
economical manner than if the subsequent system were to be built from
scratch, and typically with fewer defects. A customer may in fact be willing
to relax some of their requirements to gain these economies. Shrink-
wrapped software has clearly affected people’s requirements by providing
solutions that are not tailored to any individual’s precise needs but are
instead inexpensive and (in the best of all possible worlds) of high quality.
Software product lines have the same effect on customers who cannot be so
flexible with their requirements.

 ■ Project context. The architecture affects the structure of the developing
organization. An architecture prescribes a structure for a system; as we will
see, it particularly prescribes the units of software that must be implemented
(or otherwise obtained) and integrated to form the system. These units
are the basis for the development project’s structure. Teams are formed
for individual software units; and the development, test, and integration
activities all revolve around the units. Likewise, schedules and budgets
allocate resources in chunks corresponding to the units. If a company
becomes adept at building families of similar systems, it will tend to invest
in each team by nurturing each area of expertise. Teams become embedded
in the organization’s structure. This is feedback from the architecture to
the developing organization. In any design undertaken by the organization
at large, these groups have a strong voice in the system’s decomposition,
pressuring for the continued existence of the portions they control.

58 Part One Introduction 3—The Many Contexts of Software Architecture

 ■ Business context. The architecture can affect the business goals of the
developing organization. A successful system built from an architecture can
enable a company to establish a foothold in a particular market segment—
think of the iPhone or Android app platforms as examples. The architecture
can provide opportunities for the efficient production and deployment of
similar systems, and the organization may adjust its goals to take advantage
of its newfound expertise to plumb the market. This is feedback from the
system to the developing organization and the systems it builds.

 ■ Professional context. The process of system building will affect the
architect’s experience with subsequent systems by adding to the corporate
experience base. A system that was successfully built around a particular
technical approach will make the architect more inclined to build systems
using the same approach in the future. On the other hand, architectures that
fail are less likely to be chosen for future projects.

These and other feedback mechanisms form what we call the Architecture
Influence Cycle, or AIC, illustrated in Figure 3.5, which depicts the influences of
the culture and business of the development organization on the software archi-
tecture. That architecture is, in turn, a primary determinant of the properties of
the developed system or systems. But the AIC is also based on a recognition that
shrewd organizations can take advantage of the organizational and experiential
effects of developing an architecture and can use those effects to position their
business strategically for future projects.

Architect’s Influences

Architect

Business

Technical

Project

Professional

Stakeholders

Architecture

System

fIGurE 3.5 Architecture Influence Cycle

3.9 For Further Reading 59

3.8 Summary

Architectures exist in four different contexts.

1. Technical. The technical context includes the achievement of quality
attribute requirements. We spend Part II discussing how to do this. The
technical context also includes the current technology. The cloud (discussed
in Chapter 26) and mobile computing (discussed in Chapter 27) are
important current technologies.

2. Project life cycle. Regardless of the software development methodology
you use, you must make a business case for the system, understand the
architecturally significant requirements, create or select the architecture,
document and communicate the architecture, analyze or evaluate the archi-
tecture, implement and test the system based on the architecture, and ensure
that the implementation conforms to the architecture.

3. Business. The system created from the architecture must satisfy the busi-
ness goals of a wide variety of stakeholders, each of whom has different
expectations for the system. The architecture is also influenced by and in-
fluences the structure of the development organization.

4. Professional. You must have certain skills and knowledge to be an architect,
and there are certain duties that you must perform as an architect. These
are influenced not only by coursework and reading but also by your
experiences.

An architecture has some influences that lead to its creation, and its exis-
tence has an impact on the architect, the organization, and, potentially, the indus-
try. We call this cycle the Architecture Influence Cycle.

3.9 for further reading

The product line framework produced by the Software Engineering Institute in-
cludes a discussion of business cases from which we drew [SEI 12].

The SEI has also published a case study of Celsius Tech that includes an ex-
ample of how organizations and customers change over time [Brownsword 96].

Several other SEI reports discuss how to find business goals and the busi-
ness goals that have been articulated by certain organizations [Kazman 05, Cle-
ments 10b].

Ruth Malan and Dana Bredemeyer provide a description of how an architect
can build buy-in within an organization [Malan 00].

60 Part One Introduction 3—The Many Contexts of Software Architecture

3.10 discussion Questions

1. Enumerate six different software systems used by your organization. For
each of these systems:

a. What are the contextual influences?
b. Who are the stakeholders?
c. How do these systems reflect or impact the organizational structure?

2. What kinds of business goals have driven the construction of the following:

a. The World Wide Web
b. Amazon’s EC2 cloud infrastructure
c. Google’s Android platform

3. What mechanisms are available to improve your skills and knowledge?
What skills are you lacking?

4. Describe a system you are familiar with and place it into the AIC. Specifi-
cally, identify the forward and reverse influences on contextual factors.

61

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T T WO

QualIty attrIbutES

In Part II, we provide the technical foundations for you to design or analyze an
architecture to achieve particular quality attributes. We do not discuss design or
analysis processes here; we cover those topics in Part III. It is impossible, how-
ever, to understand how to improve the performance of a design, for example,
without understanding something about performance.

In Chapter 4 we describe how to specify a quality attribute requirement and
motivate design techniques called tactics to enable you to achieve a particular qual-
ity attribute requirement. We also enumerate seven categories of design decisions.
These are categories of decisions that are universally important, and so we provide
material to help an architect focus on these decisions. In Chapter 4, we describe
these categories, and in each of the following chapters devoted to a particular quality
attribute—Chapters 5–11—we use those categories to develop a checklist that tells
you how to focus your attention on the important aspects associated with that quality
attribute. Many of the items in our checklists may seem obvious, but the purpose of
a checklist is to help ensure the completeness of your design and analysis process.

In addition to providing a treatment of seven specific quality attributes
(availability, interoperability, modifiability, performance, security, testability, and
usability), we also describe how you can generate the material provided in Chap-
ters 5–11 for other quality attributes that we have not covered.

Architectural patterns provide known solutions to a number of common
problems in design. In Chapter 13, we present some of the most important pat-
terns and discuss the relationship between patterns and tactics.

Being able to analyze a design for a particular quality attribute is a key skill
that you as an architect will need to acquire. In Chapter 14, we discuss modeling
techniques for some of the quality attributes.

This page intentionally left blank

63

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

4
Understanding Quality
Attributes

Between stimulus and response, there is a space. In
that space is our power to choose our response. In

our response lies our growth and our freedom.
— Viktor E. Frankl, Man’s Search for Meaning

As we have seen in the Architecture Influence Cycle (in Chapter 3), many fac-
tors determine the qualities that must be provided for in a system’s architecture.
These qualities go beyond functionality, which is the basic statement of the sys-
tem’s capabilities, services, and behavior. Although functionality and other qual-
ities are closely related, as you will see, functionality often takes the front seat in
the development scheme. This preference is shortsighted, however. Systems are
frequently redesigned not because they are functionally deficient—the replace-
ments are often functionally identical—but because they are difficult to maintain,
port, or scale; or they are too slow; or they have been compromised by hackers.
In Chapter 2, we said that architecture was the first place in software creation in
which quality requirements could be addressed. It is the mapping of a system’s
functionality onto software structures that determines the architecture’s support
for qualities. In Chapters 5–11 we discuss how various qualities are supported by
architectural design decisions. In Chapter 17 we show how to integrate all of the
quality attribute decisions into a single design.

We have been using the term “quality attribute” loosely, but now it is time to
define it more carefully. A quality attribute (QA) is a measurable or testable prop-
erty of a system that is used to indicate how well the system satisfies the needs of
its stakeholders. You can think of a quality attribute as measuring the “goodness”
of a product along some dimension of interest to a stakeholder.

In this chapter our focus is on understanding the following:

 ■ How to express the qualities we want our architecture to provide to the sys-
tem or systems we are building from it

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

64 Part two Quality attributes 4—Understanding Quality Attributes

 ■ How to achieve those qualities
 ■ How to determine the design decisions we might make with respect to those

qualities

This chapter provides the context for the discussion of specific quality attributes
in Chapters 5–11.

4.1 architecture and requirements

Requirements for a system come in a variety of forms: textual requirements,
mockups, existing systems, use cases, user stories, and more. Chapter 16 dis-
cusses the concept of an architecturally significant requirement, the role such re-
quirements play in architecture, and how to identify them. No matter the source,
all requirements encompass the following categories:

1. Functional requirements. These requirements state what the system must
do, and how it must behave or react to runtime stimuli.

2. Quality attribute requirements. These requirements are qualifications of
the functional requirements or of the overall product. A qualification of a
functional requirement is an item such as how fast the function must be
performed, or how resilient it must be to erroneous input. A qualification
of the overall product is an item such as the time to deploy the product or a
limitation on operational costs.

3. Constraints. A constraint is a design decision with zero degrees of freedom.
That is, it’s a design decision that’s already been made. Examples include
the requirement to use a certain programming language or to reuse a certain
existing module, or a management fiat to make your system service ori-
ented. These choices are arguably in the purview of the architect, but ex-
ternal factors (such as not being able to train the staff in a new language, or
having a business agreement with a software supplier, or pushing business
goals of service interoperability) have led those in power to dictate these
design outcomes.

What is the “response” of architecture to each of these kinds of requirements?

1. Functional requirements are satisfied by assigning an appropriate sequence
of responsibilities throughout the design. As we will see later in this chap-
ter, assigning responsibilities to architectural elements is a fundamental
architectural design decision.

2. Quality attribute requirements are satisfied by the various structures de-
signed into the architecture, and the behaviors and interactions of the ele-
ments that populate those structures. Chapter 17 will show this approach in
more detail.

4.3 Quality Attribute Considerations 65

3. Constraints are satisfied by accepting the design decision and reconciling it
with other affected design decisions.

4.2 functionality

Functionality is the ability of the system to do the work for which it was in-
tended. Of all of the requirements, functionality has the strangest relationship to
architecture.

First of all, functionality does not determine architecture. That is, given a
set of required functionality, there is no end to the architectures you could create
to satisfy that functionality. At the very least, you could divide up the function-
ality in any number of ways and assign the subpieces to different architectural
elements.

In fact, if functionality were the only thing that mattered, you wouldn’t have
to divide the system into pieces at all; a single monolithic blob with no internal
structure would do just fine. Instead, we design our systems as structured sets
of cooperating architectural elements—modules, layers, classes, services, data-
bases, apps, threads, peers, tiers, and on and on—to make them understandable
and to support a variety of other purposes. Those “other purposes” are the other
quality attributes that we’ll turn our attention to in the remaining sections of this
chapter, and the remaining chapters of Part II.

But although functionality is independent of any particular structure, func-
tionality is achieved by assigning responsibilities to architectural elements, re-
sulting in one of the most basic of architectural structures.

Although responsibilities can be allocated arbitrarily to any modules, soft-
ware architecture constrains this allocation when other quality attributes are im-
portant. For example, systems are frequently divided so that several people can
cooperatively build them. The architect’s interest in functionality is in how it in-
teracts with and constrains other qualities.

4.3 Quality attribute considerations

Just as a system’s functions do not stand on their own without due consideration of
other quality attributes, neither do quality attributes stand on their own; they pertain
to the functions of the system. If a functional requirement is “When the user presses
the green button, the Options dialog appears,” a performance QA annotation might
describe how quickly the dialog will appear; an availability QA annotation might
describe how often this function will fail, and how quickly it will be repaired; a us-
ability QA annotation might describe how easy it is to learn this function.

66 Part two Quality attributes 4—Understanding Quality Attributes

Functional Requirements

After more than 15 years of writing and discussing the distinction between
functional requirements and quality requirements, the definition of func-
tional requirements still eludes me. Quality attribute requirements are well
defined: performance has to do with the timing behavior of the system,
modifiability has to do with the ability of the system to support changes in
its behavior or other qualities after initial deployment, availability has to do
with the ability of the system to survive failures, and so forth.

Function, however, is much more slippery. An international standard
(ISO 25010) defines functional suitability as “the capability of the software
product to provide functions which meet stated and implied needs when
the software is used under specified conditions.” That is, functionality is the
ability to provide functions. One interpretation of this definition is that func-
tionality describes what the system does and quality describes how well
the system does its function. That is, qualities are attributes of the system
and function is the purpose of the system.

This distinction breaks down, however, when you consider the nature
of some of the “function.” If the function of the software is to control engine
behavior, how can the function be correctly implemented without consid-
ering timing behavior? Is the ability to control access through requiring a
user name/password combination not a function even though it is not the
purpose of any system?

I like much better the use of the word “responsibility” to describe com-
putations that a system must perform. Questions such as “What are the
timing constraints on that set of responsibilities?”, “What modifications are
anticipated with respect to that set of responsibilities?”, and “What class of
users is allowed to execute that set of responsibilities?” make sense and
are actionable.

The achievement of qualities induces responsibility; think of the user
name/password example just mentioned. Further, one can identify respon-
sibilities as being associated with a particular set of requirements.

So does this mean that the term “functional requirement” shouldn’t be
used? People have an understanding of the term, but when precision is
desired, we should talk about sets of specific responsibilities instead.

Paul Clements has long ranted against the careless use of the term
“nonfunctional,” and now it’s my turn to rant against the careless use of the
term “functional”—probably equally ineffectually.

—LB

Quality attributes have been of interest to the software community at least
since the 1970s. There are a variety of published taxonomies and definitions, and
many of them have their own research and practitioner communities. From an

4.3 Quality Attribute Considerations 67

architect’s perspective, there are three problems with previous discussions of sys-
tem quality attributes:

1. The definitions provided for an attribute are not testable. It is meaningless
to say that a system will be “modifiable.” Every system may be modifiable
with respect to one set of changes and not modifiable with respect to an-
other. The other quality attributes are similar in this regard: a system may
be robust with respect to some faults and brittle with respect to others. And
so forth.

2. Discussion often focuses on which quality a particular concern belongs to.
Is a system failure due to a denial-of-service attack an aspect of availability,
an aspect of performance, an aspect of security, or an aspect of usability?
All four attribute communities would claim ownership of a system failure
due to a denial-of-service attack. All are, to some extent, correct. But this
doesn’t help us, as architects, understand and create architectural solutions
to manage the attributes of concern.

3. Each attribute community has developed its own vocabulary. The perfor-
mance community has “events” arriving at a system, the security com-
munity has “attacks” arriving at a system, the availability community has
“failures” of a system, and the usability community has “user input.” All
of these may actually refer to the same occurrence, but they are described
using different terms.

A solution to the first two of these problems (untestable definitions and
overlapping concerns) is to use quality attribute scenarios as a means of charac-
terizing quality attributes (see the next section). A solution to the third problem
is to provide a discussion of each attribute—concentrating on its underlying con-
cerns—to illustrate the concepts that are fundamental to that attribute community.

There are two categories of quality attributes on which we focus. The first is
those that describe some property of the system at runtime, such as availability,
performance, or usability. The second is those that describe some property of the
development of the system, such as modifiability or testability.

Within complex systems, quality attributes can never be achieved in isola-
tion. The achievement of any one will have an effect, sometimes positive and
sometimes negative, on the achievement of others. For example, almost every
quality attribute negatively affects performance. Take portability. The main tech-
nique for achieving portable software is to isolate system dependencies, which
introduces overhead into the system’s execution, typically as process or proce-
dure boundaries, and this hurts performance. Determining the design that sat-
isfies all of the quality attribute requirements is partially a matter of making the
appropriate tradeoffs; we discuss design in Chapter 17. Our purpose here is to
provide the context for discussing each quality attribute. In particular, we focus
on how quality attributes can be specified, what architectural decisions will en-
able the achievement of particular quality attributes, and what questions about
quality attributes will enable the architect to make the correct design decisions.

68 Part two Quality attributes 4—Understanding Quality Attributes

4.4 Specifying Quality attribute requirements

A quality attribute requirement should be unambiguous and testable. We use a
common form to specify all quality attribute requirements. This has the advantage
of emphasizing the commonalities among all quality attributes. It has the disad-
vantage of occasionally being a force-fit for some aspects of quality attributes.

Our common form for quality attribute expression has these parts:

 ■ Stimulus. We use the term “stimulus” to describe an event arriving at the
system. The stimulus can be an event to the performance community, a
user operation to the usability community, or an attack to the security
community. We use the same term to describe a motivating action for de-
velopmental qualities. Thus, a stimulus for modifiability is a request for
a modification; a stimulus for testability is the completion of a phase of
development.

 ■ Stimulus source. A stimulus must have a source—it must come from some-
where. The source of the stimulus may affect how it is treated by the sys-
tem. A request from a trusted user will not undergo the same scrutiny as a
request by an untrusted user.

 ■ Response. How the system should respond to the stimulus must also be
specified. The response consists of the responsibilities that the system
(for runtime qualities) or the developers (for development-time qualities)
should perform in response to the stimulus. For example, in a performance
scenario, an event arrives (the stimulus) and the system should process
that event and generate a response. In a modifiability scenario, a request
for a modification arrives (the stimulus) and the developers should imple-
ment the modification—without side effects—and then test and deploy the
modification.

 ■ Response measure. Determining whether a response is satisfactory—
whether the requirement is satisfied—is enabled by providing a response
measure. For performance this could be a measure of latency or throughput;
for modifiability it could be the labor or wall clock time required to make,
test, and deploy the modification.

These four characteristics of a scenario are the heart of our quality attribute
specifications. But there are two more characteristics that are important: environ-
ment and artifact.

 ■ Environment. The environment of a requirement is the set of circumstances
in which the scenario takes place. The environment acts as a qualifier on
the stimulus. For example, a request for a modification that arrives after
the code has been frozen for a release may be treated differently than one
that arrives before the freeze. A failure that is the fifth successive failure

4.4 Specifying Quality Attribute Requirements 69

of a component may be treated differently than the first failure of that
component.

 ■ Artifact. Finally, the artifact is the portion of the system to which the
requirement applies. Frequently this is the entire system, but occasion-
ally specific portions of the system may be called out. A failure in a
data store may be treated differently than a failure in the metadata store.
Modifications to the user interface may have faster response times than
modifications to the middleware.

To summarize how we specify quality attribute requirements, we capture
them formally as six-part scenarios. While it is common to omit one or more of
these six parts, particularly in the early stages of thinking about quality attributes,
knowing that all parts are there forces the architect to consider whether each part
is relevant.

In summary, here are the six parts:

1. Source of stimulus. This is some entity (a human, a computer system, or
any other actuator) that generated the stimulus.

2. Stimulus. The stimulus is a condition that requires a response when it ar-
rives at a system.

3. Environment. The stimulus occurs under certain conditions. The system
may be in an overload condition or in normal operation, or some other rele-
vant state. For many systems, “normal” operation can refer to one of a num-
ber of modes. For these kinds of systems, the environment should specify in
which mode the system is executing.

4. Artifact. Some artifact is stimulated. This may be a collection of systems,
the whole system, or some piece or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival
of the stimulus.

6. Response measure. When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

We distinguish general quality attribute scenarios (which we call “general
scenarios” for short)—those that are system independent and can, potentially,
pertain to any system—from concrete quality attribute scenarios (concrete sce-
narios)—those that are specific to the particular system under consideration.

We can characterize quality attributes as a collection of general scenarios.
Of course, to translate these generic attribute characterizations into requirements
for a particular system, the general scenarios need to be made system specific.
Detailed examples of these scenarios will be given in Chapters 5–11. Figure 4.1
shows the parts of a quality attribute scenario that we have just discussed. Fig-
ure 4.2 shows an example of a general scenario, in this case for availability.

70 Part two Quality attributes 4—Understanding Quality Attributes

4.5 achieving Quality attributes through tactics

The quality attribute requirements specify the responses of the system that, with a
bit of luck and a dose of good planning, realize the goals of the business. We now
turn to the techniques an architect can use to achieve the required quality attri-
butes. We call these techniques architectural tactics. A tactic is a design decision
that influences the achievement of a quality attribute response—tactics directly
affect the system’s response to some stimulus. Tactics impart portability to one
design, high performance to another, and integrability to a third.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

fIGurE 4.1 The parts of a quality attribute scenario

fIGurE 4.2 A general scenario for availability

Stimulus Response

Response
Measure

Source
of Stimulus

3
2

1

4

Internal/External:
people, hardware,
software, physical
infrastructure,
physical
environment

Fault:
omission,
crash,
incorrect
timing,
incorrect
response

Prevent fault from
becoming failure
Detect fault: log, notify
Recover from fault:
disable event source,
be unavailable,
fix/mask, degraded
mode

Time or time interval
system must be available
Availability percentage
Time in degraded mode
Time to detect fault
Repair time
Proportion of faults
system handles

Artifact
Processors,

communication
channels, persistent
storage, processes

Environment
Normal operation,
startup, shutdown,
repair mode,
degraded
operation,
overloaded
operation

4.5 Achieving Quality Attributes through Tactics 71

Not My Problem

One time I was doing an architecture analysis on a complex system cre-
ated by and for Lawrence Livermore National Laboratory. If you visit their
website (www.llnl.gov) and try to figure out what Livermore Labs does, you
will see the word “security” mentioned over and over. The lab focuses on
nuclear security, international and domestic security, and environmental
and energy security. Serious stuff . . .

Keeping this emphasis in mind, I asked them to describe the quality
attributes of concern for the system that I was analyzing. I’m sure you can
imagine my surprise when security wasn’t mentioned once! The system
stakeholders mentioned performance, modifiability, evolvability, interoper-
ability, configurability, and portability, and one or two more, but the word
security never passed their lips.

Being a good analyst, I questioned this seemingly shocking and obvious
omission. Their answer was simple and, in retrospect, straightforward: “We
don’t care about it. Our systems are not connected to any external net-
work and we have barbed-wire fences and guards with machine guns.” Of
course, someone at Livermore Labs was very interested in security. But it
was clearly not the software architects.

—RK

The focus of a tactic is on a single quality attribute response. Within a tactic,
there is no consideration of tradeoffs. Tradeoffs must be explicitly considered
and controlled by the designer. In this respect, tactics differ from architectural
patterns, where tradeoffs are built into the pattern. (We visit the relation between
tactics and patterns in Chapter 14. Chapter 13 explains how sets of tactics for a
quality attribute can be constructed, which are the steps we used to produce the
set in this book.)

A system design consists of a collection of decisions. Some of these deci-
sions help control the quality attribute responses; others ensure achievement of
system functionality. We represent the relationship between stimulus, tactics, and
response in Figure 4.3. The tactics, like design patterns, are design techniques
that architects have been using for years. Our contribution is to isolate, catalog,
and describe them. We are not inventing tactics here, we are just capturing what
architects do in practice.

Why do we do this? There are three reasons:

1. Design patterns are complex; they typically consist of a bundle of design
decisions. But patterns are often difficult to apply as is; architects need to
modify and adapt them. By understanding the role of tactics, an architect
can more easily assess the options for augmenting an existing pattern to
achieve a quality attribute goal.

http://www.llnl.gov

72 Part two Quality attributes 4—Understanding Quality Attributes

2. If no pattern exists to realize the architect’s design goal, tactics allow the
architect to construct a design fragment from “first principles.” Tactics give
the architect insight into the properties of the resulting design fragment.

3. By cataloging tactics, we provide a way of making design more systematic
within some limitations. Our list of tactics does not provide a taxonomy. We
only provide a categorization. The tactics will overlap, and you frequently
will have a choice among multiple tactics to improve a particular quality at-
tribute. The choice of which tactic to use depends on factors such as tradeoffs
among other quality attributes and the cost to implement. These consider-
ations transcend the discussion of tactics for particular quality attributes.
Chapter 17 provides some techniques for choosing among competing tactics.

The tactics that we present can and should be refined. Consider perfor-
mance: Schedule resources is a common performance tactic. But this tactic needs
to be refined into a specific scheduling strategy, such as shortest-job-first, round-
robin, and so forth, for specific purposes. Use an intermediary is a modifiability
tactic. But there are multiple types of intermediaries (layers, brokers, and prox-
ies, to name just a few). Thus there are refinements that a designer will employ to
make each tactic concrete.

In addition, the application of a tactic depends on the context. Again consid-
ering performance: Manage sampling rate is relevant in some real-time systems
but not in all real-time systems and certainly not in database systems.

4.6 Guiding Quality design decisions

Recall that one can view an architecture as the result of applying a collection of
design decisions. What we present here is a systematic categorization of these

fIGurE 4.3 Tactics are intended to control responses to stimuli.

Stimulus Response

Tactics
to Control
Response

4.6 Guiding Quality Design Decisions 73

decisions so that an architect can focus attention on those design dimensions
likely to be most troublesome.

The seven categories of design decisions are

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

These categories are not the only way to classify architectural design deci-
sions, but they do provide a rational division of concerns. These categories might
overlap, but it’s all right if a particular decision exists in two different categories,
because the concern of the architect is to ensure that every important decision is
considered. Our categorization of decisions is partially based on our definition
of software architecture in that many of our categories relate to the definition of
structures and the relations among them.

allocation of responsibilities

Decisions involving allocation of responsibilities include the following:

 ■ Identifying the important responsibilities, including basic system functions,
architectural infrastructure, and satisfaction of quality attributes.

 ■ Determining how these responsibilities are allocated to non-runtime and
runtime elements (namely, modules, components, and connectors).

Strategies for making these decisions include functional decomposition,
modeling real-world objects, grouping based on the major modes of system oper-
ation, or grouping based on similar quality requirements: processing frame rate,
security level, or expected changes.

In Chapters 5–11, where we apply these design decision categories to a
number of important quality attributes, the checklists we provide for the alloca-
tion of responsibilities category is derived systematically from understanding the
stimuli and responses listed in the general scenario for that QA.

coordination Model

Software works by having elements interact with each other through designed
mechanisms. These mechanisms are collectively referred to as a coordination
model. Decisions about the coordination model include these:

74 Part two Quality attributes 4—Understanding Quality Attributes

 ■ Identifying the elements of the system that must coordinate, or are prohib-
ited from coordinating.

 ■ Determining the properties of the coordination, such as timeliness, cur-
rency, completeness, correctness, and consistency.

 ■ Choosing the communication mechanisms (between systems, between our
system and external entities, between elements of our system) that realize
those properties. Important properties of the communication mechanisms
include stateful versus stateless, synchronous versus asynchronous, guar-
anteed versus nonguaranteed delivery, and performance-related properties
such as throughput and latency.

data Model

Every system must represent artifacts of system-wide interest—data—in some
internal fashion. The collection of those representations and how to interpret
them is referred to as the data model. Decisions about the data model include the
following:

 ■ Choosing the major data abstractions, their operations, and their properties.
This includes determining how the data items are created, initialized, ac-
cessed, persisted, manipulated, translated, and destroyed.

 ■ Compiling metadata needed for consistent interpretation of the data.
 ■ Organizing the data. This includes determining whether the data is going

to be kept in a relational database, a collection of objects, or both. If both,
then the mapping between the two different locations of the data must be
determined.

Management of resources

An architect may need to arbitrate the use of shared resources in the architec-
ture. These include hard resources (e.g., CPU, memory, battery, hardware buffers,
system clock, I/O ports) and soft resources (e.g., system locks, software buffers,
thread pools, and non-thread-safe code).

Decisions for management of resources include the following:

 ■ Identifying the resources that must be managed and determining the limits
for each.

 ■ Determining which system element(s) manage each resource.
 ■ Determining how resources are shared and the arbitration strategies em-

ployed when there is contention.
 ■ Determining the impact of saturation on different resources. For example,

as a CPU becomes more heavily loaded, performance usually just degrades
fairly steadily. On the other hand, when you start to run out of memory, at

4.6 Guiding Quality Design Decisions 75

some point you start paging/swapping intensively and your performance
suddenly crashes to a halt.

Mapping among architectural Elements

An architecture must provide two types of mappings. First, there is mapping
between elements in different types of architecture structures—for example,
mapping from units of development (modules) to units of execution (threads or
processes). Next, there is mapping between software elements and environment
elements—for example, mapping from processes to the specific CPUs where
these processes will execute.

Useful mappings include these:

 ■ The mapping of modules and runtime elements to each other—that is, the
runtime elements that are created from each module; the modules that con-
tain the code for each runtime element.

 ■ The assignment of runtime elements to processors.
 ■ The assignment of items in the data model to data stores.
 ■ The mapping of modules and runtime elements to units of delivery.

binding time decisions

Binding time decisions introduce allowable ranges of variation. This variation
can be bound at different times in the software life cycle by different entities—
from design time by a developer to runtime by an end user. A binding time de-
cision establishes the scope, the point in the life cycle, and the mechanism for
achieving the variation.

The decisions in the other six categories have an associated binding time
decision. Examples of such binding time decisions include the following:

 ■ For allocation of responsibilities, you can have build-time selection of mod-
ules via a parameterized makefile.

 ■ For choice of coordination model, you can design runtime negotiation of
protocols.

 ■ For resource management, you can design a system to accept new periph-
eral devices plugged in at runtime, after which the system recognizes them
and downloads and installs the right drivers automatically.

 ■ For choice of technology, you can build an app store for a smartphone that
automatically downloads the version of the app appropriate for the phone of
the customer buying the app.

When making binding time decisions, you should consider the costs to im-
plement the decision and the costs to make a modification after you have im-
plemented the decision. For example, if you are considering changing platforms

76 Part two Quality attributes 4—Understanding Quality Attributes

at some time after code time, you can insulate yourself from the effects caused
by porting your system to another platform at some cost. Making this decision
depends on the costs incurred by having to modify an early binding compared to
the costs incurred by implementing the mechanisms involved in the late binding.

choice of technology

Every architecture decision must eventually be realized using a specific tech-
nology. Sometimes the technology selection is made by others, before the in-
tentional architecture design process begins. In this case, the chosen technology
becomes a constraint on decisions in each of our seven categories. In other cases,
the architect must choose a suitable technology to realize a decision in every one
of the categories.

Choice of technology decisions involve the following:

 ■ Deciding which technologies are available to realize the decisions made in
the other categories.

 ■ Determining whether the available tools to support this technology choice
(IDEs, simulators, testing tools, etc.) are adequate for development to
proceed.

 ■ Determining the extent of internal familiarity as well as the degree of exter-
nal support available for the technology (such as courses, tutorials, exam-
ples, and availability of contractors who can provide expertise in a crunch)
and deciding whether this is adequate to proceed.

 ■ Determining the side effects of choosing a technology, such as a required
coordination model or constrained resource management opportunities.

 ■ Determining whether a new technology is compatible with the existing
technology stack. For example, can the new technology run on top of or
alongside the existing technology stack? Can it communicate with the exist-
ing technology stack? Can the new technology be monitored and managed?

4.7 Summary

Requirements for a system come in three categories:

1. Functional. These requirements are satisfied by including an appropriate set
of responsibilities within the design.

2. Quality attribute. These requirements are satisfied by the structures and
behaviors of the architecture.

3. Constraints. A constraint is a design decision that’s already been made.

4.9 Discussion Questions 77

To express a quality attribute requirement, we use a quality attribute sce-
nario. The parts of the scenario are these:

1. Source of stimulus
2. Stimulus
3. Environment
4. Artifact
5. Response
6. Response measure

An architectural tactic is a design decision that affects a quality attribute
response. The focus of a tactic is on a single quality attribute response. Architec-
tural patterns can be seen as “packages” of tactics.

The seven categories of architectural design decisions are these:

1. Allocation of responsibilities
2. Coordination model
3. Data model
4. Management of resources
5. Mapping among architectural elements
6. Binding time decisions
7. Choice of technology

4.8 for further reading

Philippe Kruchten [Kruchten 04] provides another categorization of design
decisions.

Pena [Pena 87] uses categories of Function/Form/Economy/Time as a way
of categorizing design decisions.

Binding time and mechanisms to achieve different types of binding times
are discussed in [Bachmann 05].

Taxonomies of quality attributes can be found in [Boehm 78], [McCall 77],
and [ISO 11].

Arguments for viewing architecture as essentially independent from func-
tion can be found in [Shaw 95].

4.9 discussion Questions

1. What is the relationship between a use case and a quality attribute scenario?
If you wanted to add quality attribute information to a use case, how would
you do it?

78 Part two Quality attributes 4—Understanding Quality Attributes

2. Do you suppose that the set of tactics for a quality attribute is finite or in-
finite? Why?

3. Discuss the choice of programming language (an example of choice of
technology) and its relation to architecture in general, and the design
decisions in the other six categories? For instance, how can certain pro-
gramming languages enable or inhibit the choice of particular coordination
models?

4. We will be using the automatic teller machine as an example throughout
the chapters on quality attributes. Enumerate the set of responsibilities that
an automatic teller machine should support and propose an initial design to
accommodate that set of responsibilities. Justify your proposal.

5. Think about the screens that your favorite automatic teller machine uses.
What do those screens tell you about binding time decisions reflected in the
architecture?

6. Consider the choice between synchronous and asynchronous communica-
tion (a choice in the coordination mechanism category). What quality attri-
bute requirements might lead you to choose one over the other?

7. Consider the choice between stateful and stateless communication (a choice
in the coordination mechanism category). What quality attribute require-
ments might lead you to choose one over the other?

8. Most peer-to-peer architecture employs late binding of the topology. What
quality attributes does this promote or inhibit?

79

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

5
Availability
With James Scott

Ninety percent of life is just showing up.
—Woody Allen

Availability refers to a property of software that it is there and ready to carry
out its task when you need it to be. This is a broad perspective and encompasses
what is normally called reliability (although it may encompass additional con-
siderations such as downtime due to periodic maintenance). In fact, availability
builds upon the concept of reliability by adding the notion of recovery—that is,
when the system breaks, it repairs itself. Repair may be accomplished by various
means, which we’ll see in this chapter. More precisely, Avižienis and his col-
leagues have defined dependability:

Dependability is the ability to avoid failures that are more frequent and
more severe than is acceptable.

Our definition of availability as an aspect of dependability is this: “Availabil-
ity refers to the ability of a system to mask or repair faults such that the cumula-
tive service outage period does not exceed a required value over a specified time
interval.” These definitions make the concept of failure subject to the judgment of
an external agent, possibly a human. They also subsume concepts of reliability,
confidentiality, integrity, and any other quality attribute that involves a concept of
unacceptable failure.

Availability is closely related to security. A denial-of-service attack is ex-
plicitly designed to make a system fail—that is, to make it unavailable. Availabil-
ity is also closely related to performance, because it may be difficult to tell when
a system has failed and when it is simply being outrageously slow to respond.
Finally, availability is closely allied with safety, which is concerned with keeping

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

80 Part two Quality attributes 5—Availability

the system from entering a hazardous state and recovering or limiting the damage
when it does.

Fundamentally, availability is about minimizing service outage time by mit-
igating faults. Failure implies visibility to a system or human observer in the en-
vironment. That is, a failure is the deviation of the system from its specification,
where the deviation is externally visible. One of the most demanding tasks in
building a high-availability, fault-tolerant system is to understand the nature of
the failures that can arise during operation (see the sidebar “Planning for Fail-
ure”). Once those are understood, mitigation strategies can be designed into the
software.

A failure’s cause is called a fault. A fault can be either internal or external to
the system under consideration. Intermediate states between the occurrence of a
fault and the occurrence of a failure are called errors. Faults can be prevented, tol-
erated, removed, or forecast. In this way a system becomes “resilient” to faults.

Among the areas with which we are concerned are how system faults are
detected, how frequently system faults may occur, what happens when a fault
occurs, how long a system is allowed to be out of operation, when faults or fail-
ures may occur safely, how faults or failures can be prevented, and what kinds of
notifications are required when a failure occurs.

Because a system failure is observable by users, the time to repair is the time
until the failure is no longer observable. This may be a brief delay in the response
time or it may be the time it takes someone to fly to a remote location in the An-
des to repair a piece of mining machinery (as was recounted to us by a person
responsible for repairing the software in a mining machine engine). The notion
of “observability” can be a tricky one: the Stuxnet virus, as an example, went un-
observed for a very long time even though it was doing damage. In addition, we
are often concerned with the level of capability that remains when a failure has
occurred—a degraded operating mode.

The distinction between faults and failures allows discussion of automatic
repair strategies. That is, if code containing a fault is executed but the system is
able to recover from the fault without any deviation from specified behavior be-
ing observable, there is no failure.

The availability of a system can be calculated as the probability that it will
provide the specified services within required bounds over a specified time inter-
val. When referring to hardware, there is a well-known expression used to derive
steady-state availability:

MTBF
(MTBF + MTTR)

where MTBF refers to the mean time between failures and MTTR refers to the
mean time to repair. In the software world, this formula should be interpreted
to mean that when thinking about availability, you should think about what will
make your system fail, how likely that is to occur, and that there will be some
time required to repair it.

 5—Availability 81

From this formula it is possible to calculate probabilities and make claims
like “99.999 percent availability,” or a 0.001 percent probability that the system
will not be operational when needed. Scheduled downtimes (when the system is
intentionally taken out of service) may not be considered when calculating avail-
ability, because the system is deemed “not needed” then; of course, this depends
on the specific requirements for the system, often encoded in service-level agree-
ments (SLAs). This arrangement may lead to seemingly odd situations where the
system is down and users are waiting for it, but the downtime is scheduled and so
is not counted against any availability requirements.

In operational systems, faults are detected and correlated prior to being re-
ported and repaired. Fault correlation logic will categorize a fault according to
its severity (critical, major, or minor) and service impact (service-affecting or
non-service-affecting) in order to provide the system operator with timely and ac-
curate system status and allow for the appropriate repair strategy to be employed.
The repair strategy may be automated or may require manual intervention.

The availability provided by a computer system or hosting service is fre-
quently expressed as a service-level agreement. This SLA specifies the availabil-
ity level that is guaranteed and, usually, the penalties that the computer system or
hosting service will suffer if the SLA is violated. The SLA that Amazon provides
for its EC2 cloud service is

AWS will use commercially reasonable efforts to make Amazon EC2
available with an Annual Uptime Percentage [defined elsewhere] of at
least 99.95% during the Service Year. In the event Amazon EC2 does
not meet the Annual Uptime Percentage commitment, you will be
eligible to receive a Service Credit as described below.

Table 5.1 provides examples of system availability requirements and associated
threshold values for acceptable system downtime, measured over observation pe-
riods of 90 days and one year. The term high availability typically refers to de-
signs targeting availability of 99.999 percent (“5 nines”) or greater. By definition
or convention, only unscheduled outages contribute to system downtime.

tablE 5.1 System Availability Requirements

availability downtime/90 days downtime/year

99.0% 21 hours, 36 minutes 3 days, 15.6 hours

99.9% 2 hours, 10 minutes 8 hours, 0 minutes, 46 seconds

99.99% 12 minutes, 58 seconds 52 minutes, 34 seconds

99.999% 1 minute, 18 seconds 5 minutes, 15 seconds

99.9999% 8 seconds 32 seconds

82 Part two Quality attributes 5—Availability

Planning for Failure

When designing a high-availability or safety-critical system, it’s tempting to
say that failure is not an option. It’s a catchy phrase, but it’s a lousy design
philosophy. In fact, failure is not only an option, it’s almost inevitable. What
will make your system safe and available is planning for the occurrence of
failure or (more likely) failures, and handling them with aplomb. The first
step is to understand what kinds of failures your system is prone to, and
what the consequences of each will be. Here are three well-known tech-
niques for getting a handle on this.

Hazard analysis
Hazard analysis is a technique that attempts to catalog the hazards that
can occur during the operation of a system. It categorizes each hazard
according to its severity. For example, the DO-178B standard used in the
aeronautics industry defines these failure condition levels in terms of their
effects on the aircraft, crew, and passengers:

 ■ Catastrophic. This kind of failure may cause a crash. This failure represents
the loss of critical function required to safely fly and land aircraft.

 ■ Hazardous. This kind of failure has a large negative impact on safety or
performance, or reduces the ability of the crew to operate the aircraft due
to physical distress or a higher workload, or causes serious or fatal injuries
among the passengers.

 ■ Major. This kind of failure is significant, but has a lesser impact than a
Hazardous failure (for example, leads to passenger discomfort rather than
injuries) or significantly increases crew workload to the point where safety
is affected.

 ■ Minor. This kind of failure is noticeable, but has a lesser impact than a Ma-
jor failure (for example, causing passenger inconvenience or a routine flight
plan change).

 ■ No effect. This kind of failure has no impact on safety, aircraft operation, or
crew workload.

Other domains have their own categories and definitions. Hazard anal-
ysis also assesses the probability of each hazard occurring. Hazards for
which the product of cost and probability exceed some threshold are then
made the subject of mitigation activities.

Fault tree analysis
Fault tree analysis is an analytical technique that specifies a state of the
system that negatively impacts safety or reliability, and then analyzes the
system’s context and operation to find all the ways that the undesired state
could occur. The technique uses a graphic construct (the fault tree) that
helps identify all sequential and parallel sequences of contributing faults
that will result in the occurrence of the undesired state, which is listed at
the top of the tree (the “top event”). The contributing faults might be hard-
ware failures, human errors, software errors, or any other pertinent events
that can lead to the undesired state.

Part two Quality attributes 5—Availability 83

Figure 5.1, taken from a NASA handbook on fault tree analysis, shows
a very simple fault tree for which the top event is failure of component D. It
shows that component D can fail if A fails and either B or C fails.

The symbols that connect the events in a fault tree are called gate symbols,
and are taken from Boolean logic diagrams. Figure 5.2 illustrates the notation.

A fault tree lends itself to static analysis in various ways. For example, a
“minimal cut set” is the smallest combination of events along the bottom of
the tree that together can cause the top event. The set of minimal cut sets
shows all the ways the bottom events can combine to cause the overarch-
ing failure. Any singleton minimal cut set reveals a single point of failure,
which should be carefully scrutinized. Also, the probabilities of various con-
tributing failures can be combined to come up with a probability of the top
event occurring. Dynamic analysis occurs when the order of contributing
failures matters. In this case, techniques such as Markov analysis can be
used to calculate probability of failure over different failure sequences.

Fault trees aid in system design, but they can also be used to diagnose
failures at runtime. If the top event has occurred, then (assuming the fault
tree model is complete) one or more of the contributing failures has oc-
curred, and the fault tree can be used to track it down and initiate repairs.

Failure Mode, Effects, and Criticality Analysis (FMECA) catalogs the
kinds of failures that systems of a given type are prone to, along with how
severe the effects of each one can be. FMECA relies on the history of

D Fails

A Fails B or C Fail

B Fails C Fails

G1

A G2

CB

fIGurE 5.1 A simple fault tree. D fails if A fails and either B or C fails.

84 Part two Quality attributes 5—Availability

failure of similar systems in the past. Table 5.2, also taken from the NASA
handbook, shows the data for a system of redundant amplifiers. Historical
data shows that amplifiers fail most often when there is a short circuit or
the circuit is left open, but there are several other failure modes as well
(lumped together as “Other”).

n

 GATE SYMBOLS

AND Output fault occurs if all of the input faults occur

OR Output fault occurs if a least one of the input faults occurs

COMBINATION Output fault occurs if n of the input faults occur

EXCLUSIVE OR Output fault occurs if exactly one of the input
faults occurs

PRIORITY AND Output fault occurs if all of the input faults occur in a
specific sequence (the sequence is represented by a CONDITIONING
EVENT drawn to the right of the gate)

INHIBIT Output fault occurs if the (single) input fault occurs in the
presence of an enabling condition (the enabling condition is represented
by a CONDITIONING EVENT drawn to the right of the gate)

fIGurE 5.2 Fault tree gate symbols

tablE 5.2 Failure Probabilities and Effects

component

failure
Probability

failure
Mode

% failures
by Mode

Effects

critical Noncritical

A 1 × 10–3

Open 90 X

Short 5 X (5 × 10–5)

Other 5 X (5 × 10–5)

B 1 × 10–3 Open 90 X

Short 5 X (5 × 10–5)

Other 5 X (5 × 10–5)

5.1 Availability General Scenario 85

Adding up the critical column gives us the probability of a critical system
failure: 5 × 10–5 + 5 × 10–5 + 5 × 10–5 + 5 × 10–5 = 2 × 10–4.

These techniques, and others, are only as good as the knowledge and
experience of the people who populate their respective data structures.
One of the worst mistakes you can make, according to the NASA hand-
book, is to let form take priority over substance. That is, don’t let safety
engineering become a matter of just filling out the tables. Instead, keep
pressing to find out what else can go wrong, and then plan for it.

5.1 availability General Scenario

From these considerations we can now describe the individual portions of an
availability general scenario. These are summarized in Table 5.3:

 ■ Source of stimulus. We differentiate between internal and external origins of
faults or failure because the desired system response may be different.

 ■ Stimulus. A fault of one of the following classes occurs:

 ■ Omission. A component fails to respond to an input.
 ■ Crash. The component repeatedly suffers omission faults.
 ■ Timing. A component responds but the response is early or late.
 ■ Response. A component responds with an incorrect value.

 ■ Artifact. This specifies the resource that is required to be highly available,
such as a processor, communication channel, process, or storage.

 ■ Environment. The state of the system when the fault or failure occurs may
also affect the desired system response. For example, if the system has al-
ready seen some faults and is operating in other than normal mode, it may
be desirable to shut it down totally. However, if this is the first fault ob-
served, some degradation of response time or function may be preferred.

 ■ Response. There are a number of possible reactions to a system fault.
First, the fault must be detected and isolated (correlated) before any other
response is possible. (One exception to this is when the fault is prevented
before it occurs.) After the fault is detected, the system must recover from
it. Actions associated with these possibilities include logging the failure,
notifying selected users or other systems, taking actions to limit the damage
caused by the fault, switching to a degraded mode with either less capacity
or less function, shutting down external systems, or becoming unavailable
during repair.

 ■ Response measure. The response measure can specify an availability per-
centage, or it can specify a time to detect the fault, time to repair the fault,
times or time intervals during which the system must be available, or the
duration for which the system must be available.

86 Part two Quality attributes 5—Availability

Figure 5.3 shows a concrete scenario generated from the general scenario: The
heartbeat monitor determines that the server is nonresponsive during normal opera-
tions. The system informs the operator and continues to operate with no downtime.

tablE 5.3 Availability General Scenario

Portion of
Scenario

Possible Values

Source Internal/external: people, hardware, software, physical infrastructure,
physical environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact Processors, communication channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Response Prevent the fault from becoming a failure
Detect the fault:

 ■ Log the fault
 ■ Notify appropriate entities (people or systems)

Recover from the fault:
 ■ Disable source of events causing the fault
 ■ Be temporarily unavailable while repair is being effected
 ■ Fix or mask the fault/failure or contain the damage it causes
 ■ Operate in a degraded mode while repair is being effected

Response
Measure

Time or time interval when the system must be available
Availability percentage (e.g., 99.999%)
Time to detect the fault
Time to repair the fault
Time or time interval in which system can be in degraded mode
Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain
class of faults that the system prevents, or handles without failing

Stimulus:
Server
Unresponsive

Response:
Inform
Operator
Continue
to Operate

Response
Measure:
No Downtime

Source:
Heartbeat
Monitor

Artifact:
Process

Environment:
Normal
Operation

3
2

1

4

fIGurE 5.3 Sample concrete availability scenario

5.2 Tactics for Availability 87

5.2 tactics for availability

A failure occurs when the system no longer delivers a service that is consistent
with its specification; this failure is observable by the system’s actors. A fault
(or combination of faults) has the potential to cause a failure. Availability tac-
tics, therefore, are designed to enable a system to endure system faults so that a
service being delivered by the system remains compliant with its specification.
The tactics we discuss in this section will keep faults from becoming failures or
at least bound the effects of the fault and make repair possible. We illustrate this
approach in Figure 5.4.

Availability tactics may be categorized as addressing one of three catego-
ries: fault detection, fault recovery, and fault prevention. The tactics categoriza-
tion for availability is shown in Figure 5.5 (on the next page). Note that it is often
the case that these tactics will be provided for you by a software infrastructure,
such as a middleware package, so your job as an architect is often one of choos-
ing and assessing (rather than implementing) the right availability tactics and the
right combination of tactics.

Fault Fault Masked
or Repair Made

Tactics
to Control
Availability

fIGurE 5.4 Goal of availability tactics

detect faults

Before any system can take action regarding a fault, the presence of the fault
must be detected or anticipated. Tactics in this category include the following:

 ■ Ping/echo refers to an asynchronous request/response message pair ex-
changed between nodes, used to determine reachability and the round-trip
delay through the associated network path. But the echo also determines
that the pinged component is alive and responding correctly. The ping is

88 Part two Quality attributes 5—Availability

often sent by a system monitor. Ping/echo requires a time threshold to be
set; this threshold tells the pinging component how long to wait for the
echo before considering the pinged component to have failed (“timed out”).
Standard implementations of ping/echo are available for nodes intercon-
nected via IP.

 ■ Monitor. A monitor is a component that is used to monitor the state of
health of various other parts of the system: processors, processes, I/O,
memory, and so on. A system monitor can detect failure or congestion in
the network or other shared resources, such as from a denial-of-service
attack. It orchestrates software using other tactics in this category to detect

Availability Tactics

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

fIGurE 5.5 Availability tactics

5.2 Tactics for Availability 89

malfunctioning components. For example, the system monitor can initiate
self-tests, or be the component that detects faulty time stamps or missed
heartbeats.1

 ■ Heartbeat is a fault detection mechanism that employs a periodic message
exchange between a system monitor and a process being monitored. A
special case of heartbeat is when the process being monitored periodically
resets the watchdog timer in its monitor to prevent it from expiring and thus
signaling a fault. For systems where scalability is a concern, transport and
processing overhead can be reduced by piggybacking heartbeat messages
on to other control messages being exchanged between the process being
monitored and the distributed system controller. The big difference between
heartbeat and ping/echo is who holds the responsibility for initiating the
health check—the monitor or the component itself.

 ■ Time stamp. This tactic is used to detect incorrect sequences of events, pri-
marily in distributed message-passing systems. A time stamp of an event
can be established by assigning the state of a local clock to the event imme-
diately after the event occurs. Simple sequence numbers can also be used
for this purpose, if time information is not important.

 ■ Sanity checking checks the validity or reasonableness of specific operations
or outputs of a component. This tactic is typically based on a knowledge of
the internal design, the state of the system, or the nature of the information
under scrutiny. It is most often employed at interfaces, to examine a specific
information flow.

 ■ Condition monitoring involves checking conditions in a process or device,
or validating assumptions made during the design. By monitoring condi-
tions, this tactic prevents a system from producing faulty behavior. The
computation of checksums is a common example of this tactic. However,
the monitor must itself be simple (and, ideally, provable) to ensure that it
does not introduce new software errors.

 ■ Voting. The most common realization of this tactic is referred to as triple
modular redundancy (TMR), which employs three components that do the
same thing, each of which receives identical inputs, and forwards their out-
put to voting logic, used to detect any inconsistency among the three output
states. Faced with an inconsistency, the voter reports a fault. It must also
decide what output to use. It can let the majority rule, or choose some com-
puted average of the disparate outputs. This tactic depends critically on the
voting logic, which is usually realized as a simple, rigorously reviewed and
tested singleton so that the probability of error is low.

1. When the detection mechanism is implemented using a counter or timer that is periodically reset,
this specialization of system monitor is referred to as a “watchdog.” During nominal operation, the
process being monitored will periodically reset the watchdog counter/timer as part of its signal that
it’s working correctly; this is sometimes referred to as “petting the watchdog.”

90 Part two Quality attributes 5—Availability

 ■ Replication is the simplest form of voting; here, the components are exact
clones of each other. Having multiple copies of identical components can
be effective in protecting against random failures of hardware, but this
cannot protect against design or implementation errors, in hardware or
software, because there is no form of diversity embedded in this tactic.

 ■ Functional redundancy is a form of voting intended to address the issue
of common-mode failures (design or implementation faults) in hardware
or software components. Here, the components must always give the
same output given the same input, but they are diversely designed and
diversely implemented.

 ■ Analytic redundancy permits not only diversity among components’ pri-
vate sides, but also diversity among the components’ inputs and outputs.
This tactic is intended to tolerate specification errors by using separate
requirement specifications. In embedded systems, analytic redundancy
also helps when some input sources are likely to be unavailable at times.
For example, avionics programs have multiple ways to compute aircraft
altitude, such as using barometric pressure, the radar altimeter, and geo-
metrically using the straight-line distance and look-down angle of a point
ahead on the ground. The voter mechanism used with analytic redun-
dancy needs to be more sophisticated than just letting majority rule or
computing a simple average. It may have to understand which sensors are
currently reliable or not, and it may be asked to produce a higher-fidelity
value than any individual component can, by blending and smoothing
individual values over time.

 ■ Exception detection refers to the detection of a system condition that alters
the normal flow of execution. The exception detection tactic can be further
refined:

 ■ System exceptions will vary according to the processor hardware architec-
ture employed and include faults such as divide by zero, bus and address
faults, illegal program instructions, and so forth.

 ■ The parameter fence tactic incorporates an a priori data pattern (such as
0xDEADBEEF) placed immediately after any variable-length parameters
of an object. This allows for runtime detection of overwriting the memory
allocated for the object’s variable-length parameters.

 ■ Parameter typing employs a base class that defines functions that add,
find, and iterate over type-length-value (TLV) formatted message param-
eters. Derived classes use the base class functions to implement functions
that provide parameter typing according to each parameter’s structure.
Use of strong typing to build and parse messages results in higher avail-
ability than implementations that simply treat messages as byte buckets.
Of course, all design involves tradeoffs. When you employ strong typing,
you typically trade higher availability against ease of evolution.

5.2 Tactics for Availability 91

 ■ Timeout is a tactic that raises an exception when a component detects
that it or another component has failed to meet its timing constraints. For
example, a component awaiting a response from another component can
raise an exception if the wait time exceeds a certain value.

 ■ Self-test. Components (or, more likely, whole subsystems) can run proce-
dures to test themselves for correct operation. Self-test procedures can be
initiated by the component itself, or invoked from time to time by a system
monitor. These may involve employing some of the techniques found in
condition monitoring, such as checksums.

recover from faults

Recover-from-faults tactics are refined into preparation-and-repair tactics and
reintroduction tactics. The latter are concerned with reintroducing a failed (but
rehabilitated) component back into normal operation.

Preparation-and-repair tactics are based on a variety of combinations of re-
trying a computation or introducing redundancy. They include the following:

 ■ Active redundancy (hot spare). This refers to a configuration where all of
the nodes (active or redundant spare) in a protection group2 receive and
process identical inputs in parallel, allowing the redundant spare(s) to main-
tain synchronous state with the active node(s). Because the redundant spare
possesses an identical state to the active processor, it can take over from a
failed component in a matter of milliseconds. The simple case of one active
node and one redundant spare node is commonly referred to as 1+1 (“one
plus one”) redundancy. Active redundancy can also be used for facilities
protection, where active and standby network links are used to ensure high-
ly available network connectivity.

 ■ Passive redundancy (warm spare). This refers to a configuration where
only the active members of the protection group process input traffic;
one of their duties is to provide the redundant spare(s) with periodic state
updates. Because the state maintained by the redundant spares is only
loosely coupled with that of the active node(s) in the protection group
(with the looseness of the coupling being a function of the checkpointing
mechanism employed between active and redundant nodes), the redundant
nodes are referred to as warm spares. Depending on a system’s availability
requirements, passive redundancy provides a solution that achieves a bal-
ance between the more highly available but more compute-intensive (and
expensive) active redundancy tactic and the less available but significantly
less complex cold spare tactic (which is also significantly cheaper). (For an

2. A protection group is a group of processing nodes where one or more nodes are “active,” with the
remaining nodes in the protection group serving as redundant spares.

92 Part two Quality attributes 5—Availability

example of implementing passive redundancy, see the section on code tem-
plates in Chapter 19.)

 ■ Spare (cold spare). Cold sparing refers to a configuration where the re-
dundant spares of a protection group remain out of service until a fail-over
occurs, at which point a power-on-reset procedure is initiated on the re-
dundant spare prior to its being placed in service. Due to its poor recovery
performance, cold sparing is better suited for systems having only high-re-
liability (MTBF) requirements as opposed to those also having high-avail-
ability requirements.

 ■ Exception handling. Once an exception has been detected, the system must
handle it in some fashion. The easiest thing it can do is simply to crash, but
of course that’s a terrible idea from the point of availability, usability, test-
ability, and plain good sense. There are much more productive possibilities.
The mechanism employed for exception handling depends largely on the
programming environment employed, ranging from simple function return
codes (error codes) to the use of exception classes that contain information
helpful in fault correlation, such as the name of the exception thrown, the
origin of the exception, and the cause of the exception thrown. Software
can then use this information to mask the fault, usually by correcting the
cause of the exception and retrying the operation.

 ■ Rollback. This tactic permits the system to revert to a previous known good
state, referred to as the “rollback line”—rolling back time—upon the detec-
tion of a failure. Once the good state is reached, then execution can contin-
ue. This tactic is often combined with active or passive redundancy tactics
so that after a rollback has occurred, a standby version of the failed compo-
nent is promoted to active status. Rollback depends on a copy of a previous
good state (a checkpoint) being available to the components that are rolling
back. Checkpoints can be stored in a fixed location and updated at regular
intervals, or at convenient or significant times in the processing, such as at
the completion of a complex operation.

 ■ Software upgrade is another preparation-and-repair tactic whose goal is to
achieve in-service upgrades to executable code images in a non-service-af-
fecting manner. This may be realized as a function patch, a class patch,
or a hitless in-service software upgrade (ISSU). A function patch is used
in procedural programming and employs an incremental linker/loader to
store an updated software function into a pre-allocated segment of target
memory. The new version of the software function will employ the entry
and exit points of the deprecated function. Also, upon loading the new
software function, the symbol table must be updated and the instruction
cache invalidated. The class patch tactic is applicable for targets executing
object-oriented code, where the class definitions include a back-door mech-
anism that enables the runtime addition of member data and functions. Hit-
less in-service software upgrade leverages the active redundancy or passive

5.2 Tactics for Availability 93

redundancy tactics to achieve non-service-affecting upgrades to software
and associated schema. In practice, the function patch and class patch are
used to deliver bug fixes, while the hitless in-service software upgrade is
used to deliver new features and capabilities.

 ■ Retry. The retry tactic assumes that the fault that caused a failure is tran-
sient and retrying the operation may lead to success. This tactic is used in
networks and in server farms where failures are expected and common.
There should be a limit on the number of retries that are attempted before a
permanent failure is declared.

 ■ Ignore faulty behavior. This tactic calls for ignoring messages sent from a
particular source when we determine that those messages are spurious. For
example, we would like to ignore the messages of an external component
launching a denial-of-service attack by establishing Access Control List
filters, for example.

 ■ The degradation tactic maintains the most critical system functions in the
presence of component failures, dropping less critical functions. This is
done in circumstances where individual component failures gracefully re-
duce system functionality rather than causing a complete system failure.

 ■ Reconfiguration attempts to recover from component failures by reassign-
ing responsibilities to the (potentially restricted) resources left functioning,
while maintaining as much functionality as possible.

Reintroduction is where a failed component is reintroduced after it has been
corrected. Reintroduction tactics include the following:

 ■ The shadow tactic refers to operating a previously failed or in-service up-
graded component in a “shadow mode” for a predefined duration of time
prior to reverting the component back to an active role. During this duration
its behavior can be monitored for correctness and it can repopulate its state
incrementally.

 ■ State resynchronization is a reintroduction partner to the active redun-
dancy and passive redundancy preparation-and-repair tactics. When used
alongside the active redundancy tactic, the state resynchronization occurs
organically, because the active and standby components each receive and
process identical inputs in parallel. In practice, the states of the active and
standby components are periodically compared to ensure synchronization.
This comparison may be based on a cyclic redundancy check calculation
(checksum) or, for systems providing safety-critical services, a message
digest calculation (a one-way hash function). When used alongside the pas-
sive redundancy (warm spare) tactic, state resynchronization is based solely
on periodic state information transmitted from the active component(s) to
the standby component(s), typically via checkpointing. A special case of
this tactic is found in stateless services, whereby any resource can handle a
request from another (failed) resource.

94 Part two Quality attributes 5—Availability

 ■ Escalating restart is a reintroduction tactic that allows the system to recov-
er from faults by varying the granularity of the component(s) restarted and
minimizing the level of service affected. For example, consider a system
that supports four levels of restart, as follows. The lowest level of restart
(call it Level 0), and hence having the least impact on services, employs
passive redundancy (warm spare), where all child threads of the faulty
component are killed and recreated. In this way, only data associated with
the child threads is freed and reinitialized. The next level of restart (Level
1) frees and reinitializes all unprotected memory (protected memory would
remain untouched). The next level of restart (Level 2) frees and reinitializes
all memory, both protected and unprotected, forcing all applications to re-
load and reinitialize. And the final level of restart (Level 3) would involve
completely reloading and reinitializing the executable image and associated
data segments. Support for the escalating restart tactic is particularly useful
for the concept of graceful degradation, where a system is able to degrade
the services it provides while maintaining support for mission-critical or
safety-critical applications.

 ■ Non-stop forwarding (NSF) is a concept that originated in router design. In
this design functionality is split into two parts: supervisory, or control plane
(which manages connectivity and routing information), and data plane
(which does the actual work of routing packets from sender to receiver). If
a router experiences the failure of an active supervisor, it can continue for-
warding packets along known routes—with neighboring routers—while the
routing protocol information is recovered and validated. When the control
plane is restarted, it implements what is sometimes called “graceful restart,”
incrementally rebuilding its routing protocol database even as the data
plane continues to operate.

Prevent faults

Instead of detecting faults and then trying to recover from them, what if your sys-
tem could prevent them from occurring in the first place? Although this sounds
like some measure of clairvoyance might be required, it turns out that in many
cases it is possible to do just that.3

 ■ Removal from service. This tactic refers to temporarily placing a system
component in an out-of-service state for the purpose of mitigating potential
system failures. One example involves taking a component of a system out
of service and resetting the component in order to scrub latent faults (such

3. These tactics deal with runtime means to prevent faults from occurring. Of course, an excellent
way to prevent faults—at least in the system you’re building, if not in systems that your system must
interact with—is to produce high-quality code. This can be done by means of code inspections, pair
programming, solid requirements reviews, and a host of other good engineering practices.

5.2 Tactics for Availability 95

as memory leaks, fragmentation, or soft errors in an unprotected cache) be-
fore the accumulation of faults affects service (resulting in system failure).
Another term for this tactic is software rejuvenation.

 ■ Transactions. Systems targeting high-availability services leverage transac-
tional semantics to ensure that asynchronous messages exchanged between
distributed components are atomic, consistent, isolated, and durable. These
four properties are called the “ACID properties.” The most common realiza-
tion of the transactions tactic is “two-phase commit” (a.k.a. 2PC) protocol.
This tactic prevents race conditions caused by two processes attempting to
update the same data item.

 ■ Predictive model. A predictive model, when combined with a monitor, is
employed to monitor the state of health of a system process to ensure that
the system is operating within its nominal operating parameters, and to take
corrective action when conditions are detected that are predictive of likely
future faults. The operational performance metrics monitored are used to
predict the onset of faults; examples include session establishment rate (in
an HTTP server), threshold crossing (monitoring high and low water marks
for some constrained, shared resource), or maintaining statistics for process
state (in service, out of service, under maintenance, idle), message queue
length statistics, and so on.

 ■ Exception prevention. This tactic refers to techniques employed for the pur-
pose of preventing system exceptions from occurring. The use of exception
classes, which allows a system to transparently recover from system excep-
tions, was discussed previously. Other examples of exception prevention
include abstract data types, such as smart pointers, and the use of wrappers
to prevent faults, such as dangling pointers and semaphore access violations
from occurring. Smart pointers prevent exceptions by doing bounds check-
ing on pointers, and by ensuring that resources are automatically deallocat-
ed when no data refers to it. In this way resource leaks are avoided.

 ■ Increase competence set. A program’s competence set is the set of states in
which it is “competent” to operate. For example, the state when the denom-
inator is zero is outside the competence set of most divide programs. When
a component raises an exception, it is signaling that it has discovered itself
to be outside its competence set; in essence, it doesn’t know what to do and
is throwing in the towel. Increasing a component’s competence set means
designing it to handle more cases—faults—as part of its normal operation.
For example, a component that assumes it has access to a shared resource
might throw an exception if it discovers that access is blocked. Another
component might simply wait for access, or return immediately with an
indication that it will complete its operation on its own the next time it does
have access. In this example, the second component has a larger compe-
tence set than the first.

96 Part two Quality attributes 5—Availability

5.3 a design checklist for availability

Table 5.4 is a checklist to support the design and analysis process for availability.

tablE 5.4 Checklist to Support the Design and Analysis Process for
Availability

category checklist

Allocation of
Responsibilities

Determine the system responsibilities that need to be highly
available. Within those responsibilities, ensure that additional
responsibilities have been allocated to detect an omission,
crash, incorrect timing, or incorrect response. Additionally,
ensure that there are responsibilities to do the following:

 ■ Log the fault
 ■ Notify appropriate entities (people or systems)
 ■ Disable the source of events causing the fault
 ■ Be temporarily unavailable
 ■ Fix or mask the fault/failure
 ■ Operate in a degraded mode

Coordination Model Determine the system responsibilities that need to be highly
available. With respect to those responsibilities, do the
following:

 ■ Ensure that coordination mechanisms can detect an
omission, crash, incorrect timing, or incorrect response.
Consider, for example, whether guaranteed delivery is
necessary. Will the coordination work under conditions of
degraded communication?

 ■ Ensure that coordination mechanisms enable the logging
of the fault, notification of appropriate entities, disabling of
the source of the events causing the fault, fixing or masking
the fault, or operating in a degraded mode.

 ■ Ensure that the coordination model supports the replace-
ment of the artifacts used (processors, communications
channels, persistent storage, and processes). For exam-
ple, does replacement of a server allow the system to
continue to operate?

 ■ Determine if the coordination will work under conditions
of degraded communication, at startup/shutdown, in re-
pair mode, or under overloaded operation. For example,
how much lost information can the coordination model
withstand and with what consequences?

Data Model Determine which portions of the system need to be highly
available. Within those portions, determine which data
abstractions, along with their operations or their properties,
could cause a fault of omission, a crash, incorrect timing
behavior, or an incorrect response.
For those data abstractions, operations, and properties,
ensure that they can be disabled, be temporarily unavailable,
or be fixed or masked in the event of a fault.
For example, ensure that write requests are cached if a
server is temporarily unavailable and performed when the
server is returned to service.

5.3 A Design Checklist for Availability 97

category checklist

Mapping among
Architectural Elements

Determine which artifacts (processors, communication
channels, persistent storage, or processes) may produce
a fault: omission, crash, incorrect timing, or incorrect
response.
Ensure that the mapping (or remapping) of architectural
elements is flexible enough to permit the recovery from the
fault. This may involve a consideration of the following:

 ■ Which processes on failed processors need to be reas-
signed at runtime

 ■ Which processors, data stores, or communication chan-
nels can be activated or reassigned at runtime

 ■ How data on failed processors or storage can be served
by replacement units

 ■ How quickly the system can be reinstalled based on the
units of delivery provided

 ■ How to (re)assign runtime elements to processors, com-
munication channels, and data stores

 ■ When employing tactics that depend on redundancy of
functionality, the mapping from modules to redundant
components is important. For example, it is possible to
write one module that contains code appropriate for both
the active component and backup components in a pro-
tection group.

Resource
Management

Determine what critical resources are necessary to
continue operating in the presence of a fault: omission,
crash, incorrect timing, or incorrect response. Ensure
there are sufficient remaining resources in the event of a
fault to log the fault; notify appropriate entities (people or
systems); disable the source of events causing the fault;
be temporarily unavailable; fix or mask the fault/failure;
operate normally, in startup, shutdown, repair mode,
degraded operation, and overloaded operation.
Determine the availability time for critical resources, what
critical resources must be available during specified time
intervals, time intervals during which the critical resources
may be in a degraded mode, and repair time for critical
resources. Ensure that the critical resources are available
during these time intervals.
For example, ensure that input queues are large enough
to buffer anticipated messages if a server fails so that the
messages are not permanently lost.

continues

98 Part two Quality attributes 5—Availability

tablE 5.4 Checklist to Support the Design and Analysis Process for
Availability, continued

category checklist

Binding Time Determine how and when architectural elements are bound.
If late binding is used to alternate between components
that can themselves be sources of faults (e.g., processes,
processors, communication channels), ensure the chosen
availability strategy is sufficient to cover faults introduced by
all sources. For example:

 ■ If late binding is used to switch between artifacts such
as processors that will receive or be the subject of faults,
will the chosen fault detection and recovery mechanisms
work for all possible bindings?

 ■ If late binding is used to change the definition or toler-
ance of what constitutes a fault (e.g., how long a process
can go without responding before a fault is assumed),
is the recovery strategy chosen sufficient to handle all
cases? For example, if a fault is flagged after 0.1 millisec-
onds, but the recovery mechanism takes 1.5 seconds to
work, that might be an unacceptable mismatch.

 ■ What are the availability characteristics of the late bind-
ing mechanism itself? Can it fail?

Choice of Technology Determine the available technologies that can (help) detect
faults, recover from faults, or reintroduce failed components.
Determine what technologies are available that help the
response to a fault (e.g., event loggers).
Determine the availability characteristics of chosen
technologies themselves: What faults can they recover
from? What faults might they introduce into the system?

5.4 Summary

Availability refers to the ability of the system to be available for use, especially
after a fault occurs. The fault must be recognized (or prevented) and then the
system must respond in some fashion. The response desired will depend on the
criticality of the application and the type of fault and can range from “ignore it”
to “keep on going as if it didn’t occur.”

Tactics for availability are categorized into detect faults, recover from faults
and prevent faults. Detection tactics depend, essentially, on detecting signs of life
from various components. Recovery tactics are some combination of retrying an
operation or maintaining redundant data or computations. Prevention tactics de-
pend either on removing elements from service or utilizing mechanisms to limit
the scope of faults.

5.5 For Further Reading 99

All of the availability tactics involve the coordination model because the
coordination model must be aware of faults that occur to generate an appropriate
response.

5.5 for further reading

Patterns for availability:
 ■ You can find patterns for fault tolerance in [Hanmer 07].

Tactics for availability, overall:

 ■ A more detailed discussion of some of the availability tactics in this chapter is
given in [Scott 09]. This is the source of much of the material in this chapter.

 ■ The Internet Engineering Task Force has promulgated a number of stan-
dards supporting availability tactics. These standards include non-stop for-
warding [IETF 04], ping/echo ICMPv6 [IETF 06b], echo request/response),
and MPLS (LSP Ping) networks [IETF 06a].

Tactics for availability, fault detection:

 ■ The parameter fence tactic was first used (to our knowledge) in the Control
Data Series computers of the late 1960s.

 ■ Triple modular redundancy (TMR), part of the voting tactic, was developed
in the early 1960s by Lyons [Lyons 62].

 ■ The fault detection tactic of voting is based on the fundamental contribu-
tions to automata theory by Von Neumann, who demonstrated how systems
having a prescribed reliability could be built from unreliable components
[Von Neumann 56].

Tactics for availability, fault recovery:

 ■ Standards-based realizations of active redundancy exist for protecting net-
work links (i.e., facilities) at both the physical layer [Bellcore 99, Telcordia
00] and the network/link layer [IETF 05].

 ■ Exception handlinghas been written about by [Powel Douglass 99]. Soft-
ware can then use this information to mask the fault, usually by correcting
the cause of the exception and retrying the operation.

 ■ [Morelos-Zaragoza 06] and [Schneier 96] have written about the compari-
son of state during resynchronization.

 ■ Some examples of how a system can degrade through use (degradation) are
given in [Nygard 07].

 ■ [Utas 05] has written about escalating restart.

100 Part two Quality attributes 5—Availability

 ■ Mountains of papers have been written about parameter typing, but [Utas
05] writes about it in the context of availability (as opposed to bug preven-
tion, its usual context).

 ■ Hardware engineers often use preparation-and-repair tactics. Examples in-
clude error detection and correction (EDAC) coding, forward error correction
(FEC), and temporal redundancy. EDAC coding is typically used to protect
control memory structures in high-availability distributed real-time embedded
systems [Hamming 80]. Conversely, FEC coding is typically employed to
recover from physical-layer errors occurring on external network links More-
los-Zaragoza 06]. Temporal redundancy involves sampling spatially redundant
clock or data lines at time intervals that exceed the pulse width of any transient
pulse to be tolerated, and then voting out any defects detected [Mavis 02].

Tactics for availability, fault prevention:

 ■ Parnas and Madey have written about increasing an element’s competence
set [Parnas 95].

 ■ The ACID properties, important in the transactions tactic, were introduced
by Gray in the 1970s and discussed in depth in [Gray 93].

Analysis:
 ■ Fault tree analysis dates from the early 1960s, but the granddaddy of re-

sources for it is the U.S. Nuclear Regulatory Commission’s “Fault Tree
Handbook,” published in 1981 [Vesely 81]. NASA’s 2002 “Fault Tree
Handbook with Aerospace Applications” [Vesely 02] is an updated compre-
hensive primer of the NRC handbook, and the source for the notation used
in this chapter. Both are available online as downloadable PDF files.

5.6 discussion Questions

1. Write a set of concrete scenarios for availability using each of the possible
responses in the general scenario.

2. Write a concrete availability scenario for the software for a (hypothetical)
pilotless passenger aircraft.

3. Write a concrete availability scenario for a program like Microsoft Word.

4. Redundancy is often cited as a key strategy for achieving high availability.
Look at the tactics presented in this chapter and decide how many of them
exploit some form of redundancy and how many do not.

5. How does availability trade off against modifiability? How would you make
a change to a system that is required to have “24/7” availability (no sched-
uled or unscheduled downtime, ever)?

5.6 Discussion Questions 101

6. Create a fault tree for an automatic teller machine. Include faults dealing
with hardware component failure, communications failure, software failure,
running out of supplies, user errors, and security attacks. How would you
modify your automatic teller machine design to accommodate these faults?

7. Consider the fault detection tactics (ping/echo, heartbeat, system monitor,
voting, and exception detection). What are the performance implications of
using these tactics?

This page intentionally left blank

103

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

6
Interoperability
With Liming Zhu

The early bird (A) arrives and catches worm (B), pulling
string (C) and shooting off pistol (D). Bullet (E) bursts

balloon (F), dropping brick (G) on bulb (H) of atomizer
(I) and shooting perfume (J) on sponge (K). As sponge

gains in weight, it lowers itself and pulls string (L),
raising end of board (M). Cannon ball (N) drops on nose
of sleeping gentleman. String tied to cannon ball releases

cork (O) of vacuum bottle (P) and ice water falls on
sleeper’s face to assist the cannon ball in its good work.

—Rube Goldberg, instructions for “a simple alarm clock”

Interoperability is about the degree to which two or more systems can usefully
exchange meaningful information via interfaces in a particular context. The defi-
nition includes not only having the ability to exchange data (syntactic interoper-
ability) but also having the ability to correctly interpret the data being exchanged
(semantic interoperability). A system cannot be interoperable in isolation. Any
discussion of a system’s interoperability needs to identify with whom, with what,
and under what circumstances—hence, the need to include the context.

Interoperability is affected by the systems expected to interoperate. If we
already know the interfaces of external systems with which our system will in-
teroperate, then we can design that knowledge into the system. Or we can design
our system to interoperate in a more generic fashion, so that the identity and the
services that another system provides can be bound later in the life cycle, at build
time or runtime.

Like all quality attributes, interoperability is not a yes-or-no proposition but
has shades of meaning. There are several characterizing frameworks for interop-
erability, all of which seem to define five levels of interoperability “maturity”
(see the “For Further Reading” section at the end of this chapter for a pointer).
The lowest level signifies systems that do not share data at all, or do not do so

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

104 Part two Quality attributes 6—Interoperability

with any success. The highest level signifies systems that work together seam-
lessly, never make any mistakes interpreting each other’s communications, and
share the same underlying semantic model of the world in which they work.

“Exchanging Information via Interfaces”

Interoperability, as we said, is about two or more systems exchanging
information via interfaces.

At this point, we need to clarify two critical concepts central to this dis-
cussion and emphasize that we are taking a broad view of each.

The first is what it means to “exchange information.” This can mean
something as simple as program A calling program B with some param-
eters. However, two systems (or parts of a system) can exchange infor-
mation even if they never communicate directly with each other. Did you
ever have a conversation like the following in junior high school? “Charlene
said that Kim told her that Trevor heard that Heather wants to come to
your party.” Of course, junior high school protocol would preclude the
possibility of responding directly to Heather. Instead, your response (if you
like Heather) might be, “Cool,” which would make its way back through
Charlene, Kim, and Trevor. You and Heather exchanged information, but
never talked to each other. (We hope you got to talk to each other at the
party.)

Entities can exchange information in even less direct ways. If I have an
idea of a program’s behavior, and I design my program to work assuming
that behavior, the two programs have also exchanged information—just not
at runtime.

One of the more infamous software disasters in history occurred when
an antimissile system failed to intercept an incoming ballistic rocket in
Operation Desert Storm in 1991, resulting in 28 fatalities. One of the mis-
sile’s software components “expected” to be shut down and restarted peri-
odically, so it could recalibrate its orientation framework from a known initial
point. The software had been running for some 100 hours when the missile
was launched, and calculation errors had accumulated to the point where
the software component’s idea of its orientation had wandered hopelessly
away from truth.

Systems (or components within systems) often have or embody ex-
pectations about the behaviors of its “information exchange” partners.
The assumption of everything interacting with the errant component in the
preceding example was that its accuracy did not degrade over time. The
result was a system of parts that did not work together correctly to solve
the problem they were supposed to.

The second concept we need to stress is what we mean by “interface.”
Once again, we mean something beyond the simple case—a syntactic
description of a component’s programs and the type and number of their
parameters, most commonly realized as an API. That’s necessary for

 6—Interoperability 105

interoperability—heck, it’s necessary if you want your software to compile
successfully—but it’s not sufficient. To illustrate this concept, we’ll use an-
other “conversation” analogy. Has your partner or spouse ever come home,
slammed the door, and when you ask what’s wrong, replied “Nothing!”?
If so, then you should be able to appreciate the keen difference between
syntax and semantics and the role of expectations in understanding how an
entity behaves. Because we want interoperable systems and components,
and not simply ones that compile together nicely, we require a higher bar
for interfaces than just a statement of syntax. By “interface,” we mean the
set of assumptions that you can safely make about an entity. For example,
it’s a safe assumption that whatever’s wrong with your spouse/partner,
it’s not “Nothing,” and you know that because that “interface” extends way
beyond just the words they say. And it’s also a safe assumption that nothing
about our missile component’s accuracy degradation over time was in its
API, and yet that was a critical part of its interface.

—PCC

Here are some of the reasons you might want systems to interoperate:

 ■ Your system provides a service to be used by a collection of unknown
systems. These systems need to interoperate with your system even though
you may know nothing about them. An example is a service such as Google
Maps.

 ■ You are constructing capabilities from existing systems. For example, one
of the existing systems is responsible for sensing its environment, another
one is responsible for processing the raw data, a third is responsible for
interpreting the data, and a final one is responsible for producing and
distributing a representation of what was sensed. An example is a traffic
sensing system where the input comes from individual vehicles, the raw
data is processed into common units of measurement, is interpreted and
fused, and traffic congestion information is broadcast.

These examples highlight two important aspects of interoperability:

1. Discovery. The consumer of a service must discover (possibly at runtime,
possibly prior to runtime) the location, identity, and the interface of the
service.

2. Handling of the response. There are three distinct possibilities:

 ■ The service reports back to the requester with the response.
 ■ The service sends its response on to another system.
 ■ The service broadcasts its response to any interested parties.

These elements, discovery and disposition of response, along with management
of interfaces, govern our discussion of scenarios and tactics for interoperability.

106 Part two Quality attributes 6—Interoperability

Systems of Systems

If you have a group of systems that are interoperating to achieve a joint
purpose, you have what is called a system of systems (SoS). An SoS is
an arrangement of systems that results when independent and useful sys-
tems are integrated into a larger system that delivers unique capabilities.
Table 6.1 shows a categorization of SoSs.

tablE 6.1 Taxonomy of Systems of Systems*

Directed SoS objectives, centralized management, funding, and
authority for the overall SoS are in place. Systems are
subordinated to the SoS.

Acknowledged SoS objectives, centralized management, funding, and
authority in place. However, systems retain their own
management, funding, and authority in parallel with the
SoS.

Collaborative There are no overall objectives, centralized
management, authority, responsibility, or funding at the
SoS level. Systems voluntarily work together to address
shared or common interests.

Virtual Like collaborative, but systems don’t know about each
other.

* The taxonomy shown is an extension of work done by Mark Maier in 1998.

In directed and acknowledged SoSs, there is a deliberate attempt to
create an SoS. The key difference is that in the former, there is SoS-level
management that exercises control over the constituent systems, while in
the latter, the constituent systems retain a high degree of autonomy in their
own evolution. Collaborative and virtual systems of systems are more ad
hoc, absent an overarching authority or source of funding and, in the case
of a virtual SoS, even absent the knowledge about the scope and member-
ship of the SoS.

The collaborative case is quite common. Consider the Google Maps ex-
ample from the introduction. Google is the manager and funding authority
for the map service. Each use of the maps in an application (an SoS) has
its own management and funding authority, and there is no overall manage-
ment of all of the applications that use Google Maps. The various organiza-
tions involved in the applications collaborate (either explicitly or implicitly) to
enable the applications to work correctly.

A virtual SoS involves large systems and is much more ad hoc. For
example, there are over 3,000 electric companies in the U.S. electric grid,
each state has a public utility commission that oversees the utility companies
operating in its state, and the federal Department of Energy provides some
level of policy guidance. Many of the systems within the electric grid must
interoperate, but there is no management authority for the overall system.

6.1 Interoperability General Scenario 107

6.1 Interoperability General Scenario

The following are the portions of an interoperability general scenario:

 ■ Source of stimulus. A system that initiates a request.
 ■ Stimulus. A request to exchange information among systems.
 ■ Artifacts. The systems that wish to interoperate.
 ■ Environment. The systems that wish to interoperate are discovered at run-

time or are known prior to runtime.
 ■ Response. The request to interoperate results in the exchange of informa-

tion. The information is understood by the receiving party both syntactical-
ly and semantically. Alternatively, the request is rejected and appropriate
entities are notified. In either case, the request may be logged.

 ■ Response measure. The percentage of information exchanges correctly
processed or the percentage of information exchanges correctly rejected.

Figure 6.1 gives an example: Our vehicle information system sends our cur-
rent location to the traffic monitoring system. The traffic monitoring system com-
bines our location with other information, overlays this information on a Goo-
gle Map, and broadcasts it. Our location information is correctly included with a
probability of 99.9%.

Table 6.2 presents the possible values for each portion of an interoperability
scenario.

Stimulus: Response:

Environment:
Systems known
prior to run-time

Artifact:

Response
Measure:

Source
of Stimulus:

3
2

1

4

Our Vehicle
Information
System

Current
Location
Sent

Traffic Monitor
Combines Current
Location with Other
Information,
Overlays on Google
Maps, and
Broadcasts

Our Information
Included Correctly
99.9% of the Time

Traffic Monitoring
System

FIGure 6.1 Sample concrete interoperability scenario

108 Part two Quality attributes 6—Interoperability

tablE 6.2 General Interoperability Scenario

Portion of Scenario Possible Values

Source A system initiates a request to interoperate with another
system.

Stimulus A request to exchange information among system(s).

Artifact The systems that wish to interoperate.

Environment System(s) wishing to interoperate are discovered at runtime or
known prior to runtime.

Response One or more of the following:
 ■ The request is (appropriately) rejected and appropriate

entities (people or systems) are notified.
 ■ The request is (appropriately) accepted and information is

exchanged successfully.
 ■ The request is logged by one or more of the involved

systems.

Response Measure One or more of the following:
 ■ Percentage of information exchanges correctly processed
 ■ Percentage of information exchanges correctly rejected

SOAP vs. REST

If you want to allow web-based applications to interoperate, you have
two major off-the-shelf technology options today: (1) WS* and SOAP
(which once stood for “Simple Object Access Protocol,” but that acronym
is no longer blessed) and (2) REST (which stands for “Representation
State Transfer,” and therefore is sometimes spelled ReST). How can we
compare these technologies? What is each good for? What are the road
hazards you need to be aware of? This is a bit of an apples-and-oranges
comparison, but I will try to sketch the landscape.

SOAP is a protocol specification for XML-based information that distrib-
uted applications can use to exchange information and hence interoperate.
It is most often accompanied by a set of SOA middleware interoperability
standards and compliant implementations, referred to (collectively) as WS*.
SOAP and WS* together define many standards, including the following:

 ■ An infrastructure for service composition. SOAP can employ the Business
Process Execution Language (BPEL) as a way to let developers express
business processes that are implemented as WS* services.

 ■ Transactions. There are several web-service standards for ensuring
that transactions are properly managed: WS-AT, WS-BA, WS-CAF, and
WS-Transaction.

 ■ Service discovery. The Universal Description, Discovery and Integration
(UDDI) language enables businesses to publish service listings and
discover each other.

6.1 Interoperability General Scenario 109

 ■ Reliability. SOAP, by itself, does not ensure reliable message delivery.
Applications that require such guarantees must use services compliant with
SOAP’s reliability standard: WS-Reliability.

SOAP is quite general and has its roots in a remote procedure call
(RPC) model of interacting applications, although other models are cer-
tainly possible. SOAP has a simple type system, comparable to that found
in the major programming languages. SOAP relies on HTTP and RPC for
message transmission, but it could, in theory, be implemented on top of
any communication protocol. SOAP does not mandate a service’s method
names, addressing model, or procedural conventions. Thus, choosing
SOAP buys little actual interoperability between applications—it is just
an information exchange standard. The interacting applications need to
agree on how to interpret the payload, which is where you get semantic
interoperability.

REST, on the other hand, is a client-server-based architectural style that
is structured around a small set of create, read, update, delete (CRUD) op-
erations (called POST, GET, PUT, DELETE respectively in the REST world)
and a single addressing scheme (based on a URI, or uniform resource
identifier). REST imposes few constraints on an architecture: SOAP offers
completeness; REST offers simplicity.

REST is about state and state transfer and views the web (and the ser-
vices that service-oriented systems can string together) as a huge network
of information that is accessible by a single URI-based addressing scheme.
There is no notion of type and hence no type checking in REST—it is up to
the applications to get the semantics of interaction right.

Because REST interfaces are so simple and general, any HTTP client
can talk to any HTTP server, using the REST operations (POST, GET, PUT,
DELETE) with no further configuration. That buys you syntactic interopera-
bility, but of course there must be organization-level agreement about what
these programs actually do and what information they exchange. That is,
semantic interoperability is not guaranteed between services just because
both have REST interfaces.

REST, on top of HTTP, is meant to be self-descriptive and in the best
case is a stateless protocol. Consider the following example, in REST, of a
phone book service that allows someone to look up a person, given some
unique identifier for that person:

http://www.XYZdirectory.com/phonebook/UserInfo/99999

The same simple lookup, implemented in SOAP, would be specified as
something like the following:

<?xml version=”1.0”?>
<soap:Envelope xmlns:soap=http://www.w3.org/2001/
 12/soap-envelope
 soap:encodingStyle=”http://www.w3.org/2001/12/
 soap-encoding”>
 <soap:Body pb=”http://www.XYZdirectory.com/
 phonebook”>

110 Part two Quality attributes 6—Interoperability

 <pb:GetUserInfo>
 <pb:UserIdentifier>99999</pb:UserIdentifier>
 </pb:GetUserInfo>
 </soap:Body>
</soap:Envelope>

One aspect of the choice between SOAP and REST is whether you
want to accept the complexity and restrictions of SOAP+WSDL (the Web
Services Description Language) to get more standardized interoperability
or if you want to avoid the overhead by using REST, but perhaps benefit
from less standardization. What are the other considerations?

A message exchange in REST has somewhat fewer characters than a
message exchange in SOAP. So one of the tradeoffs in the choice between
REST and SOAP is the size of the individual messages. For systems
exchanging a large number of messages, another tradeoff is between per-
formance (favoring REST) and structured messages (favoring SOAP).

The decision to implement WS* or REST will depend on aspects such
as the quality of service (QoS) required—WS* implementation has greater
support for security, availability, and so on—and type of functionality. A
RESTful implementation, because of its simplicity, is more appropriate for
read-only functionality, typical of mashups, where there are minimal QoS
requirements and concerns.

OK, so if you are building a service-based system, how do you choose?
The truth is, you don’t have to make a single choice, once and for all time;
each technology is reasonably easy to use, at least for simple applications.
And each has its strengths and weaknesses. Like everything else in archi-
tecture, it’s all about the tradeoffs; your decision will likely hinge on the way
those tradeoffs affect your system in your context.

—RK

6.2 tactics for Interoperability

Figure 6.2 shows the goal of the set of interoperability tactics.

Information
Exchange
Request

Request
Correctly
Handled

Tactics
to Control

Interoperability

fIGurE 6.2 Goal of interoperability tactics

6.2 Tactics for Interoperability 111

We identify two categories of interoperability tactics: locate and manage
interfaces.

locate

There is only one tactic in this category: discover service. It is used when the
systems that interoperate must be discovered at runtime.

 ■ Discover service. Locate a service through searching a known directory ser-
vice. (By “service,” we simply mean a set of capabilities that is accessible
via some kind of interface.) There may be multiple levels of indirection in
this location process—that is, a known location points to another location
that in turn can be searched for the service. The service can be located by
type of service, by name, by location, or by some other attribute.

Manage Interfaces

Managing interfaces consists of two tactics: orchestrate and tailor interface.

 ■ Orchestrate. Orchestrate is a tactic that uses a control mechanism to
coordinate and manage and sequence the invocation of particular services
(which could be ignorant of each other). Orchestration is used when the
interoperating systems must interact in a complex fashion to accomplish a
complex task; orchestration “scripts” the interaction. Workflow engines are
an example of the use of the orchestrate tactic. The mediator design pattern
can serve this function for simple orchestration. Complex orchestration can
be specified in a language such as BPEL.

 ■ Tailor interface. Tailor interface is a tactic that adds or removes capabilities
to an interface. Capabilities such as translation, adding buffering, or
smoothing data can be added. Capabilities may be removed as well. An
example of removing capabilities is to hide particular functions from
untrusted users. The decorator pattern is an example of the tailor interface
tactic.

The enterprise service bus that underlies many service-oriented architec-
tures combines both of the manage interface tactics.

Figure 6.3 shows a summary of the tactics to achieve interoperability.

112 Part two Quality attributes 6—Interoperability

Interoperability Tactics

Locate Manage Interfaces

Discover
Service

Orchestrate

Tailor Interface

Information
Exchange
Request

Request
Correctly
Handled

fIGurE 6.3 Summary of interoperability tactics

Why Standards Are Not Enough to Guarantee Interoperability
By Grace Lewis

Developer of System A needs to exchange product data with System B.
Developer A finds that there is an existing WS* web service interface for
sending product data that among other fields contains price expressed
in XML Schema as a decimal with two fraction digits. Developer A writes
code to interact with the web service and the system works perfectly.
However, after two weeks of operation, there is a huge discrepancy be-
tween the totals reported by System A and the totals reported by System
B. After conversations between the two developers, they discover that
System B expected to receive a price that included tax and System A was
sending it without tax.

This is a simple example of why standards are not enough. The sys-
tems exchanged data perfectly because they both agreed that the price
was a decimal with two fractions digits expressed in XML Schema and the
message was sent via SOAP over HTTP (syntax)—standards used in the
implementation of WS* web services—but they did not agree on whether
the price included tax or not (semantics).

Of course, the only realistic approach to getting diverse applications to
share information is by reaching agreements on the structure and func-
tion of the information to be shared. These agreements are often reflected
in standards that provide a common interface that multiple vendors and
application builders support. Standards have indeed been instrumental

6.2 Tactics for Interoperability 113

in achieving a significant level of interoperability that we rely on in almost
every domain. However, while standards are useful and in many ways in-
dispensable, expectations of what can be achieved through standards are
unrealistic. Here are some of the challenges that organizations face related
to standards and interoperability:

1. Ideally, every implementation of a standard should be identical
and thus completely interoperable with any other implementation.
However, this is far from reality. Standards, when incorporated into
products, tools, and services, undergo customizations and exten-
sions because every vendor wants to create a unique selling point as
a competitive advantage.

2. Standards are often deliberately open-ended and provide exten-
sion points. The actual implementation of these extension points
is left to the discretion of implementers, leading to proprietary
implementations.

3. Standards, like any technology, have a life cycle of their own and
evolve over time in compatible and noncompatible ways. Deciding
when to adopt a new or revised standard is a critical decision for or-
ganizations. Committing to a new standard that is not ready or even-
tually not adopted by the community is a big risk for organizations.
On the other hand, waiting too long may also become a problem,
which can lead to unsupported products, incompatibilities, and work-
arounds, because everyone else is using the standard.

4. Within the software community, there are as many bad standards as
there are engineers with opinions. Bad standards include underspe-
cified, overspecified, inconsistently specified, unstable, or irrelevant
standards.

5. It is quite common for standards to be championed by competing
organizations, resulting in conflicting standards due to overlap or mu-
tual exclusion.

6. For new and rapidly emerging domains, the argument often made is
that standardization will be destructive because it will hinder flexibil-
ity: premature standardization will force the use of an inadequate ap-
proach and lead to abandoning other presumably better approaches.
So what do organizations do in the meantime?

What these challenges illustrate is that because of the way in which
standards are usually created and evolved, we cannot let standards drive
our architectures. We need to architect systems first and then decide which
standards can support desired system requirements and qualities. This ap-
proach allows standards to change and evolve without affecting the overall
architecture of the system.

I once heard someone in a keynote address say that “The nice thing
about standards is that there are so many to choose from.”

114 Part two Quality attributes 6—Interoperability

6.3 a design checklist for Interoperability

Table 6.3 is a checklist to support the design and analysis process for inter operability.

tablE 6.3 Checklist to Support the Design and Analysis Process for
Interoperability

category checklist

Allocation of
Responsibilities

Determine which of your system responsibilities will need to
interoperate with other systems.
Ensure that responsibilities have been allocated to detect
a request to interoperate with known or unknown external
systems.
Ensure that responsibilities have been allocated to carry out the
following tasks:

 ■ Accept the request
 ■ Exchange information
 ■ Reject the request
 ■ Notify appropriate entities (people or systems)
 ■ Log the request (for interoperability in an untrusted environ-

ment, logging for nonrepudiation is essential)

Coordination Model Ensure that the coordination mechanisms can meet the critical
quality attribute requirements. Considerations for performance
include the following:

 ■ Volume of traffic on the network both created by the sys-
tems under your control and generated by systems not
under your control

 ■ Timeliness of the messages being sent by your systems
 ■ Currency of the messages being sent by your systems
 ■ Jitter of the messages’ arrival times
 ■ Ensure that all of the systems under your control make as-

sumptions about protocols and underlying networks that are
consistent with the systems not under your control.

Data Model Determine the syntax and semantics of the major data
abstractions that may be exchanged among interoperating
systems.
Ensure that these major data abstractions are consistent with
data from the interoperating systems. (If your system’s data
model is confidential and must not be made public, you may
have to apply transformations to and from the data abstractions
of systems with which yours interoperates.)

Mapping among
Architectural
Elements

For interoperability, the critical mapping is that of components
to processors. Beyond the necessity of making sure that
components that communicate externally are hosted
on processors that can reach the network, the primary
considerations deal with meeting the security, availability, and
performance requirements for the communication. These will
be dealt with in their respective chapters.

6.4 Summary 115

category checklist

Resource
Management

Ensure that interoperation with another system (accepting a
request and/or rejecting a request) can never exhaust critical
system resources (e.g., can a flood of such requests cause
service to be denied to legitimate users?).
Ensure that the resource load imposed by the communication
requirements of interoperation is acceptable.
Ensure that if interoperation requires that resources be shared
among the participating systems, an adequate arbitration policy
is in place.

Binding Time Determine the systems that may interoperate, and when they
become known to each other. For each system over which you
have control:

 ■ Ensure that it has a policy for dealing with binding to both
known and unknown external systems.

 ■ Ensure that it has mechanisms in place to reject unaccept-
able bindings and to log such requests.

 ■ In the case of late binding, ensure that mechanisms will
support the discovery of relevant new services or protocols,
or the sending of information using chosen protocols.

Choice of
Technology

For any of your chosen technologies, are they “visible” at the
interface boundary of a system? If so, what interoperability
effects do they have? Do they support, undercut, or have
no effect on the interoperability scenarios that apply to your
system? Ensure the effects they have are acceptable.
Consider technologies that are designed to support
interoperability, such as web services. Can they be used to
satisfy the interoperability requirements for the systems under
your control?

6.4 Summary

Interoperability refers to the ability of systems to usefully exchange information.
These systems may have been constructed with the intention of exchanging infor-
mation, they may be existing systems that are desired to exchange information,
or they may provide general services without knowing the details of the systems
that wish to utilize those services.

The general scenario for interoperability provides the details of these dif-
ferent cases. In any interoperability case, the goal is to intentionally exchange
information or reject the request to exchange information.

Achieving interoperability involves the relevant systems locating each other
and then managing the interfaces so that they can exchange information.

116 Part two Quality attributes 6—Interoperability

6.5 for further reading

An SEI report gives a good overview of interoperability, and it highlights some of
the “maturity frameworks” for interoperability [Brownsword 04].

The various WS* services are being developed under the auspices of the
World Wide Web Consortium (W3C) and can be found at www.w3.org/2002/ws.

Systems of systems are of particular interest to the U.S. Department of De-
fense. An engineering guide can be found at [ODUSD 08].

6.6 discussion Questions

1. Find a web service mashup. Write several concrete interoperability scenari-
os for this system.

2. What is the relationship between interoperability and the other quality
attributes highlighted in this book? For example, if two systems fail to ex-
change information properly, could a security flaw result? What other quali-
ty attributes seem strongly related (at least potentially) to interoperability?

3. Is a service-oriented system a system of systems? If so, describe a ser-
vice-oriented system that is directed, one that is acknowledged, one that is
collaborative, and one that is virtual.

4. Universal Description, Discovery, and Integration (UDDI) was touted as a
discovery service, but commercial support for UDDI is being withdrawn.
Why do you suppose this is? Does it have anything to do with the quality
attributes delivered or not delivered by UDDI solutions?

5. Why has the importance of orchestration grown in recent years?

6. If you are a technology producer, what are the advantages and disadvan-
tages of adhering to interoperability standards? Why would a producer not
adhere to a standard?

7. With what other systems will an automatic teller machine need to interoper-
ate? How would you change your automatic teller system design to accom-
modate these other systems?

http://www.w3.org/2002/ws

117

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

7
Modifiability

Adapt or perish, now as ever, is
nature’s inexorable imperative.

—H.G. Wells

Change happens.
Study after study shows that most of the cost of the typical software system

occurs after it has been initially released. If change is the only constant in the uni-
verse, then software change is not only constant but ubiquitous. Changes happen
to add new features, to change or even retire old ones. Changes happen to fix de-
fects, tighten security, or improve performance. Changes happen to enhance the
user’s experience. Changes happen to embrace new technology, new platforms,
new protocols, new standards. Changes happen to make systems work together,
even if they were never designed to do so.

Modifiability is about change, and our interest in it centers on the cost and
risk of making changes. To plan for modifiability, an architect has to consider
four questions:

 ■ What can change? A change can occur to any aspect of a system: the
functions that the system computes, the platform (the hardware, operating
system, middleware), the environment in which the system operates
(the systems with which it must interoperate, the protocols it uses to
communicate with the rest of the world), the qualities the system exhibits
(its performance, its reliability, and even its future modifications), and its
capacity (number of users supported, number of simultaneous operations).

 ■ What is the likelihood of the change? One cannot plan a system for all
potential changes—the system would never be done, or if it was done
it would be far too expensive and would likely suffer quality attribute
problems in other dimensions. Although anything might change, the
architect has to make the tough decisions about which changes are likely,
and hence which changes are to be supported, and which are not.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

118 Part two Quality attributes 7—Modifiability

 ■ When is the change made and who makes it? Most commonly in the
past, a change was made to source code. That is, a developer had to make
the change, which was tested and then deployed in a new release. Now,
however, the question of when a change is made is intertwined with the
question of who makes it. An end user changing the screen saver is clearly
making a change to one of the aspects of the system. Equally clear, it is
not in the same category as changing the system so that it can be used
over the web rather than on a single machine. Changes can be made to the
implementation (by modifying the source code), during compile (using
compile-time switches), during build (by choice of libraries), during
configuration setup (by a range of techniques, including parameter setting),
or during execution (by parameter settings, plugins, etc.). A change can also
be made by a developer, an end user, or a system administrator.

 ■ What is the cost of the change? Making a system more modifiable involves
two types of cost:

 ■ The cost of introducing the mechanism(s) to make the system more
modifiable

 ■ The cost of making the modification using the mechanism(s)

For example, the simplest mechanism for making a change is to wait for
a change request to come in, then change the source code to accommodate the
request. The cost of introducing the mechanism is zero; the cost of exercising
it is the cost of changing the source code and revalidating the system. At the
other end of the spectrum is an application generator, such as a user interface
builder. The builder takes as input a description of the designer user interface
produced through direct manipulation techniques and produces (usually) source
code. The cost of introducing the mechanism is the cost of constructing the UI
builder, which can be substantial. The cost of using the mechanism is the cost of
producing the input to feed the builder (cost can be substantial or negligible), the
cost of running the builder (approximately zero), and then the cost of whatever
testing is performed on the result (usually much less than usual).

For N similar modifications, a simplified justification for a change mecha-
nism is that

N × Cost of making the change without the mechanism <_
Cost of installing the mechanism +

(N × Cost of making the change using the mechanism).

N is the anticipated number of modifications that will use the modifiability
mechanism, but N is a prediction. If fewer changes than expected come in, then
an expensive modification mechanism may not be warranted. In addition, the cost
of creating the modifiability mechanism could be applied elsewhere—in adding
functionality, in improving the performance, or even in nonsoftware investments
such as buying tech stocks. Also, the equation does not take time into account. It

7.1 Modifiability General Scenario 119

might be cheaper in the long run to build a sophisticated change-handling mecha-
nism, but you might not be able to wait for that.

7.1 Modifiability General Scenario

From these considerations, we can see the portions of the modifiability general
scenario:

 ■ Source of stimulus. This portion specifies who makes the change: the
developer, a system administrator, or an end user.

 ■ Stimulus. This portion specifies the change to be made. A change can be
the addition of a function, the modification of an existing function, or the
deletion of a function. (For this categorization, we regard fixing a defect
as changing a function, which presumably wasn’t working correctly as
a result of the defect.) A change can also be made to the qualities of the
system: making it more responsive, increasing its availability, and so forth.
The capacity of the system may also change. Accommodating an increasing
number of simultaneous users is a frequent requirement. Finally, changes
may happen to accommodate new technology of some sort, the most
common of which is porting the system to a different type of computer or
communication network.

 ■ Artifact. This portion specifies what is to be changed: specific components
or modules, the system’s platform, its user interface, its environment, or
another system with which it interoperates.

 ■ Environment. This portion specifies when the change can be made: design
time, compile time, build time, initiation time, or runtime.

 ■ Response. Make the change, test it, and deploy it.
 ■ Response measure. All of the possible responses take time and cost money;

time and money are the most common response measures. Although both
sound simple to measure, they aren’t. You can measure calendar time or
staff time. But do you measure the time it takes for the change to wind its
way through configuration control boards and approval authorities (some
of whom may be outside your organization), or merely the time it takes
your engineers to make the change? Cost usually means direct outlay, but
it might also include opportunity cost of having your staff work on changes
instead of other tasks. Other measures include the extent of the change
(number of modules or other artifacts affected) or the number of new
defects introduced by the change, or the effect on other quality attributes. If
the change is being made by a user, you may wish to measure the efficacy
of the change mechanisms provided, which somewhat overlaps with
measures of usability (see Chapter 11).

120 Part two Quality attributes 7—Modifiability

Figure 7.1 illustrates a concrete modifiability scenario: The developer
wishes to change the user interface by modifying the code at design time. The
modifications are made with no side effects within three hours.

Table 7.1 enumerates the elements of the general scenario that characterize
modifiability.

Stimulus:
Wishes
to Change
the UI

Response:
Change Made
and Unit Tested

Source:
Developer

Artifact:
Code

Environment:
Design
Time

Response
Measure:
In Three
Hours

3
2

1

4

fIGurE 7.1 Sample concrete modifiability scenario

tablE 7.1 Modifiability General Scenario

Portion of Scenario Possible Values

Source End user, developer, system administrator

Stimulus A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Artifacts Code, data, interfaces, components, resources, configurations,
. . .

Environment Runtime, compile time, build time, initiation time, design time

Response One or more of the following:
 ■ Make modification
 ■ Test modification
 ■ Deploy modification

Response Measure Cost in terms of the following:
 ■ Number, size, complexity of affected artifacts
 ■ Effort
 ■ Calendar time
 ■ Money (direct outlay or opportunity cost)
 ■ Extent to which this modification affects other functions or

quality attributes
 ■ New defects introduced

7.2 Tactics for Modifiability 121

7.2 tactics for Modifiability

Tactics to control modifiability have as their goal controlling the complexity of
making changes, as well as the time and cost to make changes. Figure 7.2 shows
this relationship.

To understand modifiability, we begin with coupling and cohesion.
Modules have responsibilities. When a change causes a module to be modi-

fied, its responsibilities are changed in some way. Generally, a change that affects
one module is easier and less expensive than if it changes more than one mod-
ule. However, if two modules’ responsibilities overlap in some way, then a single
change may well affect them both. We can measure this overlap by measuring the
probability that a modification to one module will propagate to the other. This is
called coupling, and high coupling is an enemy of modifiability.

Cohesion measures how strongly the responsibilities of a module are re-
lated. Informally, it measures the module’s “unity of purpose.” Unity of purpose
can be measured by the change scenarios that affect a module. The cohesion of a
module is the probability that a change scenario that affects a responsibility will
also affect other (different) responsibilities. The higher the cohesion, the lower
the probability that a given change will affect multiple responsibilities. High co-
hesion is good; low cohesion is bad. The definition allows for two modules with
similar purposes each to be cohesive.

Given this framework, we can now identify the parameters that we will use
to motivate modifiability tactics:

 ■ Size of a module. Tactics that split modules will reduce the cost of making
a modification to the module that is being split as long as the split is chosen
to reflect the type of change that is likely to be made.

Change
Arrives

Change Made within
Time and Budget

Tactics
to Control
Modifiability

fIGurE 7.2 The goal of modifiability tactics

122 Part two Quality attributes 7—Modifiability

 ■ Coupling. Reducing the strength of the coupling between two modules A
and B will decrease the expected cost of any modification that affects A.
Tactics that reduce coupling are those that place intermediaries of various
sorts between modules A and B.

 ■ Cohesion. If module A has a low cohesion, then cohesion can be improved
by removing responsibilities unaffected by anticipated changes.

Finally we need to be concerned with when in the software development
life cycle a change occurs. If we ignore the cost of preparing the architecture for
the modification, we prefer that a change is bound as late as possible. Changes
can only be successfully made (that is, quickly and at lowest cost) late in the
life cycle if the architecture is suitably prepared to accommodate them. Thus the
fourth and final parameter in a model of modifiability is this:

 ■ Binding time of modification. An architecture that is suitably equipped to
accommodate modifications late in the life cycle will, on average, cost less
than an architecture that forces the same modification to be made earlier.
The preparedness of the system means that some costs will be zero, or very
low, for late life-cycle modifications. This, however, neglects the cost of
preparing the architecture for the late binding.

Now we may understand tactics and their consequences as affecting one or
more of the previous parameters: reducing the size of a module, increasing cohe-
sion, reducing coupling, and deferring binding time. These tactics are shown in
Figure 7.3.

Modifiability Tactics

Increase
Cohesion

Reduce
Coupling

Split Module
Encapsulate

Use an
Intermediary

Change
Arrives

Change Made
within Time
and Budget

Reduce Size
of a Module

Increase
Semantic
Coherence

Restrict
Dependencies

Refactor

Abstract Common
Services

Defer
Binding

fIGurE 7.3 Modifiability tactics

7.2 Tactics for Modifiability 123

reduce the Size of a Module

 ■ Split module. If the module being modified includes a great deal of capa-
bility, the modification costs will likely be high. Refining the module into
several smaller modules should reduce the average cost of future changes.

Increase cohesion

Several tactics involve moving responsibilities from one module to another. The
purpose of moving a responsibility from one module to another is to reduce the
likelihood of side effects affecting other responsibilities in the original module.

 ■ Increase semantic coherence. If the responsibilities A and B in a module
do not serve the same purpose, they should be placed in different modules.
This may involve creating a new module or it may involve moving a re-
sponsibility to an existing module. One method for identifying responsibil-
ities to be moved is to hypothesize likely changes that affect a module. If
some responsibilities are not affected by these changes, then those responsi-
bilities should probably be removed.

reduce coupling

We now turn to tactics that reduce the coupling between modules.

 ■ Encapsulate. Encapsulation introduces an explicit interface to a module.
This interface includes an application programming interface (API) and its
associated responsibilities, such as “perform a syntactic transformation on
an input parameter to an internal representation.” Perhaps the most common
modifiability tactic, encapsulation reduces the probability that a change to
one module propagates to other modules. The strengths of coupling that
previously went to the module now go to the interface for the module.
These strengths are, however, reduced because the interface limits the ways
in which external responsibilities can interact with the module (perhaps
through a wrapper). The external responsibilities can now only directly in-
teract with the module through the exposed interface (indirect interactions,
however, such as dependence on quality of service, will likely remain un-
changed). Interfaces designed to increase modifiability should be abstract
with respect to the details of the module that are likely to change—that is,
they should hide those details.

 ■ Use an intermediary breaks a dependency. Given a dependency between re-
sponsibility A and responsibility B (for example, carrying out A first requires
carrying out B), the dependency can be broken by using an intermediary.
The type of intermediary depends on the type of dependency. For example,
a publish-subscribe intermediary will remove the data producer’s knowledge

124 Part two Quality attributes 7—Modifiability

of its consumers. So will a shared data repository, which separates readers of
a piece of data from writers of that data. In a service-oriented architecture in
which services discover each other by dynamic lookup, the directory service
is an intermediary.

 ■ Restrict dependencies is a tactic that restricts the modules that a given mod-
ule interacts with or depends on. In practice this tactic is achieved by re-
stricting a module’s visibility (when developers cannot see an interface, they
cannot employ it) and by authorization (restricting access to only authorized
modules). This tactic is seen in layered architectures, in which a layer is only
allowed to use lower layers (sometimes only the next lower layer) and in the
use of wrappers, where external entities can only see (and hence depend on)
the wrapper and not the internal functionality that it wraps.

 ■ Refactor is a tactic undertaken when two modules are affected by the same
change because they are (at least partial) duplicates of each other. Code re-
factoring is a mainstay practice of Agile development projects, as a cleanup
step to make sure that teams have not produced duplicative or overly com-
plex code; however, the concept applies to architectural elements as well.
Common responsibilities (and the code that implements them) are “factored
out” of the modules where they exist and assigned an appropriate home of
their own. By co-locating common responsibilities—that is, making them
submodules of the same parent module—the architect can reduce coupling.

 ■ Abstract common services. In the case where two modules provide not-
quite-the-same but similar services, it may be cost-effective to implement
the services just once in a more general (abstract) form. Any modification
to the (common) service would then need to occur just in one place, reduc-
ing modification costs. A common way to introduce an abstraction is by pa-
rameterizing the description (and implementation) of a module’s activities.
The parameters can be as simple as values for key variables or as complex
as statements in a specialized language that are subsequently interpreted.

defer binding

Because the work of people is almost always more expensive than the work of
computers, letting computers handle a change as much as possible will almost
always reduce the cost of making that change. If we design artifacts with built-in
flexibility, then exercising that flexibility is usually cheaper than hand-coding a
specific change.

Parameters are perhaps the best-known mechanism for introducing
flexibility, and that is reminiscent of the abstract common services tactic. A
parameterized function f(a, b) is more general than the similar function f(a) that
assumes b = 0. When we bind the value of some parameters at a different phase
in the life cycle than the one in which we defined the parameters, we are applying
the defer binding tactic.

7.3 A Design Checklist for Modifiability 125

In general, the later in the life cycle we can bind values, the better. However,
putting the mechanisms in place to facilitate that late binding tends to be more
expensive—yet another tradeoff. And so the equation on page 118 comes into
play. We want to bind as late as possible, as long as the mechanism that allows it
is cost-effective.

Tactics to bind values at compile time or build time include these:

 ■ Component replacement (for example, in a build script or makefile)
 ■ Compile-time parameterization
 ■ Aspects

Tactics to bind values at deployment time include this:

 ■ Configuration-time binding

Tactics to bind values at startup or initialization time include this:

 ■ Resource files

Tactics to bind values at runtime include these:

 ■ Runtime registration
 ■ Dynamic lookup (e.g., for services)
 ■ Interpret parameters
 ■ Startup time binding
 ■ Name servers
 ■ Plug-ins
 ■ Publish-subscribe
 ■ Shared repositories
 ■ Polymorphism

Separating building a mechanism for modifiability from using the
mechanism to make a modification admits the possibility of different stakeholders
being involved—one stakeholder (usually a developer) to provide the mechanism
and another stakeholder (an installer, for example, or a user) to exercise it later,
possibly in a completely different life-cycle phase. Installing a mechanism so that
someone else can make a change to the system without having to change any
code is sometimes called externalizing the change.

7.3 a design checklist for Modifiability

Table 7.2 is a checklist to support the design and analysis process for modifiability.

126 Part two Quality attributes 7—Modifiability

tablE 7.2 Checklist to Support the Design and Analysis Process for Modifiability

category checklist

Allocation of
Responsibilities

Determine which changes or categories of changes are likely to
occur through consideration of changes in technical, legal, social,
business, and customer forces. For each potential change or
category of changes:

 ■ Determine the responsibilities that would need to be added,
modified, or deleted to make the change.

 ■ Determine what responsibilities are impacted by the change.
 ■ Determine an allocation of responsibilities to modules that

places, as much as possible, responsibilities that will be
changed (or impacted by the change) together in the same
module, and places responsibilities that will be changed at
different times in separate modules.

Coordination
Model

Determine which functionality or quality attribute can change at
runtime and how this affects coordination; for example, will the
information being communicated change at runtime, or will the
communication protocol change at runtime? If so, ensure that such
changes affect a small number set of modules.
Determine which devices, protocols, and communication paths
used for coordination are likely to change. For those devices,
protocols, and communication paths, ensure that the impact of
changes will be limited to a small set of modules.
For those elements for which modifiability is a concern, use
a coordination model that reduces coupling such as publish-
subscribe, defers bindings such as enterprise service bus, or
restricts dependencies such as broadcast.

Data Model Determine which changes (or categories of changes) to the data
abstractions, their operations, or their properties are likely to
occur. Also determine which changes or categories of changes
to these data abstractions will involve their creation, initialization,
persistence, manipulation, translation, or destruction.
For each change or category of change, determine if the
changes will be made by an end user, a system administrator, or
a developer. For those changes to be made by an end user or
system administrator, ensure that the necessary attributes are
visible to that user and that the user has the correct privileges to
modify the data, its operations, or its properties.
For each potential change or category of change:

 ■ Determine which data abstractions would need to be added,
modified, or deleted to make the change.

 ■ Determine whether there would be any changes to the
creation, initialization, persistence, manipulation, translation, or
destruction of these data abstractions.

 ■ Determine which other data abstractions are impacted
by the change. For these additional data abstractions,
determine whether the impact would be on the operations,
their properties, their creation, initialization, persistence,
manipulation, translation, or destruction.

 ■ Ensure an allocation of data abstractions that minimizes the
number and severity of modifications to the abstractions by the
potential changes.

Design your data model so that items allocated to each element of
the data model are likely to change together.

7.3 A Design Checklist for Modifiability 127

category checklist

Mapping among
Architectural
Elements

Determine if it is desirable to change the way in which functionality
is mapped to computational elements (e.g., processes, threads,
processors) at runtime, compile time, design time, or build time.
Determine the extent of modifications necessary to accommodate
the addition, deletion, or modification of a function or a quality
attribute. This might involve a determination of the following, for
example:

 ■ Execution dependencies
 ■ Assignment of data to databases
 ■ Assignment of runtime elements to processes, threads, or

processors
Ensure that such changes are performed with mechanisms that
utilize deferred binding of mapping decisions.

Resource
Management

Determine how the addition, deletion, or modification of a
responsibility or quality attribute will affect resource usage. This
involves, for example:

 ■ Determining what changes might introduce new resources or
remove old ones or affect existing resource usage

 ■ Determining what resource limits will change and how
Ensure that the resources after the modification are sufficient to
meet the system requirements.
Encapsulate all resource managers and ensure that the policies
implemented by those resource managers are themselves
encapsulated and bindings are deferred to the extent possible.

Binding Time For each change or category of change:
 ■ Determine the latest time at which the change will need to be

made.
 ■ Choose a defer-binding mechanism (see Section 7.2) that

delivers the appropriate capability at the time chosen.
 ■ Determine the cost of introducing the mechanism and the cost

of making changes using the chosen mechanism. Use the
equation on page 118 to assess your choice of mechanism.

 ■ Do not introduce so many binding choices that change is
impeded because the dependencies among the choices are
complex and unknown.

Choice of
Technology

Determine what modifications are made easier or harder by your
technology choices.

 ■ Will your technology choices help to make, test, and deploy
modifications?

 ■ How easy is it to modify your choice of technologies (in case
some of these technologies change or become obsolete)?

Choose your technologies to support the most likely modifications.
For example, an enterprise service bus makes it easier to change
how elements are connected but may introduce vendor lock-in.

128 Part two Quality attributes 7—Modifiability

7.4 Summary

Modifiability deals with change and the cost in time or money of making a
change, including the extent to which this modification affects other functions or
quality attributes.

Changes can be made by developers, installers, or end users, and these
changes need to be prepared for. There is a cost of preparing for change as well
as a cost of making a change. The modifiability tactics are designed to prepare for
subsequent changes.

Tactics to reduce the cost of making a change include making modules
smaller, increasing cohesion, and reducing coupling. Deferring binding will also
reduce the cost of making a change.

Reducing coupling is a standard category of tactics that includes encapsulat-
ing, using an intermediary, restricting dependencies, co-locating related responsi-
bilities, refactoring, and abstracting common services.

Increasing cohesion is another standard tactic that involves separating re-
sponsibilities that do not serve the same purpose.

Defer binding is a category of tactics that affect build time, load time, ini-
tialization time, or runtime.

7.5 for further reading

Serious students of software engineering should read two early papers about
designing for modifiability. The first is Edsger Dijkstra’s 1968 paper about the
T.H.E. operating system [Dijkstra 68], which is the first paper that talks about de-
signing systems to be layered, and the modifiability benefits it brings. The second
is David Parnas’s 1972 paper that introduced the concept of information hiding
[Parnas 72]. Parnas prescribed defining modules not by their functionality but by
their ability to internalize the effects of changes.

The tactics that we have presented in this chapter are a variant on those in-
troduced by [Bachmann 07].

Additional tactics for modifiability within the avionics domain can be found
in [EOSAN 07], published by the European Organization for the Safety of Air
Navigation.

7.6 discussion Questions

1. Modifiability comes in many flavors and is known by many names. Find
one of the IEEE or ISO standards dealing with quality attributes and

7.6 Discussion Questions 129

compile a list of quality attributes that refer to some form of modifiability.
Discuss the differences.

2. For each quality attribute that you discovered as a result of the previous
question, write a modifiability scenario that expresses it.

3. In a certain metropolitan subway system, the ticket machines accept cash
but do not give change. There is a separate machine that dispenses change
but does not sell tickets. In an average station there are six or eight ticket
machines for every change machine. What modifiability tactics do you see
at work in this arrangement? What can you say about availability?

4. For the subway system in the previous question, describe the specific form
of modifiability (using a modifiability scenario) that seems to be the aim of
arranging the ticket and change machines as described.

5. A wrapper is a common aid to modifiability. A wrapper for a component
is the only element allowed to use that component; every other piece of
software uses the component’s services by going through the wrapper. The
wrapper transforms the data or control information for the component it
wraps. For example, a component may expect input using English measures
but find itself in a system in which all of the other components produce
metric measures. A wrapper could be employed to translate. What modifi-
ability tactics does a wrapper embody?

6. Once an intermediary has been introduced into an architecture, some mod-
ules may attempt to circumvent it, either inadvertently (because they are
not aware of the intermediary) or intentionally (for performance, for conve-
nience, or out of habit). Discuss some architectural means to prevent inad-
vertent circumvention of an intermediary.

7. In some projects, deployability is an important quality attribute that mea-
sures how easy it is to get a new version of the system into the hands of its
users. This might mean a trip to your auto dealer or transmitting updates
over the Internet. It also includes the time it takes to install the update once
it arrives. In projects that measure deployability separately, should the cost
of a modification stop when the new version is ready to ship? Justify your
answer.

8. The abstract common services tactic is intended to reduce coupling, but it
also might reduce cohesion. Discuss.

9. Identify particular change scenarios for an automatic teller machine. What
modifications would you make to your automatic teller machine design to
accommodate these changes?

This page intentionally left blank

131

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

8
Performance

An ounce of performance is worth pounds of promises.
—Mae West

It’s about time.
Performance, that is: It’s about time and the software system’s ability to meet

timing requirements. When events occur—interrupts, messages, requests from
users or other systems, or clock events marking the passage of time—the system,
or some element of the system, must respond to them in time. Characterizing
the events that can occur (and when they can occur) and the system or element’s
time-based response to those events is the essence is discussing performance.

Web-based system events come in the form of requests from users (num-
bering in the tens or tens of millions) via their clients such as web browsers. In
a control system for an internal combustion engine, events come from the opera-
tor’s controls and the passage of time; the system must control both the firing of
the ignition when a cylinder is in the correct position and the mixture of the fuel
to maximize power and efficiency and minimize pollution.

For a web-based system, the desired response might be expressed as number
of transactions that can be processed in a minute. For the engine control system,
the response might be the allowable variation in the firing time. In each case, the
pattern of events arriving and the pattern of responses can be characterized, and
this characterization forms the language with which to construct performance
scenarios.

For much of the history of software engineering, performance has been the
driving factor in system architecture. As such, it has frequently compromised the
achievement of all other qualities. As the price/performance ratio of hardware
continues to plummet and the cost of developing software continues to rise, other
qualities have emerged as important competitors to performance.

Nevertheless, all systems have performance requirements, even if they are
not expressed. For example, a word processing tool may not have any explicit
performance requirement, but no doubt everyone would agree that waiting an

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

132 Part two Quality attributes 8—Performance

hour (or a minute, or a second) before seeing a typed character appear on the
screen is unacceptable. Performance continues to be a fundamentally important
quality attribute for all software.

Performance is often linked to scalability—that is, increasing your system’s
capacity for work, while still performing well. Technically, scalability is making
your system easy to change in a particular way, and so is a kind of modifiability.
In addition, we address scalability explicitly in Chapter 12.

8.1 Performance General Scenario

A performance scenario begins with an event arriving at the system. Responding
correctly to the event requires resources (including time) to be consumed. While
this is happening, the system may be simultaneously servicing other events.

Concurrency

Concurrency is one of the more important concepts that an architect must
understand and one of the least-taught in computer science courses.
Concurrency refers to operations occurring in parallel. For example, sup-
pose there is a thread that executes the statements

x := 1;
x++;

and another thread that executes the same statements. What is the value
of x after both threads have executed those statements? It could be either
2 or 3. I leave it to you to figure out how the value 3 could occur—or
should I say I interleave it to you?

Concurrency occurs any time your system creates a new thread, be-
cause threads, by definition, are independent sequences of control. Multi-
tasking on your system is supported by independent threads. Multiple users
are simultaneously supported on your system through the use of threads.
Concurrency also occurs any time your system is executing on more than
one processor, whether the processors are packaged separately or as
multi-core processors. In addition, you must consider concurrency when
parallel algorithms, parallelizing infrastructures such as map-reduce, or
NoSQL databases are used by your system, or you utilize one of a variety
of concurrent scheduling algorithms. In other words, concurrency is a tool
available to you in many ways.

Concurrency, when you have multiple CPUs or wait states that can
exploit it, is a good thing. Allowing operations to occur in parallel improves
performance, because delays introduced in one thread allow the processor

8.1 Performance General Scenario 133

to progress on another thread. But because of the interleaving phenome-
non just described (referred to as a race condition), concurrency must also
be carefully managed by the architect.

As the example shows, race conditions can occur when there are two
threads of control and there is shared state. The management of con-
currency frequently comes down to managing how state is shared. One
technique for preventing race conditions is to use locks to enforce sequen-
tial access to state. Another technique is to partition the state based on the
thread executing a portion of code. That is, if there are two instances of x in
our example, x is not shared by the two threads and there will not be a race
condition.

Race conditions are one of the hardest types of bugs to discover; the
occurrence of the bug is sporadic and depends on (possibly minute) differ-
ences in timing. I once had a race condition in an operating system that I
could not track down. I put a test in the code so that the next time the race
condition occurred, a debugging process was triggered. It took over a year
for the bug to recur so that the cause could be determined.

Do not let the difficulties associated with concurrency dissuade you from
utilizing this very important technique. Just use it with the knowledge that
you must carefully identify critical sections in your code and ensure that
race conditions will not occur in those sections.

—LB

Events can arrive in predictable patterns or mathematical distributions, or be
unpredictable. An arrival pattern for events is characterized as periodic, stochastic,
or sporadic:

 ■ Periodic events arrive predictably at regular time intervals. For instance, an
event may arrive every 10 milliseconds. Periodic event arrival is most often
seen in real-time systems.

 ■ Stochastic arrival means that events arrive according to some probabilistic
distribution.

 ■ Sporadic events arrive according to a pattern that is neither periodic
nor stochastic. Even these can be characterized, however, in certain
circumstances. For example, we might know that at most 600 events will
occur in a minute, or that there will be at least 200 milliseconds between
the arrival of any two events. (This might describe a system in which events
correspond to keyboard strokes from a human user.) These are helpful
characterizations, even though we don’t know when any single event will
arrive.

The response of the system to a stimulus can be measured by the following:

 ■ Latency. The time between the arrival of the stimulus and the system’s
response to it.

134 Part two Quality attributes 8—Performance

 ■ Deadlines in processing. In the engine controller, for example, the fuel
should ignite when the cylinder is in a particular position, thus introducing
a processing deadline.

 ■ The throughput of the system, usually given as the number of transactions
the system can process in a unit of time.

 ■ The jitter of the response—the allowable variation in latency.
 ■ The number of events not processed because the system was too busy to

respond.

From these considerations we can now describe the individual portions of a
general scenario for performance:

 ■ Source of stimulus. The stimuli arrive either from external (possibly
multiple) or internal sources.

 ■ Stimulus. The stimuli are the event arrivals. The arrival pattern can be peri-
odic, stochastic, or sporadic, characterized by numeric parameters.

 ■ Artifact. The artifact is the system or one or more of its components.
 ■ Environment. The system can be in various operational modes, such as nor-

mal, emergency, peak load, or overload.
 ■ Response. The system must process the arriving events. This may cause a

change in the system environment (e.g., from normal to overload mode).
 ■ Response measure. The response measures are the time it takes to process

the arriving events (latency or a deadline), the variation in this time (jitter),
the number of events that can be processed within a particular time interval
(throughput), or a characterization of the events that cannot be processed
(miss rate).

The general scenario for performance is summarized in Table 8.1.
Figure 8.1 gives an example concrete performance scenario: Users initiate

transactions under normal operations. The system processes the transactions with
an average latency of two seconds.

tablE 8.1 Performance General Scenario

Portion of Scenario Possible Values

Source Internal or external to the system

Stimulus Arrival of a periodic, sporadic, or stochastic event

Artifact System or one or more components in the system

Environment Operational mode: normal, emergency, peak load, overload

Response Process events, change level of service

Response Measure Latency, deadline, throughput, jitter, miss rate

8.2 Tactics for Performance 135

8.2 tactics for Performance

The goal of performance tactics is to generate a response to an event arriving
at the system within some time-based constraint. The event can be single or a
stream and is the trigger to perform computation. Performance tactics control the
time within which a response is generated, as illustrated in Figure 8.2.

At any instant during the period after an event arrives but before the sys-
tem’s response t`o it is complete, either the system is working to respond to that
event or the processing is blocked for some reason. This leads to the two basic
contributors to the response time: processing time (when the system is working to
respond) and blocked time (when the system is unable to respond).

Stimulus:
Initiate
Transactions

response:
Transactions
Are Processed

response
Measure:
Average
Latency
of Two

Source:
Users

artifact:
System

Environment:
Normal
Operation

3
2

1

4

Seconds

fIGurE 8.1 Sample concrete performance scenario

Event
Arrives

Response
Generated
within Time
Constraints

Tactics
to Control
Performance

fIGurE 8.2 The goal of performance tactics

136 Part two Quality attributes 8—Performance

 ■ Processing time. Processing consumes resources, which takes time. Events
are handled by the execution of one or more components, whose time
expended is a resource. Hardware resources include CPU, data stores,
network communication bandwidth, and memory. Software resources
include entities defined by the system under design. For example, buffers
must be managed and access to critical sections1 must be made sequential.

For example, suppose a message is generated by one component. It
might be placed on the network, after which it arrives at another compo-
nent. It is then placed in a buffer; transformed in some fashion; processed
according to some algorithm; transformed for output; placed in an output
buffer; and sent onward to another component, another system, or some
actor. Each of these steps consumes resources and time and contributes to
the overall latency of the processing of that event.

Different resources behave differently as their utilization approaches
their capacity—that is, as they become saturated. For example, as a CPU
becomes more heavily loaded, performance usually degrades fairly steadily.
On the other hand, when you start to run out of memory, at some point the
page swapping becomes overwhelming and performance crashes suddenly.

 ■ Blocked time. A computation can be blocked because of contention for some
needed resource, because the resource is unavailable, or because the compu-
tation depends on the result of other computations that are not yet available:

 ■ Contention for resources. Many resources can only be used by a single
client at a time. This means that other clients must wait for access to
those resources. Figure 8.2 shows events arriving at the system. These
events may be in a single stream or in multiple streams. Multiple streams
vying for the same resource or different events in the same stream vying
for the same resource contribute to latency. The more contention for a
resource, the more likelihood of latency being introduced.

 ■ Availability of resources. Even in the absence of contention, computation
cannot proceed if a resource is unavailable. Unavailability may be caused
by the resource being offline or by failure of the component or for some
other reason. In any case, you must identify places where resource un-
availability might cause a significant contribution to overall latency. Some
of our tactics are intended to deal with this situation.

 ■ Dependency on other computation. A computation may have to wait
because it must synchronize with the results of another computation or
because it is waiting for the results of a computation that it initiated. If a
component calls another component and must wait for that component to
respond, the time can be significant if the called component is at the other
end of a network (as opposed to co-located on the same processor).

1. A critical section is a section of code in a multi-threaded system in which at most one thread may
be active at any time.

8.2 Tactics for Performance 137

With this background, we turn to our tactic categories. We can either reduce
demand for resources or make the resources we have handle the demand more
effectively:

 ■ Control resource demand. This tactic operates on the demand side to
produce smaller demand on the resources that will have to service the
events.

 ■ Manage resources. This tactic operates on the response side to make the re-
sources at hand work more effectively in handling the demands put to them.

control resource demand

One way to increase performance is to carefully manage the demand for re-
sources. This can be done by reducing the number of events processed by en-
forcing a sampling rate, or by limiting the rate at which the system responds to
events. In addition, there are a number of techniques for ensuring that the re-
sources that you do have are applied judiciously:

 ■ Manage sampling rate. If it is possible to reduce the sampling frequency
at which a stream of environmental data is captured, then demand can be
reduced, typically with some attendant loss of fidelity. This is common
in signal processing systems where, for example, different codecs can be
chosen with different sampling rates and data formats. This design choice
is made to maintain predictable levels of latency; you must decide whether
having a lower fidelity but consistent stream of data is preferable to losing
packets of data.

 ■ Limit event response. When discrete events arrive at the system (or element)
too rapidly to be processed, then the events must be queued until they can
be processed. Because these events are discrete, it is typically not desirable
to “downsample” them. In such a case, you may choose to process events
only up to a set maximum rate, thereby ensuring more predictable process-
ing when the events are actually processed. This tactic could be triggered
by a queue size or processor utilization measure exceeding some warning
level. If you adopt this tactic and it is unacceptable to lose any events, then
you must ensure that your queues are large enough to handle the worst case.
If, on the other hand, you choose to drop events, then you need to choose a
policy for handling this situation: Do you log the dropped events, or simply
ignore them? Do you notify other systems, users, or administrators?

 ■ Prioritize events. If not all events are equally important, you can impose a
priority scheme that ranks events according to how important it is to service
them. If there are not enough resources available to service them when they
arise, low-priority events might be ignored. Ignoring events consumes min-
imal resources (including time), and thus increases performance compared
to a system that services all events all the time. For example, a building

138 Part two Quality attributes 8—Performance

management system may raise a variety of alarms. Life-threatening alarms
such as a fire alarm should be given higher priority than informational
alarms such as a room is too cold.

 ■ Reduce overhead. The use of intermediaries (so important for modifiability,
as we saw in Chapter 7) increases the resources consumed in processing
an event stream, and so removing them improves latency. This is a clas-
sic modifiability/performance tradeoff. Separation of concerns, another
linchpin of modifiability, can also increase the processing overhead nec-
essary to service an event if it leads to an event being serviced by a chain
of components rather than a single component. The context switching and
intercomponent communication costs add up, especially when the compo-
nents are on different nodes on a network. A strategy for reducing compu-
tational overhead is to co-locate resources. Co-location may mean hosting
cooperating components on the same processor to avoid the time delay of
network communication; it may mean putting the resources in the same
runtime software component to avoid even the expense of a subroutine call.
A special case of reducing computational overhead is to perform a periodic
cleanup of resources that have become inefficient. For example, hash tables
and virtual memory maps may require recalculation and reinitialization.
Another common strategy is to execute single-threaded servers (for simplic-
ity and avoiding contention) and split workload across them.

 ■ Bound execution times. Place a limit on how much execution time is used to
respond to an event. For iterative, data-dependent algorithms, limiting the
number of iterations is a method for bounding execution times. The cost is
usually a less accurate computation. If you adopt this tactic, you will need
to assess its effect on accuracy and see if the result is “good enough.” This
resource management tactic is frequently paired with the manage sampling
rate tactic.

 ■ Increase resource efficiency. Improving the algorithms used in critical areas
will decrease latency.

Manage resources

Even if the demand for resources is not controllable, the management of these re-
sources can be. Sometimes one resource can be traded for another. For example,
intermediate data may be kept in a cache or it may be regenerated depending on
time and space resource availability. This tactic is usually applied to the proces-
sor but is also effective when applied to other resources such as a disk. Here are
some resource management tactics:

 ■ Increase resources. Faster processors, additional processors, additional
memory, and faster networks all have the potential for reducing latency.

8.2 Tactics for Performance 139

Cost is usually a consideration in the choice of resources, but increasing the
resources is definitely a tactic to reduce latency and in many cases is the
cheapest way to get immediate improvement.

 ■ Introduce concurrency. If requests can be processed in parallel, the blocked
time can be reduced. Concurrency can be introduced by processing differ-
ent streams of events on different threads or by creating additional threads
to process different sets of activities. Once concurrency has been intro-
duced, scheduling policies can be used to achieve the goals you find desir-
able. Different scheduling policies may maximize fairness (all requests get
equal time), throughput (shortest time to finish first), or other goals. (See
the sidebar.)

 ■ Maintain multiple copies of computations. Multiple servers in a client-serv-
er pattern are replicas of computation. The purpose of replicas is to reduce
the contention that would occur if all computations took place on a single
server. A load balancer is a piece of software that assigns new work to one
of the available duplicate servers; criteria for assignment vary but can be as
simple as round-robin or assigning the next request to the least busy server.

 ■ Maintain multiple copies of data. Caching is a tactic that involves keeping
copies of data (possibly one a subset of the other) on storage with different
access speeds. The different access speeds may be inherent (memory versus
secondary storage) or may be due to the necessity for network communica-
tion. Data replication involves keeping separate copies of the data to reduce
the contention from multiple simultaneous accesses. Because the data being
cached or replicated is usually a copy of existing data, keeping the copies
consistent and synchronized becomes a responsibility that the system must
assume. Another responsibility is to choose the data to be cached. Some
caches operate by merely keeping copies of whatever was recently request-
ed, but it is also possible to predict users’ future requests based on patterns
of behavior, and begin the calculations or prefetches necessary to comply
with those requests before the user has made them.

 ■ Bound queue sizes. This controls the maximum number of queued arrivals
and consequently the resources used to process the arrivals. If you adopt
this tactic, you need to adopt a policy for what happens when the queues
overflow and decide if not responding to lost events is acceptable. This tac-
tic is frequently paired with the limit event response tactic.

 ■ Schedule resources. Whenever there is contention for a resource, the
resource must be scheduled. Processors are scheduled, buffers are
scheduled, and networks are scheduled. Your goal is to understand the
characteristics of each resource’s use and choose the scheduling strategy
that is compatible with it. (See the sidebar.)

The tactics for performance are summarized in Figure 8.3.

140 Part two Quality attributes 8—Performance

Scheduling Policies

A scheduling policy conceptually has two parts: a priority assignment
and dispatching. All scheduling policies assign priorities. In some cases
the assignment is as simple as first-in/first-out (or FIFO). In other cases,
it can be tied to the deadline of the request or its semantic importance.
Competing criteria for scheduling include optimal resource usage, request
importance, minimizing the number of resources used, minimizing latency,
maximizing throughput, preventing starvation to ensure fairness, and so
forth. You need to be aware of these possibly conflicting criteria and the
effect that the chosen tactic has on meeting them.

A high-priority event stream can be dispatched only if the resource to
which it is being assigned is available. Sometimes this depends on pre-
empting the current user of the resource. Possible preemption options are
as follows: can occur anytime, can occur only at specific preemption points,
and executing processes cannot be preempted. Some common scheduling
policies are these:

 ■ First-in/first-out. FIFO queues treat all requests for resources as equals
and satisfy them in turn. One possibility with a FIFO queue is that one
request will be stuck behind another one that takes a long time to gener-
ate a response. As long as all of the requests are truly equal, this is not
a problem, but if some requests are of higher priority than others, it is
problematic.

 ■ Fixed-priority scheduling. Fixed-priority scheduling assigns each source
of resource requests a particular priority and assigns the resources in
that priority order. This strategy ensures better service for higher priority
requests. But it admits the possibility of a lower priority, but important,
request taking an arbitrarily long time to be serviced, because it is stuck
behind a series of higher priority requests. Three common prioritization
strategies are these:

 ■ Semantic importance. Each stream is assigned a priority statically
according to some domain characteristic of the task that generates it.

 ■ Deadline monotonic. Deadline monotonic. Deadline monotonic is a
static priority assignment that assigns higher priority to streams with
shorter deadlines. This scheduling policy is used when streams of
different priorities with real-time deadlines are to be scheduled.

 ■ Rate monotonic. Rate monotonic is a static priority assignment
for periodic streams that assigns higher priority to streams with
shorter periods. This scheduling policy is a special case of deadline
monotonic but is better known and more likely to be supported by the
operating system.

 ■ Dynamic priority scheduling. Strategies include these:
 ■ Round-robin. Round-robin is a scheduling strategy that orders

the requests and then, at every assignment possibility, assigns
the resource to the next request in that order. A special form of

8.2 Tactics for Performance 141

round-robin is a cyclic executive, where assignment possibilities are
at fixed time intervals.

 ■ Earliest-deadline-first. Earliest-deadline-first. Earliest-deadline-first
assigns priorities based on the pending requests with the earliest
deadline.

 ■ Least-slack-first. This strategy assigns the highest priority to the job
having the least “slack time,” which is the difference between the exe-
cution time remaining and the time to the job’s deadline.

For a single processor and processes that are preemptible (that is, it is
possible to suspend processing of one task in order to service a task
whose deadline is drawing near), both the earliest-deadline and least-
slack scheduling strategies are optimal. That is, if the set of processes can
be scheduled so that all deadlines are met, then these strategies will be
able to schedule that set successfully.

 ■ Static scheduling. A cyclic executive schedule is a scheduling strategy
where the preemption points and the sequence of assignment to the
resource are determined offline. The runtime overhead of a scheduler is
thereby obviated.

Performance Tactics

Control Resource Demand Manage Resources

Manage Sampling Rate

Limit Event Response

Prioritize Events

Reduce Overhead

Bound Execution Times

Increase Resource
Efficiency

Event
Arrives

Response
Generated within
Time Constraints

Increase Resources

Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

fIGurE 8.3 Performance tactics

142 Part two Quality attributes 8—Performance

Performance Tactics on the Road

Tactics are generic design principles. To exercise this point, think about
the design of the systems of roads and highways where you live. Traffic
engineers employ a bunch of design “tricks” to optimize the performance
of these complex systems, where performance has a number of mea-
sures, such as throughput (how many cars per hour get from the suburbs
to the football stadium), average-case latency (how long it takes, on aver-
age, to get from your house to downtown), and worst-case latency (how
long does it take an emergency vehicle to get you to the hospital). What
are these tricks? None other than our good old buddies, tactics.

Let’s consider some examples:
 ■ Manage event rate. Lights on highway entrance ramps let cars onto the

highway only at set intervals, and cars must wait (queue) on the ramp for
their turn.

 ■ Prioritize events. Ambulances and police, with their lights and sirens
going, have higher priority than ordinary citizens; some highways have
high-occupancy vehicle (HOV) lanes, giving priority to vehicles with two
or more occupants.

 ■ Maintain multiple copies. Add traffic lanes to existing roads, or build
parallel routes.

In addition, there are some tricks that users of the system can employ:
 ■ Increase resources. Buy a Ferrari, for example. All other things being

equal, the fastest car with a competent driver on an open road will get
you to your destination more quickly.

 ■ Increase efficiency. Find a new route that is quicker and/or shorter than
your current route.

 ■ Reduce computational overhead. You can drive closer to the car in
front of you, or you can load more people into the same vehicle (that is,
carpooling).

What is the point of this discussion? To paraphrase Gertrude Stein: per-
formance is performance is performance. Engineers have been analyzing
and optimizing systems for centuries, trying to improve their performance,
and they have been employing the same design strategies to do so. So
you should feel some comfort in knowing that when you try to improve the
performance of your computer-based system, you are applying tactics that
have been thoroughly “road tested.”

—RK

8.3 a design checklist for Performance

Table 8.2 is a checklist to support the design and analysis process for performance.

8.3 A Design Checklist for Performance 143

tablE 8.2 Checklist to Support the Design and Analysis Process for
Performance

category checklist

Allocation of
Responsibilities

Determine the system’s responsibilities that will involve heavy
loading, have time-critical response requirements, are heavily
used, or impact portions of the system where heavy loads or
time-critical events occur.
For those responsibilities, identify the processing requirements
of each responsibility, and determine whether they may cause
bottlenecks.
Also, identify additional responsibilities to recognize and process
requests appropriately, including

 ■ Responsibilities that result from a thread of control crossing
process or processor boundaries

 ■ Responsibilities to manage the threads of control—allocation
and deallocation of threads, maintaining thread pools, and so
forth

 ■ Responsibilities for scheduling shared resources or
managing performance-related artifacts such as queues,
buffers, and caches

For the responsibilities and resources you identified, ensure that
the required performance response can be met (perhaps by
building a performance model to help in the evaluation).

Coordination
Model

Determine the elements of the system that must coordinate with
each other—directly or indirectly—and choose communication
and coordination mechanisms that do the following:

 ■ Support any introduced concurrency (for example, is it thread
safe?), event prioritization, or scheduling strategy

 ■ Ensure that the required performance response can be
delivered

 ■ Can capture periodic, stochastic, or sporadic event arrivals,
as needed

 ■ Have the appropriate properties of the communication
mechanisms; for example, stateful, stateless, synchronous,
asynchronous, guaranteed delivery, throughput, or latency

Data Model Determine those portions of the data model that will be heavily
loaded, have time-critical response requirements, are heavily
used, or impact portions of the system where heavy loads or
time-critical events occur.
For those data abstractions, determine the following:

 ■ Whether maintaining multiple copies of key data would
benefit performance

 ■ Whether partitioning data would benefit performance
 ■ Whether reducing the processing requirements for the

creation, initialization, persistence, manipulation, translation,
or destruction of the enumerated data abstractions is
possible

 ■ Whether adding resources to reduce bottlenecks for the
creation, initialization, persistence, manipulation, translation,
or destruction of the enumerated data abstractions is feasible

continues

144 Part two Quality attributes 8—Performance

tablE 8.2 Checklist to Support the Design and Analysis Process for
Performance, continued

category checklist

Mapping among
Architectural
Elements

Where heavy network loading will occur, determine whether
co-locating some components will reduce loading and improve
overall efficiency.
Ensure that components with heavy computation requirements
are assigned to processors with the most processing capacity.
Determine where introducing concurrency (that is, allocating
a piece of functionality to two or more copies of a component
running simultaneously) is feasible and has a significant positive
effect on performance.
Determine whether the choice of threads of control and their
associated responsibilities introduces bottlenecks.

Resource
Management

Determine which resources in your system are critical for
performance. For these resources, ensure that they will be
monitored and managed under normal and overloaded system
operation. For example:

 ■ System elements that need to be aware of, and manage,
time and other performance-critical resources

 ■ Process/thread models
 ■ Prioritization of resources and access to resources
 ■ Scheduling and locking strategies
 ■ Deploying additional resources on demand to meet increased

loads

Binding Time For each element that will be bound after compile time,
determine the following:

 ■ Time necessary to complete the binding
 ■ Additional overhead introduced by using the late binding

mechanism
Ensure that these values do not pose unacceptable performance
penalties on the system.

Choice of
Technology

Will your choice of technology let you set and meet hard, real-
time deadlines? Do you know its characteristics under load and
its limits?
Does your choice of technology give you the ability to set the
following:

 ■ Scheduling policy
 ■ Priorities
 ■ Policies for reducing demand
 ■ Allocation of portions of the technology to processors
 ■ Other performance-related parameters

Does your choice of technology introduce excessive overhead
for heavily used operations?

8.6 Discussion Questions 145

8.4 Summary

Performance is about the management of system resources in the face of partic-
ular types of demand to achieve acceptable timing behavior. Performance can be
measured in terms of throughput and latency for both interactive and embedded
real-time systems, although throughput is usually more important in interactive
systems, and latency is more important in embedded systems.

Performance can be improved by reducing demand or by managing re-
sources more appropriately. Reducing demand will have the side effect of re-
ducing fidelity or refusing to service some requests. Managing resources more
appropriately can be done through scheduling, replication, or just increasing the
resources available.

8.5 for further reading

Performance has a rich body of literature. Here are some books we recommend:

 ■ Software Performance and Scalability: A Quantitative Approach [Liu 09].
This books covers performance geared toward enterprise applications, with
an emphasis on queuing theory and measurement.

 ■ Performance Solutions: A Practical Guide to Creating Responsive, Scal-
able Software [Smith 01]. This book covers designing with performance in
mind, with emphasis on building (and populating with real data) practical
predictive performance models.

 ■ Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems [Douglass 99].

 ■ Real-Time Systems [Liu 00].
 ■ Pattern-Oriented Software Architecture Volume 3: Patterns for Resource

Management [Kircher 03].

8.6 discussion Questions

1. “Every system has real-time performance constraints.” Discuss. Or provide
a counterexample.

2. Write a performance scenario that describes the average on-time flight ar-
rival performance for an airline.

146 Part two Quality attributes 8—Performance

3. Write several performance scenarios for an automatic teller machine. Think
about whether your major concern is worst-case latency, average-case la-
tency, throughput, or some other response measure. How would you modify
your automatic teller machine design to accommodate these scenarios?

4. Web-based systems often use proxy servers, which are the first element of
the system to receive a request from a client (such as your browser). Proxy
servers are able to serve up often-requested web pages, such as a company’s
home page, without bothering the real application servers that carry out
transactions. There may be many proxy servers, and they are often located
geographically close to large user communities, to decrease response time
for routine requests. What performance tactics do you see at work here?

5. A fundamental difference between coordination mechanisms is whether
interaction is synchronous or asynchronous. Discuss the advantages and
disadvantages of each with respect to each of the performance responses:
latency, deadline, throughput, jitter, miss rate, data loss, or any other re-
quired performance-related response you may be used to.

6. Find real-world (that is, nonsoftware) examples of applying each of the
manage-resources tactics. For example, suppose you were managing a
brick-and-mortar big-box retail store. How would you get people through
the checkout lines faster using these tactics?

7. User interface frameworks typically are single-threaded. Why is this so and
what are the performance implications of this single-threading?

147

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

9
Security
With Jungwoo Ryoo and Phil Laplante

Your personal identity isn’t worth quite as much as
it used to be—at least to thieves willing to swipe it.

According to experts who monitor such markets, the
value of stolen credit card data may range from $3 to

as little as 40 cents. That’s down tenfold from a decade
ago—even though the cost to an individual who has a

credit card stolen can soar into the hundreds of dollars.
—Forbes.com (Taylor Buley. “Hackonomics,” Forbes.com,

October 27, 2008, www.forbes.com/2008/10/25/credit-card-
theft-tech-security-cz_tb1024theft.html)

Security is a measure of the system’s ability to protect data and information from
unauthorized access while still providing access to people and systems that are
authorized. An action taken against a computer system with the intention of do-
ing harm is called an attack and can take a number of forms. It may be an un-
authorized attempt to access data or services or to modify data, or it may be in-
tended to deny services to legitimate users.

The simplest approach to characterizing security has three characteristics:
confidentiality, integrity, and availability (CIA):

1. Confidentiality is the property that data or services are protected from
unauthorized access. For example, a hacker cannot access your income tax
returns on a government computer.

2. Integrity is the property that data or services are not subject to unauthorized
manipulation. For example, your grade has not been changed since your
instructor assigned it.

3. Availability is the property that the system will be available for legitimate
use. For example, a denial-of-service attack won’t prevent you from order-
ing book from an online bookstore.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

http://www.forbes.com/2008/10/25/creditcard-theft-tech-security-cz_tb1024theft.html
http://www.forbes.com/2008/10/25/creditcard-theft-tech-security-cz_tb1024theft.html

148 Part two Quality attributes 9—Security

Other characteristics that are used to support CIA are these:

4. Authentication verifies the identities of the parties to a transaction and
checks if they are truly who they claim to be. For example, when you get
an email purporting to come from a bank, authentication guarantees that it
actually comes from the bank.

5. Nonrepudiation guarantees that the sender of a message cannot later deny
having sent the message, and that the recipient cannot deny having received
the message. For example, you cannot deny ordering something from the
Internet, or the merchant cannot disclaim getting your order.

6. Authorization grants a user the privileges to perform a task. For example, an
online banking system authorizes a legitimate user to access his account.

We will use these characteristics in our general scenarios for security. Approaches
to achieving security can be characterized as those that detect attacks, those that
resist attacks, those that react to attacks, and those that recover from successful
attacks. The objects that are being protected from attacks are data at rest, data in
transit, and computational processes.

9.1 Security General Scenario

One technique that is used in the security domain is threat modeling. An “attack
tree,” similar to a fault tree discussed in Chapter 5, is used by security engineers
to determine possible threats. The root is a successful attack and the nodes are
possible direct causes of that successful attack. Children nodes decompose the
direct causes, and so forth. An attack is an attempt to break CIA, and the leaves of
attack trees would be the stimulus in the scenario. The response to the attack is to
preserve CIA or deter attackers through monitoring of their activities. From these
considerations we can now describe the individual portions of a security general
scenario. These are summarized in Table 9.1, and an example security scenario is
given in Figure 9.1.

 ■ Source of stimulus. The source of the attack may be either a human or
another system. It may have been previously identified (either correctly or
incorrectly) or may be currently unknown. A human attacker may be from
outside the organization or from inside the organization.

 ■ Stimulus. The stimulus is an attack. We characterize this as an unauthorized
attempt to display data, change or delete data, access system services,
change the system’s behavior, or reduce availability.

 ■ Artifact. The target of the attack can be either the services of the system,
the data within it, or the data produced or consumed by the system. Some
attacks are made on particular components of the system known to be
vulnerable.

9.1 Security General Scenario 149

 ■ Environment. The attack can come when the system is either online or
offline, either connected to or disconnected from a network, either behind a
firewall or open to a network, fully operational, partially operational, or not
operational.

 ■ Response. The system should ensure that transactions are carried out in a
fashion such that data or services are protected from unauthorized access;
data or services are not being manipulated without authorization; parties
to a transaction are identified with assurance; the parties to the transaction
cannot repudiate their involvements; and the data, resources, and system
services will be available for legitimate use.

The system should also track activities within it by recording access
or modification; attempts to access data, resources, or services; and noti-
fying appropriate entities (people or systems) when an apparent attack is
occurring.

 ■ Response measure. Measures of a system’s response include how much
of a system is compromised when a particular component or data value is
compromised, how much time passed before an attack was detected, how
many attacks were resisted, how long it took to recover from a successful
attack, and how much data was vulnerable to a particular attack.

Table 9.1 enumerates the elements of the general scenario, which charac-
terize security, and Figure 9.1 shows a sample concrete scenario: A disgruntled
employee from a remote location attempts to modify the pay rate table during
normal operations. The system maintains an audit trail, and the correct data is
restored within a day.

Stimulus: Response:

Response
Measure:Source: Environment:

Normal
Operations

3
2

1

4

Disgruntled
Employee from
Remote Location

Attempts to
Modify Pay
Rate

System
Maintains
Audit Trail

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

Artifact:
Data within
the System

fIGurE 9.1 Sample concrete security scenario

150 Part two Quality attributes 9—Security

tablE 9.1 Security General Scenario

Portion of
Scenario Possible Values

Source Human or another system which may have been previously
identified (either correctly or incorrectly) or may be currently
unknown. A human attacker may be from outside the organization or
from inside the organization.

Stimulus Unauthorized attempt is made to display data, change or delete
data, access system services, change the system’s behavior, or
reduce availability.

Artifact System services, data within the system, a component or resources
of the system, data produced or consumed by the system

Environment The system is either online or offline; either connected to or
disconnected from a network; either behind a firewall or open to a
network; fully operational, partially operational, or not operational.

Response Transactions are carried out in a fashion such that
 ■ Data or services are protected from unauthorized access.
 ■ Data or services are not being manipulated without authorization.
 ■ Parties to a transaction are identified with assurance.
 ■ The parties to the transaction cannot repudiate their

involvements.
 ■ The data, resources, and system services will be available for

legitimate use.
The system tracks activities within it by

 ■ Recording access or modification
 ■ Recording attempts to access data, resources, or services
 ■ Notifying appropriate entities (people or systems) when an

apparent attack is occurring

Response
Measure

One or more of the following:
 ■ How much of a system is compromised when a particular

component or data value is compromised
 ■ How much time passed before an attack was detected
 ■ How many attacks were resisted
 ■ How long does it take to recover from a successful attack
 ■ How much data is vulnerable to a particular attack

9.2 tactics for Security

One method for thinking about how to achieve security in a system is to think
about physical security. Secure installations have limited access (e.g., by using
security checkpoints), have means of detecting intruders (e.g., by requiring le-
gitimate visitors to wear badges), have deterrence mechanisms such as armed
guards, have reaction mechanisms such as automatic locking of doors, and have
recovery mechanisms such as off-site backup. These lead to our four categories
of tactics: detect, resist, react, and recover. Figure 9.2 shows these categories as
the goal of security tactics.

9.2 Tactics for Security 151

Attack System Detects, Resists,
Reacts, or Recovers

Tactics
to Control
Security

fIGurE 9.2 The goal of security tactics

detect attacks

The detect attacks category consists of four tactics: detect intrusion, detect service
denial, verify message integrity, and detect message delay.

 ■ Detect intrusion is the comparison of network traffic or service request
patterns within a system to a set of signatures or known patterns of
malicious behavior stored in a database. The signatures can be based on
protocol, TCP flags, payload sizes, applications, source or destination
address, or port number.

 ■ Detect service denial is the comparison of the pattern or signature of
network traffic coming into a system to historic profiles of known denial-of-
service attacks.

 ■ Verify message integrity. This tactic employs techniques such as
checksums or hash values to verify the integrity of messages, resource
files, deployment files, and configuration files. A checksum is a validation
mechanism wherein the system maintains redundant information for
configuration files and messages, and uses this redundant information
to verify the configuration file or message when it is used. A hash value
is a unique string generated by a hashing function whose input could be
configuration files or messages. Even a slight change in the original files or
messages results in a significant change in the hash value.

 ■ Detect message delay is intended to detect potential man-in-the-middle
attacks, where a malicious party is intercepting (and possibly modifying)
messages. By checking the time that it takes to deliver a message, it is
possible to detect suspicious timing behavior, where the time it takes to
deliver a message is highly variable.

152 Part Two Quality Attributes 9—Security

Resist Attacks

There are a number of well-known means of resisting an attack:

 ■ Identify actors. Identifying “actors” is really about identifying the source of
any external input to the system. Users are typically identified through user
IDs. Other systems may be “identified” through access codes, IP addresses,
protocols, ports, and so on.

 ■ Authenticate actors. Authentication means ensuring that an actor (a user or
a remote computer) is actually who or what it purports to be. Passwords,
one-time passwords, digital certificates, and biometric identification
provide a means for authentication.

 ■ Authorize actors. Authorization means ensuring that an authenticated actor
has the rights to access and modify either data or services. This mechanism
is usually enabled by providing some access control mechanisms within
a system. Access control can be by an actor or by an actor class. Classes
of actors can be defined by actor groups, by actor roles, or by lists of
individuals.

 ■ Limit access. Limiting access involves controlling what and who may access
which parts of a system. This may include limiting access to resources such
as processors, memory, and network connections, which may be achieved
by using process management, memory protection, blocking a host, closing
a port, or rejecting a protocol. For example, a firewall is a single point of
access to an organization’s intranet. A demilitarized zone (DMZ) is a subnet
between the Internet and an intranet, protected by two firewalls: one facing
the Internet and the other the intranet. A DMZ is used when an organization
wants to let external users access services that should be publicly available
outside the intranet. This way the number of open ports in the internal firewall
can be minimized. This tactic also limits access for actors (by identifying,
authenticating, and authorizing them).

 ■ Limit exposure. Limiting exposure refers to ultimately and indirectly
reducing the probability of a successful attack, or restricting the amount of
potential damage. This can be achieved by concealing facts about a system
to be protected (“security by obscurity”) or by dividing and distributing
critical resources so that the exploitation of a single weakness cannot fully
compromise any resource (“don’t put all your eggs in one basket”). For
example, a design decision to hide how many entry points a system has is a
way of limiting exposure. A decision to distribute servers amongst several
geographically dispersed data centers is also a way of limiting exposure.

 ■ Encrypt data. Data should be protected from unauthorized access.
Confidentiality is usually achieved by applying some form of encryption
to data and to communication. Encryption provides extra protection to
persistently maintained data beyond that available from authorization.
Communication links, on the other hand, may not have authorization
controls. In such cases, encryption is the only protection for passing data
over publicly accessible communication links. The link can be implemented
by a virtual private network (VPN) or by a Secure Sockets Layer (SSL) for

9.2 Tactics for Security 153

a web-based link. Encryption can be symmetric (both parties use the same
key) or asymmetric (public and private keys).

 ■ Separate entities. Separating different entities within the system can be
done through physical separation on different servers that are attached
to different networks; the use of virtual machines (see Chapter 26 for
a discussion of virtual machines); or an “air gap,” that is, by having no
connection between different portions of a system. Finally, sensitive
data is frequently separated from nonsensitive data to reduce the attack
possibilities from those who have access to nonsensitive data.

 ■ Change default settings. Many systems have default settings assigned
when the system is delivered. Forcing the user to change those settings will
prevent attackers from gaining access to the system through settings that
are, generally, publicly available.

React to Attacks

Several tactics are intended to respond to a potential attack:

 ■ Revoke access. If the system or a system administrator believes that
an attack is underway, then access can be severely limited to sensitive
resources, even for normally legitimate users and uses. For example, if your
desktop has been compromised by a virus, your access to certain resources
may be limited until the virus is removed from your system.

 ■ Lock computer. Repeated failed login attempts may indicate a potential
attack. Many systems limit access from a particular computer if there
are repeated failed attempts to access an account from that computer.
Legitimate users may make mistakes in attempting to log in. Therefore, the
limited access may only be for a certain time period.

 ■ Inform actors. Ongoing attacks may require action by operators, other
personnel, or cooperating systems. Such personnel or systems—the set of
relevant actors—must be notified when the system has detected an attack.

Recover from Attacks

Once a system has detected and attempted to resist an attack, it needs to recover.
Part of recovery is restoration of services. For example, additional servers or net-
work connections may be kept in reserve for such a purpose. Since a successful
attack can be considered a kind of failure, the set of availability tactics (from
Chapter 5) that deal with recovering from a failure can be brought to bear for this
aspect of security as well.

In addition to the availability tactics that permit restoration of services, we
need to maintain an audit trail. We audit—that is, keep a record of user and sys-
tem actions and their effects—to help trace the actions of, and to identify, an at-
tacker. We may analyze audit trails to attempt to prosecute attackers, or to create
better defenses in the future.

The set of security tactics is shown in Figure 9.3.

154 Part Two Quality Attributes 9—Security

Security Tactics

Resist Attacks

Encrypt Data

Attack System Detects,
Resists, Reacts,
or Recovers

Detect Attacks

Maintain
Audit Trail

Limit Exposure

Recover
from Attacks

React to
Attacks

Revoke
Access

Lock
Computer

Detect
Intrusion

Detect Service
Denial
Verify Message
Integrity

Detect Message
Delay

Change Default
Settings

Separate
Entities

Restore

See
Availability

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access

Inform
Actors

FIGURE 9.3 Security tactics

9.3 A Design Checklist for Security

Table 9.2 is a checklist to support the design and analysis process for security.

TABLE 9.2 Checklist to Support the Design and Analysis Process for Security

Category Checklist

Allocation of
Responsibilities

Determine which system responsibilities need to be secure.
For each of these responsibilities, ensure that additional
responsibilities have been allocated to do the following:

 ■ Identify the actor
 ■ Authenticate the actor
 ■ Authorize actors
 ■ Grant or deny access to data or services
 ■ Record attempts to access or modify data or services
 ■ Encrypt data
 ■ Recognize reduced availability for resources or services and

inform appropriate personnel and restrict access
 ■ Recover from an attack
 ■ Verify checksums and hash values

9.3 A Design Checklist for Security 155

category checklist

Coordination
Model

Determine mechanisms required to communicate and coordinate
with other systems or individuals. For these communications,
ensure that mechanisms for authenticating and authorizing the
actor or system, and encrypting data for transmission across
the connection, are in place. Ensure also that mechanisms exist
for monitoring and recognizing unexpectedly high demands for
resources or services as well as mechanisms for restricting or
terminating the connection.

Data Model Determine the sensitivity of different data fields. For each data
abstraction:

 ■ Ensure that data of different sensitivity is separated.
 ■ Ensure that data of different sensitivity has different access

rights and that access rights are checked prior to access.
 ■ Ensure that access to sensitive data is logged and that the log

file is suitably protected.
 ■ Ensure that data is suitably encrypted and that keys are

separated from the encrypted data.
 ■ Ensure that data can be restored if it is inappropriately

modified.

Mapping among
Architectural
Elements

Determine how alternative mappings of architectural elements
that are under consideration may change how an individual or
system may read, write, or modify data; access system services or
resources; or reduce availability to system services or resources.
Determine how alternative mappings may affect the recording
of access to data, services or resources and the recognition of
unexpectedly high demands for resources.
For each such mapping, ensure that there are responsibilities to do
the following:

 ■ Identify an actor
 ■ Authenticate an actor
 ■ Authorize actors
 ■ Grant or deny access to data or services
 ■ Record attempts to access or modify data or services
 ■ Encrypt data
 ■ Recognize reduced availability for resources or services, inform

appropriate personnel, and restrict access
 ■ Recover from an attack

Resource
Management

Determine the system resources required to identify and monitor
a system or an individual who is internal or external, authorized or
not authorized, with access to specific resources or all resources.
Determine the resources required to authenticate the actor, grant
or deny access to data or resources, notify appropriate entities
(people or systems), record attempts to access data or resources,
encrypt data, recognize inexplicably high demand for resources,
inform users or systems, and restrict access.
For these resources consider whether an external entity can
access a critical resource or exhaust a critical resource; how to
monitor the resource; how to manage resource utilization; how
to log resource utilization; and ensure that there are sufficient
resources to perform the necessary security operations.
Ensure that a contaminated element can be prevented from
contaminating other elements.
Ensure that shared resources are not used for passing sensitive
data from an actor with access rights to that data to an actor
without access rights to that data.

continues

156 Part two Quality attributes 9—Security

tablE 9.2 Checklist to Support the Design and Analysis Process for Security,
continued

category checklist

Binding Time Determine cases where an instance of a late-bound component
may be untrusted. For such cases ensure that late-bound
components can be qualified; that is, if ownership certificates
for late-bound components are required, there are appropriate
mechanisms to manage and validate them; that access to
late-bound data and services can be managed; that access by
late-bound components to data and services can be blocked; that
mechanisms to record the access, modification, and attempts to
access data or services by late-bound components are in place;
and that system data is encrypted where the keys are intentionally
withheld for late-bound components

Choice of
Technology

Determine what technologies are available to help user
authentication, data access rights, resource protection, and data
encryption.
Ensure that your chosen technologies support the tactics relevant
for your security needs.

9.4 Summary

Attacks against a system can be characterized as attacks against the confidential-
ity, integrity, or availability of a system or its data. Confidentiality means keeping
data away from those who should not have access while granting access to those
who should. Integrity means that there are no unauthorized modifications to or
deletion of data, and availability means that the system is accessible to those who
are entitled to use it.

The emphasis of distinguishing various classes of actors in the characteri-
zation leads to many of the tactics used to achieve security. Identifying, authen-
ticating, and authorizing actors are tactics intended to determine which users or
systems are entitled to what kind of access to a system.

An assumption is made that no security tactic is foolproof and that systems
will be compromised. Hence, tactics exist to detect an attack, limit the spread of
any attack, and to react and recover from an attack.

Recovering from an attack involves many of the same tactics as availability
and, in general, involves returning the system to a consistent state prior to any attack.

9.5 For Further Reading 157

9.5 for further reading

The architectural tactics that we have described in this chapter are only one as-
pect of making a system secure. Other aspects are these:

 ■ Coding. Secure Coding in C and C++ [Seacord 05] describes how to code
securely. The Common Weakness Enumeration [CWE 12] is a list of the
most common vulnerabilities discovered in systems.

 ■ Organizational processes. Organizations must have processes that provide
for responsibility for various aspects of security, including ensuring that
systems are patched to put into place the latest protections. The National
Institute of Standards and Technology (NIST) provides an enumeration of
organizational processes [NIST 09]. [Cappelli 12] discusses insider threats.

 ■ Technical processes. Microsoft has a life-cycle development process (The
Secure Development Life Cycle) that includes modeling of threats. Four
training classes are publicly available. www.microsoft.com/download/en/
details.aspx?id=16420

NIST has several volumes that give definitions of security terms [NIST 04],
categories of security controls [NIST 06], and an enumeration of security con-
trols that an organization could employ [NIST 09]. A security control could be a
tactic, but it could also be organizational, coding-related, or a technical process.

The attack surface of a system is the code that can be run by unauthorized
users. A discussion of how to minimize the attack surface for a system can be
found at [Howard 04].

Encryption and certificates of various types and strengths are commonly
used to resist certain types of attacks. Encryption algorithms are particularly dif-
ficult to code correctly. A document produced by NIST [NIST 02] gives require-
ments for these algorithms.

Good books on engineering systems for security have been written by Ross
Anderson [Anderson 08] and Bruce Schneier [Schneier 08].

Different domains have different specific sets of practices. The Payment
Card Industry (PCI) has a set of standards intended for those involved in credit
card processing (www.pcisecuritystandards.org). There is also a set of recom-
mendations for securing various portions of the electric grid (www.smartgridipe-
dia.org/index.php/ASAP-SG).

Data on the various sources of data breaches can be found in the Verizon
2012 Data Breach Investigations Report [Verizon 12].

John Viega has written several books about secure software development in
various environments. See, for example, [Viega 01].

http://www.microsoft.com/download/en/details.aspx?id=16420
http://www.microsoft.com/download/en/details.aspx?id=16420
http://www.pcisecuritystandards.org
http://www.smartgridipedia.org/index.php/ASAP-SG
http://www.smartgridipedia.org/index.php/ASAP-SG

158 Part two Quality attributes 9—Security

9.6 discussion Questions

1. Write a set of concrete scenarios for security for an automatic teller ma-
chine. How would you modify your design for the automatic teller machine
to satisfy these scenarios?

2. One of the most sophisticated attacks on record was carried out by a virus
known as Stuxnet. Stuxnet first appeared in 2009 but became widely known
in 2011 when it was revealed that it had apparently severely damaged or
incapacitated the high-speed centrifuges involved in Iran’s uranium en-
richment program. Read about Stuxnet and see if you can devise a defense
strategy against it based on the tactics in this chapter.

3. Some say that inserting security awareness into the software develop-
ment life cycle is at least as important as designing software with security
countermeasures. What are some examples of software development pro-
cesses that can lead to more-secure systems?

4. Security and usability are often seen to be at odds with each other. Security
often imposes procedures and processes that seem like needless overhead to
the casual user. But some say that security and usability go (or should go)
hand in hand and argue that making the system easy to use securely is the
best way to promote security to the user. Discuss.

5. List some examples of critical resources for security that might become
exhausted.

6. List an example of a mapping of architectural elements that has strong se-
curity implications. Hint: think of where data is stored.

7. Which of the tactics in our list will protect against an insider threat? Can
you think of any that should be added?

8. In the United States, Facebook can account for more than 5 percent of all
Internet traffic in a given week. How would you recognize a denial-of-ser-
vice attack on Facebook.com?

9. The public disclosure of vulnerabilities in production systems is a matter of
controversy. Discuss why this is so and the pros and cons of public disclo-
sure of vulnerabilities.

159

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

10
Testability

Testing leads to failure, and failure
leads to understanding

—Burt Rutan

Industry estimates indicate that between 30 and 50 percent (or in some cases,
even more) of the cost of developing well-engineered systems is taken up by test-
ing. If the software architect can reduce this cost, the payoff is large.

Software testability refers to the ease with which software can be made to
demonstrate its faults through (typically execution-based) testing. Specifically,
testability refers to the probability, assuming that the software has at least one
fault, that it will fail on its next test execution. Intuitively, a system is testable if it
“gives up” its faults easily. If a fault is present in a system, then we want it to fail
during testing as quickly as possible. Of course, calculating this probability is not
easy and, as you will see when we discuss response measures for testability, other
measures will be used.

Figure 10.1 shows a model of testing in which a program processes input
and produces output. An oracle is an agent (human or mechanical) that decides
whether the output is correct or not by comparing the output to the program’s
specification. Output is not just the functionally produced value, but it also can
include derived measures of quality attributes such as how long it took to produce
the output. Figure 10.1 also shows that the program’s internal state can also be
shown to the oracle, and an oracle can decide whether that is correct or not—that
is, it can detect whether the program has entered an erroneous state and render a
judgment as to the correctness of the program.

Setting and examining a program’s internal state is an aspect of testing that
will figure prominently in our tactics for testability.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

160 Part two Quality attributes 10—Testability

Program

Oracle { }

input output

approved
rejected

internal state

fIGurE 10.1 A model of testing

For a system to be properly testable, it must be possible to control each compo-
nent’s inputs (and possibly manipulate its internal state) and then to observe its
outputs (and possibly its internal state, either after or on the way to computing
the outputs). Frequently this control and observation is done through the use of a
test harness, which is specialized software (or in some cases, hardware) designed
to exercise the software under test. Test harnesses come in various forms, such
as a record-and-playback capability for data sent across various interfaces, or a
simulator for an external environment in which a piece of embedded software is
tested, or even during production (see sidebar). The test harness can provide as-
sistance in executing the test procedures and recording the output. A test harness
can be a substantial piece of software in its own right, with its own architecture,
stakeholders, and quality attribute requirements.

Testing is carried out by various developers, users, or quality assurance per-
sonnel. Portions of the system or the entire system may be tested. The response
measures for testability deal with how effective the tests are in discovering faults
and how long it takes to perform the tests to some desired level of coverage. Test
cases can be written by the developers, the testing group, or the customer. The
test cases can be a portion of acceptance testing or can drive the development as
they do in certain types of Agile methodologies.

Netflix’s Simian Army

Netflix distributes movies and television shows both via DVD and via
streaming video. Their streaming video service has been extremely suc-
cessful. In May 2011 Netflix streaming video accounted for 24 percent of the
Internet traffic in North America. Naturally, high availability is important to
Netflix.

Netflix hosts their computer services in the Amazon EC2 cloud, and they
utilize what they call a “Simian Army” as a portion of their testing process.
They began with a Chaos Monkey, which randomly kills processes in the

 10—Testability 161

running system. This allows the monitoring of the effect of failed processes
and gives the ability to ensure that the system does not fail or suffer serious
degradation as a result of a process failure.

Recently, the Chaos Monkey got some friends to assist in the testing.
Currently, the Netflix Simian Army includes these:

 ■ The Latency Monkey induces artificial delays in the client-server
communication layer to simulate service degradation and measures if
upstream services respond appropriately.

 ■ The Conformity Monkey finds instances that don’t adhere to best
practices and shuts them down. For example, if an instance does not
belong to an auto-scaling group, it will not appropriately scale when
demand goes up.

 ■ The Doctor Monkey taps into health checks that run on each instance as
well as monitors other external signs of health (e.g., CPU load) to detect
unhealthy instances.

 ■ The Janitor Monkey ensures that the Netflix cloud environment is
running free of clutter and waste. It searches for unused resources and
disposes of them.

 ■ The Security Monkey is an extension of Conformity Monkey. It finds
security violations or vulnerabilities, such as improperly configured
security groups, and terminates the offending instances. It also ensures
that all the SSL and digital rights management (DRM) certificates are
valid and are not coming up for renewal.

 ■ The 10-18 Monkey (localization-internationalization) detects
configuration and runtime problems in instances serving customers in
multiple geographic regions, using different languages and character
sets. The name 10-18 comes from L10n-i18n, a sort of shorthand for the
words localization and internationalization.

Some of the members of the Simian Army use fault injection to place
faults into the running system in a controlled and monitored fashion.
Other members monitor various specialized aspects of the system and its
environment. Both of these techniques have broader applicability than just
Netflix.

Not all faults are equal in terms of severity. More emphasis should be
placed on finding the most severe faults than on finding other faults. The
Simian Army reflects a determination by Netflix that the faults they look for
are the most serious in terms of their impact.

This strategy illustrates that some systems are too complex and adap-
tive to be tested fully, because some of their behaviors are emergent. An
aspect of testing in that arena is logging of operational data produced by
the system, so that when failures occur, the logged data can be analyzed in
the lab to try to reproduce the faults. Architecturally this can require mecha-
nisms to access and log certain system state. The Simian Army is one way
to discover and log behavior in systems of this ilk.

—LB

162 Part two Quality attributes 10—Testability

Testing of code is a special case of validation, which is making sure that an
engineered artifact meets the needs of its stakeholders or is suitable for use. In
Chapter 21 we will discuss architectural design reviews. This is another kind of
validation, where the artifact being tested is the architecture. In this chapter we
are concerned only with the testability of a running system and of its source code.

10.1 testability General Scenario

We can now describe the general scenario for testability.

 ■ Source of stimulus. The testing is performed by unit testers, integration
testers, or system testers (on the developing organization side), or
acceptance testers and end users (on the customer side). The source could
be human or an automated tester.

 ■ Stimulus. A set of tests is executed due to the completion of a coding incre-
ment such as a class layer or service, the completed integration of a subsys-
tem, the complete implementation of the whole system, or the delivery of
the system to the customer.

 ■ Artifact. A unit of code (corresponding to a module in the architecture), a
subsystem, or the whole system is the artifact being tested.

 ■ Environment. The test can happen at development time, at compile time, at
deployment time, or while the system is running (perhaps in routine use). The
environment can also include the test harness or test environments in use.

 ■ Response. The system can be controlled to perform the desired tests and the
results from the test can be observed.

 ■ Response measure. Response measures are aimed at representing how eas-
ily a system under test “gives up” its faults. Measures might include the
effort involved in finding a fault or a particular class of faults, the effort
required to test a given percentage of statements, the length of the longest
test chain (a measure of the difficulty of performing the tests), measures of
effort to perform the tests, measures of effort to actually find faults, esti-
mates of the probability of finding additional faults, and the length of time
or amount of effort to prepare the test environment.

Maybe one measure is the ease at which the system can be brought into
a specific state. In addition, measures of the reduction in risk of the remain-
ing errors in the system can be used. Not all faults are equal in terms of
their possible impact. Measures of risk reduction attempt to rate the severity
of faults found (or to be found).

Figure 10.2 shows a concrete scenario for testability. The unit tester com-
pletes a code unit during development and performs a test sequence whose results
are captured and that gives 85 percent path coverage within three hours of testing.

10.1 Testability General Scenario 163

Table 10.1 enumerates the elements of the general scenario that characterize
testability.

tablE 10.1 Testability General Scenario

Portion of Scenario Possible Values

Source Unit testers, integration testers, system testers, acceptance
testers, end users, either running tests manually or using
automated testing tools

Stimulus A set of tests is executed due to the completion of a coding
increment such as a class layer or service, the completed
integration of a subsystem, the complete implementation of the
whole system, or the delivery of the system to the customer.

Environment Design time, development time, compile time, integration time,
deployment time, run time

Artifacts The portion of the system being tested

Response One or more of the following: execute test suite and capture
results, capture activity that resulted in the fault, control and
monitor the state of the system

Response Measure One or more of the following: effort to find a fault or class of
faults, effort to achieve a given percentage of state space
coverage, probability of fault being revealed by the next
test, time to perform tests, effort to detect faults, length of
longest dependency chain in test, length of time to prepare
test environment, reduction in risk exposure (size(loss) ×
prob(loss))

Stimulus: Response:

Response
Measure:Source: Environment:

Development

3
2

1

4

Unit Tester

Code Unit
Completed

Results Captured

85% Path Coverage
in Three Hours

Artifact:
Code Unit

fIGurE 10. 2 Sample concrete testability scenario

164 Part two Quality attributes 10—Testability

10.2 tactics for testability

The goal of tactics for testability is to allow for easier testing when an increment
of software development is completed. Figure 10.3 displays the use of tactics for
testability. Architectural techniques for enhancing the software testability have not
received as much attention as more mature quality attribute disciplines such as
modifiability, performance, and availability, but as we stated before, anything the
architect can do to reduce the high cost of testing will yield a significant benefit.

There are two categories of tactics for testability. The first category deals
with adding controllability and observability to the system. The second deals
with limiting complexity in the system’s design.

control and Observe System State

Control and observation are so central to testability that some authors even define
testability in those terms. The two go hand-in-hand; it makes no sense to control
something if you can’t observe what happens when you do. The simplest form of
control and observation is to provide a software component with a set of inputs,
let it do its work, and then observe its outputs. However, the control and observe
system state category of testability tactics provides insight into software that goes
beyond its inputs and outputs. These tactics cause a component to maintain some
sort of state information, allow testers to assign a value to that state information,
and/or make that information accessible to testers on demand. The state infor-
mation might be an operating state, the value of some key variable, performance
load, intermediate process steps, or anything else useful to re-creating component
behavior. Specific tactics include the following:

Tests
Executed

Faults
Detected

Tactics
to Control
Testability

fIGurE 10.3 The goal of testability tactics

10.2 Tactics for Testability 165

 ■ Specialized interfaces. Having specialized testing interfaces allows you
to control or capture variable values for a component either through a test
harness or through normal execution. Examples of specialized test routines
include these:

 ■ A set and get method for important variables, modes, or attributes
(methods that might otherwise not be available except for testing
purposes)

 ■ A report method that returns the full state of the object
 ■ A reset method to set the internal state (for example, all the attributes of a

class) to a specified internal state
 ■ A method to turn on verbose output, various levels of event logging,

performance instrumentation, or resource monitoring

Specialized testing interfaces and methods should be clearly identified or
kept separate from the access methods and interfaces for required function-
ality, so that they can be removed if needed. (However, in performance-crit-
ical and some safety-critical systems, it is problematic to field different
code than that which was tested. If you remove the test code, how will you
know the code you field has the same behavior, particularly the same timing
behavior, as the code you tested? For other kinds of systems, however, this
strategy is effective.)

 ■ Record/playback. The state that caused a fault is often difficult to re-create.
Recording the state when it crosses an interface allows that state to be used
to “play the system back” and to re-create the fault. Record/playback refers
to both capturing information crossing an interface and using it as input for
further testing.

 ■ Localize state storage. To start a system, subsystem, or module in an arbi-
trary state for a test, it is most convenient if that state is stored in a single
place. By contrast, if the state is buried or distributed, this becomes difficult
if not impossible. The state can be fine-grained, even bit-level, or coarse-
grained to represent broad abstractions or overall operational modes. The
choice of granularity depends on how the states will be used in testing. A
convenient way to “externalize” state storage (that is, to make it able to be
manipulated through interface features) is to use a state machine (or state
machine object) as the mechanism to track and report current state.

 ■ Abstract data sources. Similar to controlling a program’s state, easily con-
trolling its input data makes it easier to test. Abstracting the interfaces lets
you substitute test data more easily. For example, if you have a database of
customer transactions, you could design your architecture so that it is easy
to point your test system at other test databases, or possibly even to files of
test data instead, without having to change your functional code.

 ■ Sandbox. “Sandboxing” refers to isolating an instance of the system from
the real world to enable experimentation that is unconstrained by the worry

166 Part two Quality attributes 10—Testability

about having to undo the consequences of the experiment. Testing is helped
by the ability to operate the system in such a way that it has no permanent
consequences, or so that any consequences can be rolled back. This can
be used for scenario analysis, training, and simulation. (The Spring frame-
work, which is quite popular in the Java community, comes with a set of
test utilities that support this. Tests are run as a “transaction,” which is
rolled back at the end.)

A common form of sandboxing is to virtualize resources. Testing a
system often involves interacting with resources whose behavior is outside
the control of the system. Using a sandbox, you can build a version of the
resource whose behavior is under your control. For example, the system
clock’s behavior is typically not under our control—it increments one
second each second—which means that if we want to make the system
think it’s midnight on the day when all of the data structures are supposed
to overflow, we need a way to do that, because waiting around is a poor
choice. By having the capability to abstract system time from clock time,
we can allow the system (or components) to run at faster than wall-clock
time, and to allow the system (or components) to be tested at critical time
boundaries (such as the next shift on or off Daylight Savings Time). Similar
virtualizations could be done for other resources, such as memory, battery,
network, and so on. Stubs, mocks, and dependency injection are simple but
effective forms of virtualization.

 ■ Executable assertions. Using this tactic, assertions are (usually) hand-coded
and placed at desired locations to indicate when and where a program is in
a faulty state. The assertions are often designed to check that data values
satisfy specified constraints. Assertions are defined in terms of specific data
declarations, and they must be placed where the data values are referenced
or modified. Assertions can be expressed as pre- and post-conditions for
each method and also as class-level invariants. This results in increasing
observability, when an assertion is flagged as having failed. Assertions
systematically inserted where data values change can be seen as a manual
way to produce an “extended” type. Essentially, the user is annotating
a type with additional checking code. Any time an object of that type is
modified, the checking code is automatically executed, and warnings are
generated if any conditions are violated. To the extent that the assertions
cover the test cases, they effectively embed the test oracle in the code—
assuming the assertions are correct and correctly coded.

All of these tactics add capability or abstraction to the software that (were we
not interested in testing) otherwise would not be there. They can be seen as replac-
ing bare-bones, get-the-job-done software with more elaborate software that has
bells and whistles for testing. There are a number of techniques for effecting this
replacement. These are not testability tactics, per se, but techniques for replacing
one component with a different version of itself. They include the following:

10.2 Tactics for Testability 167

 ■ Component replacement, which simply swaps the implementation of a
component with a different implementation that (in the case of testability)
has features that facilitate testing. Component replacement is often
accomplished in a system’s build scripts.

 ■ Preprocessor macros that, when activated, expand to state-reporting code or
activate probe statements that return or display information, or return con-
trol to a testing console.

 ■ Aspects (in aspect-oriented programs) that handle the cross-cutting concern
of how state is reported.

limit complexity

Complex software is harder to test. This is because, by the definition of complex-
ity, its operating state space is very large and (all else being equal) it is more dif-
ficult to re-create an exact state in a large state space than to do so in a small state
space. Because testing is not just about making the software fail but about finding
the fault that caused the failure so that it can be removed, we are often concerned
with making behavior repeatable. This category has three tactics:

 ■ Limit structural complexity. This tactic includes avoiding or resolving
cyclic dependencies between components, isolating and encapsulating
dependencies on the external environment, and reducing dependencies
between components in general (for example, reduce the number of
external accesses to a module’s public data). In object-oriented systems,
you can simplify the inheritance hierarchy: Limit the number of classes
from which a class is derived, or the number of classes derived from a
class. Limit the depth of the inheritance tree, and the number of children of
a class. Limit polymorphism and dynamic calls. One structural metric that
has been shown empirically to correlate to testability is called the response
of a class. The response of class C is a count of the number of methods
of C plus the number of methods of other classes that are invoked by the
methods of C. Keeping this metric low can increase testability.

Having high cohesion, loose coupling, and separation of concerns—all
modifiability tactics (see Chapter 7)—can also help with testability. They
are a form of limiting the complexity of the architectural elements by
giving each element a focused task with limited interaction with other ele-
ments. Separation of concerns can help achieve controllability and observ-
ability (as well as reducing the size of the overall program’s state space).
Controllability is critical to making testing tractable, as Robert Binder has
noted: “A component that can act independently of others is more readily
controllable. . . . With high coupling among classes it is typically more
difficult to control the class under test, thus reducing testability. . . . If user
interface capabilities are entwined with basic functions it will be more
difficult to test each function” [Binder 94].

168 Part two Quality attributes 10—Testability

Also, systems that require complete data consistency at all times are of-
ten more complex than those that do not. If your requirements allow it, con-
sider building your system under the “eventual consistency” model, where
sooner or later (but maybe not right now) your data will reach a consistent
state. This often makes system design simpler, and therefore easier to test.

Finally, some architectural styles lend themselves to testability. In a
layered style, you can test lower layers first, then test higher layers with
confidence in the lower layers.

 ■ Limit nondeterminism. The counterpart to limiting structural complexity
is limiting behavioral complexity, and when it comes to testing,
nondeterminism is a very pernicious form of complex behavior.
Nondeterministic systems are harder to test than deterministic systems.
This tactic involves finding all the sources of nondeterminism, such as
unconstrained parallelism, and weeding them out as much as possible.
Some sources of nondeterminism are unavoidable—for instance, in multi-
threaded systems that respond to unpredictable events—but for such
systems, other tactics (such as record/playback) are available.

Figure 10.4 provides a summary of the tactics used for testability.

Testability Tactics

Control and Observe
System State

Limit Complexity

Specialized
Interfaces

Limit Structural
Complexity

Limit
Nondeterminism

Tests
Executed

Faults
Detected

Record/
Playback

Localize State
Storage

Sandbox

Executable
Assertions

Abstract Data
Sources

fIGurE 10.4 Testability tactics

10.3 A Design Checklist for Testability 169

10.3 a design checklist for testability

Table 10.2 is a checklist to support the design and analysis process for testability.

tablE 10.2 Checklist to Support the Design and Analysis Process for Testability

category checklist

Allocation of
Responsibilities

Determine which system responsibilities are most critical
and hence need to be most thoroughly tested.
Ensure that additional system responsibilities have been
allocated to do the following:

 ■ Execute test suite and capture results (external test or
self-test)

 ■ Capture (log) the activity that resulted in a fault or that
resulted in unexpected (perhaps emergent) behavior
that was not necessarily a fault

 ■ Control and observe relevant system state for testing
Make sure the allocation of functionality provides high
cohesion, low coupling, strong separation of concerns, and
low structural complexity.

Coordination Model Ensure the system’s coordination and communication
mechanisms:

 ■ Support the execution of a test suite and capture the
results within a system or between systems

 ■ Support capturing activity that resulted in a fault within
a system or between systems

 ■ Support injection and monitoring of state into the
communication channels for use in testing, within a
system or between systems

 ■ Do not introduce needless nondeterminism

Data Model Determine the major data abstractions that must be tested
to ensure the correct operation of the system.

 ■ Ensure that it is possible to capture the values of
instances of these data abstractions

 ■ Ensure that the values of instances of these data
abstractions can be set when state is injected into the
system, so that system state leading to a fault may be
re-created

 ■ Ensure that the creation, initialization, persistence,
manipulation, translation, and destruction of instances
of these data abstractions can be exercised and
captured

Mapping among
Architectural Elements

Determine how to test the possible mappings of
architectural elements (especially mappings of processes
to processors, threads to processes, and modules to
components) so that the desired test response is achieved
and potential race conditions identified.
In addition, determine whether it is possible to test for
illegal mappings of architectural elements.

continues

170 Part two Quality attributes 10—Testability

tablE 10.2 Checklist to Support the Design and Analysis Process for
Testability, continued

category checklist

Resource Management Ensure there are sufficient resources available to execute
a test suite and capture the results. Ensure that your test
environment is representative of (or better yet, identical to)
the environment in which the system will run. Ensure that
the system provides the means to do the following:

 ■ Test resource limits
 ■ Capture detailed resource usage for analysis in the

event of a failure
 ■ Inject new resource limits into the system for the

purposes of testing
 ■ Provide virtualized resources for testing

Binding Time Ensure that components that are bound later than compile
time can be tested in the late-bound context.
Ensure that late bindings can be captured in the event of a
failure, so that you can re-create the system’s state leading
to the failure.
Ensure that the full range of binding possibilities can be
tested.

Choice of Technology Determine what technologies are available to help achieve
the testability scenarios that apply to your architecture. Are
technologies available to help with regression testing, fault
injection, recording and playback, and so on?
Determine how testable the technologies are that you have
chosen (or are considering choosing in the future) and
ensure that your chosen technologies support the level of
testing appropriate for your system. For example, if your
chosen technologies do not make it possible to inject state,
it may be difficult to re-create fault scenarios.

Now That Your Architecture Is Set to Help You Test . . .
By Nick Rozanski, coauthor (with Eoin Woods) of Software Systems
Architecture: Working With Stakeholders Using Viewpoints and
Perspectives

In addition to architecting your system to make it amenable to testing,
you will need to overcome two more specific and daunting challenges
when testing very large or complex systems, namely test data and test
automation.

Test Data
Your first challenge is how to create large, consistent and useful test
data sets. This is a significant problem in my experience, particularly for
integration testing (that is, testing a number of components to confirm that
they work together correctly) and performance testing (confirming that

10.3 A Design Checklist for Testability 171

the system meets it requirements for throughput, latency, and response
time). For unit tests, and usually for user acceptance tests, the test data is
typically created by hand.

For example, you might need 50 products, 100 customers, and 500
orders in your test database, so that you can test the functional steps
involved in creating, amending, or deleting orders. This data has to be
sufficiently varied to make testing worthwhile, it has to conform to all the
referential integrity rules and other constraints of your data model, and you
need to be able to calculate and specify the expected results of the tests.

I’ve seen—and been involved in—two ways of doing this: you either
write a system to generate your test data, or you capture a representative
data set from the production environment and anonymize it as necessary.
(Anonymizing test data involves removing any sensitive information, such as
personal data about people or organizations, financial details, and so on.)

Creating your own test data is the ideal, because you know what data
you are using and can ensure that it covers all of your edge cases, but it is
a lot of effort. Capturing data from the live environment is easier, assum-
ing that there is a system there already, but you don’t know what data and
hence what coverage you’re going to get, and you may have to take extra
care to conform to privacy and data protection legislation.

This can have an impact on the system’s architecture in a number of
ways, and should be given due consideration early on by the architect. For
example, the system may need to be able to capture live transactions, or
take “snapshots” of live data, which can be used to generate test data. In ad-
dition, the test-data-generation system may need an architecture of its own.

Test Automation
Your second challenge is around test automation. In practice it is not pos-
sible to test large systems by hand because of the number of tests, their
complexity, and the amount of checking of results that’s required. In the
ideal world, you create a test automation framework to do this automati-
cally, which you feed with test data, and set running every night, or even
run every time you check in something (the continuous integration model).

This is an area that is given too little attention on many large software
development projects. It is often not budgeted for in the project plan, with
an unwritten assumption that the effort needed to build it can be somehow
“absorbed” into the development costs. A test automation framework can
be a significantly complex thing in its own right (which raises the question
of how you test it!). It should be scoped and planned like any other project
deliverable.

Due consideration should be given to how the framework will invoke
functions on the system under test, particularly for testing user interfaces,
which is almost without exception a nightmare. (The execution of a UI test
is highly dependent on the layout of the windows, the ordering of fields,
and so on, which usually changes a lot in heavily user-focused systems.
It is sometimes possible to execute window controls programmatically, but
in the worst case you may have to record and replay keystrokes or mouse
movements.)

172 Part two Quality attributes 10—Testability

There are lots of tools to help with this nowadays, such as Quick Test
Pro, TestComplete, or Selenium for testing, and CruiseControl, Hudson,
and TeamCity for continuous integration. A comprehensive list on the web
can be found here: en.wikipedia.org/wiki/Test_automation.

10.4 Summary

Ensuring that a system is easily testable has payoffs both in terms of the cost of
testing and the reliability of the system. A vehicle often used to execute the tests
is the test harness. Test harnesses are software systems that encapsulate test re-
sources such as test cases and test infrastructure so that it is easy to reapply tests
across iterations and it is easy to apply the test infrastructure to new increments
of the system. Another vehicle is the creation of test cases prior to the develop-
ment of a component, so that developers know which tests their component must
pass.

Controlling and observing the system state is a major class of testability
tactics. Providing the ability to do fault injection, to record system state at key
portions of the system, to isolate the system from its environment, and to abstract
various resources are all different tactics to support the control and observation of
a system and its components.

Complex systems are difficult to test because of the large state space in
which their computations take place, and because of the larger number of inter-
connections among the elements of the system. Consequently, keeping the sys-
tem simple is another class of tactics that supports testability.

10.5 for further reading

An excellent general introduction to software testing is [Beizer 90]. For a more
modern take on testing, and from the software developer’s perspective rather than
the tester’s, Freeman and Pryce cover test-driven development in the object-ori-
ented realm [Freeman 09].

Bertolino and Strigini [Bertolino 96] are the developers of the model of test-
ing shown in Figure 10.1.

Yin and Bieman [Yin 94] have written about executable assertions. Hartman
[Hartman 10] describes a technique for using executable assertions as a means
for detecting race conditions.

Bruntink and van Deursen [Bruntink 06] write about the impact of structure
on testing.

10.6 Discussion Questions 173

Jeff Voas’s foundational work on testability and the relationship between
testability and reliability is worthwhile. There are several papers to choose from,
but [Voas 95] is a good start that will point you to others.

10.6 discussion Questions

1. A testable system is one that gives up its faults easily. That is, if a system
contains a fault, then it doesn’t take long or much effort to make that fault
show up. On the other hand, fault tolerance is all about designing systems
that jealously hide their faults; there, the whole idea is to make it very diffi-
cult for a system to reveal its faults. Is it possible to design a system that is
both highly testable and highly fault tolerant, or are these two design goals
inherently incompatible? Discuss.

2. “Once my system is in routine use by end users, it should not be highly
testable, because if it still contains faults—and all systems probably do—
then I don’t want them to be easily revealed.” Discuss.

3. Many of the tactics for testability are also useful for achieving modifiabili-
ty. Why do you think that is?

4. Write some concrete testability scenarios for an automatic teller machine.
How would you modify your design for the automatic teller machine to ac-
commodate these scenarios?

5. What other quality attributes do you think testability is most in conflict
with? What other quality attributes do you think testability is most compati-
ble with?

6. One of our tactics is to limit nondeterminism. One method is to use locking
to enforce synchronization. What impact does the use of locks have on oth-
er quality attributes?

7. Suppose you’re building the next great social networking system. You antic-
ipate that within a month of your debut, you will have half a million users.
You can’t pay half a million people to test your system, and yet it has to be
robust and easy to use when all half a million are banging away at it. What
should you do? What tactics will help you? Write a testability scenario for
this social networking system.

8. Suppose you use executable assertions to improve testability. Make a case
for, and then a case against, allowing the assertions to run in the production
system as opposed to removing them after testing.

This page intentionally left blank

175

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

11
Usability

Any darn fool can make something complex; it
takes a genius to make something simple.

—Albert Einstein

Usability is concerned with how easy it is for the user to accomplish a desired
task and the kind of user support the system provides. Over the years, a focus on
usability has shown itself to be one of the cheapest and easiest ways to improve a
system’s quality (or more precisely, the user’s perception of quality).

Usability comprises the following areas:

 ■ Learning system features. If the user is unfamiliar with a particular system
or a particular aspect of it, what can the system do to make the task of
learning easier? This might include providing help features.

 ■ Using a system efficiently. What can the system do to make the user more
efficient in its operation? This might include the ability for the user to redi-
rect the system after issuing a command. For example, the user may wish to
suspend one task, perform several operations, and then resume that task.

 ■ Minimizing the impact of errors. What can the system do so that a user
error has minimal impact? For example, the user may wish to cancel a com-
mand issued incorrectly.

 ■ Adapting the system to user needs. How can the user (or the system itself)
adapt to make the user’s task easier? For example, the system may automat-
ically fill in URLs based on a user’s past entries.

 ■ Increasing confidence and satisfaction. What does the system do to give the
user confidence that the correct action is being taken? For example, pro-
viding feedback that indicates that the system is performing a long-running
task and the extent to which the task is completed will increase the user’s
confidence in the system.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

176 Part two Quality attributes 11—Usability

11.1 usability General Scenario

The portions of the usability general scenarios are these:

 ■ Source of stimulus. The end user (who may be in a specialized role, such as
a system or network administrator) is always the source of the stimulus for
usability.

 ■ Stimulus. The stimulus is that the end user wishes to use a system efficient-
ly, learn to use the system, minimize the impact of errors, adapt the system,
or configure the system.

 ■ Environment. The user actions with which usability is concerned always
occur at runtime or at system configuration time.

 ■ Artifact. The artifact is the system or the specific portion of the system with
which the user is interacting.

 ■ Response. The system should either provide the user with the features need-
ed or anticipate the user’s needs.

 ■ Response measure. The response is measured by task time, number of
errors, number of tasks accomplished, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations, or amount of
time or data lost when an error occurs.

Table 11.1 enumerates the elements of the general scenario that characterize
usability.

Figure 11.1 gives an example of a concrete usability scenario that you could
generate using Table 11.1: The user downloads a new application and is using it
productively after two minutes of experimentation.

tablE 11.1 Usability General Scenario

Portion of Scenario Possible Values

Source End user, possibly in a specialized role

Stimulus End user tries to use a system efficiently, learn to use the
system, minimize the impact of errors, adapt the system, or
configure the system.

Environment Runtime or configuration time

Artifacts System or the specific portion of the system with which the
user is interacting

Response The system should either provide the user with the features
needed or anticipate the user’s needs.

Response Measure One or more of the following: task time, number of errors,
number of tasks accomplished, user satisfaction, gain of user
knowledge, ratio of successful operations to total operations,
or amount of time or data lost when an error occurs

11.2 Tactics for Usability 177

11.2 tactics for usability

Recall that usability is concerned with how easy it is for the user to accomplish
a desired task, as well as the kind of support the system provides to the user.
Researchers in human-computer interaction have used the terms user initiative,
system initiative, and mixed initiative to describe which of the human-computer
pair takes the initiative in performing certain actions and how the interaction pro-
ceeds. Usability scenarios can combine initiatives from both perspectives. For
example, when canceling a command, the user issues a cancel—user initiative—
and the system responds. During the cancel, however, the system may put up a
progress indicator—system initiative. Thus, cancel may demonstrate mixed ini-
tiative. We use this distinction between user and system initiative to discuss the
tactics that the architect uses to achieve the various scenarios.

Figure 11.2 shows the goal of the set of runtime usability tactics.

Stimulus: Response:

Response
Measure:Source: Environment:

Runtime

3
2

1

4

User

Downloads
a New
Application

User Uses
Application
Productively

Within Two
Minutes of
Experimentation

Artifact:
System

fIGurE 11.1 Sample concrete usability scenario

User
Request

User Given
Appropriate
Feedback and
Assistance

Tactics
to Control
Usability

fIGurE 11.2 The goal of runtime usability tactics

178 Part two Quality attributes 11—Usability

Separate the User Interface!

One of the most helpful things an architect can do to make a system
usable is to facilitate experimentation with the user interface via the con-
struction of rapid prototypes. Building a prototype, or several prototypes,
to let real users experience the interface and give their feedback pays
enormous dividends. The best way to do this is to design the software so
that the user interface can be quickly changed.

Tactics for modifiability that we saw in Chapter 7 support this goal per-
fectly well, especially these:

 ■ Increase semantic coherence, encapsulate, and co-locate related re-
sponsibilities, which localize user interface responsibilities to a single
place

 ■ Restrict dependencies, which minimizes the ripple effect to other soft-
ware when the user interface changes

 ■ Defer binding, which lets you make critical user interface choices without
having to recode

Defer binding is especially helpful here, because you can expect that
your product’s user interface will face pressure to change during testing
and even after it goes to market.

User interface generation tools are consistent with these tactics; most
produce a single module with an abstract interface to the rest of the soft-
ware. Many provide the capability to change the user interface after compile
time. You can do your part by restricting dependencies on the generated
module, should you later decide to adopt a different tool.

Much work in different user interface separation patterns occurred in the
1980s and 90s. With the advent of the web and the modernization of the
model-view-controller (MVC) pattern to reflect web interfaces, MVC has
become the dominant separation pattern. Now the MVC pattern is built into
a wide variety of different frameworks. (See Chapter 14 for a discussion of
MVC.) MVC makes it easy to provide multiple views of the data, supporting
user initiative, as we discuss next.

Many times quality attributes are in conflict with each other. Usability
and modifiability, on the other hand, often complement each other,
because one of the best ways to make a system more usable is to make
it modifiable. However, this is not always the case. In many systems busi-
ness rules drive the UI—for example, specifying how to validate input. To
realize this validation, the UI may need to call a server (which can neg-
atively affect performance). To get around this performance penalty, the
architect may choose to duplicate these rules in the client and the server,
which then makes evolution difficult. Alas, the architect’s life is never easy!

11.2 Tactics for Usability 179

There is a connection between the achievement of usability and modifiabil-
ity. The user interface design process consists of generating and then testing a
user interface design. Deficiencies in the design are corrected and the process
repeats. If the user interface has already been constructed as a portion of the sys-
tem, then the system must be modified to reflect the latest design. Hence the con-
nection with modifiability. This connection has resulted in standard patterns to
support user interface design (see sidebar).

Support user Initiative

Once a system is executing, usability is enhanced by giving the user feed-
back as to what the system is doing and by allowing the user to make appro-
priate responses. For example, the tactics described next—cancel, undo, pause/
resume, and aggregate—support the user in either correcting errors or being more
efficient.

The architect designs a response for user initiative by enumerating and al-
locating the responsibilities of the system to respond to the user command. Here
are some common examples of user initiative:

 ■ Cancel. When the user issues a cancel command, the system must be
listening for it (thus, there is the responsibility to have a constant listener
that is not blocked by the actions of whatever is being canceled); the
command being canceled must be terminated; any resources being
used by the canceled command must be freed; and components that are
collaborating with the canceled command must be informed so that they
can also take appropriate action.

 ■ Undo. To support the ability to undo, the system must maintain a sufficient
amount of information about system state so that an earlier state may be
restored, at the user’s request. Such a record may be in the form of state
“snapshots”—for example, checkpoints—or as a set of reversible oper-
ations. Not all operations can be easily reversed: for example, changing
all occurrences of the letter “a” to the letter “b” in a document cannot be
reversed by changing all instances of “b” to “a”, because some of those in-
stances of “b” may have existed prior to the original change. In such a case
the system must maintain a more elaborate record of the change. Of course,
some operations, such as ringing a bell, cannot be undone.

 ■ Pause/resume. When a user has initiated a long-running operation—say,
downloading a large file or set of files from a server—it is often useful to
provide the ability to pause and resume the operation. Effectively pausing a
long-running operation requires the ability to temporarily free resources so
that they may be reallocated to other tasks.

180 Part two Quality attributes 11—Usability

 ■ Aggregate. When a user is performing repetitive operations, or operations
that affect a large number of objects in the same way, it is useful to provide
the ability to aggregate the lower-level objects into a single group, so that
the operation may be applied to the group, thus freeing the user from the
drudgery (and potential for mistakes) of doing the same operation repeated-
ly. For example, aggregate all of the objects in a slide and change the text to
14-point font.

Support System Initiative

When the system takes the initiative, it must rely on a model of the user, the
task being undertaken by the user, or the system state itself. Each model requires
various types of input to accomplish its initiative. The support system initiative
tactics are those that identify the models the system uses to predict either its
own behavior or the user’s intention. Encapsulating this information will make
it easier for it to be tailored or modified. Tailoring and modification can be either
dynamically based on past user behavior or offline during development. These
tactics are the following:

 ■ Maintain task model. The task model is used to determine context so the
system can have some idea of what the user is attempting and provide
assistance. For example, knowing that sentences start with capital letters
would allow an application to correct a lowercase letter in that position.

 ■ Maintain user model. This model explicitly represents the user’s knowledge
of the system, the user’s behavior in terms of expected response time, and
other aspects specific to a user or a class of users. For example, maintaining
a user model allows the system to pace mouse selection so that not all of
the document is selected when scrolling is required. Or a model can control
the amount of assistance and suggestions automatically provided to a user.
A special case of this tactic is commonly found in user interface customiza-
tion, wherein a user can explicitly modify the system’s user model.

 ■ Maintain system model. Here the system maintains an explicit model
of itself. This is used to determine expected system behavior so that
appropriate feedback can be given to the user. A common manifestation of
a system model is a progress bar that predicts the time needed to complete
the current activity.

Figure 11.3 shows a summary of the tactics to achieve usability.

11.3 A Design Checklist for Usability 181

Usability Tactics

Support User
Initiative

Support System
Initiative

Cancel

Maintain User
Model

Maintain System
Model

User
Request

User Given
Appropriate

Feedback and
Assistance

Undo

Pause/Resume

Aggregate

Maintain Task
Model

fIGurE 11.3 Usability tactics

11.3 a design checklist for usability

Table 11.2 is a checklist to support the design and analysis process for usability.

tablE 11.2 Checklist to Support the Design and Analysis Process for Usability

category checklist

Allocation of
Responsibilities

Ensure that additional system responsibilities have been
allocated, as needed, to assist the user in the following:

 ■ Learning how to use the system
 ■ Efficiently achieving the task at hand
 ■ Adapting and configuring the system
 ■ Recovering from user and system errors

Coordination Model Determine whether the properties of system elements’
coordination—timeliness, currency, completeness,
correctness, consistency—affect how a user learns to use
the system, achieves goals or completes tasks, adapts
and configures the system, recovers from user and system
errors, and gains increased confidence and satisfaction.
For example, can the system respond to mouse events
and give semantic feedback in real time? Can long-running
events be canceled in a reasonable amount of time?

continues

182 Part two Quality attributes 11—Usability

tablE 11.2 Checklist to Support the Design and Analysis Process for Usability,
continued

category checklist

Data Model Determine the major data abstractions that are involved
with user-perceivable behavior. Ensure these major data
abstractions, their operations, and their properties have
been designed to assist the user in achieving the task at
hand, adapting and configuring the system, recovering from
user and system errors, learning how to use the system, and
increasing satisfaction and user confidence.
For example, the data abstractions should be designed
to support undo and cancel operations: the transaction
granularity should not be so great that canceling or undoing
an operation takes an excessively long time.

Mapping among
Architectural
Elements

Determine what mapping among architectural elements is
visible to the end user (for example, the extent to which the
end user is aware of which services are local and which
are remote). For those that are visible, determine how this
affects the ways in which, or the ease with which, the user
will learn how to use the system, achieve the task at hand,
adapt and configure the system, recover from user and
system errors, and increase confidence and satisfaction.

Resource
Management

Determine how the user can adapt and configure the
system’s use of resources. Ensure that resource limitations
under all user-controlled configurations will not make users
less likely to achieve their tasks. For example, attempt to
avoid configurations that would result in excessively long
response times. Ensure that the level of resources will not
affect the users’ ability to learn how to use the system, or
decrease their level of confidence and satisfaction with the
system.

Binding Time Determine which binding time decisions should be under
user control and ensure that users can make decisions
that aid in usability. For example, if the user can choose, at
runtime, the system’s configuration, or its communication
protocols, or its functionality via plug-ins, you need to ensure
that such choices do not adversely affect the user’s ability to
learn system features, use the system efficiently, minimize
the impact of errors, further adapt and configure the system,
or increase confidence and satisfaction.

Choice of Technology Ensure the chosen technologies help to achieve the usability
scenarios that apply to your system. For example, do these
technologies aid in the creation of online help, the production
of training materials, and the collection of user feedback?
How usable are any of your chosen technologies? Ensure
the chosen technologies do not adversely affect the usability
of the system (in terms of learning system features, using the
system efficiently, minimizing the impact of errors, adapting/
configuring the system, and increasing confidence and
satisfaction).

11.6 Discussion Questions 183

11.4 Summary

Architectural support for usability involves both allowing the user to take the ini-
tiative—in circumstances such as canceling a long-running command or undoing
a completed command—and aggregating data and commands.

To be able to predict user or system responses, the system must keep an ex-
plicit model of the user, the system, and the task.

There is a strong relationship between supporting the user interface design
process and supporting modifiability; this relation is promoted by patterns that
enforce separation of the user interface from the rest of the system, such as the
MVC pattern.

11.5 for further reading

Claire Marie Karat has investigated the relation between usability and business
advantage [Karat 94].

Jakob Nielsen has also written extensively on this topic, including a calcula-
tion on the ROI of usability [Nielsen 08].

Bonnie John and Len Bass have investigated the relation between usabil-
ity and software architecture. They have enumerated around two dozen usability
scenarios that have architectural impact and given associated patterns for these
scenarios [Bass 03].

Greg Hartman has defined attentiveness as the ability of the system to sup-
port user initiative and allow cancel or pause/resume [Hartman 10].

Some of the patterns for separating the user interface are Arch/Slinky, See-
heim, and PAC. These are discussed in Chapter 8 of Human-Computer Interac-
tion [Dix 04].

11.6 discussion Questions

1. Write a concrete usability scenario for your automobile that specifies how
long it takes you to set your favorite radio stations? Now consider another
part of the driver experience and create scenarios that test other aspects of
the response measures from the general scenario table.

2. Write a concrete usability scenario for an automatic teller machine. How
would your design be modified to satisfy these scenarios?

184 Part two Quality attributes 11—Usability

3. How might usability trade off against security? How might it trade off
against performance?

4. Pick a few of your favorite web sites that do similar things, such as social
networking or online shopping. Now pick one or two appropriate responses
from the usability general scenario (such as “achieve the task at hand”) and
a correspondingly appropriate response measure. Using the response and
response measure you chose, compare the web sites’ usability.

5. Specify the data model for a four-function calculator that allows undo.

6. Why is it that in so many systems, the cancel button in a dialog box appears
to be unresponsive? What architectural principles do you think were ig-
nored in these systems?

7. Why do you think that progress bars frequently behave erratically, moving
from 10 to 90 percent in one step and then getting stuck on 90 percent?

8. Research the crash of Air France Flight 296 into the forest at Habsheim,
France, on June 26, 1988. The pilots said they were unable to read the dig-
ital display of the radio altimeter or hear its audible readout. If they could
have, do you believe the crash would have been averted? In this context,
discuss the relationship between usability and safety.

185

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

12
Other Quality Attributes

Quality is not an act, it is a habit.
—Aristotle

Chapters 5–11 each dealt with a particular quality attribute important to software
systems. Each of those chapters discussed how its particular quality attribute is
defined, gave a general scenario for that quality attribute, and showed how to
write specific scenarios to express precise shades of meaning concerning that
quality attribute. And each gave a collection of techniques to achieve that quality
attribute in an architecture. In short, each chapter presented a kind of portfolio for
specifying and designing to achieve a particular quality attribute.
Those seven chapters covered seven of the most important quality attributes, in
terms of their occurrence in modern software-reliant systems. However, as is no
doubt clear, seven only begins to scratch the surface of the quality attributes that
you might find needed in a software system you’re working on.
Is cost a quality attribute? It is not a technical quality attribute, but it certainly
affects fitness for use. We consider economic factors in Chapter 23.
This chapter will give a brief introduction to a few other quality attributes—a
sort of “B list” of quality attributes—but, more important, show how to build the
same kind of specification or design portfolio for a quality attribute not covered
in our list.

12.1 Other Important Quality attributes

Besides the quality attributes we’ve covered in depth in Chapters 5–11, some oth-
ers that arise frequently are variability, portability, development distributability,
scalability and elasticity, deployability, mobility, and monitorability. We discuss
“green” computing in Section 12.3.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

186 Part two Quality attributes 12—Other Quality Attributes

Variability

Variability is a special form of modifiability. It refers to the ability of a system
and its supporting artifacts such as requirements, test plans, and configuration
specifications to support the production of a set of variants that differ from each
other in a preplanned fashion. Variability is an especially important quality at-
tribute in a software product line (this will be explored in depth in Chapter 25),
where it means the ability of a core asset to adapt to usages in the different prod-
uct contexts that are within the product line scope. The goal of variability in a
software product line is to make it easy to build and maintain products in the
product line over a period of time. Scenarios for variability will deal with the
binding time of the variation and the people time to achieve it.

Portability

Portability is also a special form of modifiability. Portability refers to the ease
with which software that was built to run on one platform can be changed to
run on a different platform. Portability is achieved by minimizing platform de-
pendencies in the software, isolating dependencies to well-identified locations,
and writing the software to run on a “virtual machine” (such as a Java Virtual
Machine) that encapsulates all the platform dependencies within. Scenarios de-
scribing portability deal with moving software to a new platform by expending
no more than a certain level of effort or by counting the number of places in the
software that would have to change.

development distributability

Development distributability is the quality of designing the software to support
distributed software development. Many systems these days are developed using
globally distributed teams. One problem that must be overcome when develop-
ing with distributed teams is coordinating their activities. The system should be
designed so that coordination among teams is minimized. This minimal coor-
dination needs to be achieved both for the code and for the data model. Teams
working on modules that communicate with each other may need to negotiate
the interfaces of those modules. When a module is used by many other mod-
ules, each developed by a different team, communication and negotiation become
more complex and burdensome. Similar considerations apply for the data model.
Scenarios for development distributability will deal with the compatibility of the
communication structures and data model of the system being developed and the
coordination mechanisms of the organizations doing the development.

12.1 Other Important Quality Attributes 187

Scalability

Two kinds of scalability are horizontal scalability and vertical scalability. Hori-
zontal scalability (scaling out) refers to adding more resources to logical units,
such as adding another server to a cluster of servers. Vertical scalability (scaling
up) refers to adding more resources to a physical unit, such as adding more mem-
ory to a single computer. The problem that arises with either type of scaling is
how to effectively utilize the additional resources. Being effective means that the
additional resources result in a measurable improvement of some system quality,
did not require undue effort to add, and did not disrupt operations. In cloud en-
vironments, horizontal scalability is called elasticity. Elasticity is a property that
enables a customer to add or remove virtual machines from the resource pool (see
Chapter 26 for further discussion of such environments). These virtual machines
are hosted on a large collection of upwards of 10,000 physical machines that are
managed by the cloud provider. Scalability scenarios will deal with the impact of
adding or removing resources, and the measures will reflect associated availabil-
ity and the load assigned to existing and new resources.

deployability

Deployability is concerned with how an executable arrives at a host platform and
how it is subsequently invoked. Some of the issues involved in deploying soft-
ware are: How does it arrive at its host (push, where updates are sent to users un-
bidden, or pull, where users must explicitly request updates)? How is it integrated
into an existing system? Can this be done while the existing system is executing?
Mobile systems have their own problems in terms of how they are updated, be-
cause of concerns about bandwidth. Deployment scenarios will deal with the type
of update (push or pull), the form of the update (medium, such as DVD or Inter-
net download, and packaging, such as executable, app, or plug-in), the resulting
integration into an existing system, the efficiency of executing the process, and
the associated risk.

Mobility

Mobility deals with the problems of movement and affordances of a platform
(e.g., size, type of display, type of input devices, availability and volume of
bandwidth, and battery life). Issues in mobility include battery management,
reconnecting after a period of disconnection, and the number of different user
interfaces necessary to support multiple platforms. Scenarios will deal with spec-
ifying the desired effects of mobility or the various affordances. Scenarios may
also deal with variability, where the same software is deployed on multiple (per-
haps radically different) platforms.

188 Part two Quality attributes 12—Other Quality Attributes

Monitorability

Monitorability deals with the ability of the operations staff to monitor the system
while it is executing. Items such as queue lengths, average transaction processing
time, and the health of various components should be visible to the operations
staff so that they can take corrective action in case of potential problems. Sce-
narios will deal with a potential problem and its visibility to the operator, and
potential corrective action.

Safety

In 2009 an employee of the Shushenskaya hydroelectric power station in Siberia
sent commands over a network to remotely, and accidentally, activate an unused
turbine. The offline turbine created a “water hammer” that flooded and then de-
stroyed the plant and killed dozens of workers.

The thought that software could kill people used to belong in the realm of
kitschy computers-run-amok science fiction. Sadly, it didn’t stay there. As soft-
ware has come to control more and more of the devices in our lives, software
safety has become a critical concern.

Safety is not purely a software concern, but a concern for any system that
can affect its environment. As such it receives mention in Section 12.3, where we
discuss system quality attributes. But there are means to address safety that are
wholly in the software realm, which is why we discuss it here as well.

Software safety is about the software’s ability to avoid entering states that
cause or lead to damage, injury, or loss of life to actors in the software’s envi-
ronment, and to recover and limit the damage when it does enter into bad states.
Another way to put this is that safety is concerned with the prevention of and
recovery from hazardous failures. Because of this, the architectural concerns with
safety are almost identical to those for availability, which is also about avoiding
and recovering from failures. Tactics for safety, then, overlap with those for avail-
ability to a large degree. Both comprise tactics to prevent failures and to detect
and recover from failures that do occur.

Safety is not the same as reliability. A system can be reliable (consistent
with its specification) but still unsafe (for example, when the specification ig-
nores conditions leading to unsafe action). In fact, paying careful attention to the
specification for safety-critical software is perhaps the most powerful thing you
can do to produce safe software. Failures and hazards cannot be detected, pre-
vented, or ameliorated if the software has not been designed with them in mind.
Safety is frequently engineered by performing failure mode and effects analy-
sis, hazard analysis, and fault tree analysis. (These techniques are discussed in
Chapter 5.) These techniques are intended to discover possible hazards that could
result from the system’s operation and provide plans to cope with these hazards.

12.2 Other Categories of Quality Attributes 189

12.2 Other categories of Quality attributes

We have primarily focused on product qualities in our discussions of quality at-
tributes, but there are other types of quality attributes that measure “goodness” of
something other than the final product. Here are three:

conceptual Integrity of the architecture

Conceptual integrity refers to consistency in the design of the architecture, and it
contributes to the understandability of the architecture and leads to fewer errors
of confusion. Conceptual integrity demands that the same thing is done in the
same way through the architecture. In an architecture with conceptual integrity,
less is more. For example, there are countless ways that components can send
information to each other: messages, data structures, signaling of events, and so
forth. An architecture with conceptual integrity would feature one way only, and
only provide alternatives if there was a compelling reason to do so. Similarly,
components should all report and handle errors in the same way, log events or
transactions in the same way, interact with the user in the same way, and so forth.

Quality in use

ISO/IEC 25010, which we discuss in Section 12.4, has a category of qualities that
pertain to the use of the system by various stakeholders. For example, time-to-
market is an important characteristic of a system, but it is not discernible from an
examination of the product itself. Some of the qualities in this category are these:

 ■ Effectiveness. This refers to the distinction between building the system
correctly (the system performs according to its requirements) and building
the correct system (the system performs in the manner the user wishes).
Effectiveness is a measure of whether the system is correct.

 ■ Efficiency. The effort and time required to develop a system. Put another
way, what is the architecture’s impact on the project’s cost and schedule?
Would a different set of architectural choices have resulted in a system
that would be faster or cheaper to bring to fruition? Efficiency can include
training time for developers; an architecture that uses technology unfamiliar
to the staff on hand is less buildable. Is the architecture appropriate for the
organization in terms of its experience and its available supporting infra-
structure (such as test facilities or development environments)?

 ■ Freedom from risk. The degree to which a product or system affects
economic status, human life, health, or the environment.

190 Part two Quality attributes 12—Other Quality Attributes

A special case of efficiency is how easy it is to build (that is, compile and
assemble) the system after a change. This becomes critical during testing. A
recompile process that takes hours or overnight is a schedule-killer. Architects
have control over this by managing dependencies among modules. If the archi-
tect doesn’t do this, then what often happens is that some bright-eyed developer
writes a makefile early on, it works, and people add to it and add to it. Eventually
the project ends up with a seven-hour compile step and very unhappy integrators
and testers who are already behind schedule (because they always are).

Marketability

An architecture’s marketability is another quality attribute of concern. Some sys-
tems are well known by their architectures, and these architectures sometimes
carry a meaning all their own, independent of what other quality attributes they
bring to the system. The current craze in building cloud-based systems has taught
us that the perception of an architecture can be more important than the qualities
the architecture brings. Many organizations have felt they had to build cloud-
based systems (or some other technology du jour) whether or not that was the
correct technical choice.

12.3 Software Quality attributes and
System Quality attributes

Physical systems, such as aircraft or automobiles or kitchen appliances, that rely
on software embedded within are designed to meet a whole other litany of qual-
ity attributes: weight, size, electric consumption, power output, pollution output,
weather resistance, battery life, and on and on. For many of these systems, safety
tops the list (see the sidebar).

Sometimes the software architecture can have a surprising effect on the sys-
tem’s quality attributes. For example, software that makes inefficient use of com-
puting resources might require additional memory, a faster processor, a bigger
battery, or even an additional processor. Additional processors can add to a sys-
tem’s power consumption, weight, required cabinet space, and of course expense.

Green computing is an issue of growing concern. Recently there was a con-
troversy about how much greenhouse gas was pumped into the atmosphere by
Google’s massive processor farms. Given the daily output and the number of
daily requests, it is possible to estimate how much greenhouse gas you cause to be
emitted each time you ask Google to perform a search. (Current estimates range
from 0.2 grams to 7 grams of CO

2
.) Green computing is all the rage. Eve Troeh,

on the American Public Media show “Marketplace” (July 5, 2011), reports:

12.3 Software Quality Attributes and System Quality Attributes 191

Two percent of all U.S. electricity now goes to data centers, according
to the Environmental Protection Agency. Electricity has become the
biggest cost for processing data—more than the equipment to do it,
more than the buildings to house that equipment. . . . Google’s making
data servers that can float offshore, cooled by ocean breezes. HP has
plans to put data servers near farms, and power them with methane gas
from cow pies.

The lesson here is that if you are the architect for software that resides in a
larger system, you will need to understand the quality attributes that are import-
ant for the containing system to achieve, and work with the system architects and
engineers to see how your software architecture can contribute to achieving them.

The Vanishing Line between Software and System Qualities

This is a book about software architecture, and so we treat quality attri-
butes from a software architect’s perspective. But you may have already
noticed that the quality attributes that the software architect can bring to
the party are limited by the architecture of the system in which the soft-
ware runs.

For example:

 ■ The performance of a piece of software is fundamentally constrained
by the performance of the computer that runs it. No matter how well you
design the software, you just can’t run the latest whole-earth weather
forecasting models on Grampa’s Commodore 64 and hope to know if it’s
going to rain tomorrow.

 ■ Physical security is probably more important and more effective than
software security at preventing fraud and theft. If you don’t believe this,
write your laptop’s password on a slip of paper, tape it to your laptop,
and leave it in an unlocked car with the windows down. (Actually, don’t
really do that. Consider this a thought experiment.)

 ■ If we’re being perfectly honest here, how usable is a device for web
browsing that has a screen smaller than a credit card and keys the size
of a raisin?

For me, nowhere is the barrier between software and system more
nebulous than in the area of safety. The thought that software—strings
of 0’s and 1’s—can kill or maim or destroy is still an unnatural notion. Of
course, it’s not the 0’s and 1’s that wreak havoc. At least, not directly. It’s
what they’re connected to. Software, and the system in which it runs, has
to be connected to the outside world in some way before it can do damage.
That’s the good news. The bad news is that the good news isn’t all that
good. Software is connected to the outside world, always. If your program

192 Part two Quality attributes 12—Other Quality Attributes

has no effect whatsoever that is observable outside of itself, it probably
serves no purpose.

There are notorious examples of software-related failures. The Siberian
hydroelectric plant catastrophe mentioned in the text, the Therac-25 fatal
radiation overdose, the Ariane 5 explosion, and a hundred lesser known
accidents all caused harm because the software was part of a system that
included a turbine, an X-ray emitter, or a rocket’s steering controls, in the
examples just cited. In these cases, flawed software commanded some
hardware in the system to take a disastrous action, and the hardware sim-
ply obeyed. Actuators are devices that connect hardware to software; they
are the bridge between the world of 0’s and 1’s and the world of motion and
control. Send a digital value to an actuator (or write a bit string in the hard-
ware register corresponding to the actuator) and that value is translated to
some mechanical action, for better or worse.

But connection to an actuator is not required for software-related disas-
ters. Sometimes all the computer has to do is send erroneous information
to its human operators. In September 1983, a Soviet satellite sent data
to its ground system computer, which interpreted that data as a missile
launched from the United States aimed at Moscow. Seconds later, the
computer reported a second missile in flight. Soon, a third, then a fourth,
and then a fifth appeared. Soviet Strategic Rocket Forces lieutenant colonel
Stanislav Yevgrafovich Petrov made the astonishing decision to ignore the
warning system, believing it to be in error. He thought it extremely unlikely
that the U.S. would have fired just a few missiles, thereby inviting total
retaliatory destruction. He decided to wait it out, to see if the missiles were
real—that is, to see if his country’s capital city was going to be incinerated.
As we know, it wasn’t. The Soviet system had mistaken a rare sunlight con-
dition for missiles in flight. Similar mistakes have occurred on the U.S. side.

Of course, the humans don’t always get it right. On the dark and stormy
night of June 1, 2009, Air France flight 447 from Rio de Janeiro to Paris
plummeted into the Atlantic Ocean, killing all on board. The Airbus A-330’s
flight recorders were not recovered until May 2011, and as this book goes
to publication it appears that the pilots never knew that the aircraft had en-
tered a high-altitude stall. The sensors that measure airspeed had become
clogged with ice and therefore unreliable. The software was required to dis-
engage the autopilot in this situation, which it did. The human pilots thought
the aircraft was going too fast (and in danger of structural failure) when in
fact it was going too slow (and falling). During the entire three-minute-plus
plunge from 38,000 feet, the pilots kept trying to pull the nose up and throt-
tles back to lower the speed. It’s a good bet that adding to the confusion
was the way the A-330’s stall warning system worked. When the system
detects a stall, it emits a loud audible alarm. The computers deactivate the
stall warning when they “think” that the angle of attack measurements are
invalid. This can occur when the airspeed readings are very low. That is ex-
actly what happened with Air France 447: Its forward speed dropped below
60 knots, and the angle of attack was extremely high. As a consequence
of a rule in the flight control software, the stall warning stopped and started

12.4 Using Standard Lists of Quality Attributes—or Not 193

several times. Worse, it came on whenever the pilot let the nose fall a bit
(increasing the airspeed and taking the readings into the “valid” range, but
still in stall) and then stopped when he pulled back. That is, doing the right
thing resulted in the wrong feedback and vice versa.

Was this an unsafe system, or a safe system unsafely operated?
Ultimately the courts will decide.

Software that can physically harm us is a fact of our modern life.
Sometimes the link between software and physical harm is direct, as in
the Ariane example, and sometimes it’s much more tenuous, as in the Air
France 447 example. But as software professionals, we cannot take refuge
in the fact that our software can’t actually inflict harm any more than the
person who shouts “Fire!” in a crowded theater can claim it was the stam-
pede, not the shout, that caused injury.

—PCC

12.4 using Standard lists of Quality attributes—or Not

Architects have no shortage of lists of quality attributes for software systems at
their disposal. The standard with the pause-and-take-a-breath title of “ISO/IEC
FCD 25010: Systems and software engineering—Systems and software product
Quality Requirements and Evaluation (SQuaRE)—System and software quality
models,” is a good example. The standard divides quality attributes into those
supporting a “quality in use” model and those supporting a “product quality”
model. That division is a bit of a stretch in some places, but nevertheless begins
a divide-and-conquer march through a breathtaking array of qualities. See Figure
12.1 for this array.

The standard lists the following quality attributes that deal with product
quality:

 ■ Functional suitability. The degree to which a product or system provides
functions that meet stated and implied needs when used under specified
conditions

 ■ Performance efficiency. Performance relative to the amount of resources
used under stated conditions

 ■ Compatibility. The degree to which a product, system, or component can
exchange information with other products, systems, or components, and/or
perform its required functions, while sharing the same hardware or software
environment

 ■ Usability. The degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency, and satisfac-
tion in a specified context of use

194
P

art tw
o

Q

u
ality a

ttribu
tes

12—
O

ther Q
uality A

ttributes

System Software
Product Quality

Functional
suitability

Functional
completeness

Functional
correctness

Functional
appropriateness

Performance
efficiency

Time behavior

Resource
utilization

Capacity

Compatibility

Coexistence

Interoperability

Learnability

Operability

User interface
aesthetics

Accessibility

Reliability

Maturity

Availability

Fault tolerance

Recoverability

Security

Confidentiality

Integrity

Nonrepudiation

Accountability

Authenticity

Maintainability

Modularity

Reusability

Analyzability

Modifiability

Testability

Usability

Appropriateness
recognizability

User error
prediction

Portability

Adaptability

Installability

Replaceability

fIGurE 12.1 The ISO/IEC FCD 25010 product quality standard

12.4 Using Standard Lists of Quality Attributes—or Not 195

 ■ Reliability. The degree to which a system, product, or component performs
specified functions under specified conditions for a specified period of time

 ■ Security. The degree to which a product or system protects information and
data so that persons or other products or systems have the degree of data
access appropriate to their types and levels of authorization

 ■ Maintainability. The degree of effectiveness and efficiency with which a
product or system can be modified by the intended maintainers

 ■ Portability. The degree of effectiveness and efficiency with which a system,
product, or component can be transferred from one hardware, software, or
other operational or usage environment to another

In ISO 25010, these “quality characteristics” are each composed of “qual-
ity subcharacteristics” (for example, nonrepudiation is a subcharacteristic of se-
curity). The standard slogs through almost five dozen separate descriptions of
quality subcharacteristics in this way. It defines for us the qualities of “pleasure”
and “comfort.” It distinguishes among “functional correctness” and “functional
completeness,” and then adds “functional appropriateness” for good measure. To
exhibit “compatibility,” systems must either have “interoperability” or just plain
“coexistence.” “Usability” is a product quality, not a quality-in-use quality, al-
though it includes “satisfaction,” which is a quality-in-use quality. “Modifiabil-
ity” and “testability” are both part of “maintainability.” So is “modularity,” which
is a strategy for achieving a quality rather than a goal in its own right. “Avail-
ability” is part of “reliability.” “Interoperability” is part of “compatibility.” And
“scalability” isn’t mentioned at all.

Got all that?
Lists like these—and there are many—do serve a purpose. They can be help-

ful checklists to assist requirements gatherers in making sure that no important
needs were overlooked. Even more useful than standalone lists, they can serve
as the basis for creating your own checklist that contains the quality attributes
of concern in your domain, your industry, your organization, and your products.
Quality attribute lists can also serve as the basis for establishing measures. If
“pleasure” turns out to be an important concern in your system, how do you mea-
sure it to know if your system is providing enough of it?

However, general lists like these also have drawbacks. First, no list will ever
be complete. As an architect, you will be called upon to design a system to meet
a stakeholder concern not foreseen by any list-maker. For example, some writers
speak of “manageability,” which expresses how easy it is for system administra-
tors to manage the application. This can be achieved by inserting useful instru-
mentation for monitoring operation and for debugging and performance tuning.
We know of an architecture that was designed with the conscious goal of retain-
ing key staff and attracting talented new hires to a quiet region of the American
Midwest. That system’s architects spoke of imbuing the system with “Iowabil-
ity.” They achieved it by bringing in state-of-the-art technology and giving their
development teams wide creative latitude. Good luck finding “Iowability” in any

196 Part two Quality attributes 12—Other Quality Attributes

standard list of quality attributes, but that QA was as important to that organiza-
tion as any other.

Second, lists often generate more controversy than understanding. You
might argue persuasively that “functional correctness” should be part of “reliabil-
ity,” or that “portability” is just a kind of “modifiability,” or that “maintainability”
is a kind of “modifiability” (not the other way around). The writers of ISO 25010
apparently spent time and effort deciding to make security its own characteristic,
instead of a subcharacteristic of functionality, which it was in a previous version.
We believe that effort in making these arguments could be better spent elsewhere.

Third, these lists often purport to be taxonomies, which are lists with the
special property that every member can be assigned to exactly one place. Quality
attributes are notoriously squishy in this regard. We discussed denial of service as
being part of security, availability, performance, and usability in Chapter 4.

Finally, these lists force architects to pay attention to every quality attribute
on the list, even if only to finally decide that the particular quality attribute is ir-
relevant to their system. Knowing how to quickly decide that a quality attribute is
irrelevant to a specific system is a skill gained over time.

These observations reinforce the lesson introduced in Chapter 4 that quality
attribute names, by themselves, are largely useless and are at best invitations to
begin a conversation; that spending time worrying about what qualities are sub-
qualities of what other qualities is also almost useless; and that scenarios provide
the best way for us to specify precisely what we mean when we speak of a quality
attribute.

Use standard lists of quality attributes to the extent that they are helpful as
checklists, but don’t feel the need to slavishly adhere to their terminology.

12.5 dealing with “X-ability”: bringing a New
Quality attribute into the fold

Suppose, as an architect, you must deal with a quality attribute for which there
is no compact body of knowledge, no “portfolio” like Chapters 5–11 provided
for those seven QAs? Suppose you find yourself having to deal with a quality
attribute like “green computing” or “manageability” or even “Iowability”? What
do you do?

capture Scenarios for the New Quality attribute

The first thing to do is interview the stakeholders whose concerns have led to the
need for this quality attribute. You can work with them, either individually or as
a group, to build a set of attribute characterizations that refine what is meant by

12.5 Dealing with “X-ability”: Bringing a New Quality Attribute into the Fold 197

the QA. For example, security is often decomposed into concerns such as confi-
dentiality, integrity, availability, and others. After that refinement, you can work
with the stakeholders to craft a set of specific scenarios that characterize what is
meant by that QA.

Once you have a set of specific scenarios, then you can work to generalize
the collection. Look at the set of stimuli you’ve collected, the set of responses,
the set of response measures, and so on. Use those to construct a general scenario
by making each part of the general scenario a generalization of the specific in-
stances you collected.

In our experience, the steps described so far tend to consume about half a day.

assemble design approaches for the New Quality attribute

After you have a set of guiding scenarios for the QA, you can assemble a set of
design approaches for dealing with it. You can do this by

1. Revisiting a body of patterns you’re familiar with and asking yourself how
each one affects the QA of interest.

2. Searching for designs that have had to deal with this QA. You can search on
the name you’ve given the QA itself, but you can also search for the terms
you chose when you refined the QA into subsidiary attribute characteriza-
tions (such as “confidentiality” for the QA of security).

3. Finding experts in this area and interviewing them or simply writing and
asking them for advice.

4. Using the general scenario to try to catalog a list of design approaches to
produce the responses in the response category.

5. Using the general scenario to catalog a list of ways in which a problematic
architecture would fail to produce the desired responses, and thinking of
design approaches to head off those cases.

Model the New Quality attribute

If you can build a conceptual model of the quality attribute, this can be helpful in
creating a set of design approaches for it. By “model,” we don’t mean anything
more than understanding the set of parameters to which the quality attribute is
sensitive. For example, a model of modifiability might tell us that modifiability
is a function of how many places in a system have to be changed in response to
a modification, and the interconnectedness of those places. A model for perfor-
mance might tell us that throughput is a function of transactional workload, the
dependencies among the transactions, and the number of transactions that can be
processed in parallel.

198 Part two Quality attributes 12—Other Quality Attributes

Once you have a model for your QA, then you can work to catalog the ar-
chitectural approaches (tactics and patterns) open to you for manipulating each of
the relevant parameters in your favor.

assemble a Set of tactics for the New Quality attribute

There are two sources that can be used to derive tactics for any quality attribute:
models and experts.

Figure 12.2 shows a queuing model for performance. Such models are
widely used to analyze the latency and throughput of various types of queuing
systems, including manufacturing and service environments, as well as computer
systems.

Within this model, there are seven parameters that can affect the latency that
the model predicts:

 ■ Arrival rate
 ■ Queuing discipline
 ■ Scheduling algorithm
 ■ Service time
 ■ Topology
 ■ Network bandwidth
 ■ Routing algorithm

Results

Routing of
messages

Arrivals

Queue

Server

Scheduling
algorithm

fIGurE 12.2 A generic queuing model

12.5 Dealing with “X-ability”: Bringing a New Quality Attribute into the Fold 199

These are the only parameters that can affect latency within this model. This
is what gives the model its power. Furthermore, each of these parameters can be
affected by various architectural decisions. This is what makes the model useful
for an architect. For example, the routing algorithm can be fixed or it could be a
load-balancing algorithm. A scheduling algorithm must be chosen. The topology
can be affected by dynamically adding or removing new servers. And so forth.

The process of generating tactics based on a model is this:

 ■ Enumerate the parameters of the model
 ■ For each parameter, enumerate the architectural decisions that can affect

this parameter

What results is a list of tactics to, in the example case, control performance
and, in the more general case, to control the quality attribute that the model is
concerned with. This makes the design problem seem much more tractable. This
list of tactics is finite and reasonably small, because the number of parameters of
the model is bounded, and for each parameter, the number of architectural deci-
sions to affect the parameter is limited.

Deriving tactics from models is fine as long as the quality attribute in ques-
tion has a model. Unfortunately, the number of such models is limited and is a
subject of active research. There are no good architectural models for usability or
security, for example. In the cases where we had no model to work from, we did
four things to catalog the tactics:

1. We interviewed experts in the field, asking them what they do as architects
to improve the quality attribute response.

2. We examined systems that were touted as having high usability (or testabil-
ity, or whatever tactic we were focusing on).

3. We scoured the relevant design literature looking for common themes in
design.

4. We examined documented architectural patterns to look for ways they
achieved the quality attribute responses touted for them.

construct design checklists for the New Quality attribute

Finally, examine the seven categories of design decisions in Chapter 4 and ask
yourself (or your experts) how to specialize your new quality of interest to these
categories. In particular, think about reviewing a software architecture and trying
to figure out how well it satisfies your new qualities in these seven categories.
What questions would you ask the architect of that system to understand how
the design attempts to achieve the new quality? These are the basis for the design
checklist.

200 Part two Quality attributes 12—Other Quality Attributes

12.6 for further reading

For most of the quality attributes we discussed in this chapter, the Internet is your
friend. You can find reasonable discussions of scalability, portability, and deploy-
ment strategies using your favorite search engine. Mobility is harder to find be-
cause it has so many meanings, but look under “mobile computing” as a start.

Distributed development is a topic covered in the International Conference
on Global Software Engineering, and looking at the proceedings of this confer-
ence will give you access to the latest research in this area (www.icgse.org).

Release It! [Nygard 07] has a good discussion of monitorability (which he
calls transparency) as well as potential problems that are manifested after ex-
tended operation of a system. The book also includes various patterns for dealing
with some of the problems.

To gain an appreciation for the importance of software safety, we suggest
reading some of the disaster stories that arise when software fails. A vener-
able source is the ACM Risks Forum newsgroup, known as comp.risks in the
USENET community, available at www.risks.org. This list has been moderated
by Peter Neumann since 1985 and is still going strong.

Nancy Leveson is an undisputed thought leader in the area of software and
safety. If you’re working in safety-critical systems, you should become familiar
with her work. You can start small with a paper like [Leveson 04], which dis-
cusses a number of software-related factors that have contributed to spacecraft
accidents. Or you can start at the top with [Leveson 11], a book that treats safety
in the context of today’s complex, sociotechnical, software-intensive systems.

The Federal Aviation Administration is the U.S. government agency charged
with oversight of the U.S. airspace system, and the agency is extremely concerned
about safety. Their 2000 System Safety Handbook is a good practical overview of
the topic [FAA 00].

IEEE STD-1228-1994 (“Software Safety Plans”) defines best practices for
conducting software safety hazard analyses, to help ensure that requirements and
attributes are specified for safety-critical software [IEEE 94]. The aeronautical
standard DO-178B (due to be replaced by DO-178C as this book goes to publica-
tion) covers software safety requirements for aerospace applications.

A discussion of safety tactics can be found in the work of Wu and Kelly
[Wu 06].

In particular, interlocks are an important tactic for safety. They enforce some
safe sequence of events, or ensure that a safe condition exists before an action is
taken. Your microwave oven shuts off when you open the door because of a hard-
ware interlock. Interlocks can be implemented in software also. For an interesting
case study of this, see [Wozniak 07].

http://www.icgse.org
http://www.risks.org

12.7 Discussion Questions 201

12.7 discussion Questions

1. The Kingdom of Bhutan measures the happiness of its population, and
government policy is formulated to increase Bhutan’s GNH (gross national
happiness). Go read about how the GNH is measured (try www.grossna-
tionalhappiness.com) and then sketch a general scenario for the quality
attribute of happiness that will let you express concrete happiness require-
ments for a software system.

2. Choose a quality attribute not described in Chapters 5–11. For that quality
attribute, assemble a set of specific scenarios that describe what you mean
by it. Use that set of scenarios to construct a general scenario for it.

3. For the QA you chose for discussion question 2, assemble a set of design
approaches (patterns and tactics) that help you achieve it.

4. For the QA you chose for discussion question 2, develop a design checklist
for that quality attribute using the seven categories of guiding quality de-
sign decisions outlined in Chapter 4.

5. What might cause you to add a tactic or pattern to the sets of quality attri-
butes already described in Chapters 5–11 (or any other quality attribute, for
that matter)?

6. According to slate.com and other sources, a teenage girl in Germany “went
into hiding after she forgot to set her Facebook birthday invitation to private
and accidentally invited the entire Internet. After 15,000 people confirmed
they were coming, the girl’s parents canceled the party, notified police, and
hired private security to guard their home.” Fifteen hundred people showed
up anyway; several minor injuries ensued. Is Facebook “unsafe”? Discuss.

7. Author James Gleick (“A Bug and a Crash,” www.around.com/ariane.html)
writes that “It took the European Space Agency 10 years and $7 billion to
produce Ariane 5, a giant rocket capable of hurling a pair of three-ton sat-
ellites into orbit with each launch. . . . All it took to explode that rocket less
than a minute into its maiden voyage . . . was a small computer program
trying to stuff a 64-bit number into a 16-bit space. One bug, one crash. Of
all the careless lines of code recorded in the annals of computer science,
this one may stand as the most devastatingly efficient.” Write a safety sce-
nario that addresses the Ariane 5 disaster and discuss tactics that might have
prevented it.

8. Discuss how you think development distributability tends to “trade off”
against the quality attributes of performance, availability, modifiability, and
interoperability.

http://www.grossnationalhappiness.com
http://www.grossnationalhappiness.com
http://www.around.com/ariane.html

202 Part two Quality attributes 12—Other Quality Attributes

Extra Credit: Close your eyes and, without peeking, spell “distributability.”
Bonus points for successfully saying “development distributability” three
times as fast as you can.

9. What is the relationship between mobility and security?

10. Relate monitorability to observability and controllability, the two parts of
testability. Are they the same? If you want to make your system more of
one, can you just optimize for the other?

203

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

13
Architectural Tactics
and Patterns

I have not failed. I’ve just found
10,000 ways that won’t work.

—Thomas Edison

There are many ways to do design badly, and just a few ways to do it well. Be-
cause success in architectural design is complex and challenging, designers have
been looking for ways to capture and reuse hard-won architectural knowledge.
Architectural patterns and tactics are ways of capturing proven good design
structures, so that they can be reused.

Architectural patterns have seen increased interest and attention, from both
software practitioners and theorists, over the past 15 years or more. An architec-
tural pattern

 ■ is a package of design decisions that is found repeatedly in practice,
 ■ has known properties that permit reuse, and
 ■ describes a class of architectures.

Because patterns are (by definition) found in practice, one does not invent
them; one discovers them. Cataloging patterns is akin to the job of a Linnaean
botanist or zoologist: “discovering” patterns and describing their shared charac-
teristics. And like the botanist, zoologist, or ecologist, the pattern cataloger strives
to understand how the characteristics lead to different behaviors and different re-
sponses to environmental conditions. For this reason there will never be a com-
plete list of patterns: patterns spontaneously emerge in reaction to environmental
conditions, and as long as those conditions change, new patterns will emerge.

Architectural design seldom starts from first principles. Experienced architects
typically think of creating an architecture as a process of selecting, tailoring, and
combining patterns. The software architect must decide how to instantiate a pat-
tern—how to make it fit with the specific context and the constraints of the problem.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

204 Part two Quality attributes 13—Architectural Tactics and Patterns

In Chapters 5–11 we have seen a variety of architectural tactics. These are
simpler than patterns. Tactics typically use just a single structure or computa-
tional mechanism, and they are meant to address a single architectural force. For
this reason they give more precise control to an architect when making design
decisions than patterns, which typically combine multiple design decisions into
a package. Tactics are the “building blocks” of design, from which architectural
patterns are created. Tactics are atoms and patterns are molecules. Most patterns
consist of (are constructed from) several different tactics. For this reason we say
that patterns package tactics.

In this chapter we will take a very brief tour through the patterns universe,
touching on some of the most important and most commonly used patterns for ar-
chitecture, and we will then look at the relationships between patterns and tactics:
showing how a pattern is constructed from tactics, and showing how tactics can
be used to tailor patterns when the pattern that you find in a book or on a website
doesn’t quite address your design needs.

13.1 architectural Patterns

An architectural pattern establishes a relationship between:

 ■ A context. A recurring, common situation in the world that gives rise to a
problem.

 ■ A problem. The problem, appropriately generalized, that arises in the given
context. The pattern description outlines the problem and its variants, and
describes any complementary or opposing forces. The description of the
problem often includes quality attributes that must be met.

 ■ A solution. A successful architectural resolution to the problem, appro-
priately abstracted. The solution describes the architectural structures
that solve the problem, including how to balance the many forces at
work. The solution will describe the responsibilities of and static rela-
tionships among elements (using a module structure), or it will describe
the runtime behavior of and interaction between elements (laying out a
component-and-connector or allocation structure). The solution for a pat-
tern is determined and described by:

 ■ A set of element types (for example, data repositories, processes, and
objects)

 ■ A set of interaction mechanisms or connectors (for example, method
calls, events, or message bus)

 ■ A topological layout of the components
 ■ A set of semantic constraints covering topology, element behavior, and

interaction mechanisms

13.2 Overview of the Patterns Catalog 205

The solution description should also make clear what quality attributes are
provided by the static and runtime configurations of elements.

This {context, problem, solution} form constitutes a template for document-
ing a pattern.

Complex systems exhibit multiple patterns at once. A web-based system
might employ a three-tier client-server architectural pattern, but within this pat-
tern it might also use replication (mirroring), proxies, caches, firewalls, MVC,
and so forth, each of which may employ more patterns and tactics. And all of
these parts of the client-server pattern likely employ layering to internally struc-
ture their software modules.

13.2 Overview of the Patterns catalog

In this section we list an assortment of useful and widely used patterns. This cata-
log is not meant to be exhaustive—in fact no such catalog is possible. Rather it is
meant to be representative. We show patterns of runtime elements (such as broker
or client-server) and of design-time elements (such as layers). For each pattern
we list the context, problem, and solution. As part of the solution, we briefly de-
scribe the elements, relations, and constraints of each pattern.

Applying a pattern is not an all-or-nothing proposition. Pattern definitions
given in catalogs are strict, but in practice architects may choose to violate them
in small ways when there is a good design tradeoff to be had (sacrificing a little
of whatever the violation cost, but gaining something that the deviation gained).
For example, the layered pattern expressly forbids software in lower layers from
using software in upper layers, but there may be cases (such as to gain some per-
formance) when an architecture might allow a few specific exceptions.

Patterns can be categorized by the dominant type of elements that they
show: module patterns show modules, component-and-connector (C&C) patterns
show components and connectors, and allocation patterns show a combination
of software elements (modules, components, connectors) and nonsoftware ele-
ments. Most published patterns are C&C patterns, but there are module patterns
and allocation patterns as well. We’ll begin with the granddaddy of module pat-
terns, the layered pattern.

Module Patterns

Layered Pattern
Context: All complex systems experience the need to develop and evolve por-
tions of the system independently. For this reason the developers of the system
need a clear and well-documented separation of concerns, so that modules of the
system may be independently developed and maintained.

206 Part two Quality attributes 13—Architectural Tactics and Patterns

Problem: The software needs to be segmented in such a way that the modules
can be developed and evolved separately with little interaction among the parts,
supporting portability, modifiability, and reuse.

Solution: To achieve this separation of concerns, the layered pattern divides the
software into units called layers. Each layer is a grouping of modules that offers a
cohesive set of services. There are constraints on the allowed-to-use relationship
among the layers: the relations must be unidirectional. Layers completely parti-
tion a set of software, and each partition is exposed through a public interface.
The layers are created to interact according to a strict ordering relation. If (A,B)
is in this relation, we say that the implementation of layer A is allowed to use any
of the public facilities provided by layer B. In some cases, modules in one layer
might be required to directly use modules in a nonadjacent lower layer; normally
only next-lower-layer uses are allowed. This case of software in a higher layer
using modules in a nonadjacent lower layer is called layer bridging. If many in-
stances of layer bridging occur, the system may not meet its portability and modi-
fiability goals that strict layering helps to achieve. Upward usages are not allowed
in this pattern.

Of course, none of this comes for free. Someone must design and build the
layers, which can often add up-front cost and complexity to a system. Also, if the
layering is not designed correctly, it may actually get in the way, by not provid-
ing the lower-level abstractions that programmers at the higher levels need. And
layering always adds a performance penalty to a system. If a call is made to a
function in the top-most layer, this may have to traverse many lower layers before
being executed by the hardware. Each of these layers adds some overhead of their
own, at minimum in the form of context switching.

Table 13.1 summarizes the solution of the layered pattern.
Layers are almost always drawn as a stack of boxes. The allowed-to-use

relation is denoted by geometric adjacency and is read from the top down, as in
Figure 13.1.

A

B

C

Key:

Layer

A layer is allowed to use
the next lower layer.

fIGurE 13.1 Stack-of-boxes notation for layered designs

13.2 Overview of the Patterns Catalog 207

tablE 13.1 Layered Pattern Solution

Overview The layered pattern defines layers (groupings of modules that offer
a cohesive set of services) and a unidirectional allowed-to-use
relation among the layers. The pattern is usually shown graphically
by stacking boxes representing layers on top of each other.

Elements Layer, a kind of module. The description of a layer should define
what modules the layer contains and a characterization of the
cohesive set of services that the layer provides.

Relations Allowed to use, which is a specialization of a more generic
depends-on relation. The design should define what the layer usage
rules are (e.g., “a layer is allowed to use any lower layer” or “a layer
is allowed to use only the layer immediately below it”) and any
allowable exceptions.

Constraints ■ Every piece of software is allocated to exactly one layer.
 ■ There are at least two layers (but usually there are three or

more).
 ■ The allowed-to-use relations should not be circular (i.e., a lower

layer cannot use a layer above).

Weaknesses ■ The addition of layers adds up-front cost and complexity to a
system.

 ■ Layers contribute a performance penalty.

Some Finer Points of Layers

A layered architecture is one of the few places where connections among
components can be shown by adjacency, and where “above” and “below”
matter. If you turn Figure 13.1 upside-down so that C is on top, this would
represent a completely different design. Diagrams that use arrows among
the boxes to denote relations retain their semantic meaning no matter the
orientation.

The layered pattern is one of the most commonly used patterns in all of
software engineering, but I’m often surprised by how many people still get
it wrong.

First, it is impossible to look at a stack of boxes and tell whether layer
bridging is allowed or not. That is, can a layer use any lower layer, or just
the next lower one? It is the easiest thing in the world to resolve this; all the
architect has to do is include the answer in the key to the diagram’s nota-
tion (something we recommend for all diagrams). For example, consider the
layered pattern presented in Figure 13.2 on the next page.

But I’m still surprised at how few architects actually bother to do this.
And if they don’t, their layer diagrams are ambiguous.

Second, any old set of boxes stacked on top of each other does not
constitute a layered architecture. For instance, look at the design shown
in Figure 13.3, which uses arrows instead of adjacency to indicate the

208 Part two Quality attributes 13—Architectural Tactics and Patterns

relationships among the boxes. Here, everything is allowed to use every-
thing. This is decidedly not a layered architecture. The reason is that if
Layer A is replaced by a different version, Layer C (which uses it in this fig-
ure) might well have to change. We don’t want our virtual machine layer to
change every time our application layer changes. But I’m still surprised at
how many people call a stack of boxes lined up with each other “layers” (or
think that layers are the same as tiers in a multi-tier architecture).

Key:

Applications

Services

Data Bank

Environmental Models

Environment Sensing

JVM

OS and Hardware

S
ec

ur
ity

layer

Software in a layer is allowed to use software
in the same layer, or any layer immediately
below or to the right.

fIGurE 13.2 A simple layer diagram, with a simple key answering the uses
question

Layer

Allowed to use

A

B

C

Key:

fIGurE 13.3 A wolf in layer’s clothing

13.2 Overview of the Patterns Catalog 209

Third, many architectures that purport to be layered look something
like Figure 13.4. This diagram probably means that modules in A, B, or C
can use modules in D, but without a key to tell us for sure, it could mean
anything. “Sidecars” like this often contain common utilities (sometimes
imported), such as error handlers, communication protocols, or database
access mechanisms. This kind of diagram makes sense only in the case
where no layer bridging is allowed in the main stack. Otherwise, D could
simply be made the bottom-most layer in the main stack, and the “sidecar”
geometry would be unnecessary. But I’m still surprised at how often I see
this layout go unexplained.

Sometimes layers are divided into segments denoting a finer-grained
decomposition of the modules. Sometimes this occurs when a preexisting
set of units, such as imported modules, share the same allowed-to-use
relation. When this happens, you have to specify what usage rules are in
effect among the segments. Many usage rules are possible, but they must
be made explicit. In Figure 13.5, the top and the bottom layers are

A

B

C

D

fIGurE 13.4 Layers with a “sidecar”

Key:

Layer

UI

Business Logic

Data Access

Local Data
Access

Remote Data
Access

Web UI Rich
Client

Command
Line

Layer
segment

Allowed to use

fIGurE 13.5 Layered design with segmented layers

210 Part two Quality attributes 13—Architectural Tactics and Patterns

segmented. Segments of the top layer are not allowed to use each other,
but segments of the bottom layer are. If you draw the same diagram with-
out the arrows, it will be harder to differentiate the different usage rules
within segmented layers. Layered diagrams are often a source of hidden
ambiguity because the diagram does not make explicit the allowed-to-use
relations.

Finally, the most important point about layering is that a layer isn’t
allowed to use any layer above it. A module “uses” another module when it
depends on the answer it gets back. But a layer is allowed to make upward
calls, as long as it isn’t expecting an answer from them. This is how the
common error-handling scheme of callbacks works. A program in layer A
calls a program in a lower layer B, and the parameters include a pointer to
an error-handling program in A that the lower layer should call in case of
error. The software in B makes the call to the program in A, but cares not in
the least what it does. By not depending in any way on the contents of A, B
is insulated from changes in A.

—PCC

Other Module Patterns

Designers in a particular domain often publish “standard” module decomposi-
tions for systems in that domain. These standard decompositions, if put in the
“context, problem, solution” form, constitute module decomposition patterns.

Similarly in the object-oriented realm, “standard” or published class/object
design solutions for a class of system constitute object-oriented patterns.

component-and-connector Patterns

Broker Pattern
Context: Many systems are constructed from a collection of services distributed
across multiple servers. Implementing these systems is complex because you
need to worry about how the systems will interoperate—how they will connect to
each other and how they will exchange information—as well as the availability of
the component services.

Problem: How do we structure distributed software so that service users do not
need to know the nature and location of service providers, making it easy to dy-
namically change the bindings between users and providers?

Solution: The broker pattern separates users of services (clients) from providers
of services (servers) by inserting an intermediary, called a broker. When a client
needs a service, it queries a broker via a service interface. The broker then for-
wards the client’s service request to a server, which processes the request. The ser-
vice result is communicated from the server back to the broker, which then returns

13.2 Overview of the Patterns Catalog 211

the result (and any exceptions) back to the requesting client. In this way the client
remains completely ignorant of the identity, location, and characteristics of the
server. Because of this separation, if a server becomes unavailable, a replacement
can be dynamically chosen by the broker. If a server is replaced with a different
(compatible) service, again, the broker is the only component that needs to know
of this change, and so the client is unaffected. Proxies are commonly introduced as
intermediaries in addition to the broker to help with details of the interaction with
the broker, such as marshaling and unmarshaling messages.

The down sides of brokers are that they add complexity (brokers and
possibly proxies must be designed and implemented, along with messaging
protocols) and add a level of indirection between a client and a server, which will
add latency to their communication. Debugging brokers can be difficult because
they are involved in highly dynamic environments where the conditions leading
to a failure may be difficult to replicate. The broker would be an obvious point of
attack, from a security perspective, and so it needs to be hardened appropriately.
Also a broker, if it is not designed carefully, can be a single point of failure for
a large and complex system. And brokers can potentially be bottlenecks for
communication.

Table 13.2 summarizes the solution of the broker pattern.

tablE 13.2 Broker Pattern Solution

Overview The broker pattern defines a runtime component, called a broker, that
mediates the communication between a number of clients and servers.

Elements Client, a requester of services
Server, a provider of services
Broker, an intermediary that locates an appropriate server to fulfill a
client’s request, forwards the request to the server, and returns the
results to the client
Client-side proxy, an intermediary that manages the actual
communication with the broker, including marshaling, sending, and
unmarshaling of messages
Server-side proxy, an intermediary that manages the actual
communication with the broker, including marshaling, sending, and
unmarshaling of messages

Relations The attachment relation associates clients (and, optionally, client-side
proxies) and servers (and, optionally, server-side proxies) with brokers.

Constraints The client can only attach to a broker (potentially via a client-side
proxy). The server can only attach to a broker (potentially via a server-
side proxy).

Weaknesses Brokers add a layer of indirection, and hence latency, between clients
and servers, and that layer may be a communication bottleneck.
The broker can be a single point of failure.
A broker adds up-front complexity.
A broker may be a target for security attacks.
A broker may be difficult to test.

212 Part two Quality attributes 13—Architectural Tactics and Patterns

The broker is, of course, the critical component in this pattern. The pattern
provides all of the modifiability benefits of the use-an-intermediary tactic
(described in Chapter 7), an availability benefit (because the broker pattern
makes it easy to replace a failed server with another), and a performance benefit
(because the broker pattern makes it easy to assign work to the least-busy server).
However, the pattern also carries with it some liabilities. For example, the use of
a broker precludes performance optimizations that you might make if you knew
the precise location and characteristics of the server. Also the use of this pattern
adds the overhead of the intermediary and thus latency.

The original version of the broker pattern, as documented by Gamma, Helm,
Johnson, and Vlissides [Gamma 94], is given in Figure 13.6.

The first widely used implementation of the broker pattern was in the
Common Object Request Broker Architecture (CORBA). Other common uses
of this pattern are found in Enterprise Java Beans (EJB) and Microsoft’s .NET
platform—essentially any modern platform for distributed service providers and
consumers implements some form of a broker. The service-oriented architecture
(SOA) approach depends crucially on brokers, most commonly in the form of an
enterprise service bus.

Model-View-Controller Pattern
Context: User interface software is typically the most frequently modified portion
of an interactive application. For this reason it is important to keep modifications

+pack_data()
+unpack_data()
+send_request()
+return()

Client-S ide Proxy

+initialize()
+enter_main_loop()
+run_service()
+use_Broker_API()

Server

+call_server()
+start_task()
+use_Broker_API()

Client

+pack_data()
+unpack_data()
+call_service()
+send_response()

Server-Side Proxy+locateServer()
+locateClient()
+registerServer()
+unregisterServer()

Broker

+pack_data()
+unpack_data()
+forward_message()
+transmit_message()

Bridge

-transfers * 1

*

-call1

-uses

*

1

0..1

-call 1

-transfers *1

*

-call1

-uses

*

1

fIGurE 13.6 The broker pattern

13.2 Overview of the Patterns Catalog 213

to the user interface software separate from the rest of the system. Users often
wish to look at data from different perspectives, such as a bar graph or a pie chart.
These representations should both reflect the current state of the data.

Problem: How can user interface functionality be kept separate from application
functionality and yet still be responsive to user input, or to changes in the under-
lying application’s data? And how can multiple views of the user interface be cre-
ated, maintained, and coordinated when the underlying application data changes?

Solution: The model-view-controller (MVC) pattern separates application func-
tionality into three kinds of components:

 ■ A model, which contains the application’s data
 ■ A view, which displays some portion of the underlying data and interacts

with the user
 ■ A controller, which mediates between the model and the view and manages

the notifications of state changes

MVC is not appropriate for every situation. The design and implementation
of three distinct kinds of components, along with their various forms of
interaction, may be costly, and this cost may not make sense for relatively
simple user interfaces. Also, the match between the abstractions of MVC and
commercial user interface toolkits is not perfect. The view and the controller split
apart input and output, but these functions are often combined into individual
widgets. This may result in a conceptual mismatch between the architecture and
the user interface toolkit.

Table 13.3 summarizes the solution of the MVC pattern.

tablE 13.3 Model-View-Controller Pattern Solution

Overview The MVC pattern breaks system functionality into three components: a
model, a view, and a controller that mediates between the model and
the view.

Elements The model is a representation of the application data or state, and it
contains (or provides an interface to) application logic.
The view is a user interface component that either produces a
representation of the model for the user or allows for some form of
user input, or both.
The controller manages the interaction between the model and the
view, translating user actions into changes to the model or changes to
the view.

Relations The notifies relation connects instances of model, view, and controller,
notifying elements of relevant state changes.

Constraints There must be at least one instance each of model, view, and
controller.
The model component should not interact directly with the controller.

Weaknesses The complexity may not be worth it for simple user interfaces.
The model, view, and controller abstractions may not be good fits for
some user interface toolkits.

214 Part two Quality attributes 13—Architectural Tactics and Patterns

There may, in fact, be many views and many controllers associated with
a model. For example, a set of business data may be represented as columns of
numbers in a spreadsheet, as a scatter plot, or as a pie chart. Each of these is a
separate view, and this view can be dynamically updated as the model changes
(for example, showing live transactions in a transaction processing system). A
model may be updated by different controllers; for example, a map could be
zoomed and panned via mouse movements, trackball movements, keyboard
clicks, or voice commands; each of these different forms of input needs to be
managed by a controller.

The MVC components are connected to each other via some flavor of
notification, such as events or callbacks. These notifications contain state updates.
A change in the model needs to be communicated to the views so that they may
be updated. An external event, such as a user input, needs to be communicated to
the controller, which may in turn update the view and/or the model. Notifications
may be either push or pull.

Because these components are loosely coupled, it is easy to develop and
test them in parallel, and changes to one have minimal impact on the others. The
relationships between the components of MVC are shown in Figure 13.7.

• Encapsulates application state
• Responds to state queries
• Exposes application functionality
• Notifies views of changes

Model

• Renders the models
• Requests updates from models
• Sends user gestures to controller
• Allows controller to select view

View

• Defines application behavior
• Maps user actions to model updates
• Selects view for response
• One for each functionality

Controller

State
Query State

Change

User Gestures

View Selection

Change
Notification

Key:

Events

Method
Invocations

fIGurE 13.7 The model-view-controller pattern

13.2 Overview of the Patterns Catalog 215

The MVC pattern is widely used in user interface libraries such as Java’s
Swing classes, Microsoft’s ASP.NET framework, Adobe’s Flex software
development kit, Nokia’s Qt framework, and many others. As such, it is common
for a single application to contain many instances of MVC (often one per user
interface object).

Pipe-and-Filter Pattern
Context: Many systems are required to transform streams of discrete data items,
from input to output. Many types of transformations occur repeatedly in practice,
and so it is desirable to create these as independent, reusable parts.

Problem: Such systems need to be divided into reusable, loosely coupled com-
ponents with simple, generic interaction mechanisms. In this way they can be
flexibly combined with each other. The components, being generic and loosely
coupled, are easily reused. The components, being independent, can execute in
parallel.

Solution: The pattern of interaction in the pipe-and-filter pattern is characterized
by successive transformations of streams of data. Data arrives at a filter’s input
port(s), is transformed, and then is passed via its output port(s) through a pipe to
the next filter. A single filter can consume data from, or produce data to, one or
more ports.

There are several weaknesses associated with the pipe-and-filter pattern. For
instance, this pattern is typically not a good choice for an interactive system, as
it disallows cycles (which are important for user feedback). Also, having large
numbers of independent filters can add substantial amounts of computational
overhead, because each filter runs as its own thread or process. Also, pipe-and-
filter systems may not be appropriate for long-running computations, without the
addition of some form of checkpoint/restore functionality, as the failure of any
filter (or pipe) can cause the entire pipeline to fail.

The solution of the pipe-and-filter pattern is summarized in Table 13.4.
Pipes buffer data during communication. Because of this property, filters can

execute asynchronously and concurrently. Moreover, a filter typically does not
know the identity of its upstream or downstream filters. For this reason, pipeline
pipe-and-filter systems have the property that the overall computation can be
treated as the functional composition of the computations of the filters, making it
easier for the architect to reason about end-to-end behavior.

Data transformation systems are typically structured as pipes and filters,
with each filter responsible for one part of the overall transformation of the input
data. The independent processing at each step supports reuse, parallelization, and
simplified reasoning about overall behavior. Often such systems constitute the
front end of signal-processing applications. These systems receive sensor data at
a set of initial filters; each of these filters compresses the data and performs initial
processing (such as smoothing). Downstream filters reduce the data further and

216 Part two Quality attributes 13—Architectural Tactics and Patterns

do synthesis across data derived from different sensors. The final filter typically
passes its data to an application, for example providing input to modeling or
visualization tools.

Other systems that use pipe-and-filter include those built using UNIX pipes,
the request processing architecture of the Apache web server, the map-reduce
pattern (presented later in this chapter), Yahoo! Pipes for processing RSS feeds,
many workflow engines, and many scientific computation systems that have to
process and analyze large streams of captured data. Figure 13.8 shows a UML
diagram of a pipe-and-filter system.

tablE 13.4 Pipe-and-Filter Pattern Solution

Overview Data is transformed from a system’s external inputs to its external
outputs through a series of transformations performed by its filters
connected by pipes.

Elements Filter, which is a component that transforms data read on its input
port(s) to data written on its output port(s). Filters can execute
concurrently with each other. Filters can incrementally transform
data; that is, they can start producing output as soon as they start
processing input. Important characteristics include processing rates,
input/output data formats, and the transformation executed by the
filter.
Pipe, which is a connector that conveys data from a filter’s output
port(s) to another filter’s input port(s). A pipe has a single source
for its input and a single target for its output. A pipe preserves the
sequence of data items, and it does not alter the data passing
through. Important characteristics include buffer size, protocol of
interaction, transmission speed, and format of the data that passes
through a pipe.

Relations The attachment relation associates the output of filters with the input
of pipes and vice versa.

Constraints Pipes connect filter output ports to filter input ports.
Connected filters must agree on the type of data being passed along
the connecting pipe.
Specializations of the pattern may restrict the association of
components to an acyclic graph or a linear sequence, sometimes
called a pipeline.
Other specializations may prescribe that components have certain
named ports, such as the stdin, stdout, and stderr ports of UNIX
filters.

Weaknesses The pipe-and-filter pattern is typically not a good choice for an
interactive system.
Having large numbers of independent filters can add substantial
amounts of computational overhead.
Pipe-and-filter systems may not be appropriate for long-running
computations.

13.2 Overview of the Patterns Catalog 217

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

capacity = 50
end-of-data = ”EOT” String
when-full = block for 2 sec and retry
when-empty = block for 20 sec and retry capacity = 10

end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 60 sec and retry

capacity = 40
end-of-data = empty record
when-full = block for 2 sec and retry
when-empty = block for 30 sec and retry

«pipe»
«pipe»

«pipe»

«pipe»

out in

out in

out

out

in

in

«filter»
:XmlToObject

«filter»
:Process
Payment

«filter»
:FormatRejected

Records

«filter»
:Calculate

DirectDeposit

«filter»
:Format

DirectDeposit

fIGurE 13.8 A UML diagram of a pipe-and-filter-based system

Client-Server Pattern
Context: There are shared resources and services that large numbers of distrib-
uted clients wish to access, and for which we wish to control access or quality of
service.

Problem: By managing a set of shared resources and services, we can promote
modifiability and reuse, by factoring out common services and having to modify
these in a single location, or a small number of locations. We want to improve
scalability and availability by centralizing the control of these resources and ser-
vices, while distributing the resources themselves across multiple physical servers.

Solution: Clients interact by requesting services of servers, which provide a set
of services. Some components may act as both clients and servers. There may be
one central server or multiple distributed ones.

The client-server pattern solution is summarized in Table 13.5; the
component types are clients and servers; the principal connector type for the
client-server pattern is a data connector driven by a request/reply protocol used
for invoking services.

Some of the disadvantages of the client-server pattern are that the server
can be a performance bottleneck and it can be a single point of failure. Also,
decisions about where to locate functionality (in the client or in the server) are
often complex and costly to change after a system has been built.

218 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.5 Client-Server Pattern Solution

Overview Clients initiate interactions with servers, invoking services as
needed from those servers and waiting for the results of those
requests.

Elements Client, a component that invokes services of a server
component. Clients have ports that describe the services they
require.
Server, a component that provides services to clients. Servers
have ports that describe the services they provide. Important
characteristics include information about the nature of the
server ports (such as how many clients can connect) and
performance characteristics (e.g., maximum rates of service
invocation).
Request/reply connector, a data connector employing a
request/reply protocol, used by a client to invoke services on a
server. Important characteristics include whether the calls are
local or remote, and whether data is encrypted.

Relations The attachment relation associates clients with servers.

Constraints Clients are connected to servers through request/reply
connectors.
Server components can be clients to other servers.
Specializations may impose restrictions:

 ■ Numbers of attachments to a given port
 ■ Allowed relations among servers

Components may be arranged in tiers, which are logical
groupings of related functionality or functionality that will share
a host computing environment (covered more later in this
chapter).

Weaknesses Server can be a performance bottleneck.
Server can be a single point of failure.
Decisions about where to locate functionality (in the client or
in the server) are often complex and costly to change after a
system has been built.

Some common examples of systems that use the client-server pattern are these:

 ■ Information systems running on local networks where the clients are GUI-
launched applications and the server is a database management system

 ■ Web-based applications where the clients are web browsers and the servers
are components running on an e-commerce site

The computational flow of pure client-server systems is asymmetric:
clients initiate interactions by invoking services of servers. Thus, the client must
know the identity of a service to invoke it, and clients initiate all interactions.
In contrast, servers do not know the identity of clients in advance of a service
request and must respond to the initiated client requests.

In early forms of client-server, service invocation is synchronous: the
requester of a service waits, or is blocked, until a requested service completes its

13.2 Overview of the Patterns Catalog 219

actions, possibly providing a return result. However, variants of the client-server
pattern may employ more-sophisticated connector protocols. For example:

 ■ Web browsers don’t block until the data request is served up.
 ■ In some client-server patterns, servers are permitted to initiate certain

actions on their clients. This might be done by allowing a client to register
notification procedures, or callbacks, that the server calls at specific times.

 ■ In other systems service calls over a request/reply connector are bracketed
by a “session” that delineates the start and end of a set of a client-server
interaction.

The client-server pattern separates client applications from the services they
use. This pattern simplifies systems by factoring out common services, which are
reusable. Because servers can be accessed by any number of clients, it is easy
to add new clients to a system. Similarly, servers may be replicated to support
scalability or availability.

The World Wide Web is the best-known example of a system that is based on
the client-server pattern, allowing clients (web browsers) to access information
from servers across the Internet using HyperText Transfer Protocol (HTTP).
HTTP is a request/reply protocol. HTTP is stateless; the connection between the
client and the server is terminated after each response from the server.

Figure 13.9 uses an informal notation to describe the client-server view of
an automatic teller machine (ATM) banking system.

server

Server
TCP socket connector with
client and server ports

FTX server
daemon

ATM OS/2
client process

Windows
application

clientclientclient

Client

client client

server server server server

Key:

Bank
transaction
authorizer

ATM
monitoring

server

ATM
reconfiguration

server

ATM main
process

Reconfigure
and update

process

Monitoring
station

program

fIGurE 13.9 The client-server architecture of an ATM banking system

220 Part two Quality attributes 13—Architectural Tactics and Patterns

Peer-to-Peer Pattern
Context: Distributed computational entities—each of which is considered
equally important in terms of initiating an interaction and each of which provides
its own resources—need to cooperate and collaborate to provide a service to a
distributed community of users.

Problem: How can a set of “equal” distributed computational entities be con-
nected to each other via a common protocol so that they can organize and share
their services with high availability and scalability?

Solution: In the peer-to-peer (P2P) pattern, components directly interact as
peers. All peers are “equal” and no peer or group of peers can be critical for
the health of the system. Peer-to-peer communication is typically a request/
reply interaction without the asymmetry found in the client-server pattern.
That is, any component can, in principle, interact with any other component by
requesting its services. The interaction may be initiated by either party—that
is, in client-server terms, each peer component is both a client and a server.
Sometimes the interaction is just to forward data without the need for a reply.
Each peer provides and consumes similar services and uses the same protocol.
Connectors in peer-to-peer systems involve bidirectional interactions, reflecting
the two-way communication that may exist between two or more peer-to-peer
components.

Peers first connect to the peer-to-peer network on which they discover other
peers they can interact with, and then initiate actions to achieve their computation
by cooperating with other peers by requesting services. Often a peer’s search for
another peer is propagated from one peer to its connected peers for a limited
number of hops. A peer-to-peer architecture may have specialized peer nodes
(called supernodes) that have indexing or routing capabilities and allow a regular
peer’s search to reach a larger number of peers.

Peers can be added and removed from the peer-to-peer network with no sig-
nificant impact, resulting in great scalability for the whole system. This provides
flexibility for deploying the system across a highly distributed platform.

Typically multiple peers have overlapping capabilities, such as providing
access to the same data or providing equivalent services. Thus, a peer acting as
client can collaborate with multiple peers acting as servers to complete a certain
task. If one of these multiple peers becomes unavailable, the others can still pro-
vide the services to complete the task. The result is improved overall availability.
There are also performance advantages: The load on any given peer component
acting as a server is reduced, and the responsibilities that might have required
more server capacity and infrastructure to support it are distributed. This can de-
crease the need for other communication for updating data and for central server
storage, but at the expense of storing the data locally.

13.2 Overview of the Patterns Catalog 221

The drawbacks of the peer-to-peer pattern are strongly related to its
strengths. Because peer-to-peer systems are decentralized, managing security,
data consistency, data and service availability, backup, and recovery are all more
complex. In many cases it is difficult to provide guarantees with peer-to-peer
systems because the peers come and go; instead, the architect can, at best, offer
probabilities that quality goals will be met, and these probabilities typically in-
crease with the size of the population of peers.

Table 13.6 on the next page summarizes the peer-to-peer pattern solution.
Peer-to-peer computing is often used in distributed computing applications

such as file sharing, instant messaging, desktop grid computing, routing, and
wireless ad hoc networking. Examples of peer-to-peer systems include file-shar-
ing networks such as BitTorrent and eDonkey, and instant messaging and VoIP
applications such as Skype. Figure 13.10 shows an example of an instantiation of
the peer-to-peer pattern.

A B

moldy
69.95.63.49

amidala
70.116.152.15

anakin
207.192.20.13

lambda
50.64.16.14 outrider

74.12.41.111
naboo

157.66.24.26

Key: Leaf peer

Ultrapeer

Gnutella port

HTTP file transfer
from A to B

Request/reply using Gnutella
protocol over TCP or UDP

fIGurE 13.10 A peer-to-peer view of a Gnutella network using an informal C&C
notation. For brevity, only a few peers are identified. Each of the identified leaf
peers uploads and downloads files directly from other peers.

222 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.6 Peer-to-Peer Pattern Solution

Overview Computation is achieved by cooperating peers that request service
from and provide services to one another across a network.

Elements Peer, which is an independent component running on a network
node. Special peer components can provide routing, indexing, and
peer search capability.
Request/reply connector, which is used to connect to the peer
network, search for other peers, and invoke services from other
peers. In some cases, the need for a reply is done away with.

Relations The relation associates peers with their connectors. Attachments
may change at runtime.

Constraints Restrictions may be placed on the following:
 ■ The number of allowable attachments to any given peer
 ■ The number of hops used for searching for a peer
 ■ Which peers know about which other peers

Some P2P networks are organized with star topologies, in which
peers only connect to supernodes.

Weaknesses Managing security, data consistency, data/service availability,
backup, and recovery are all more complex.
Small peer-to-peer systems may not be able to consistently achieve
quality goals such as performance and availability.

Service-Oriented Architecture Pattern
Context: A number of services are offered (and described) by service provid-
ers and consumed by service consumers. Service consumers need to be able
to understand and use these services without any detailed knowledge of their
implementation.

Problem: How can we support interoperability of distributed components run-
ning on different platforms and written in different implementation languages,
provided by different organizations, and distributed across the Internet? How can
we locate services and combine (and dynamically recombine) them into meaning-
ful coalitions while achieving reasonable performance, security, and availability?

Solution: The service-oriented architecture (SOA) pattern describes a collection
of distributed components that provide and/or consume services. In an SOA, ser-
vice provider components and service consumer components can use different
implementation languages and platforms. Services are largely standalone: service
providers and service consumers are usually deployed independently, and often
belong to different systems or even different organizations. Components have in-
terfaces that describe the services they request from other components and the
services they provide. A service’s quality attributes can be specified and guar-
anteed with a service-level agreement (SLA). In some cases, these are legally
binding. Components achieve their computation by requesting services from one
another.

13.2 Overview of the Patterns Catalog 223

The elements in this pattern include service providers and service consum-
ers, which in practice can take different forms, from JavaScript running on a
web browser to CICS transactions running on a mainframe. In addition to the
service provider and service consumer components, an SOA application may
use specialized components that act as intermediaries and provide infrastruc-
ture services:

 ■ Service invocation can be mediated by an enterprise service bus (ESB). An
ESB routes messages between service consumers and service providers. In
addition, an ESB can convert messages from one protocol or technology to
another, perform various data transformations (e.g., format, content, split-
ting, merging), perform security checks, and manage transactions. Using an
ESB promotes interoperability, security, and modifiability. Of course, com-
municating through an ESB adds overhead thereby lowering performance,
and introduces an additional point of failure. When an ESB is not in place,
service providers and consumers communicate with each other in a point-
to-point fashion.

 ■ To improve the independence of service providers, a service registry can be
used in SOA architectures. The registry is a component that allows services
to be registered at runtime. This enables runtime discovery of services,
which increases system modifiability by hiding the location and identity of
the service provider. A registry can even permit multiple live versions of the
same service.

 ■ An orchestration server (or orchestration engine) orchestrates the interac-
tion among various service consumers and providers in an SOA system. It
executes scripts upon the occurrence of a specific event (e.g., a purchase
order request arrived). Applications with well-defined business processes or
workflows that involve interactions with distributed components or systems
gain in modifiability, interoperability, and reliability by using an orches-
tration server. Many commercially available orchestration servers support
various workflow or business process language standards.

The basic types of connectors used in SOA are these:

 ■ SOAP. The standard protocol for communication in the web services tech-
nology. Service consumers and providers interact by exchanging request/
reply XML messages typically on top of HTTP.

 ■ Representational State Transfer (REST). A service consumer sends non-
blocking HTTP requests. These requests rely on the four basic HTTP com-
mands (POST, GET, PUT, DELETE) to tell the service provider to create,
retrieve, update, or delete a resource.

 ■ Asynchronous messaging, a “fire-and-forget” information exchange.
Participants do not have to wait for an acknowledgment of receipt, because
the infrastructure is assumed to have delivered the message successfully.
The messaging connector can be point-to-point or publish-subscribe.

224 Part two Quality attributes 13—Architectural Tactics and Patterns

In practice, SOA environments may involve a mix of the three connectors
just listed, along with legacy protocols and other communication alternatives
(e.g., SMTP). Commercial products such as IBM’s WebSphere MQ, Microsoft’s
MSMQ, or Apache’s ActiveMQ are infrastructure components that provide asyn-
chronous messaging. SOAP and REST are described in more detail in Chapter 6.

As you can see, the SOA pattern can be quite complex to design and im-
plement (due to dynamic binding and the concomitant use of metadata). Other
potential problems with this pattern include the performance overhead of the
middleware that is interposed between services and clients and the lack of perfor-
mance guarantees (because services are shared and, in general, not under control
of the requester). These weaknesses are all shared with the broker pattern, which
is not surprising because the SOA pattern shares many of the design concepts and
goals of broker. In addition, because you do not, in general, control the evolution
of the services that you use, you may have to endure high and unplanned-for
maintenance costs.

Table 13.7 summarizes the SOA pattern.
The main benefit and the major driver of SOA is interoperability. Because

service providers and service consumers may run on different platforms, ser-
vice-oriented architectures often integrate a variety of systems, including legacy
systems. SOA also offers the necessary elements to interact with external ser-
vices available over the Internet. Special SOA components such as the registry or
the ESB also allow dynamic reconfiguration, which is useful when there’s a need
to replace or add versions of components with no system interruption.

Figure 13.11 shows the SOA view of a system called Adventure Builder.
Adventure Builder allows a customer on the web to assemble a vacation by
choosing an activity and lodging at and transportation to a destination. The Ad-
venture Builder system interacts with external service providers to construct the
vacation, and with bank services to process payment. The central OPC (Order
Processing Center) component coordinates the interaction with internal and ex-
ternal service consumers and providers. Note that the external providers can be
legacy mainframe systems, Java systems, .NET systems, and so on. The nature of
these external components is transparent because SOAP provides the necessary
interoperability.

13.2 Overview of the Patterns Catalog 225

tablE 13.7 Service-Oriented Architecture Pattern Solution

Overview Computation is achieved by a set of cooperating components
that provide and/or consume services over a network. The
computation is often described using a workflow language.

Elements Components:
 ■ Service providers, which provide one or more services

through published interfaces. Concerns are often tied to
the chosen implementation technology, and include perfor-
mance, authorization constraints, availability, and cost. In
some cases these properties are specified in a service-level
agreement.

 ■ Service consumers, which invoke services directly or through
an intermediary.

 ■ Service providers may also be service consumers.
 ■ ESB, which is an intermediary element that can route and

transform messages between service providers and consum-
ers.

 ■ Registry of services, which may be used by providers to
register their services and by consumers to discover services
at runtime.

 ■ Orchestration server, which coordinates the interactions
between service consumers and providers based on
languages for business processes and workflows.

Connectors:
 ■ SOAP connector, which uses the SOAP protocol for

synchronous communication between web services, typically
over HTTP.

 ■ REST connector, which relies on the basic request/reply
operations of the HTTP protocol.

 ■ Asynchronous messaging connector, which uses a
messaging system to offer point-to-point or publish-subscribe
asynchronous message exchanges.

Relations Attachment of the different kinds of components available to the
respective connectors

Constraints Service consumers are connected to service providers, but
intermediary components (e.g., ESB, registry, orchestration
server) may be used.

Weaknesses SOA-based systems are typically complex to build.
You don’t control the evolution of independent services.
There is a performance overhead associated with the
middleware, and services may be performance bottlenecks, and
typically do not provide performance guarantees.

226 Part two Quality attributes 13—Architectural Tactics and Patterns

Key:

Adventure Builder

jdbc

jdbc

TBD

OpcOrder
TrackingService

OpcPurchase
OrderService

Web
Service
Broker

Web
browser

Consumer
Web site

OPC

Bank

Adventure
Catalog

DB

User’s
e-mail
client

Airline
Provider Lodging

Provider

Activity
Provider

Adventure
OPC DB

Service
Registry

ActivityPO
 Service

LodgingPO
Service

AirlinePO
Service

CreditCard
Service

Client-side
application

Java EE
application

Web services
endpoint

Data
repository

HTTP/HTTPS

SOAP call

Data access

SMTP

Scope of the
application (not
a component)

External Web
service provider

fIGurE 13.11 Diagram of the SOA view for the Adventure Builder system. OPC
stands for “Order Processing Center.”

Publish-Subscribe Pattern
Context: There are a number of independent producers and consumers of data
that must interact. The precise number and nature of the data producers and con-
sumers are not predetermined or fixed, nor is the data that they share.

13.2 Overview of the Patterns Catalog 227

Problem: How can we create integration mechanisms that support the ability to
transmit messages among the producers and consumers in such a way that they
are unaware of each other’s identity, or potentially even their existence?

Solution: In the publish-subscribe pattern, summarized in Table 13.8, compo-
nents interact via announced messages, or events. Components may subscribe
to a set of events. It is the job of the publish-subscribe runtime infrastructure to
make sure that each published event is delivered to all subscribers of that event.
Thus, the main form of connector in these patterns is an event bus. Publisher
components place events on the bus by announcing them; the connector then de-
livers those events to the subscriber components that have registered an interest in
those events. Any component may be both a publisher and a subscriber.

Publish-subscribe adds a layer of indirection between senders and receivers.
This has a negative effect on latency and potentially scalability, depending on
how it is implemented. One would typically not want to use publish-subscribe in
a system that had hard real-time deadlines to meet, as it introduces uncertainty in
message delivery times.

Also, the publish-subscribe pattern suffers in that it provides less control
over ordering of messages, and delivery of messages is not guaranteed (because
the sender cannot know if a receiver is listening). This can make the publish-sub-
scribe pattern inappropriate for complex interactions where shared state is critical.

tablE 13.8 Publish-Subscribe Pattern Solution

Overview Components publish and subscribe to events. When an event is
announced by a component, the connector infrastructure dispatches
the event to all registered subscribers.

Elements Any C&C component with at least one publish or subscribe port.
Concerns include which events are published and subscribed to, and
the granularity of events.
The publish-subscribe connector, which will have announce and listen
roles for components that wish to publish and subscribe to events.

Relations The attachment relation associates components with the publish-
subscribe connector by prescribing which components announce
events and which components are registered to receive events.

Constraints All components are connected to an event distributor that may be
viewed as either a bus—connector—or a component. Publish ports
are attached to announce roles and subscribe ports are attached to
listen roles. Constraints may restrict which components can listen to
which events, whether a component can listen to its own events, and
how many publish-subscribe connectors can exist within a system.
A component may be both a publisher and a subscriber, by having
ports of both types.

Weaknesses Typically increases latency and has a negative effect on scalability and
predictability of message delivery time.
Less control over ordering of messages, and delivery of messages is
not guaranteed.

228 Part two Quality attributes 13—Architectural Tactics and Patterns

There are some specific refinements of this pattern that are in common use.
We will describe several of these later in this section.

The computational model for the publish-subscribe pattern is best thought of
as a system of independent processes or objects, which react to events generated
by their environment, and which in turn cause reactions in other components as
a side effect of their event announcements. An example of the publish-subscribe
pattern, implemented on top of the Eclipse platform, is shown in Figure 13.12.

Typical examples of systems that employ the publish-subscribe pattern are
the following:

 ■ Graphical user interfaces, in which a user’s low-level input actions are
treated as events that are routed to appropriate input handlers

 ■ MVC-based applications, in which view components are notified when the
state of a model object changes

 ■ Enterprise resource planning (ERP) systems, which integrate many compo-
nents, each of which is only interested in a subset of system events

 ■ Extensible programming environments, in which tools are coordinated
through events

 ■ Mailing lists, where a set of subscribers can register interest in specific
topics

Key:

E
cl

ip
se

 U
I e

ve
nt

 m
an

ag
er

Register
action
handlers

UI
event

handle
UI event

CRUD
fact data

assert/modify/
retract fact

SEI.ArchE.UI
plug-in config

views and
editors

Fact
data in

memory

ArchE
core

listener

action
handler

ArchE
core

façade
Jess

new or
setField()

notify data

change

register views as

observer of facts

register to fact

data changesnotify fact

data change

Action
handler
object

UI screen
object

Java
object

External
program

XML file
Event manager
(part of Eclipse
platform)

Register to
listen for event

Event send/
receive

Java method
call

fIGurE 13.12 A typical publish-subscribe pattern realization

13.2 Overview of the Patterns Catalog 229

 ■ Social networks, where “friends” are notified when changes occur to a
person’s website

The publish-subscribe pattern is used to send events and messages to an un-
known set of recipients. Because the set of event recipients is unknown to the
event producer, the correctness of the producer cannot, in general, depend on
those recipients. Thus, new recipients can be added without modification to the
producers.

Having components be ignorant of each other’s identity results in easy mod-
ification of the system (adding or removing producers and consumers of data) but
at the cost of runtime performance, because the publish-subscribe infrastructure
is a kind of indirection, which adds latency. In addition, if the publish-subscribe
connector fails completely, this is a single point of failure for the entire system.

The publish-subscribe pattern can take several forms:

 ■ List-based publish-subscribe is a realization of the pattern where every
publisher maintains a subscription list—a list of subscribers that have
registered an interest in receiving the event. This version of the pattern is
less decoupled than others, as we shall see below, and hence it does not
provide as much modifiability, but it can be quite efficient in terms of
runtime overhead. Also, if the components are distributed, there is no single
point of failure.

 ■ Broadcast-based publish-subscribe differs from list-based publish-
subscribe in that publishers have less (or no) knowledge of the subscribers.
Publishers simply publish events, which are then broadcast. Subscribers
(or in a distributed system, services that act on behalf of the subscribers)
examine each event as it arrives and determine whether the published event
is of interest. This version has the potential to be very inefficient if there
are lots of messages and most messages are not of interest to a particular
subscriber.

 ■ Content-based publish-subscribe is distinguished from the previous two
variants, which are broadly categorized as “topic-based.” Topics are
predefined events, or messages, and a component subscribes to all events
within the topic. Content, on the other hand, is much more general. Each
event is associated with a set of attributes and is delivered to a subscriber
only if those attributes match subscriber-defined patterns.

In practice the publish-subscribe pattern is typically realized by some form
of message-oriented middleware, where the middleware is realized as a broker,
managing the connections and channels of information between producers and
consumers. This middleware is often responsible for the transformation of mes-
sages (or message protocols), in addition to routing and sometimes storing the
messages. Thus the publish-subscribe pattern inherits the strengths and weak-
nesses of the broker pattern.

230 Part two Quality attributes 13—Architectural Tactics and Patterns

Shared-Data Pattern
Context: Various computational components need to share and manipulate large
amounts of data. This data does not belong solely to any one of those components.

Problem: How can systems store and manipulate persistent data that is accessed
by multiple independent components?

Solution: In the shared-data pattern, interaction is dominated by the exchange of
persistent data between multiple data accessors and at least one shared-data store.
Exchange may be initiated by the accessors or the data store. The connector type is
data reading and writing. The general computational model associated with shared-
data systems is that data accessors perform operations that require data from the data
store and write results to one or more data stores. That data can be viewed and acted
on by other data accessors. In a pure shared-data system, data accessors interact only
through one or more shared-data stores. However, in practice shared-data systems
also allow direct interactions between data accessors. The data-store components of
a shared-data system provide shared access to data, support data persistence, man-
age concurrent access to data through transaction management, provide fault toler-
ance, support access control, and handle the distribution and caching of data values.

Specializations of the shared-data pattern differ with respect to the nature
of the stored data—existing approaches include relational, object structures, lay-
ered, and hierarchical structures.

Although the sharing of data is a critical task for most large, complex sys-
tems, there are a number of potential problems associated with this pattern. For
one, the shared-data store may be a performance bottleneck. For this reason,
performance optimization has been a common theme in database research. The
shared-data store is also potentially a single point of failure. Also, the producers
and consumers of the shared data may be tightly coupled, through their knowl-
edge of the structure of the shared data.

The shared-data pattern solution is summarized in Table 13.9.
The shared-data pattern is useful whenever various data items are persistent and

have multiple accessors. Use of this pattern has the effect of decoupling the producer
of the data from the consumers of the data; hence, this pattern supports modifiabil-
ity, as the producers do not have direct knowledge of the consumers. Consolidating
the data in one or more locations and accessing it in a common fashion facilitates
performance tuning. Analyses associated with this pattern usually center on qualities
such as data consistency, performance, security, privacy, availability, scalability, and
compatibility with, for example, existing repositories and their data.

When a system has more than one data store, a key architecture concern is the
mapping of data and computation to the data. Use of multiple stores may occur be-
cause the data is naturally, or historically, partitioned into separable stores. In other
cases data may be replicated over several stores to improve performance or availabil-
ity through redundancy. Such choices can strongly affect the qualities noted above.

Figure 13.13 shows the diagram of a shared-data view of an enterprise access
management system. There are three types of accessor components: Windows

13.2 Overview of the Patterns Catalog 231

applications, web applications, and headless programs (programs or scripts that
run in background and don’t provide any user interface).

tablE 13.9 Shared-Data Pattern Solution

Overview Communication between data accessors is mediated by a shared-
data store. Control may be initiated by the data accessors or the
data store. Data is made persistent by the data store.

Elements Shared-data store. Concerns include types of data stored, data
performance-oriented properties, data distribution, and number of
accessors permitted.
Data accessor component.
Data reading and writing connector. An important choice here is
whether the connector is transactional or not, as well as the read/
write language, protocols, and semantics.

Relations Attachment relation determines which data accessors are
connected to which data stores.

Constraints Data accessors interact with the data store(s).

Weaknesses The shared-data store may be a performance bottleneck.
The shared-data store may be a single point of failure.
Producers and consumers of data may be tightly coupled.

Key:

Password
synchronizer

Windows
AD

Microsoft
Exchange

Server

Authentication

Application

Web
sign-in

Web
application

Password
reset

Self
registration

HR database

Account
provisioning

centralized security realm

Rights
enablement

Entitlement
management

Delegated
administration

Request
tracking

Audit and
monitoring

Windows GUI
application

Headless
program

Web
application

Data
repository

Data
read

Data
write

Data
read & write

fIGurE 13.13 The shared-data diagram of an enterprise access management
system

232 Part two Quality attributes 13—Architectural Tactics and Patterns

allocation Patterns

Map-Reduce Pattern
Context: Businesses have a pressing need to quickly analyze enormous volumes
of data they generate or access, at petabyte scale. Examples include logs of inter-
actions in a social network site, massive document or data repositories, and pairs
of <source, target> web links for a search engine. Programs for the analysis of
this data should be easy to write, run efficiently, and be resilient with respect to
hardware failure.

Problem: For many applications with ultra-large data sets, sorting the data and
then analyzing the grouped data is sufficient. The problem the map-reduce pat-
tern solves is to efficiently perform a distributed and parallel sort of a large data
set and provide a simple means for the programmer to specify the analysis to be
done.

Solution: The map-reduce pattern requires three parts: First, a specialized infra-
structure takes care of allocating software to the hardware nodes in a massively
parallel computing environment and handles sorting the data as needed. A node
may be a standalone processor or a core in a multi-core chip. Second and third are
two programmer-coded functions called, predictably enough, map and reduce.

The map function takes as input a key (key1) and a data set. The purpose of
the map function is to filter and sort the data set. All of the heavy analysis takes
place in the reduce function. The input key in the map function is used to filter
the data. Whether a data record is to be involved in further processing is deter-
mined by the map function. A second key (key2) is also important in the map
function. This is the key that is used for sorting. The output of the map function
consists of a <key2, value> pair, where the key2 is the sorting value and the value
is derived from the input record.

Sorting is performed by a combination of the map and the infrastructure.
Each record output by map is hashed by key2 into a disk partition. The infra-
structure maintains an index file for key2 on the disk partition. This allows for the
values on the disk partition to be retrieved in key2 order.

The performance of the map phase of map-reduce is enhanced by having
multiple map instances, each processing a different portion of the disk file being
processed. Figure 13.14 shows how the map portion of map-reduce processes
data. An input file is divided into portions, and a number of map instances are
created to process each portion. The map function processes its portion into a
number of partitions, based on programmer-specified logic.

The reduce function is provided with all the sets of <key2, value> pairs emit-
ted by all the map instances in sorted order. Reduce does some programmer-spec-
ified analysis and then emits the results of that analysis. The output set is almost
always much smaller than the input sets, hence the name “reduce.” The term
“load” is sometimes used to describe the final set of data emitted. Figure 13.14
also shows one instance (of many possible instances) of the reduce processing,

13.2 Overview of the Patterns Catalog 233

called Reduce Instance 2. Reduce Instance 2 is receiving data from all of the
Partition 2s produced by the various map instances. It is possible that there are
several iterations of reduce for large files, but this is not shown in Figure 13.14.

A classic teaching problem for map-reduce is counting word occurrences
in a document. This example can be carried out with a single map function. The
document is the data set. The map function will find every word in the document
and output a <word, 1> pair for each. For example, if the document begins with
the words “Having a whole book . . . ,” then the first results of map will be

<Having, 1>
<a, 1>
<whole, 1>
<book, 1>

In practice, the “a” would be one of the words filtered by map.
Pseudocode for map might look like this:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emit (w, “1”);

Portion i of
input file

Portion j of
input file

Reduce
instance 2

Output
from

instance 2

Map instance j

Partition 1 Partition 2 Partition 3

Partition 1 Partition 2 Partition 3

Component

Disk file

Output

Key:

Merge

Map instance i

fIGurE 13.14 A component-and-connector view of map-reduce showing how the
data processed by map is partitioned and subsequently processed by reduce

234 Part two Quality attributes 13—Architectural Tactics and Patterns

The reduce function will take that list in sorted order, add up the 1s for each
word to get a count, and output the result.

The corresponding reduce function would look like this:

reduce(List <key, value>):
// key: a word
// value: an integer
int result = 0;
sort input
for each input value:
for each input pair with same word
result ++ ;
Emit (word, result)
result = 0

Larger data sets lead to a much more interesting solution. Suppose we want
to continuously analyze Twitter posts over the last hour to see what topics are
currently “trending.” This is analogous to counting word occurrences in millions
of documents. In that case, each document (tweet) can be assigned to its own in-
stance of the map function. (If you don’t have millions of processors handy, you
can break the tweet collection into groups that match the number of processors
in your processor farm, and process the collection in waves, one group after the
other.) Or we can use a dictionary to give us a list of words, and each map func-
tion can be assigned its own word to look for across all tweets.

There can also be multiple instances of reduce. These are usually arranged
so that the reduction happens in stages, with each stage processing a smaller list
(with a smaller number of reduce instances) than the previous stage. The final
stage is handled by a single reduce function that produces the final output.

Of course, the map-reduce pattern is not appropriate in all instances. Some
considerations that would argue against adopting this pattern are these:

 ■ If you do not have large data sets, then the overhead of map-reduce is not
justified.

 ■ If you cannot divide your data set into similar sized subsets, the advantages
of parallelism are lost.

 ■ If you have operations that require multiple reduces, this will be complex to
orchestrate.

Commercial implementations of map-reduce provide infrastructure that
takes care of assignment of function instances to hardware, recovery and reas-
signment in case of hardware failure (a common occurrence in massively parallel
computing environments), and utilities like sorting of the massive lists that are
produced along the way.

Table 13.10 summarizes the solution of the map-reduce pattern.
Map-reduce is a cornerstone of the software of some of the most familiar

names on the web, including Google, Facebook, eBay, and Yahoo!

13.2 Overview of the Patterns Catalog 235

tablE 13.10 Map-Reduce Pattern Solution

Overview The map-reduce pattern provides a framework for analyzing a
large distributed set of data that will execute in parallel, on a set
of processors. This parallelization allows for low latency and high
availability. The map performs the extract and transform portions
of the analysis and the reduce performs the loading of the results.
(Extract-transform-load is sometimes used to describe the functions of
the map and reduce.)

Elements Map is a function with multiple instances deployed across multiple
processors that performs the extract and transformation portions of
the analysis.
Reduce is a function that may be deployed as a single instance or as
multiple instances across processors to perform the load portion of
extract-transform-load.
The infrastructure is the framework responsible for deploying map and
reduce instances, shepherding the data between them, and detecting
and recovering from failure.

Relations Deploy on is the relation between an instance of a map or reduce
function and the processor onto which it is installed.
Instantiate, monitor, and control is the relation between the
infrastructure and the instances of map and reduce.

Constraints The data to be analyzed must exist as a set of files.
The map functions are stateless and do not communicate with each
other.
The only communication between the map instances and the reduce
instances is the data emitted from the map instances as <key, value>
pairs.

Weaknesses If you do not have large data sets, the overhead of map-reduce is not
justified.
If you cannot divide your data set into similar sized subsets, the
advantages of parallelism are lost.
Operations that require multiple reduces are complex to orchestrate.

Multi-tier Pattern
The multi-tier pattern is a C&C pattern or an allocation pattern, depending on the
criteria used to define the tiers. Tiers can be created to group components of similar
functionality, in which case it is a C&C pattern. However, in many, if not most,
cases tiers are defined with an eye toward the computing environment on which
the software will run: A client tier in an enterprise system will not be running on
the computer that hosts the database. That makes it an allocation pattern, mapping
software elements—perhaps produced by applying C&C patterns—to computing
elements. Because of that reason, we have chosen to list it as an allocation pattern.

Context: In a distributed deployment, there is often a need to distribute a sys-
tem’s infrastructure into distinct subsets. This may be for operational or business
reasons (for example, different parts of the infrastructure may belong to different
organizations).

236 Part two Quality attributes 13—Architectural Tactics and Patterns

Problem: How can we split the system into a number of computationally inde-
pendent execution structures—groups of software and hardware—connected by
some communications media? This is done to provide specific server environ-
ments optimized for operational requirements and resource usage.

Solution: The execution structures of many systems are organized as a set of
logical groupings of components. Each grouping is termed a tier. The grouping
of components into tiers may be based on a variety of criteria, such as the type of
component, sharing the same execution environment, or having the same runtime
purpose.

The use of tiers may be applied to any collection (or pattern) of runtime
components, although in practice it is most often used in the context of cli-
ent-server patterns. Tiers induce topological constraints that restrict which com-
ponents may communicate with other components. Specifically, connectors may
exist only between components in the same tier or residing in adjacent tiers. The
multi-tier pattern found in many Java EE and Microsoft .NET applications is an
example of organization in tiers derived from the client-server pattern.

Additionally, tiers may constrain the kinds of communication that can take
place across adjacent tiers. For example, some tiered patterns require call-return
communication in one direction but event-based notification in the other.

The main weakness with the multi-tier architecture is its cost and complex-
ity. For simple systems, the benefits of the multi-tier architecture may not justify
its up-front and ongoing costs, in terms of hardware, software, and design and
implementation complexity.

Tiers are not components, but rather logical groupings of components. Also,
don’t confuse tiers with layers! Layering is a pattern of modules (a unit of imple-
mentation), while tiers applies only to runtime entities.

Table 13.11 summarizes the solution part of the multi-tier pattern.
Tiers make it easier to ensure security, and to optimize performance and

availability in specialized ways. They also enhance the modifiability of the sys-
tem, as the computationally independent subgroups need to agree on protocols
for interaction, thus reducing their coupling.

Figure 13.15 uses an informal notation to describe the multi-tier architecture
of the Consumer Website Java EE application. This application is part of the Ad-
venture Builder system. Many component-and-connector types are specific to the
supporting platform, which is Java EE in this case.

13.2 Overview of the Patterns Catalog 237

tablE 13.11 Multi-tier Pattern Solution

Overview The execution structures of many systems are organized as a
set of logical groupings of components. Each grouping is termed
a tier. The grouping of components into tiers may be based on a
variety of criteria, such as the type of component, sharing the same
execution environment, or having the same runtime purpose.

Elements Tier, which is a logical grouping of software components.
Tiers may be formed on the basis of common computing platforms,
in which case those platforms are also elements of the pattern.

Relations Is part of, to group components into tiers.
Communicates with, to show how tiers and the components they
contain interact with each other.
Allocated to, in the case that tiers map to computing platforms.

Constraints A software component belongs to exactly one tier.

Weaknesses Substantial up-front cost and complexity.

Key

Web
browser

S
ig

n
O

n
Fi

lt
er

*.do

*.screen

Main
Servlet

Template
Servlet

Screen
JSP

index.jsp

Sign On
Notifier

mappings.xml

screen
definitions.xml

sign-on-
config.xml

Order
Facade

EJB tier Back endWeb tierClient tier

Catalog
Facade OPC

Adventure
Catalog

DB

User
Mgmt
Facade

OpcOrder
TrackingService

OpcPurchase
OrderService

Client-side
application

Java
EE
filter

Stateless
session
bean

Java EE
application

Context
listener

Data
store

File
Servlet

ContainerWeb services
endpoint

SOAP
call

File
I/O

Java
call

HTTP/
HTTPS

JDBC

fIGurE 13.15 A multi-tier view of the Consumer Website Java EE application,
which is part of the Adventure Builder system

238 Part two Quality attributes 13—Architectural Tactics and Patterns

Other allocation Patterns. There are several published deployment styles.
Microsoft publishes a “Tiered Distribution” pattern, which prescribes a particular
allocation of components in a multi-tier architecture to the hardware they will run
on. Similarly, IBM’s WebSphere handbooks describe a number of what they call
“topologies” along with the quality attribute criteria for choosing among them.
There are 11 topologies (specialized deployment patterns) described for Web-
Sphere version 6, including the “single machine topology (stand-alone server),”
“reverse proxy topology,” “vertical scaling topology,” “horizontal scaling topol-
ogy,” and “horizontal scaling with IP sprayer topology.”

There are also published work assignment patterns. These take the form of
often-used team structures. For example, patterns for globally distributed Agile
projects include these:

 ■ Platform. In software product line development, one site is tasked with
developing reusable core assets of the product line, and other sites develop
applications that use the core assets.

 ■ Competence center. Work is allocated to sites depending on the technical
or domain expertise located at a site. For example, user interface design is
done at a site where usability engineering experts are located.

 ■ Open source. Many independent contributors develop the software product
in accordance with a technical integration strategy. Centralized control is
minimal, except when an independent contributor integrates his code into
the product line.

13.3 relationships between tactics and Patterns

Patterns and tactics together constitute the software architect’s primary tools of
the trade. How do they relate to each other?

Patterns comprise tactics

As we said in the introduction to this chapter, tactics are the “building blocks”
of design from which architectural patterns are created. Tactics are atoms and
patterns are molecules. Most patterns consist of (are constructed from) several
different tactics, and although these tactics might all serve a common purpose—
such as promoting modifiability, for example—they are often chosen to promote
different quality attributes. For example, a tactic might be chosen that makes an
availability pattern more secure, or that mitigates the performance impact of a
modifiability pattern.

Consider the example of the layered pattern, the most common pattern in all
of software architecture (virtually all nontrivial systems employ layering). The

13.3 Relationships between Tactics and Patterns 239

layered pattern can be seen as the amalgam of several tactics—increase semantic
coherence, abstract common services, encapsulate, restrict communication paths,
and use an intermediary. For example:

 ■ Increase semantic coherence. The goal of ensuring that a layer’s respon-
sibilities all work together without excessive reliance on other layers
is achieved by choosing responsibilities that have semantic coherence.
Doing so binds responsibilities that are likely to be affected by a change.
For example, responsibilities that deal with hardware should be allocated
to a hardware layer and not to an application layer; a hardware respon-
sibility typically does not have semantic coherence with the application
responsibilities.

 ■ Restrict dependencies. Layers define an ordering and only allow a layer to
use the services of its adjacent lower layer. The possible communication
paths are reduced to the number of layers minus one. This limitation has a
great influence on the dependencies between the layers and makes it much
easier to limit the side effects of replacing a layer.

Without any one of its tactics, the pattern might be ineffective. For example,
if the restrict dependencies tactic is not employed, then any function in any layer
can call any other function in any other layer, destroying the low coupling that
makes the layering pattern effective. If the increase semantic coherence tactic
is not employed, then functionality could be randomly sprinkled throughout the
layers, destroying the separation of concerns, and hence ease of modification,
which is the prime motivation for employing layers in the first place.

Table 13.12 shows a number of the architectural patterns described in the
book Pattern-Oriented Software Architecture Volume 1: A System of Patterns, by
Buschmann et al., and shows which modifiability tactics they employ.

using tactics to augment Patterns

A pattern is described as a solution to a class of problems in a general context.
When a pattern is chosen and applied, the context of its application becomes very
specific. A documented pattern is therefore underspecified with respect to apply-
ing it in a specific situation.

To make a pattern work in a given architectural context, we need to examine
it from two perspectives:

 ■ The inherent quality attribute tradeoffs that the pattern makes. Patterns exist
to achieve certain quality attributes, and we need to compare the ones they
promote (and the ones they diminish) with our needs.

 ■ Other quality attributes that the pattern isn’t directly concerned with, but
which it nevertheless affects, and which are important in our application.

240 Part two Quality attributes 13—Architectural Tactics and Patterns

tablE 13.12 Architecture Patterns and Corresponding Tactics ([Bachmann 07])

Pattern

Modifiability

Increase
cohesion reduce coupling

defer binding
time

In
cr

ea
se

 S
em

an
ti

c
c

o
h

er
en

ce

a
b

st
ra

ct
 c

o
m

m
o

n

S
er

vi
ce

s

E
n

ca
p

su
la

te

u
se

 a
 W

ra
p

p
er

r
es

tr
ic

t c
o

m
m

.
P

at
h

s

u
se

 a
n

In

te
rm

ed
ia

ry

r
ai

se
 t

h
e

a
b

st
ra

ct
io

n
 l

ev
el

u
se

 r
u

n
ti

m
e

r
eg

is
tr

at
io

n

u
se

 S
ta

rt
u

p
-t

im
e

b
in

d
in

g

u
se

 r
u

n
ti

m
e

b
in

d
in

g

Layered X X X X X X

Pipes and Filters X X X X X

Blackboard X X X X X X X

Broker X X X X X X X

Model View
Controller

X X X X

Presentation
Abstraction Control

X X X X

Microkernel X X X X X

Reflection X X

To illustrate these concerns in particular, and how to use tactics to augment
patterns in general, we’ll use the broker pattern as a starting point.

The broker pattern is widely used in distributed systems and dates back at
least to its critical role in CORBA-based systems. Broker is a crucial component
of any large-scale, dynamic, service-oriented architecture.

Using this pattern, a client requesting some information from a server does
not need to know the location or APIs of the server. The client simply contacts
the broker (typically through a client-side proxy); this is illustrated in the UML
sequence diagram in Figure 13.16.

Weaknesses of the broker Pattern. In Section 13.2 we enumerated sev-
eral weaknesses of the broker pattern. Here we will examine these weaknesses
in more detail. The broker pattern has several weaknesses with respect to certain
quality attributes. For example:

 ■ Availability. The broker, if implemented as suggested in Figure 13.6, is a
single point of failure. The liveness of servers, the broker, and perhaps even
the clients need to be monitored, and repair mechanisms must be provided.

13.3 Relationships between Tactics and Patterns 241

:Client :ClientProxy :ServerProxy :Server

process boundary

registerServer()

marshallRequest()

unmarshallRequest()

clientID

serverID

OK

resultA

resultA

sendRequest()

marshallResponse()

unmarshallResponse()

sendResponse()

performFunctionA()

performFunctionA()

locateServer()

locateClient()

process boundary

:Broker

fIGurE 13.16 A sequence diagram showing a typical client-server interaction
mediated by a broker

 ■ Performance. The levels of indirection between the client (requesting
the information or service) and the server (providing the information or
service) add overhead, and hence add latency. Also, the broker is a potential
performance bottleneck if direct communication between the client and
server is not desired (for example, for security reasons).

 ■ Testability. Brokers are employed in complex multi-process and multi-
processor systems. Such systems are typically highly dynamic. Requests
and responses are typically asynchronous. All of this makes testing and
debugging such systems extremely difficult. But the description of the
broker pattern provides no testing functionality, such as testing interfaces,
state or activity capture and playback capabilities, and so forth.

242 Part two Quality attributes 13—Architectural Tactics and Patterns

 ■ Security. Because the broker pattern is primarily used when the system
spans process and processor boundaries—such as on web-based systems—
security is a legitimate concern. However, the broker pattern as presented
does not offer any means to authenticate or authorize clients or servers, and
provides no means of protecting the communication between clients and
servers.

Of these quality attributes, the broker pattern is mainly associated with
poor performance (the well-documented price for the loose coupling it brings to
systems). It is largely unconcerned with the other quality attributes in this list;
they aren’t mentioned in most published descriptions. But as the other bullets
show, they can be unacceptable “collateral damage” that come with the broker’s
benefits.

Improving the broker Pattern with tactics. How can we use tactics to
plug the gaps between the “out of the box” broker pattern and a version of it that
will let us meet the requirements of a demanding distributed system? Here are
some options:

 ■ The increase available resources performance tactic would lead to multiple
brokers, to help with performance and availability.

 ■ The maintain multiple copies tactic would allow each of these brokers to
share state, to ensure that they respond identically to client requests.

 ■ Load balancing (an application of the scheduling resources tactic) would
ensure that one broker is not overloaded while another one sits idle.

 ■ Heartbeat, exception detection, or ping/echo would give the replicated
brokers a way of notifying clients and notifying each other when one of
them is out of service, as a means of detecting faults.

Of course, each of these tactics brings a tradeoff. Each complicates the de-
sign, which will now take longer to implement, be more costly to acquire, and
be more costly to maintain. Load balancing introduces indirection that will add
latency to each transaction, thus giving back some of the performance it was in-
tended to increase. And the load balancer is a single point of failure, so it too
must be replicated, further increasing the design cost and complexity.

13.4 using tactics together

Tactics, as described in Chapters 5–11, are design primitives aimed at managing
a single quality attribute response. Of course, this is almost never true in prac-
tice; every tactic has its main effect—to manage modifiability or performance
or safety, and so on—and it has its side effects, its tradeoffs. On the face of it,
the situation for an architect sounds hopeless. Whatever you do to improve one

13.4 Using Tactics Together 243

quality attribute endangers another. We are able to use tactics profitably because
we can gauge the direct and side effects of a tactic, and when the tradeoff is ac-
ceptable, we employ the tactic. In doing so we gain some benefit in our quality
attribute of interest while giving up something else (with respect to a different
quality attribute and, we hope, of a much smaller magnitude).

This section will walk through an example that shows how applying tactics
to a pattern can produce negative effects in one area, but how adding other tactics
can bring relief and put you back in an acceptable design space. The point is to
show the interplay between tactics that you can use to your advantage. Just as
some combinations of liquids are noxious whereas others yield lovely things like
strawberry lemonade, tactics can either make things worse or put you in a happy
design space. Here, then, is a walkthrough of tactic mixology.

Consider a system that needs to detect faults in its components. A common
tactic for detecting faults is ping/echo. Let us assume that the architect has de-
cided to employ ping/echo as a way to detect failed components in the system.
Every tactic has one or more side effects, and ping/echo is no different. Common
considerations associated with ping/echo are these:

 ■ Security. How to prevent a ping flood attack?
 ■ Performance. How to ensure that the performance overhead of ping/echo is

small?
 ■ Modifiability. How to add ping/echo to the existing architecture?

We can represent the architect’s reasoning and decisions thus far as shown
in Figure 13.17.

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

fIGurE 13.17 Partial availability decisions

244 Part two Quality attributes 13—Architectural Tactics and Patterns

Suppose the architect determines that the performance tradeoff (the overhead
of adding ping/echo to the system) is the most severe. A tactic to address the
performance side effect is increase available resources. Considerations associated
with increase available resources are these:

 ■ Cost. Increased resources cost more.
 ■ Performance. How to utilize the increased resources efficiently?

This set of design decisions can now be represented as shown in Figure 13.18.
Now the architect chooses to deal with the resource utilization consequence

of employing increase available resources. These resources must be used efficiently
or else they are simply adding cost and complexity to the system. A tactic that can
address the efficient use of resources is the employment of a scheduling policy. Con-
siderations associated with the scheduling policy tactic are these:

 ■ Modifiability. How to add the scheduling policy to the existing architecture?
 ■ Modifiability. How to change the scheduling policy in the future?

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase Available
Resources

fIGurE 13.18 More availability decisions

13.4 Using Tactics Together 245

The set of design decisions that includes the scheduling policy tactic can
now be represented as in Figure 13.19.

Next the architect chooses to deal with the modifiability consequence of
employing a scheduling policy tactic. A tactic to address the addition of the
scheduler to the system is to use an intermediary, which will insulate the choice
of scheduling policy from the rest of the system. One consideration associated
with use an intermediary is this:

 ■ Modifiability. How to ensure that all communication passes through the
intermediary?

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase Available
Resources

Add to
system

Modify
policy

Scheduling
Policy

fIGurE 13.19 Still more availability decisions

246 Part two Quality attributes 13—Architectural Tactics and Patterns

We can now represent the tactics-based set of architectural design decisions
made thus far as in Figure 13.20.

A tactic to address the concern that all communication passes through the
intermediary is restrict dependencies. One consideration associated with the
restrict dependencies tactic is this:

 ■ Performance. How to ensure that the performance overhead of the
intermediary is not excessive?

This design problem has now become recursive! At this point (or in fact,
at any point in the tree of design decisions that we have described) the architect
might determine that the performance overhead of the intermediary is small
enough that no further design decisions need to be made.

System

Ping/Echo

Add to
system

Ping
flood

Performance
overhead

Cost Resource
utilization

Increase available
Resources

Add to
system

Modify
policy

Scheduling
Policy

Ensure usage

Use an intermediary

fIGurE 13.20 As far as we go with availability decisions

13.5 Summary 247

Applying successive tactics is like moving through a game space, and it’s a
little like chess: Good players are able to see the consequences of the move they’re
considering, and the very good players are able to look several moves ahead. In
Chapter 17 we’ll see the activity of design treated as an exercise of “generate and
test”: propose a design and test it to see if it’s satisfactory. Applying tactics to
an existing design solution, such as a pattern, is one technique for generating a
design for subsequent testing.

13.5 Summary

An architectural pattern

 ■ is a package of design decisions that is found repeatedly in practice,
 ■ has known properties that permit reuse, and
 ■ describes a class of architectures.

Because patterns are (by definition) found repeatedly in practice, one does
not invent them; one discovers them.

Tactics are simpler than patterns. Tactics typically use just a single structure
or computational mechanism, and they are meant to address a single architectural
force. For this reason they give more precise control to an architect when
making design decisions than patterns, which typically combine multiple design
decisions into a package. Tactics are the “building blocks” of design from which
architectural patterns are created. Tactics are atoms and patterns are molecules.

An architectural pattern establishes a relationship between:

 ■ A context. A recurring, common situation in the world that gives rise to a
problem.

 ■ A problem. The problem, appropriately generalized, that arises in the given
context.

 ■ A solution. A successful architectural resolution to the problem,
appropriately abstracted.

Complex systems exhibit multiple patterns at once.
Patterns can be categorized by the dominant type of elements that they show:

module patterns show modules, component-and-connector patterns show compo-
nents and connectors, and allocation patterns show a combination of software
elements (modules, components, connectors) and nonsoftware elements. Most
published patterns are C&C patterns, but there are module patterns and allocation
patterns as well. This chapter showed examples of each type.

A pattern is described as a solution to a class of problems in a general con-
text. When a pattern is chosen and applied, the context of its application becomes
very specific. A documented pattern is therefore underspecified with respect to

248 Part two Quality attributes 13—Architectural Tactics and Patterns

applying it in a specific situation. We can make a pattern more specific to our
problem by augmenting it with tactics. Applying successive tactics is like mov-
ing through a game space, and is a little like chess: the consequences of the next
move are important, and looking several moves ahead is helpful.

13.6 for further reading

There are many existing repositories of patterns and books written about patterns.
The original and most well-known work on object-oriented design patterns is by
the “Gang of Four” [Gamma 94].

The Gang of Four’s discussion of patterns included patterns at many levels
of abstraction. In this chapter we have focused entirely on architectural patterns.
The patterns that we have presented here are intended as representative examples.
This chapter’s inventory of patterns is in no way meant to be exhaustive. For
example, while we describe the SOA pattern, entire repositories of SOA patterns
(refinements of the basic SOA pattern) have been created. A good place to start is
www.soapatterns.org.

Some good references for pattern-oriented architecture are [Buschmann 96],
[Hanmer 07], [Schmidt 00], and [Kircher 03].

A good place to learn more about the map-reduce pattern is Google’s foun-
dational paper on it [Dean 04].

Map-reduce is the tip of the spear of the so-called “NoSQL” movement,
which seeks to displace the relational database from its venerable and taken-for-
granted status in large data-processing systems. The movement has some of the
revolutionary flavor of the Agile movement, except that NoSQL advocates are
claiming a better (for them) technology, as opposed to a better process. You can
easily find NoSQL podcasts, user forums, conferences, and blogs; it’s also dis-
cussed in Chapter 26.

[Bachmann 07] discusses the use of tactics in the layered pattern and is the
source for some of our discussion of that.

The passage in this chapter about augmenting ping/echo with other tactics
to achieve the desired combination of quality attributes is based on the work of
Kiran Kumar and TV Prabhakar [Kumar 10a] and [Kumar 10b].

[Urdangarin 08] is the source of the work assignment patterns described in
Section 13.2.

The Adventure Builder system shown in Figures 13.11 and 13.15 comes
from [AdvBuilder 10].

http://www.soapatterns.org

13.7 Discussion Questions 249

13.7 discussion Questions

1. What’s the difference between an architectural pattern, such as those de-
scribed in this chapter and in the Pattern-Oriented Software Architecture
series of books, and design patterns, such as those collected by the Gang of
Four in 1994 and many other people subsequently? Given a pattern, how
would you decide whether it was an architectural pattern, a design pattern,
a code pattern, or something else?

2. SOA systems feature dynamic service registration and discovery. Which
quality attributes does this capability enhance and which does it threaten?
If you had to make a recommendation to your boss about whether your
company’s SOA system should use external services it discovers at runtime,
what would you say?

3. Write a complete pattern description for the “competence center” work as-
signment pattern mentioned in Section 13.2.

4. For a data set that is a set of web pages, sketch a map function and a reduce
function that together provide a basic search engine capability.

5. Describe how the layered pattern makes use of these tactics: abstract com-
mon services, encapsulate, and use an intermediary.

This page intentionally left blank

251

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

14
Quality Attribute
Modeling and Analysis

Do not believe in anything simply because you have
heard it . . . Do not believe in anything merely on
the authority of your teachers and elders. Do not

believe in traditions because they have been handed
down for many generations. But after observation
and analysis, when you find that anything agrees

with reason and is conducive to the good and benefit
of one and all, then accept it and live up to it.

—Prince Gautama Siddhartha

In Chapter 2 we listed thirteen reasons why architecture is important, worth
studying, and worth practicing. Reason 6 is that the analysis of an architecture
enables early prediction of a system’s qualities. This is an extraordinarily pow-
erful reason! Without it, we would be reduced to building systems by choosing
various structures, implementing the system, measuring the system for its quality
attribute responses, and all along the way hoping for the best. Architecture lets
us do better than that, much better. We can analyze an architecture to see how
the system or systems we build from it will perform with respect to their quality
attribute goals, even before a single line of code has been written. This chapter
will explore how.

The methods available depend, to a large extent, on the quality attribute to
be analyzed. Some quality attributes, especially performance and availability,
have well-understood and strongly validated analytic modeling techniques. Other
quality attributes, for example security, can be analyzed through checklists. Still
others can be analyzed through back-of-the-envelope calculations and thought
experiments.

Our topics in this chapter range from the specific, such as creating models
and analyzing checklists, to the general, such as how to generate and carry out the
thought experiments to perform early (and necessarily crude) analysis. Models

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

252 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

and checklists are focused on particular quality attributes but can aid in the anal-
ysis of any system with respect to those attributes. Thought experiments, on the
other hand, can consider multiple quality attributes simultaneously but are only
applicable to the specific system under consideration.

14.1 Modeling architectures to Enable
Quality attribute analysis

Some quality attributes, most notably performance and availability, have well-un-
derstood, time-tested analytic models that can be used to assist in an analysis.
By analytic model, we mean one that supports quantitative analysis. Let us first
consider performance.

analyzing Performance

In Chapter 12 we discussed the fact that models have parameters, which are val-
ues you can set to predict values about the entity being modeled (and in Chap-
ter 12 we showed how to use the parameters to help us derive tactics for the
quality attribute associated with the model). As an example we showed a queuing
model for performance as Figure 12.2, repeated here as Figure 14.1. The parame-
ters of this model are the following:

 ■ The arrival rate of events
 ■ The chosen queuing discipline
 ■ The chosen scheduling algorithm
 ■ The service time for events
 ■ The network topology
 ■ The network bandwidth
 ■ The routing algorithm chosen

In this section, we discuss how such a model can be used to understand the
latency characteristics of an architectural design.

To apply this model in an analytical fashion, we also need to have previ-
ously made some architecture design decisions. We will use model-view-control-
ler as our example here. MVC, as presented in Section 13.2, says nothing about
its deployment. That is, there is no specification of how the model, the view, and
the controller are assigned to processes and processors; that’s not part of the pat-
tern’s concern. These and other design decisions have to be made to transform
a pattern into an architecture. Until that happens, one cannot say anything with
authority about how an MVC-based implementation will perform. For this exam-
ple we will assume that there is one instance each of the model, the view, and the
controller, and that each instance is allocated to a separate processor. Figure 14.2
shows MVC following this allocation scheme.

14.1 Modeling Architectures to Enable Quality Attribute Analysis 253

Results

Routing of
messages

Arrivals

Queue

Server

Scheduling
algorithm

fIGurE 14.1 A queuing model of performance

Internet intranet

<<deploy>> <<deploy>> <<deploy>>

Database
host

<<component>>

Model

User’s
machine

<<component>>

View

App
server

<<component>>

Controller

Key: UML 2.0

fIGurE 14.2 An allocation view, in UML, of a model-view-controller architecture

Given that quality attribute models such as the performance model shown
in Figure 14.1 already exist, the problem becomes how to map these allocation
and coordination decisions onto Figure 14.1. Doing this yields Figure 14.3.
There are requests coming from users outside the system—labeled as 1 in Fig-
ure 14.3—arriving at the view. The view processes the requests and sends some

254 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

transformation of the requests on to the controller—labeled as 2. Some actions of
the controller are returned to the view—labeled as 3. The controller sends other
actions on to the model—labeled 4. The model performs its activities and sends
information back to the view—labeled 5.

To analyze the model in Figure 14.3, a number of items need to be known
or estimated:

 ■ The frequency of arrivals from outside the system
 ■ The queuing discipline used at the view queue
 ■ The time to process a message within the view
 ■ The number and size of messages that the view sends to the controller
 ■ The bandwidth of the network that connects the view and the controller
 ■ The queuing discipline used by the controller
 ■ The time to process a message within the controller
 ■ The number and size of messages that the controller sends back to the view
 ■ The bandwidth of the network used for messages from the controller to the

view
 ■ The number and size of messages that the controller sends to the model
 ■ The queuing discipline used by the model
 ■ The time to process a message within the model
 ■ The number and size of messages the model sends to the view
 ■ The bandwidth of the network connecting the model and the view

Users
generate
requests

1

2

3 4

5

Controller

Model

View

fIGurE 14.3 A queuing model of performance for MVC

14.1 Modeling Architectures to Enable Quality Attribute Analysis 255

Given all of these assumptions, the latency for the system can be estimated.
Sometimes well-known formulas from queuing theory apply. For situations where
there are no closed-form solutions, estimates can often be obtained through sim-
ulation. Simulations can be used to make more-realistic assumptions such as the
distribution of the event arrivals. The estimates are only as good as the assump-
tions, but they can serve to provide rough values that can be used either in design
or in evaluation; as better information is obtained, the estimates will improve.

A reasonably large number of parameters must be known or estimated to
construct the queuing model shown in Figure 14.3. The model must then be
solved or simulated to derive the expected latency. This is the cost side of the
cost/benefit of performing a queuing analysis. The benefit side is that as a result
of the analysis, there is an estimate for latency, and “what if” questions can be
easily answered. The question for you to decide is whether having an estimate of
the latency and the ability to answer “what if” questions is worth the cost of per-
forming the analysis. One way to answer this question is to consider the impor-
tance of having an estimate for the latency prior to constructing either the system
or a prototype that simulates an architecture under an assumed load. If having a
small latency is a crucial requirement upon which the success of the system re-
lies, then producing an estimate is appropriate.

Performance is a well-studied quality attribute with roots that extend beyond
the computer industry. For example, the queuing model given in Figure 14.1
dates from the 1930s. Queuing theory has been applied to factory floors, to bank-
ing queues, and to many other domains. Models for real-time performance, such
as rate monotonic analysis, also exist and have sophisticated analysis techniques.

analyzing availability

Another quality attribute with a well-understood analytic framework is availability.
Modeling an architecture for availability—or to put it more carefully, mod-

eling an architecture to determine the availability of a system based on that archi-
tecture—is a matter of determining the failure rate and the recovery time. As you
may recall from Chapter 5, availability can be expressed as

MTBF
(MTBF + MTTR)

This models what is known as steady-state availability, and it is used to
indicate the uptime of a system (or component of a system) over a sufficiently
long duration. In the equation, MTBF is the mean time between failure, which is
derived based on the expected value of the implementation’s failure probability
density function (PDF), and MTTR refers to the mean time to repair.

Just as for performance, to model an architecture for availability, we need
an architecture to analyze. So, suppose we want to increase the availability of a
system that uses the broker pattern, by applying redundancy tactics. Figure 14.4

256 Part Two Quality Attributes 14—Quality Attribute Modeling and Analysis

illustrates three well-known redundancy tactics from Chapter 5: active redun-
dancy, passive redundancy, and cold spare. Our goal is to analyze each redun-
dancy option for its availability, to help us choose one.

As you recall, each of these tactics introduces a backup copy of a compo-
nent that will take over in case the primary component suffers a failure. In our
case, a broker replica is employed as the redundant spare. The difference among
them is how up to date with current events each backup keeps itself:

 ■ In the case of active redundancy, the active and redundant brokers both
receive identical copies of the messages received from the client and server
proxies. The internal broker state is synchronously maintained between the
active and redundant spare in order to facilitate rapid failover upon detec-
tion of a fault in the active broker.

 ■ For the passive redundancy implementation, only the active broker receives
and processes messages from the client and server proxies. When using this
tactic, checkpoints of internal broker state are periodically transmitted from
the active broker process to the redundant spare, using the checkpoint-based
rollback tactic.

 ■ Finally, when using the cold spare tactic, only the active broker receives
and processes messages from the client and server proxies, because the
redundant spare is in a dormant or even powered-off state. Recovery strate-
gies using this tactic involve powering up, booting, and loading the broker
implementation on the spare. In this scenario, the internal broker state is
rebuilt organically, rather than via synchronous operation or checkpointing,
as described for the other two redundancy tactics.

Suppose further that we will detect failure with the heartbeat tactic, where
each broker (active and spare) periodically transmits a heartbeat message to a
separate process responsible for fault detection, correlation, reporting, and recov-
ery. This fault manager process is responsible for coordinating the transition of
the active broker role from the failed broker process to the redundant spare.

You can now use the steady state model of availability to assign values for
MTBF and MTTR for each of the three redundancy tactics we are considering.
Doing so will be an exercise left to the reader (as you’ll see when you reach the
discussion questions for this chapter). Because the three tactics differ primarily in
how long it takes to bring the backup copy up to speed, MTTR will be where the
difference among the tactics shows up.

More sophisticated models of availability exist, based on probability. In
these models, we can express a probability of failure during a period of time.
Given a particular MTBF and a time duration T, the probability of failure R is
given by

R(T) = e()–T
MTBF

14.1 Modeling Architectures to Enable Quality Attribute Analysis 257

Broker
ACTIVE

Broker
SPARE

(Cold) Spare
Client-Server
Proxy Traffic

Broker
ACTIVE

Broker
SPARE

Passive
Redundancy

Client-Server
Proxy Traffic

Periodic
Checkpoint Data

Key:

message

processBroker
ACTIVE

Broker
SPARE

Active
Redundancy

Client-Server
Proxy Traffic

State
Synchronization

fIGurE 14.4 Redundancy tactics, as applied to a broker pattern

You will recall from Statistics 101 that:

 ■ When two events A and B are independent, the probability that A or B will
occur is the sum of the probability of each event: P(A or B) = P(A)
+ P(B).

 ■ When two events A and B are independent, the probability of both occur-
ring is P(A and B) = P(A) • P(B).

 ■ When two events A and B are dependent, the probability of both occurring
is P(A and B) = P(A) • P(B|A), where the last term means “the
probability of B occurring, given that A occurs.”

258 Part Two Quality Attributes 14—Quality Attribute Modeling and Analysis

We can apply simple probability arithmetic to an architecture pattern for
availability to determine the probability of failure of the pattern given the proba-
bility of failure of the individual components (and an understanding of their de-
pendency relations). For example, in an architecture pattern employing the pas-
sive redundancy tactic, let’s assume that the failure of a component (which at any
moment might be acting as either the primary or backup copy) is independent of
a failure of its counterpart, and that the probability of failure of either is the same.
Then the probability that both will fail is F = (1 – a) **2, where a is the
availability of an individual component (assuming that failures are independent).

Still other models take into account different levels of failure severity and
degraded operating states of the system. Although the derivation of these for-
mulas is outside the scope of this chapter, you end up with formulas that look
like the following for the three redundancy tactics we’ve been discussing, where
the values C2 through C5 are references to the MTBF column of Table 14.1, D2
through D4 refer to the Active column, E2 through E3 refer to the Passive col-
umn, and F2 through F3 refer to the Spare column.

 ■ Active redundancy:

 ■ Availability(MTTR): 1 –((SUM(C2:C5) + D3) × D2)/((C2 × (C2 + C4 +
D3) + ((C2 + C4 + D2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + D3))))

 ■ P(Degraded) = ((C3 + C5) × D2)/((C2 × (C2 + C4 + D3) + ((C2 + C4 +
D2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + D3))))

 ■ Passive redundancy:

 ■ Availability(MTTR_passive) = 1 – ((SUM(C2:C5) + E3) × E2)/((C2 ×
(C2 + C4 + E3) + ((C2 + C4 + E2) × (C3 + C5)) + ((C2 + C4) × (C2 +
C4 + E3))))

 ■ P(Degraded) = ((C3 + C5) × E2)/((C2 × (C2 + C4 + E3) + ((C2 + C4 +
E2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + E3))))

 ■ Spare:

 ■ Availability(MTTR) = 1 – ((SUM(C2:C5) + F3) × F2)/((C2 × (C2 + C4 +
F3) + ((C2 + C4 + F2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + F3))))

 ■ P(Degraded) = ((C3 + C5) × F2)/((C2 × (C2 + C4 + F3) + ((C2 + C4 +
F2) × (C3 + C5)) + ((C2 + C4) × (C2 + C4 + F3))))

Plugging in these values for the parameters to the equations listed above
results in a table like Table 14.1, which can be easily calculated using any spread-
sheet tool. Such a calculation can help in the selection of tactics.

14.1 Modeling Architectures to Enable Quality Attribute Analysis 259

 TABLE 14.1 Calculated Availability for an Availability-Enhanced Broker
Implementation

Function
Failure
Severity

MTBF
(Hours)

MTTR (Seconds)

Active
Redundancy
(Hot Spare)

Passive
Redundancy
(Warm Spare)

Spare
(Cold Spare)

Hardware 1 250,000 1 5 900

2 50,000 30 30 30

Software 1 50,000 1 5 900

2 10,000 30 30 30

Availability 0.9999998 0.999990 0.9994

The Analytic Model Space

As we discussed in the preceding sections, there are a growing number of analytic
models for some aspects of various quality attributes. One of the quests of software
engineering is to have a sufficient number of analytic models for a sufficiently large
number of quality attributes to enable prediction of the behavior of a designed sys-
tem based on these analytic models. Table 14.2 shows our current status with respect
to this quest for the seven quality attributes discussed in Chapters 5–11.

TABLE 14.2 A Summary of the Analytic Model Space

Quality
Attribute Intellectual Basis Maturity/Gaps

Availability Markov models;
statistical models

Moderate maturity; mature in the
hardware reliability domain, less mature
in the software domain. Requires models
that speak to state recovery and for which
failure percentages can be attributed to
software.

Interoperability Conceptual framework Low maturity; models require substantial
human interpretation and input.

Modifiability Coupling and cohesion
metrics; cost models

Substantial research in academia; still
requires more empirical support in real-
world environments.

Performance Queuing theory; real-
time scheduling theory

High maturity; requires considerable
education and training to use properly.

Security No architectural models

Testability Component interaction
metrics

Low maturity; little empirical validation.

Usability No architectural models

260 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

As the table shows, the field still has a great deal of work to do to achieve
the quest for well-validated analytic models to predict behavior, but there is a
great deal of activity in this area (see the “For Further Reading” section for ad-
ditional papers). The remainder of this chapter deals with techniques that can be
used in addition to analytic models.

14.2 Quality attribute checklists

For some quality attributes, checklists exist to enable the architect to test com-
pliance or to guide the architect when making design decisions. Quality attribute
checklists can come from industry consortia, from government organizations,
or from private organizations. In large organizations they may be developed in
house.

 These checklists can be specific to one or more quality attributes; checklists
for safety, security, and usability are common. Or they may be focused on a par-
ticular domain; there are security checklists for the financial industry, industrial
process control, and the electric energy sector. They may even focus on some
specific aspect of a single quality attribute: cancel for usability, as an example.

For the purposes of certification or regulation, the checklists can be used by
auditors as well as by the architect. For example, two of the items on the checklist
of the Payment Card Industry (PCI) are to only persist credit card numbers in an
encrypted form and to never persist the security code from the back of the credit
card. An auditor can ask to examine stored credit card data to determine whether
it has been encrypted. The auditor can also examine the schema for data being
stored to see whether the security code has been included.

This example reveals that design and analysis are often two sides of the
same coin. By considering the kinds of analysis to which a system will be sub-
jected (in this case, an audit), the architect will be led into making important
early architectural decisions (making the decisions the auditors will want to find).

Security checklists usually have heavy process components. For example, a
security checklist might say that there should be an explicit security policy within
an organization, and a cognizant security officer to ensure compliance with the
policy. They also have technical components that the architect needs to examine
to determine the implications on the architecture of the system being designed or
evaluated. For example, the following is an item from a security checklist gener-
ated by a group chartered by an organization of electric producers and distribu-
tors. It pertains to embedded systems delivering electricity to your home:

A designated system or systems shall daily or on request obtain current
version numbers, installation date, configuration settings, patch level
on all elements of a [portion of the electric distribution] system,

14.1 Modeling Architectures to Enable Quality Attribute Analysis 261

In Search of a Grand Unified Theory for Quality Attributes

How do we create analytic models for those quality attribute aspects for
which none currently exist? I do not know the answer to this question, but
if we had a basis set for quality attributes, we would be in a better position
to create and validate quality attribute models. By basis set I mean a set
of orthogonal concepts that allow one to define the existing set of quality
attributes. Currently there is much overlap among quality attributes; a
basis set would enable discussion of tradeoffs in terms of a common set
of fundamental and possibly quantifiable concepts. Once we have a basis
set, we could develop analytic models for each of the elements of the set,
and then an analytic model for a particular quality attribute becomes a
composition of the models of the portions of the basis set that make up
that quality attribute.

What are some of the elements of this basis set? Here are some of my
candidates:

 ■ Time. Time is the basis for performance, some aspects of availability,
and some aspects of usability. Time will surely be one of the fundamen-
tal concepts for defining quality attributes.

 ■ Dependencies among structural elements. Modifiability, security, avail-
ability, and performance depend in some form or another on the strength
of connections among various structural elements. Coupling is a form
of dependency. Attacks depend on being able to move from one com-
promised element to a currently uncompromised element through some
dependency. Fault propagation depends on dependencies. And one of
the key elements of performance analysis is the dependency of one
computation on another. Enumeration of the fundamental forms of de-
pendency and their properties will enable better understanding of many
quality attributes and their interaction.

 ■ Access. How does a system promote or deny access through various
mechanisms? Usability is concerned with allowing smooth access for
humans; security is concerned with allowing smooth access for some set
of requests but denying access to another set of requests. Interoperabili-
ty is concerned with establishing connections and accessing information.
Race conditions, which undermine availability, come about through un-
mediated access to critical computations.

These are some of my candidates. I am sure there are others. The
general problem is to define a set of candidates for the basis set and then
show how current definitions of various quality attributes can be recast in
terms of the elements of the basis set. I am convinced that this is a problem
that needs to be solved prior to making substantial progress in the quest for
a rich enough set of analytic models to enable prediction of system behav-
ior across the quality attributes important for a system.

—LB

262 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

compare these with inventory and configuration databases, and log all
discrepancies.

This kind of rule is intended to detect malware masquerading as legitimate
components of a system. The architect will look at this item and conclude the
following:

 ■ The embedded portions of the system should be able to report their version
number, installation date, configuration settings, and patch levels. One tech-
nique for doing this is to use “reflection” for each component in the system.
Reflection now becomes one of the important patterns used in this system.

 ■ Each software update or patch should maintain this information. One tech-
nique for doing this is to have automated update and patch mechanisms.
The architecture could also realize this functionality through reflection.

 ■ A system must be designated to query the embedded components and per-
sist the information. This means

 ■ There must be overall inventory and configuration databases.
 ■ Logs of discrepancies between current values and overall inventory must

be generated and sent to appropriate recipients.
 ■ There must be network connections to the embedded components. This

affects the network topology.

The creation of quality attribute checklists is usually a time-consuming ac-
tivity, undertaken by multiple individuals and typically refined and evolved over
time. Domain specialists, quality attribute specialists, and architects should all
contribute to the development and validation of these checklists.

The architect should treat the items on an applicable checklist as require-
ments, in that they need to be understood and prioritized. Under particular cir-
cumstances, an item in a checklist may not be met, but the architect should have a
compelling case as to why it is not.

14.3 thought Experiments and
back-of-the-Envelope analysis

A thought experiment is a fancy name for the kinds of discussions that develop-
ers and architects have on a daily basis in their offices, in their meetings, over
lunch, over whiteboards, in hallways, and around the coffee machine. One of the
participants might draw two circles and an arrow on the whiteboard and make an
assertion about the quality attribute behavior of these two circles and the arrow in
a particular context; a discussion ensues. The discussion can last for a long time,
especially if the two circles are augmented with a third and one more arrow, or if
some of the assumptions underlying a circle or an arrow are still in flux. In this
section, we describe this process somewhat more formally.

14.3 Thought Experiments and Back-of-the-Envelope Analysis 263

The level of formality one would use in performing a thought experiment
is, as with most techniques discussed in this book, a question of context. If two
people with a shared understanding of the system are performing the thought ex-
periment for their own private purposes, then circles and lines on a whiteboard
are adequate, and the discussion proceeds in a kind of shorthand. If a third person
is to review the results and the third person does not share the common under-
standing, then sufficient details must be captured to enable the third person to un-
derstand the argument—perhaps a quick legend and a set of properties need to be
added to the diagram. If the results are to be included in documentation as design
rationale, then even more detail must be captured, as discussed in Chapter 18.
Frequently such thought experiments are accompanied by rough analyses—back-
of-the-envelope analyses—based on the best data available, based on past expe-
riences, or even based on the guesses of the architects, without too much concern
for precision.

The purpose of thought experiments and back-of-the-envelope analysis is
to find problems or confirmation of the nonexistence of problems in the quality
attribute requirements as applied to sunny-day use cases. That is, for each use
case, consider the quality attribute requirements that pertain to that use case and
analyze the use case with the quality attribute requirements in mind. Models and
checklists focus on one quality attribute. To consider other quality attributes, one
must model or have a checklist for the second quality attribute and understand
how those models interact. A thought experiment may consider several of the
quality attribute requirements simultaneously; typically it will focus on just the
most important ones.

The process of creating a thought experiment usually begins with listing the
steps associated with carrying out the use case under consideration; perhaps a se-
quence diagram is employed. At each step of the sequence diagram, the (mental)
question is asked: What can go wrong with this step with respect to any of the
quality attribute requirements? For example, if the step involves user input, then
the possibility of erroneous input must be considered. Also the user may not have
been properly authenticated and, even if authenticated, may not be authorized to
provide that particular input. If the step involves interaction with another system,
then the possibility that the input format will change after some time must be
considered. The network passing the input to a processor may fail; the processor
performing the step may fail; or the computation to provide the step may fail,
take too long, or be dependent on another computation that may have had prob-
lems. In addition, the architect must ask about the frequency of the input, and the
anticipated distribution of requests (e.g., Are service requests regular and predict-
able or irregular and “bursty”?), other processes that might be competing for the
same resources, and so forth. These questions go on and on.

For each possible problem with respect to a quality attribute requirement,
the follow-on questions consist of things like these:

 ■ Are there mechanisms to detect that problem?

264 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

 ■ Are there mechanisms to prevent or avoid that problem?
 ■ Are there mechanisms to repair or recover from that problem if it occurs?
 ■ Is this a problem we are willing to live with?

The problems hypothesized are scrutinized in terms of a cost/benefit analy-
sis. That is, what is the cost of preventing this problem compared to the benefits
that accrue if the problem does not occur?

As you might have gathered, if the architects are being thorough and if the
problems are significant (that is, they present a large risk for the system), then
these discussions can continue for a long time. The discussions are a normal por-
tion of design and analysis and will naturally occur, even if only in the mind of a
single designer. On the other hand, the time spent performing a particular thought
experiment should be bounded. This sounds obvious, but every grey-haired archi-
tect can tell you war stories about being stuck in endless meetings, trapped in the
purgatory of “analysis paralysis.”

Analysis paralysis can be avoided with several techniques:

 ■ “Time boxing”: setting a deadline on the length of a discussion.
 ■ Estimating the cost if the problem occurs and not spending more than that

cost in the analysis. In other words, do not spend an inordinate amount of
time in discussing minor or unlikely potential problems.

Prioritizing the requirements will help both with the cost estimation and
with the time estimation.

14.4 Experiments, Simulations, and Prototypes

In many environments it is virtually impossible to do a purely top-down architec-
tural design; there are too many considerations to weigh at once and it is too hard
to predict all of the relevant technological barriers. Requirements may change in
dramatic ways, or a key assumption may not be met: We have seen cases where a
vendor-provided API did not work as specified, or where an API exposing a criti-
cal function was simply missing.

Finding the sweet spot within the enormous architectural design space of
complex systems is not feasible by reflection and mathematical analysis alone;
the models either aren’t precise enough to deal with all of the relevant details or
are so complicated that they are impractical to analyze with tractable mathemat-
ical techniques.

The purpose of experiments, simulations, and prototypes is to provide al-
ternative ways of analyzing the architecture. These techniques are invaluable in

14.5 Analysis at Different Stages of the Life Cycle 265

resolving tradeoffs, by helping to turn unknown architectural parameters into
constants or ranges. For example, consider just a few of the questions that might
occur when creating a web-conferencing system—a distributed client-server in-
frastructure with real-time constraints:

 ■ Would moving to a distributed database from local flat files negatively im-
pact feedback time (latency) for users?

 ■ How many participants could be hosted by a single conferencing server?
 ■ What is the correct ratio between database servers and conferencing

servers?

These sorts of questions are difficult to answer analytically. The answers to
these questions rely on the behavior and interaction of third-party components
such as commercial databases, and on performance characteristics of software for
which no standard analytical models exist. The approach used for the web-con-
ferencing architecture was to build an extensive testing infrastructure that sup-
ported simulations, experiments, and prototypes, and use it to compare the per-
formance of each incremental modification to the code base. This allowed the
architect to determine the effect of each form of improvement before committing
to including it in the final system. The infrastructure includes the following:

 ■ A client simulator that makes it appear as though tens of thousands of cli-
ents are simultaneously interacting with a conferencing server.

 ■ Instrumentation to measure load on the conferencing server and database
server with differing numbers of clients.

The lesson from this experience is that experimentation can often be a criti-
cal precursor to making significant architectural decisions. Experimentation must
be built into the development process: building experimental infrastructure can
be time-consuming, possibly requiring the development of custom tools. Carry-
ing out the experiments and analyzing their results can require significant time.
These costs must be recognized in project schedules.

14.5 analysis at different Stages of the life cycle

Depending on your project’s state of development, different forms of analysis are
possible. Each form of analysis comes with its own costs. And there are different
levels of confidence associated with each analysis technique. These are summa-
rized in Table 14.3.

266 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

tablE 14.3 Forms of Analysis, Their Life-Cycle Stage, Cost, and Confidence in
Their Outputs

life-cycle Stage form of analysis cost confidence

Requirements Experience-based analogy Low Low–High

Requirements Back-of-the-envelope Low Low–Medium

Architecture Thought experiment Low Low–Medium

Architecture Checklist Low Medium

Architecture Analytic model Low–Medium Medium

Architecture Simulation Medium Medium

Architecture Prototype Medium Medium–High

Implementation Experiment Medium–High Medium–High

Fielded System Instrumentation Medium–High High

The table shows that analysis performed later in the life cycle yields results that
merit high confidence. However, this confidence comes at a price. First, the cost of
performing the analysis also tends to be higher. But the cost of changing the system
to fix a problem uncovered by analysis skyrockets later in the life cycle.

Choosing an appropriate form of analysis requires a consideration of all of
the factors listed in Table 14.3: What life-cycle stage are you currently in? How
important is the achievement of the quality attribute in question and how worried
are you about being able to achieve the goals for this attribute? And finally, how
much budget and schedule can you afford to allocate to this form of risk miti-
gation? Each of these considerations will lead you to choose one or more of the
analysis techniques described in this chapter.

14.6 Summary

Analysis of an architecture enables early prediction of a system’s qualities. We can
analyze an architecture to see how the system or systems we build from it will per-
form with respect to their quality attribute goals. Some quality attributes, most nota-
bly performance and availability, have well-understood, time-tested analytic models
that can be used to assist in quantitative analysis. Other quality attributes have less
sophisticated models that can nevertheless help with predictive analysis.

For some quality attributes, checklists exist to enable the architect to test
compliance or to guide the architect when making design decisions. Quality at-
tribute checklists can come from industry consortia, from government organiza-
tions, or from private organizations. In large organizations they may be devel-
oped in house. The architect should treat the items on an applicable checklist as
requirements, in that they need to be understood and prioritized.

14.7 For Further Reading 267

Thought experiments and back-of-the-envelope analysis can often quickly
help find problems or confirm the nonexistence of problems with respect to qual-
ity attribute requirements. A thought experiment may consider several of the
quality attribute requirements simultaneously; typically it will focus on just the
most important ones. Experiments, simulations, and prototypes allow the explo-
ration of tradeoffs, by helping to turn unknown architectural parameters into con-
stants or ranges whose values may be measured rather than estimated.

Depending on your project’s state of development, different forms of analy-
sis are possible. Each form of analysis comes with its own costs and its own level
of confidence associated with each analysis technique.

14.7 for further reading

There have been many papers and books published describing how to build and
analyze architectural models for quality attributes. Here are just a few examples.

availability

Many availability models have been proposed that operate at the architecture
level of analysis. Just a few of these are [Gokhale 05] and [Yacoub 02].

A discussion and comparison of different black-box and white-box models
for determining software reliability can be found in [Chandran 10].

A book relating availability to disaster recovery and business recovery is
[Schmidt 10].

Interoperability

An overview of interoperability activities can be found in [Brownsword 04].

Modifiability

Modifiability is typically measured through complexity metrics. The classic work
on this topic is [Chidamber 94].

More recently, analyses based on design structure matrices have begun to
appear [MacCormack 06].

Performance

Two of the classic works on software performance evaluation are [Smith 01] and
[Klein 93].

268 Part two Quality attributes 14—Quality Attribute Modeling and Analysis

A broad survey of architecture-centric performance evaluation approaches
can be found in [Koziolek 10].

Security

Checklists for security have been generated by a variety of groups for different
domains. See for example:

 ■ Credit cards, generated by the Payment Card Industry: www.pcisecurity-
standards.org/security_standards/

 ■ Information security, generated by the National Institute of Standards and
Technology (NIST): [NIST 09].

 ■ Electric grid, generated by Advanced Security Acceleration Project for the
Smart Grid: www.smartgridipedia.org/index.php/ASAP-SG

 ■ Common Criteria. An international standard (ISO/IEC 15408) for computer
security certification: www.commoncriteriaportal.org

testability

Work in measuring testability from an architectural perspective includes measur-
ing testability as the measured complexity of a class dependency graph derived
from UML class diagrams, and identifying class diagrams that can lead to code
that is difficult to test [Baudry 05]; and measuring controllability and observabil-
ity as a function of data flow [Le Traon 97].

usability

A checklist for usability can be found at www.stcsig.org/usability/topics/articles/
he-checklist.html

Safety

A checklist for safety is called the Safety Integrity Level: en.wikipedia.org/wiki/
Safety_Integrity_Level

applications of Modeling and analysis

For a detailed discussion of a case where quality attribute modeling and analysis
played a large role in determining the architecture as it evolved through a number
of releases, see [Graham 07].

http://www.pcisecuritystandards.org/security_standards/
http://www.pcisecuritystandards.org/security_standards/
http://www.smartgridipedia.org/index.php/ASAP-SG
http://www.commoncriteriaportal.org
http://www.stcsig.org/usability/topics/articles/he-checklist.html
http://www.stcsig.org/usability/topics/articles/he-checklist.html

14.8 Discussion Questions 269

14.8 discussion Questions

1. Build a spreadsheet for the steady-state availability equation MTBF /
(MTBF + MTTR). Plug in different but reasonable values for MTBF and
MTTR for each of the active redundancy, passive redundancy, and cold
spare tactics. Try values for MTBF that are very large compared to MTTR,
and also try values for MTBF that are much closer in size to MTTR.
What do these tell you about which tactics you might want to choose for
availability?

2. Enumerate as many responsibilities as you can that need to be carried out
for providing a “cancel” operation in a user interface. Hint: There are at
least 21 of them, as indicated in a publication by (strong hint!) one of the
authors of this book whose last name (unbelievably strong hint!) begins
with “B.”

3. The M/M/1 (look it up!) queuing model has been employed in computing
systems for decades. Where in your favorite computing system would this
model be appropriate to use to predict latency?

4. Suppose an architect produced Figure 14.5 while you were sitting watching
him. Using thought experiments, how can you determine the performance
and availability of this system? What assumptions are you making and what
conclusions can you draw? How definite are your conclusions?

fIGurE 14.5 Capture of a whiteboard sketch from an architect

This page intentionally left blank

271

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T T H R EE

arcHItEcturE IN
tHE lIfE cyclE

Part I of this book introduced architecture and the various contextual lenses
through which it could be viewed. To recap from Chapter 3, those contexts in-
clude the following:

 ■ Technical. What technical role does the software architecture play in the sys-
tem or systems of which it’s a part? Part of the answer to this is what Part II
of our book is about and the rest is included in Part IV. Part II describes how
decisions are made, and Part IV describes the environment that determines
whether the results of the decisions satisfy the needs of the organization.

 ■ Project life cycle. How does a software architecture relate to the other
phases of a software development life cycle? The answer to this is what
Part III of our book is about.

 ■ Business. How does the presence of a software architecture affect an orga-
nization’s business environment? The answer to this is what Part IV of our
book is about.

 ■ Professional. What is the role of a software architect in an organization or
a development project? The answer to this is threaded throughout the entire
book, but especially in Chapter 24, where we treat the duties, skills, and
knowledge of software architects.

Part II concentrated on the technical context of software architecture. In our
philosophy, this is tantamount to understanding quality attributes. If you have a
deep understanding of how architecture affects quality attributes, then you have
mastered most of what you need to know about making design decisions.

272

Here in Part III we turn our attention to how to constructively apply that
knowledge within the context of a particular software development project. Here
is where software architecture meets software engineering: How do architecture
concerns affect the gathering of requirements, the carrying out of design deci-
sions, the validation and capturing of the design, and the transformation of design
into implementation? In Part III, we’ll find out.

a Word about Methods

Because this is a book about software architecture in practice, we’ve tried to spell
out specific methods in enough detail so that you can emulate them. You’ll see
PALM, a method for eliciting business goals that an architecture should accom-
modate. You’ll see Views and Beyond, an approach for documenting architecture
in a set of views that serve stakeholders and their concerns. You’ll see ATAM, a
method for evaluating an architecture against stakeholders’ ideas of what quality
attributes it should provide. You’ll see CBAM, a method for assessing which evo-
lutionary path of an architecture will best serve stakeholders’ needs.

All of these methods rely in some way or another on tapping stakehold-
ers’ knowledge about what an architecture under development should provide. As
presented in their respective chapters, each of these methods includes a similar
process of identifying the relevant stakeholders, putting them in a room together,
presenting a briefing about the method that the stakeholders have been assembled
to participate in, and then launching into the method.

So why is it necessary to put all of the stakeholders in the same room? The
short answer is that it isn’t. There are (at least) three major engagement models for
conducting an architecture-focused method. Why three? Because we have identified
two important factors, each of which has two values, that describe four potential en-
gagement models for gathering information from stakeholders. These two factors are

1. Location (co-located or distributed)
2. Synchronicity (synchronous or asynchronous)

One option (co-located and asynchronous) makes no sense, and so we are
left with three viable engagement models. The advantages and disadvantages
we’ve observed of each engagement model follow.

Why has the big-meeting format (co-located, synchronous) tended to pre-
vail? There are several reasons:

273

 ■ It compresses the time required for the method. Time on site for remote
participants is minimized, although as we will see, travel time is not con-
sidered in this argument. All of the stakeholders are available with minimal
external distractions.

 ■ It emphasizes the importance of the method. Any meeting important
enough to bring multiple people together for an extended time must be
judged by management to be important.

 ■ It benefits from the helpful group mentality that emerges when people are
in the same room working toward a common goal. The group mentality
fosters buy-in to the architecture and buy-in to the reasons it exists. Putting
stakeholders in the same room lets them open communication paths with
the architect and with each other, paths that will often remain open long

Model advantages disadvantages

All stakeholders in
the same room for
the duration of the
exercise (co-located
and synchronous).

All stakeholders participate
equally.
Group mentality produces
buy-in for architecture and
the results of the exercise.
Enduring communication
paths are opened among
stakeholders.
This option takes the
shortest calendar time.

Scheduling can be
problematic.
Some stakeholders might not
be forthcoming in a crowd.
Stakeholders might incur
substantial travel costs to
attend.

Some stakeholders
participate in exercise
remotely (distributed
and synchronous).

Saves travel costs for remote
participants; this option
might permit participation by
stakeholders who otherwise
would not be able to
contribute.

Technology is a limiting
factor; remote participants
almost always are second-
class citizens in terms of
their participation and after-
exercise “connection” to other
participants.

Facilitators
interviewing
stakeholders
individually or in small
groups (distributed
and asynchronous).

Allows for in-depth
interaction between
facilitators and stakeholders.
Eliminates group factors that
might inhibit a stakeholder
from speaking in public.

If stakeholders are widely
distributed, increased travel
costs incurred by facilitator(s).
Reduced group buy-in.
Reduced group mentality.
Reduced after-exercise
communication among
stakeholders.
Exercise stretched out over a
longer period of calendar time.

274

after the meeting has run its course. We always enjoy seeing business cards
exchanged with handshakes when stakeholders meet each other for the first
time. Putting the architect in a room full of stakeholders for a couple of
days is a very healthy thing for any project.

But there are, as ever, tradeoffs. The big-meeting format can be costly and
difficult to fit into an already crowded project schedule. Often the hardest aspect
of executing any of our methods is finding two contiguous days when all the
important stakeholders are available. Also, the travel costs associated with a big
meeting can be substantial in a distributed organization. And some stakeholders
might not be as forthcoming as we would like if they are in a room surrounded
by strong-willed peers or higher-ups (although our methods use facilitation tech-
niques to try to correct for this).

So which model is best? You already know the answer: It depends. You can
see the tradeoffs among the different approaches. Pick the one that does the best
job for your organization and its particularities.

conclusion

As you read Part III and learn about architecture methods, remember that the
form of the method we present is the one in which the most practical experience
resides. But:

1. You can always adjust the engagement model to be something other than
everybody-in-the-same-room if that will work better for you.

2. Whereas the steps of a method are nominally carried out in sequential order
according to a set agenda, sometimes there must be dynamic modifications
to the schedule to accommodate personnel availability or architectural
information. Every situation is unique, and there may be times when you
need to return briefly to an earlier step, jump forward to a later step, or
iterate among steps, as the need dictates.

P.S.: We do provide one example of a shortened version of one of our methods
—the ATAM. We call this Lightweight Architecture Evaluation, and it is de-
scribed in Chapter 21.

275

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

15
Architecture in Agile
Projects

It is not the strongest of the species that survives,
nor the most intelligent that survives. It is the

one that is the most adaptable to change.
—Charles Darwin

Since their first appearance over a decade ago, the various flavors of Agile meth-
ods and processes have received increasing attention and adoption by the world-
wide software community. New software processes do not just emerge out of thin
air; they evolve in response to a palpable need. In this case, the software develop-
ment world was responding to a need for projects to be more responsive to their
stakeholders, to be quicker to develop functionality that users care about, to show
more and earlier progress in a project’s life cycle, and to be less burdened by doc-
umenting aspects of a project that would inevitably change. Is any of this inimical
to the use of architecture? We emphatically say “no.” In fact, the question for a
software project is not “Should I do Agile or architecture?”, but rather questions
such as “How much architecture should I do up front versus how much should
I defer until the project’s requirements have solidified somewhat?”, “When and
how should I refactor?”, and “How much of the architecture should I formally
document, and when?” We believe that there are good answers to all of these
questions, and that Agile and architecture are not just well suited to live together
but in fact critical companions for many software projects.

The Agile software movement began to receive considerable public atten-
tion approximately a decade ago, with the release of the “Agile Manifesto.” Its
roots extend at least a decade earlier than that, in practices such as Extreme Pro-
gramming and Scrum. The Agile Manifesto, originally signed by 17 developers,
was however a brilliant public relations move; it is brief, pithy, and sensible:

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

276 Part three architecture in the life cycle 15—Architecture in Agile Projects

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more. [agilemanifesto.org]

The authors of the Manifesto go on to describe the twelve principles that underlie
their reasoning:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, develop-

ers, and users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances

agility.
10. Simplicity—the art of maximizing the amount of work not done—is

essential.
11. The best architectures, requirements, and designs emerge from self-organiz-

ing teams.
12. At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly.

There has been considerable elaboration of the Agile Manifesto, and Agile
processes, since its first release, but the basic principles have remained solid. The
Agile movement (and its predecessors) have gained considerable attention and
have enjoyed widespread adoption over the past two decades. These processes

15.1 How Much Architecture? 277

were initially employed on small- to medium-sized projects with short time
frames and enjoyed considerable success. They were not often used for larger
projects, particularly those with distributed development. This is not surprising,
given the twelve principles.

In particular principles 4 and 6 imply the need for co-location or, if co-lo-
cation is not possible, then at least a high level of communication among the
distributed teams. Indeed, one of the core practices of Agile projects is frequent
(often daily) face-to-face meetings. Principle 11 says that, for best results, teams
should be self-organizing. But self-organization is a social process that is much
more cumbersome if those teams are not physically co-located. In this case we
believe that the creators of the twelve Agile principles got it wrong. The best
teams may be self-organizing, but the best architectures still require much more
than this—technical skill, deep experience, and deep knowledge.

Principle 1 argues for “early and continuous delivery of valuable software”
and principle 7 claims that “Working software is the primary measure of prog-
ress.” One might argue that a focus on early and continuous release of software,
where “working” is measured in terms of customer-facing features, leaves little
time for addressing the kinds of cross-cutting concerns and infrastructure critical
to a high-quality large-scale system.

It has been claimed by some that there is an inherent tension between being
agile and doing a conscientious job of architecting. But is there truly a tension?
And if so, how do you go about characterizing it and reasoning about it? In short,
how much architecture is the “right” amount of architecture?

Our brief answer, in this chapter, is that there is no tension. This issue is not
“Agile versus Architecture” but rather “how best to blend Agile and Architecture.”

One more point, before we dive into the details: The Agile Manifesto is it-
self a compromise: a pronouncement created by a committee. The fact that ar-
chitecture doesn’t clearly live anywhere within it is most likely because they had
no consensus opinion on this topic and not because there is any inherent conflict.

15.1 How Much architecture?

We often think of the early software development methods that emerged in the
1970s—such as the Waterfall method—as being plan-driven and inflexible. But
this inflexibility is not for nothing. Having a strong up-front plan provides for
considerable predictability (as long as the requirements don’t change too much)
and makes it easier to coordinate large numbers of teams. Can you imagine a
large construction or aerospace project without heavy up-front planning? Agile
methods and practitioners, on the other hand, often scorn planning, preferring in-
stead teamwork, frequent face-to-face communication, flexibility, and adaptation.
This enhances invention and creativity.

278 Part three architecture in the life cycle 15—Architecture in Agile Projects

Garden Shed or Skyscraper?

A few years ago I built a small shed in my back yard, for holding gardening
tools, the lawn mower, the fertilizer cart, and so forth. I had a plan in my
head, a small team of physically co-located “developers,” and excellent
access to the customer (me) for making any last-minute decisions and for
incorporating any late-breaking feature requests. What was my architec-
ture? For sure, nothing was written down; I had an image in my head. I
went to the local big-box hardware store/lumberyard and bought a bunch
of building materials, primarily wood. I already owned a fine collection of
hammers, saws, and drills. The boys and I started hammering and sawing
and drilling. In short order I had a garden shed which has served its
purpose, with the occasional repair, for quite a few years. My process was
agile: I was able to accommodate the knowledge, skills, and characteris-
tics of my developers; we were a self-organizing team; and I was able to
easily accommodate feature requests that emerged late in the process.

Would I recommend this process for the construction of a 20-story office
building, or even a building-code-compliant single-family house? Of course
not. All of these are built using the much-maligned BDUF (Big Design Up
Front) process.

My ad hoc process for building the shed was ultimately agile, but it had
little analysis or forethought. It did, however, have just enough forethought
and planning. Doing BDUF—hiring an architect, a structural engineer, and
a surveyor, and doing a detailed analysis of soil conditions, potential snow
loads, and options for future modifications—would have been folly; really
expensive folly!

So too with software. As with everything that we recommend in this
book, the amount of up-front planning and analysis should be justified by
the potential risks. In the end, everything in architecture is about cost/bene-
fit tradeoffs.

—RK

Let us consider a specific case, to illustrate the tradeoff between up-front
planning and agility: the Agile technique of employing user stories. User stories
are a cornerstone of the Agile approach. Each user story describes a set of features
visible to the user. Implementing user stories is a way of demonstrating progress
to the customer. This can easily lead to an architecture in which every feature is
independently designed and implemented. In such an environment, concerns that
cut across more than one feature become hard to capture. For example, suppose
there is a utility function that supports multiple features. To identify this utility
function, coordination is required among the teams that develop the different fea-
tures, and it also requires a role in which a broad overview across all of the fea-
tures is maintained. If the development team is geographically distributed and the

15.1 How Much Architecture? 279

system being developed is a large one, then emphasis on delivering features early
will cause massive coordination problems. In an architecture-centric project, a
layered architecture is a way to solve this problem, with features on upper layers
using shared functionality of the lower layers, but that requires up-front planning
and design and feature analysis.

Successful projects clearly need a successful blend of the two approaches. For
the vast majority of nontrivial projects, this is not and never should be an either/or
choice. Too much up-front planning and commitment can stifle creativity and the
ability to adapt to changing requirements. Too much agility can be chaos. No one
would want to fly in an aircraft where the flight control software had not been rig-
orously planned and thoroughly analyzed. Similarly, no one would want to spend
18 months planning an e-commerce website for their latest cell-phone model, or
video game, or lipstick (all of which are guaranteed to be badly out of fashion in
18 months). What we all want is the sweet spot—what George Fairbanks calls “just
enough architecture.” This is not just a matter of doing the right amount of architec-
ture work, but also doing it at the right time. Agile projects tend to want to evolve the
architecture, as needed, in real time, whereas large software projects have tradition-
ally favored considerable up-front analysis and planning.

An Analytic Perspective on Up-front Work vs. Agility

Boehm and Turner, analyzing historical data from 161 industrial projects,
examine the effects of up-front architecture and risk resolution effort. This
corresponds to the COnstructive COst MOdel II (COCOMO II) scale factor
called “RESL.” There are two activities that can add time to the basic
project schedule:

 ■ Up-front design work on the architecture and up-front risk identification,
planning, and resolution work

 ■ Rework due to fixing defects and addressing modification requests.

Intuitively, these two trade off against each other: The more we invest in
planning, the less (we hope) rework is needed.

So Boehm and Turner synthesized a model that allowed them to plot
these two values against each other. The axes of their graph (Figure 15.1)
show percent of time added for RESL and percent of time added to the
schedule. The amount of architecture and risk resolution effort is plotted
as the dashed line, moving up and to the right from near the origin, and
ranges from 5 to 50 percent of project effort. This effort is plotted against
three hypothetical projects, measured in thousands of source lines of code
(KSLOC):

 ■ One project of 10 KSLOC
 ■ One project of 100 KSLOC
 ■ One project of 10,000 KSLOC

280 Part three architecture in the life cycle 15—Architecture in Agile Projects

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
Percent of time added for architecture and risk resolution

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL Factor)

Total Percent Added to Schedule

Sweet Spot drivers:

Rapid Change: Leftward
High Assurance: Rightward

Sweet Spot

P
er

ce
n

t
o

f
t

im
e

a
d

d
ed

 t
o

 O
ve

ra
ll

S
ch

ed
u

le

10 KSLOC

100 KSLOC

10,000 KSLOC

fIGurE 15.1 Architecture effort vs. rework

15.2 Agility and Architecture Methods 281

There is one line representing each of these three projects, starting
near the Y axis and descending, at different rates, to the X axis at the 50
mark. This shows that adding time for up-front work reduces later rework.
No surprise: that is exactly the point of doing more up-front work. However,
when you sum each of those downward-trending lines (for the 10, 100, and
1,000 KSLOC projects) with the upward sloping line for the up-front (initial
architecture and risk resolution) work, you get the second set of three lines,
which start at the Y axis and meet the upward sloping line at the 50 mark
on the X axis.

These lines show that there is a sweet spot for each project. For the 10
KSLOC project, the sweet spot is at the far left. This says that devoting
much, if any, time to up-front work is a waste for a small project (assuming
that the inherent domain complexity is the same for all three sets of lines).
For the 100 KSLOC project, the sweet spot is at around 20 percent of the
project schedule. And for the 1,000 KSLOC project, the sweet spot is at
around 40 percent of the project schedule. These results are fairly intui-
tive. A project with a million lines of code is enormously complex, and it is
difficult to imagine how Agile principles alone can cope with this complexity
if there is no architecture to guide and organize the effort.

The graph shows that no one answer is appropriate for all situations,
so you need methods to guide you to decide how much up-front work is
right for you. Boehm and Turner’s work is a start, but expected lines of
code is not the only determinant for appropriateness of up-front planning.
The domain, the reliability or safety required, and the experience of your
development team all play a role.

The whole point of choosing how much time to budget for architecture is to
reduce risk. Risk may be financial, political, operational, or reputational. Some
risks might involve human life or the chance of legal action. Chapter 22 covers
risk management and budgets for planning in the context of architecture.

15.2 agility and architecture Methods

Throughout this book we emphasize methods for architecture design, analysis,
and documentation. We unabashedly like methods! And so does the Agile com-
munity: dozens of books have been written on Scrum, Extreme Programming,
Crystal Clear, and other Agile methods. But how should we think of architec-
ture-centric techniques and methods in an Agile context? How well do they fit
with the twelve Agile principles, for example?

We believe that they fit very well. The methods we present are based on the
essential elements needed to perform the activity. If you believe that architecture

282 Part three architecture in the life cycle 15—Architecture in Agile Projects

needs to be designed, analyzed, and documented, then the techniques we present
are essential regardless of the project in which they are embedded. The methods
we present are essentially driven by the motivation to reduce risk, and by consid-
erations of costs and benefits.

Among all of our methods—for extracting architecturally significant re-
quirements, for architecture design, for architecture evaluation, for architecture
documentation—that you’ll see in subsequent chapters, one might expect the
greatest Agile friction from evaluation and documentation. And so the rest of this
section will examine those two practices in an Agile context.

architecture documentation and yaGNI

Our approach to architecture documentation is called Views and Beyond, and it
will be discussed in Chapter 18. Views and Beyond and Agile agree emphatically
on the following point: If information isn’t needed, don’t spend the resources
to document it. All documentation should have an intended use and audience in
mind, and be produced in a way that serves both.

One of our fundamental principles of technical documentation is “Write
for the reader.” That means understanding who will read the documentation
and how they will use it. If there is no audience, there is no need to produce the
documentation. This principle is so important in Agile methods that it has been
given its own name: YAGNI. YAGNI means “you ain’t gonna need it,” and it
refers to the idea that you should only implement or document something when
you actually have the need for it. Do not spend time attempting to anticipate all
possible needs.

The Views and Beyond approach uses the architectural view as the “unit” of
documentation to be produced. Selecting the views to document is an example of
applying this principle. The Views and Beyond approach prescribes producing a
view if and only if it addresses substantial concerns of an important stakeholder
community. And because documentation is not a monolithic activity that holds up
all other progress until it is complete, the view selection method prescribes pro-
ducing the documentation in prioritized stages to satisfy the needs of the stake-
holders who need it now.

We document the portions of the architecture that we need to teach to
newcomers, that embody significant potential risks if not properly managed,
and that we need to change frequently. We document what we need to convey
to readers so they can do their job. Although “classic” Agile emphasizes doc-
umenting the minimum amount needed to let the current team of developers
make progress, our approach emphasizes that the reader might be a maintainer
assigned to make a technology upgrade years after the original development
team has disbanded.

15.3 A Brief Example of Agile Architecting 283

architecture Evaluation

Could an architecture evaluation work as part of an Agile process? Absolutely.
In fact, doing so is perfectly Agile-consistent, because meeting stakeholders’ im-
portant concerns is a cornerstone of Agile philosophy.

Our approach to architecture evaluation is exemplified by the Architecture
Tradeoff Analysis Method (ATAM) of Chapter 21. It does not endeavor to an-
alyze all, or even most, of an architecture. Rather, the focus is determined by
a set of quality attribute scenarios that represent the most important (but by no
means all) of the concerns of the stakeholders. “Most important” is judged by
the amount of value the scenario brings to the architecture’s stakeholders, or the
amount of risk present in achieving the scenario. Once these scenarios have been
elicited, validated, and prioritized, they give us an evaluation agenda based on
what is important to the success of the system, and what poses the greatest risk
for the system’s success. Then we only delve into those areas that pose high risk
for the achievement of the system’s main functions and qualities.

And as we will see in Chapter 21, it is easy to tailor a lightweight architec-
ture evaluation, for quicker and less-costly analysis and feedback whenever in the
project it is called for.

15.3 a brief Example of agile architecting

Our claim is that architecture and agility are quite compatible. Now we will look
at a brief case study of just that. This project, which one of the authors worked
on, involved the creation and evolution of a web-conferencing system. Through-
out this project we practiced “agile architecting” and, we believe, hit the sweet
spot between up-front planning where possible, and agility where needed.

Web-conferencing systems are complex and demanding systems. They must
provide real-time responsiveness, competitive features, ease of installation and
use, lightweight footprint, and much more. For example:

 ■ They must work on a wide variety of hardware and software platforms, the
details of which are not under the control of the architect.

 ■ They must be reliable and provide low-latency response times, particularly
for real-time functionality such as voice over IP (VoIP) and screen sharing.

 ■ They must provide high security, but do so over an unknown network topol-
ogy and an unknown set of firewalls and firewall policies.

 ■ They must be easily modified and easily integrated into a wide variety of
environments and applications.

 ■ They must be highly usable and easily installed and learned by users with
widely varying IT skills.

284 Part three architecture in the life cycle 15—Architecture in Agile Projects

Many of the above-mentioned goals trade off against each other. Typically
security (in the form of encryption) comes at the expense of real-time perfor-
mance (latency). Modifiability comes at the expense of time-to-market. Avail-
ability and performance typically come at the expense of modifiability and cost.

Even if it is possible to collect, analyze, and prioritize all relevant data, func-
tional requirements, and quality attribute requirements, the stringent time-to-mar-
ket constraints that prevail in a competitive climate such as web-conferencing
would have prevented us from doing this. Trying to support all possible uses is
intractable, and the users themselves were poorly equipped for envisioning all
possible potential uses of the system. So just asking the users what they wanted,
in the fashion of a traditional requirements elicitation, was not likely to work.

This results in a classic “agility versus commitment” problem. On the one
hand the architect wants to provide new capabilities quickly, and to respond to
customer needs rapidly. On the other hand, long-term survival of the system and
the company means that it must be designed for extensibility, modifiability, and
portability. This can best be achieved by having a simple conceptual model for
the architecture, based on a small number of regularly applied patterns and tac-
tics. It was not obvious how we would “evolve” our way to such an architecture.
So, how is it possible to find the “sweet spot” between these opposing forces?

The WebArrow web-conferencing system faced precisely this dilemma. It
was impossible for the architect and lead designers to do purely top-down ar-
chitectural design; there were too many considerations to weigh at once, and it
was too hard to predict all of the relevant technological challenges. For example,
they had cases where they discovered that a vendor-provided API did not work
as specified—imagine that!—or that an API exposing a critical function was sim-
ply missing. In such cases, these problems rippled through the architecture, and
workarounds needed to be fashioned . . . fast!

To address the complexity of this domain, the WebArrow architect and de-
velopers found that they needed to think and work in two different modes at the
same time:

 ■ Top-down—designing and analyzing architectural structures to meet the
demanding quality attribute requirements and tradeoffs

 ■ Bottom-up—analyzing a wide array of implementation-specific and
environment-specific constraints and fashioning solutions to them

To compensate for the difficulty in analyzing architectural tradeoffs with
any precision, the team adopted an agile architecture discipline combined with a
rigorous program of experiments aimed at answering specific tradeoff questions.
These experiments are what are called “spikes” in Agile terminology. And these
experiments proved to be the key in resolving tradeoffs, by helping to turn un-
known architectural parameters into constants or ranges. Here’s how it worked:

15.3 A Brief Example of Agile Architecting 285

1. First, the WebArrow team quickly created and crudely analyzed an initial
software and system architecture concept, and then they implemented and
fleshed it out incrementally, starting with the most critical functionality that
could be shown to a customer.

2. They adapted the architecture and refactored the design and code whenever
new requirements popped up or a better understanding of the problem do-
main emerged.

3. Continuous experimentation, empirical evaluation, and architecture analysis
were used to help determine architectural decisions as the product evolved.

For example, incremental improvement in the scalability and fault-tolerance
of WebArrow was guided by significant experimentation. The sorts of questions
that our experiments (spikes) were designed to answer were these:

 ■ Would moving to a distributed database from local flat files negatively im-
pact feedback time (latency) for users?

 ■ What (if any) scalability improvement would result from using mod_perl
versus standard Perl? How difficult would the development and quality as-
surance effort be to convert to mod_perl?

 ■ How many participants could be hosted by a single meeting server?
 ■ What was the correct ratio between database servers and meeting servers?

Questions like these are difficult to answer analytically. The answers rely
on the behavior and interactions of third-party components, and on performance
characteristics of software for which no standard analytic models exist. The Web-
Arrow team’s approach was to build an extensive testing infrastructure (including
both simulation and instrumentation), and to use this infrastructure to compare
the performance of each modification to the base system. This allowed the team
to determine the effect of each proposed improvement before committing it to the
final system.

The lesson here is that making architecture processes agile does not require
a radical re-invention of either Agile practices or architecture methods. The Web-
Arrow team’s emphasis on experimentation proved the key factor; it was our
way of achieving an agile form of architecture conception, implementation, and
evaluation.

This approach meant that the WebArrow architecture development approach
was in line with many of the twelve principles, including:

 ■ Principle 1, providing early and continuous delivery of working software
 ■ Principle 2, welcoming changing requirements
 ■ Principle 3, delivering working software frequently
 ■ Principle 8, promoting sustainable development at a constant pace
 ■ Principle 9, giving continuous attention to technical excellence and good

design

286 Part three architecture in the life cycle 15—Architecture in Agile Projects

15.4 Guidelines for the agile architect

Barry Boehm and colleagues have developed the Incremental Commitment
Model—a hybrid process model framework that attempts to find the balance
between agility and commitment. This model is based upon the following six
principles:

1. Commitment and accountability of success-critical stakeholders
2. Stakeholder “satisficing” (meeting an acceptability threshold) based on suc-

cess-based negotiations and tradeoffs
3. Incremental and evolutionary growth of system definition and stakeholder

commitment
4. Iterative system development and definition
5. Interleaved system definition and development allowing early fielding of

core capabilities, continual adaptation to change, and timely growth of
complex systems without waiting for every requirement and subsystem to
be defined

6. Risk management—risk-driven anchor point milestones, which are key to
synchronizing and stabilizing all of this concurrent activity

Grady Booch has also provided a set of guidelines for an agile architecture
(which in turn imply some duties for the agile architect). Booch claims that all
good software-intensive architectures are agile. What does he mean by this? He
means that a successful architecture is resilient and loosely coupled. It is com-
posed of a core set of well-reasoned design decisions but still contains some
“wiggle room” that allows modifications to be made and refactorings to be done,
without ruining the original structure.

Booch also notes that an effective agile process will allow the architecture to
grow incrementally as the system is developed and matures. The key to success
is to have decomposability, separation of concerns, and near-independence of the
parts. (Sound familiar? These are all modifiability tactics.)

Finally, Booch notes that to be agile, the architecture should be visible and
self-evident in the code; this means making the design patterns, cross-cutting
concerns, and other important decisions obvious, well communicated, and de-
fended. This may, in turn, require documentation. But whatever architectural de-
cisions are made, the architect must make an effort to “socialize” the architecture.

Ward Cunningham has coined the term “technical debt.” Technical debt is
an analogy to the normal debt that we acquire as consumers: we purchase some-
thing now and (hope to) pay for it later. In software the equivalent of “purchas-
ing something now” is quick-and-dirty implementation. Such implementation
frequently leaves technical debt that incurs penalties in the future, in terms of
increased maintenance costs. When technical debt becomes unacceptably high,
projects need to pay down some of this debt, in the form of refactoring, which is
a key part of every agile architecting process.

15.5 Summary 287

What is our advice?

1. If you are building a large and complex system with relatively stable and
well-understood requirements, it is probably optimal to do a large amount
of architecture work up front (see Figure 15.1 for some sample values for
“large”).

2. On big projects with vague or unstable requirements, start by quickly de-
signing a complete candidate architecture even if it is just a “PowerPoint
architecture,” even if it leaves out many details, and even if you design it
in just a couple of days. Alistair Cockburn has introduced a similar idea
in his Crystal Clear method, called a “walking skeleton,” which is enough
architecture to be able to demonstrate end-to-end functionality, linking
together the major system functions. Be prepared to change and elaborate
this architecture as circumstances dictate, as you perform your spikes and
experiments, and as functional and quality attribute requirements emerge
and solidify. This early architecture will help guide development, help with
early problem understanding and analysis, help in requirements elicitation,
help teams coordinate, and help in the creation of coding templates and oth-
er project standards.

3. On smaller projects with uncertain requirements, at least try to get agree-
ment on the central patterns to be employed, but don’t spend too much time
on construction, documentation, or analysis up front. In Chapter 21 we will
show how analysis can be done in a relatively lightweight and “just-in-
time” fashion.

15.5 Summary

The Agile software movement is emblemized by the Agile Manifesto and a set
of principles that assign high value to close-knit teams and continuous and fre-
quent delivery of working software. Agile processes were initially employed on
small- to medium-sized projects with short time frames and enjoyed considerable
success. They were not often used for larger projects, particularly those with dis-
tributed development.

Although there might appear to be an inherent tension between being ag-
ile and architecture practices of the sort prescribed in this book, the underlying
philosophies are not at odds and can be married to great effect. Successful proj-
ects need a successful blend of the two approaches. Too much up-front planning
and commitment can be stifling and unresponsive to customers’ needs, whereas
too much agility can simply result in chaos. Agile architects tend to take a middle
ground, proposing an initial architecture and running with that, until its technical
debt becomes too great, at which point they need to refactor.

288 Part three architecture in the life cycle 15—Architecture in Agile Projects

Boehm and Turner, analyzing historical data from 161 industrial projects,
examined the effects of up-front architecture and risk resolution effort. They
found that projects tend to have a “sweet spot” where some up-front architecture
planning pays off and is not wasteful.

Among this book’s architecture methods, documentation and evaluation
might seem to be where the most friction with Agile philosophies might lie.
However, our approaches to these activities are risk-based and embodied in meth-
ods that help you focus effort where it will most pay off.

The WebArrow example showed how adding experimentation to the proj-
ect’s processes enabled it to obtain benefits from both architecture and classic
Agile practices, and be responsive to ever-changing requirements and domain
understanding.

15.6 for further reading

Agile comes in many flavors. Here are some of the better-known ones:

 ■ Extreme Programming [Beck 04]
 ■ Scrum [Schwaber 04]
 ■ Feature-Driven Development [Palmer 02]
 ■ Crystal Clear [Cockburn 04]

The journal IEEE Software devoted an entire special issue in 2010 to the
topic of agility and architecture. The editor’s introduction [Abrahamsson 10] dis-
cusses many of the issues that we have raised here.

George Fairbanks in his book Just Enough Architecture [Fairbanks 10] pro-
vides techniques that are very compatible with Agile methods.

Barry Boehm and Richard Turner [Boehm 04] offer a data- and analy-
sis-driven perspective on the risks and tradeoffs involved in the continuum of
choices regarding agility and what they called “discipline.” The choice of “agil-
ity versus discipline” in the title of the book has angered and alienated many
practitioners of Agile methods, most of which are quite disciplined. While this
book does not focus specifically on architecture, it does touch on the subject in
many ways. This work was expanded upon in 2010, when Boehm, Lane, Kool-
manojwong, and Turner described the Incremental Commitment Model and its
relationship to agility and architecture [Boehm 10]. All of Boehm and colleagues’
work is informed by an active attention to risk. The seminal article on software
risk management [Boehm 91] was written by Barry Boehm, more than 20 years
ago, and it is still relevant and compelling reading today.

Carriere, Kazman, and Ozkaya [Carriere 10] provide a way to reason about
when and where in an architecture you should do refactoring—to reduce techni-
cal debt—based on an analysis of the propagation cost of anticipated changes.

15.7 Discussion Questions 289

The article by Graham, Kazman, and Walmsley [Graham 07] provides sub-
stantially more detail on the WebArrow case study of agile architecting, includ-
ing a number of architectural diagrams and additional description of the experi-
mentation performed.

Ward Cunningham first coined the term “technical debt” in 1992 [Cunning-
ham 92]. Brown et al. [Brown 10], building in part on Cunningham’s work, offer
an economics-driven perspective on how to enable agility through architecture.

Robert Nord, Jim Tomayko, and Rob Wojcik [Nord 04] have analyzed the
relationship between several of the Software Engineering Institute’s architecture
methods and Extreme Programming. Grady Booch has blogged extensively on the
relationship between architecture and Agile in his blog, for example [Booch 11].

Felix Bachmann [Bachmann 11] has provided a concrete example of a light-
weight version of the ATAM that fits well with Agile projects and principles.

15.7 discussion Questions

1. How would you employ the Agile practices of pair programming, frequent
team interaction, and dedicated customer involvement in a distributed de-
velopment environment?

2. Suppose, as a supporter of architecture practices, you were asked to write
an Architecture Manifesto that was modeled on the Agile Manifesto. What
would it look like?

3. Agile projects must be budgeted and scheduled like any other. How would
you do that? Does an architecture help or hinder this process?

4. What do you think are the essential skills for an architect operating in an
Agile context? How do you suppose they differ for an architect working in
a non-Agile project?

5. The Agile Manifesto professes to value individuals and interactions over
processes and tools. Rationalize this statement in terms of the role of tools
in the modern software development process: compilers, integrated devel-
opment environments, debuggers, configuration managers, automatic test
tools, and build and configuration tools.

6. Critique the Agile Manifesto in the context of a 200-developer, 5-mil-
lion-line project with an expected lifetime of 20 years.

This page intentionally left blank

291

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

16
Architecture and
Requirements

The two most important requirements for major
success are: first, being in the right place at the

right time, and second, doing something about it.
—Ray Kroc

Architectures exist to build systems that satisfy requirements. That’s obvious.
What may be less obvious is that, to an architect, not all requirements are created
equal. Some have a much more profound effect on the architecture than others.
An architecturally significant requirement (ASR) is a requirement that will have
a profound effect on the architecture—that is, the architecture might well be dra-
matically different in the absence of such a requirement.

You cannot hope to design a successful architecture if you do not know the
ASRs. ASRs often, but not always, take the form of quality attribute require-
ments—the performance, security, modifiability, availability, usability, and so
forth, that the architecture must provide to the system. In Chapters 5–13 we in-
troduced patterns and tactics to achieve quality attributes. Each time you select
a pattern or tactic to use in your architecture, you are changing the architecture
as a result of the need to meet quality attribute requirements. The more difficult
and important the QA requirement, the more likely it is to significantly affect the
architecture, and hence to be an ASR.

Architects have to identify ASRs, usually after doing a significant bit of
work to uncover candidate ASRs. Competent architects know this, and as we ob-
serve experienced architects going about their duties, we notice that the first thing
they do is start talking to the important stakeholders. They’re gathering the in-
formation they need to produce the architecture that will respond to the project’s
needs—whether or not this information has already been identified.

This chapter provides some systematic means for identifying the ASRs and
other factors that will shape the architecture.

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

292 Part three architecture in the life cycle 16—Architecture and Requirements

16.1 Gathering aSrs from requirements documents

An obvious location to look for candidate ASRs is in the requirements documents
or in user stories. After all, we are looking for requirements, and requirements
should be in requirements documents. Unfortunately, this is not usually the case,
although as we will see, there is information in the requirements documents that
can be of use.

don’t Get your Hopes up

Many projects don’t create or maintain the kind of requirements document that
professors in software engineering classes or authors of traditional software en-
gineering books love to prescribe. Whether requirements are specified using the
“MoSCoW” style (must, should, could, won’t), or as a collection of “user sto-
ries,” neither of these is much help in nailing down quality attributes.

Furthermore, no architect just sits and waits until the requirements are “fin-
ished” before starting work. The architect must begin while the requirements are
still in flux. Consequently, the QA requirements are quite likely to be up in the
air when the architect starts work. Even where they exist and are stable, require-
ments documents often fail an architect in two ways.

First, most of what is in a requirements specification does not affect the
architecture. As we’ve seen over and over, architectures are mostly driven or
“shaped” by quality attribute requirements. These determine and constrain the
most important architectural decisions. And yet the vast bulk of most require-
ments specifications is focused on the required features and functionality of a
system, which shape the architecture the least. The best software engineering
practices do prescribe capturing quality attribute requirements. For example, the
Software Engineering Body of Knowledge (SWEBOK) says that quality attribute
requirements are like any other requirements. They must be captured if they are
important, and they should be specified unambiguously and be testable.

In practice, though, we rarely see adequate capture of quality attribute re-
quirements. How many times have you seen a requirement of the form “The
system shall be modular” or “The system shall exhibit high usability” or “The
system shall meet users’ performance expectations”? These are not requirements,
but in the best case they are invitations for the architect to begin a conversation
about what the requirements in these areas really are.

Second, much of what is useful to an architect is not in even the best re-
quirements document. Many concerns that drive an architecture do not manifest
themselves at all as observables in the system being specified, and so are not
the subject of requirements specifications. ASRs often derive from business goals
in the development organization itself; we’ll explore this in Section 16.3. De-
velopmental qualities are also out of scope; you will rarely see a requirements

16.1 Gathering ASRs from Requirements Documents 293

document that describes teaming assumptions, for example. In an acquisition
context, the requirements document represents the interests of the acquirer, not
that of the developer. But as we saw in Chapter 3, stakeholders, the technical en-
vironment, and the organization itself all play a role in influencing architectures.

Sniffing Out aSrs from a requirements document

Although requirements documents won’t tell an architect the whole story, they
are an important source of ASRs. Of course, ASRs aren’t going to be conve-
niently labeled as such; the architect is going to have to perform a bit of excava-
tion and archaeology to ferret them out.

Chapter 4 categorizes the design decisions that architects have to make. Ta-
ble 16.1 summarizes each category of architectural design decision, and it gives
a list of requirements to look for that might affect that kind of decision. If a re-
quirement affects the making of a critical architectural design decision, it is by
definition an ASR.

tablE 16.1 Early Design Decisions and Requirements That Can Affect Them

design decision category look for requirements addressing . . .

Allocation of Responsibilities Planned evolution of responsibilities, user roles,
system modes, major processing steps, commercial
packages

Coordination Model Properties of the coordination (timeliness, currency,
completeness, correctness, and consistency)
Names of external elements, protocols, sensors
or actuators (devices), middleware, network
configurations (including their security properties)
Evolution requirements on the list above

Data Model Processing steps, information flows, major domain
entities, access rights, persistence, evolution
requirements

Management of Resources Time, concurrency, memory footprint, scheduling,
multiple users, multiple activities, devices, energy
usage, soft resources (buffers, queues, etc.)
Scalability requirements on the list above

Mapping among Architectural
Elements

Plans for teaming, processors, families of
processors, evolution of processors, network
configurations

Binding Time Decisions Extension of or flexibility of functionality, regional
distinctions, language distinctions, portability,
calibrations, configurations

Choice of Technology Named technologies, changes to technologies
(planned and unplanned)

294 Part three architecture in the life cycle 16—Architecture and Requirements

16.2 Gathering aSrs by Interviewing Stakeholders

Say your project isn’t producing a comprehensive requirements document. Or it
is, but it’s not going to have the QAs nailed down by the time you need to start
your design work. What do you do?

Architects are often called upon to help set the quality attribute requirements
for a system. Projects that recognize this and encourage it are much more likely
to be successful than those that don’t. Relish the opportunity. Stakeholders often
have no idea what QAs they want in a system, and no amount of nagging is going
to suddenly instill the necessary insight. If you insist on quantitative QA require-
ments, you’re likely to get numbers that are arbitrary, and there’s a good chance
that you’ll find at least some of those requirements will be very difficult to satisfy.

Architects often have very good ideas about what QAs are exhibited by sim-
ilar systems, and what QAs are reasonable (and reasonably straightforward) to
provide. Architects can usually provide quick feedback as to which quality attri-
butes are going to be straightforward to achieve and which are going to be prob-
lematic or even prohibitive. And architects are the only people in the room who
can say, “I can actually deliver an architecture that will do better than what you
had in mind—would that be useful to you?”

Interviewing the relevant stakeholders is the surest way to learn what they
know and need. Once again, it behooves a project to capture this critical informa-
tion in a systematic, clear, and repeatable way. Gathering this information from
stakeholders can be achieved by many methods. One such method is the Quality
Attribute Workshop (QAW), described in the sidebar.

The results of stakeholder interviews should include a list of architectural
drivers and a set of QA scenarios that the stakeholders (as a group) prioritized.
This information can be used to do the following:

 ■ Refine system and software requirements
 ■ Understand and clarify the system’s architectural drivers
 ■ Provide rationale for why the architect subsequently made certain design

decisions
 ■ Guide the development of prototypes and simulations
 ■ Influence the order in which the architecture is developed

The Quality Attribute Workshop

The QAW is a facilitated, stakeholder-focused method to generate, prior-
itize, and refine quality attribute scenarios before the software architec-
ture is completed. The QAW is focused on system-level concerns and

16.2 Gathering ASRs by Interviewing Stakeholders 295

specifically the role that software will play in the system. The QAW is
keenly dependent on the participation of system stakeholders.1

The QAW involves the following steps:

Step 1: QAW Presentation and Introductions. QAW facilitators describe
the motivation for the QAW and explain each step of the method. Everyone
introduces themselves, briefly stating their background, their role in the
organization, and their relationship to the system being built.

Step 2: Business/Mission Presentation. The stakeholder representing the
business concerns behind the system (typically a manager or management
representative) spends about one hour presenting the system’s business
context, broad functional requirements, constraints, and known quality
attribute requirements. The quality attributes that will be refined in later
steps will be derived largely from the business/mission needs presented in
this step.

Step 3: Architectural Plan Presentation. Although a detailed system
or software architecture might not exist, it is possible that broad system
descriptions, context drawings, or other artifacts have been created that
describe some of the system’s technical details. At this point in the work-
shop, the architect will present the system architectural plans as they stand.
This lets stakeholders know the current architectural thinking, to the extent
that it exists.

Step 4: Identification of Architectural Drivers. The facilitators will share
their list of key architectural drivers that they assembled during steps 2 and
3, and ask the stakeholders for clarifications, additions, deletions, and cor-
rections. The idea is to reach a consensus on a distilled list of architectural
drivers that includes overall requirements, business drivers, constraints,
and quality attributes.

Step 5: Scenario Brainstorming. Each stakeholder expresses a scenario
representing his or her concerns with respect to the system. Facilitators
ensure that each scenario has an explicit stimulus and response. The
facilitators ensure that at least one representative scenario exists for each
architectural driver listed in step 4.

Step 6: Scenario Consolidation. After the scenario brainstorming, similar
scenarios are consolidated where reasonable. Facilitators ask stakeholders
to identify those scenarios that are very similar in content. Scenarios that
are similar are merged, as long as the people who proposed them agree
and feel that their scenarios will not be diluted in the process. Consolidation
helps to prevent votes from being spread across several scenarios that
are expressing the same concern. Consolidating almost-alike scenarios
assures that the underlying concern will get all of the votes it is due.

Step 7: Scenario Prioritization. Prioritization of the scenarios is ac-
complished by allocating each stakeholder a number of votes equal to 30
percent of the total number of scenarios generated after consolidation.
Stakeholders can allocate any number of their votes to any scenario or

1. This material was adapted from [Barbacci 03].

296 Part three architecture in the life cycle 16—Architecture and Requirements

combination of scenarios. The votes are counted, and the scenarios are
prioritized accordingly.

Step 8: Scenario Refinement. After the prioritization, the top scenar-
ios are refined and elaborated. Facilitators help the stakeholders put the
scenarios in the six-part scenario form of source-stimulus-artifact-environ-
ment-response-response measure that we described in Chapter 4. As the
scenarios are refined, issues surrounding their satisfaction will emerge.
These are also recorded. Step 8 lasts as long as time and resources allow.

16.3 Gathering aSrs by understanding
the business Goals

Business goals are the raison d’être for building a system. No organization builds
a system without a reason; rather, the organization’s leaders want to further the
mission and ambitions of their organization and themselves. Common business
goals include making a profit, of course, but most organizations have many more
concerns than simply profit, and in other organizations (e.g., nonprofits, charities,
governments), profit is the farthest thing from anyone’s mind.

Business goals are of interest to architects because they often are the precursor
or progenitor of requirements that may or may not be captured in a requirements
specification but whose achievement (or lack) signals a successful (or less than suc-
cessful) architectural design. Business goals frequently lead directly to ASRs.

There are three possible relationships between business goals and an
architecture:

1. Business goals often lead to quality attribute requirements. Or to put it
another way, every quality attribute requirement—such as user-visible
response time or platform flexibility or ironclad security or any of a
dozen other needs—should originate from some higher purpose that can
be described in terms of added value. If we ask, for example, “Why do
you want this system to have a really fast response time?”, we might hear
that this will differentiate the product from its competition and let the
developing organization capture market share; or that this will make the
soldier a more effective warfighter, which is the mission of the acquiring
organization; or other reasons having to do with the satisfaction of some
business goal.

2. Business goals may directly affect the architecture without precipitating
a quality attribute requirement at all. In Chapter 3 we told the story of
the architect who designed a system without a database until the manager
informed him that the database team needed work. The architecture was
importantly affected without any relevant quality attribute requirement.

16.3 Gathering ASRs by Understanding the Business Goals 297

Business Goals Quality Attributes

ArchitectureNonarchitectural Solutions

fIGurE 16.1 Some business goals may lead to quality attribute requirements
(which lead to architectures), or lead directly to architectural decisions, or lead to
nonarchitectural solutions.

3. No influence at all. Not all business goals lead to quality attributes. For
example, a business goal to “reduce cost” may be realized by lowering the
facility’s thermostats in the winter or reducing employees’ salaries or pensions.

Figure 16.1 illustrates the major points just described. In the figure, the ar-
rows mean “leads to.” The solid arrows are the ones highlighting relationships of
most interest to architects.

Architects often become aware of an organization’s business and business
goals via osmosis—working, listening, talking, and soaking up the goals that are
at work in an organization. Osmosis is not without its benefits, but more system-
atic ways are possible. We describe one such way in the sidebar “A Method for
Capturing Business Goals.”

a categorization of business Goals

Business goals are worth capturing explicitly. This is because they often imply
ASRs that would otherwise go undetected until it is too late or too expensive to
address them. Capturing business goals is well served by having a set of candi-
date business goals handy to use as conversation starters. If you know that many
businesses want to gain market share, for instance, you can use that to engage
the right stakeholders in your organization to ask, “What are our ambitions about
market share for this product, and how could the architecture contribute to meet-
ing them?”

Our research in business goals has led us to adopt the categories shown in
Table 16.2. These categories can be used as an aid to brainstorming and elici-
tation. By employing the list of categories, and asking the stakeholders about
possible business goals in each category, some assurance of coverage is gained.

298 Part three architecture in the life cycle 16—Architecture and Requirements

tablE 16.2 A List of Standard Business Goal Categories

1. Contributing to the growth and continuity of the organization

2. Meeting financial objectives

3. Meeting personal objectives

4. Meeting responsibility to employees

5. Meeting responsibility to society

6. Meeting responsibility to state

7. Meeting responsibility to shareholders

8. Managing market position

9. Improving business processes

10. Managing the quality and reputation of products

11. Managing change in environmental factors

These categories are not completely orthogonal. Some business goals may
fit into more than one category, and that’s all right. In an elicitation method, the
categories should prompt questions about the existence of organizational busi-
ness goals that fall into that category. If the categories overlap, then this might
cause us to ask redundant questions. This is not harmful and could well be help-
ful. The utility of these categories is to help identify all business goals, not to
provide a taxonomy.

1. Contributing to the growth and continuity of the organization. How does
the system being developed contribute to the growth and continuity of
the organization? In one experience using this business goal category,
the system being developed was the sole reason for the existence of the
organization. If the system was not successful, the organization would
cease to exist. Other topics that might come up in this category deal with
market share, product lines, and international sales.

2. Meeting financial objectives. This category includes revenue generated or
saved by the system. The system may be for sale, either in standalone form
or by providing a service, in which case it generates revenue. The system
may be for use in an internal process, in which case it should make those
processes more effective or more efficient. Also in this category is the cost
of development, deployment, and operation of the system. But this category
can also include financial objectives of individuals: a manager hoping for a
raise, for example, or a shareholder expecting a dividend.

3. Meeting personal objectives. Individuals have various goals associated with
the construction of a system. They may range from “I want to enhance my
reputation by the success of this system” to “I want to learn new technol-
ogies” to “I want to gain experience with a different portion of the devel-
opment process than in the past.” In any case, it is possible that technical
decisions are influenced by personal objectives.

16.3 Gathering ASRs by Understanding the Business Goals 299

4. Meeting responsibility to employees. In this category, the employees in
question are usually those employees involved in development or those
involved in operation. Responsibility to employees involved in develop-
ment might include ensuring that certain types of employees have a role
in the development of this system, or it might include providing employ-
ees the opportunities to learn new skills. Responsibility to employees
involved in operating the system might include safety, workload, or skill
considerations.

5. Meeting responsibility to society. Some organizations see themselves as
being in business to serve society. For these organizations, the system under
development is helping them meet those responsibilities. But all organiza-
tions must discharge a responsibility to society by obeying relevant laws
and regulations. Other topics that might come up under this category are
resource usage, “green computing,” ethics, safety, open source issues, secu-
rity, and privacy.

6. Meeting responsibility to state. Government systems, almost by definition,
are intended to meet responsibility to a state or country. Other topics that
might come up in this category deal with export controls, regulatory confor-
mance, or supporting government initiatives.

7. Meeting responsibility to shareholders. There is overlap between this cate-
gory and the financial objectives category, but additional topics that might
come up here are liability protection and certain types of regulatory confor-
mance such as, in the United States, adherence to the Sarbanes-Oxley Act.

8. Managing market position. Topics that might come up in this category are
the strategy used to increase or hold market share, various types of intellec-
tual property protection, or the time to market.

9. Improving business processes. Although this category partially overlaps
with meeting financial objectives, reasons other than cost reduction exist for
improving business processes. It may be that improved business processes
enable new markets, new products, or better customer support.

10. Managing the quality and reputation of products. Topics that might come
up in this category include branding, recalls, types of potential users, quali-
ty of existing products, and testing support and strategies.

11. Managing change in environmental factors. As we said in Chapter 3, the
business context for a system might change. This item is intended to en-
courage the stakeholders to consider what might change in the business
goals for a system.

Expressing business Goals

How will you write down a business goal once you’ve learned it? Just as for
quality attributes, a scenario makes a convenient, uniform, and clarifying way
to express business goals. It helps ensure that all business goals are expressed

300 Part three architecture in the life cycle 16—Architecture and Requirements

clearly, in a consistent fashion, and contain sufficient information to enable their
shared understanding by relevant stakeholders. Just as a quality attribute scenario
adds precision and meaning to an otherwise vague need for, say, “modifiability,”
a business goal scenario will add precision and meaning to a desire to “meet fi-
nancial objectives.”

Our business goal scenario template has seven parts. They all relate to the
system under development, the identity of which is implicit. The parts are these:

1. Goal-source. These are the people or written artifacts providing the goal.
2. Goal-subject. These are the stakeholders who own the goal and wish it to

be true. Each stakeholder might be an individual or (in the case of a goal
that has no one owner and has been assimilated into an organization) the or-
ganization itself. If the business goal is, for example, “Maximize dividends
for the shareholders,” who is it that cares about that? It is probably not the
programmers or the system’s end users (unless they happen to own stock).
Goal-subjects can and do belong to different organizations. The developing
organization, the customer organizations, subcontractors, vendors and sup-
pliers, standards bodies, regulatory agencies, and organizations responsible
for systems with which ours must interact are all potential goal-subjects.

3. Goal-object. These are the entities to which the goal applies. “Object”
is used in the sense of the object of a verb in a sentence. All goals have
goal-objects: we want something to be true about something (or someone)
that (or whom) we care about. For example, for goals we would character-
ize as furthering one’s self-interest, the goal-object can be “myself or my
family.” For some goals the goal-object is clearly the development orga-
nization, but for some goals the goal-object can be more refined, such as
the rank-and-file employees of the organization or the shareholders of the
organization. Table 16.3 is a representative cross-section of goal-objects.
Goal-objects in the table start small, where the goal-object is a single indi-
vidual, and incrementally grow until the goal-object is society at large.

4. Environment. This is the context for this goal. For example, there are social,
legal, competitive, customer, and technological environments. Sometimes
the political environment is key; this is as a kind of social factor. Upcoming
technology may be a major factor.

5. Goal. This is any business goal articulated by the goal-source.
6. Goal-measure. This is a testable measurement to determine how one would

know if the goal has been achieved. The goal-measure should usually
include a time component, stating the time by which the goal should be
achieved.

16.3 Gathering ASRs by Understanding the Business Goals 301

7. Pedigree and value. The pedigree of the goal tells us the degree of
confidence the person who stated the goal has in it, and the goal’s volatility
and value. The value of a goal can be expressed by how much its owner
is willing to spend to achieve it or its relative importance compared to
other goals. Relative importance may be given by a ranking from 1 (most
important) to n (least important), or by assigning each goal a value on
a fixed scale such as 1 to 10 or high-medium-low. We combine value
and pedigree into one part although it certainly is possible to treat them
separately. The important concern is that both are captured.

Elements 2–6 can be combined into a sentence that reads:

For the system being developed, <goal-subject> desires that <goal-
object> achieve <goal> in the context of <environment> and will be
satisfied if <goal-measure>.

The sentence can be augmented by the goal’s source (element 1) and the
goal’s pedigree and value (element 7). Some sample business goal scenarios in-
clude the following:

 ■ For MySys, the project manager has the goal that his family’s stock in the
company will rise by 5 percent (as a result of the success of MySys).

 ■ For MySys, the developing organization’s CEO has the goal that MySys
will make it 50 percent less likely that his nation will be attacked.

 ■ For MySys, the portfolio manager has the goal that MySys will make the
portfolio 30 percent more profitable.

 ■ For MySys, the project manager has the goal that customer satisfaction will
rise by 10 percent (as a result of the increased quality of MySys).

In many contexts, the goals of different stakeholders may conflict. By iden-
tifying the stakeholder who owns the goal, the sources of conflicting goals can be
identified.

a General Scenario for business Goals

A general scenario (see Chapter 4) is a template for constructing specific or “con-
crete” scenarios. It uses the generic structure of a scenario to supply a list of
possible values for each non-boilerplate part of a scenario. See Table 16.4 for a
general scenario for business goals.

For each of these scenarios you might want to additionally capture its source
(e.g., Did this come directly from the goal-subject, a document, a third party, a
legal requirement?), its volatility, and its importance.

tablE 16.3 Business Goals and Their Goal-Objects

Goal-Object business Goals that Often Have this Goal-Object remarks

Individual Personal wealth, power, honor/face/reputation, game and gambling spirit,
maintain or improve reputation (personal), family interests

The individual who has these goals has them for
him/herself or his/her family.

System Manage flexibility, distributed development, portability, open systems/standards,
testability, product lines, integrability, interoperability, ease of installation and
ease of repair, flexibility/configurability, performance, reliability/availability, ease
of use, security, safety, scalability/extendibility, functionality, system constraints,
internationalization, reduce time to market

These can be goals for a system being developed or
acquired. The list applies to systems in general, but
the quantification of any one item likely applies to a
single system being developed or acquired.

Portfolio Reduce cost of development, cost leadership, differentiation, reduce cost of
retirement, smooth transition to follow-on systems, replace legacy systems,
replace labor with automation, diversify operational sequence, eliminate
intermediate stages, automate tracking of business events, collect/communicate/
retrieve operational knowledge, improve decision making, coordinate across
distance, align task and process, manage on basis of process measurements,
operate effectively within the competitive environment, the technological
environment, or the customer environment
Create something new, provide the best quality products and services possible,
be the leading innovator in the industry

These goals live on the cusp between an individual
system and the entire organization. They apply either
to a single system or to an organization’s entire
portfolio that the organization is building or acquiring
to achieve its goals.

Organization’s
Employees

Provide high rewards and benefits to employees, create a pleasant and friendly
workplace, have satisfied employees, fulfill responsibility toward employees,
maintain jobs of workforce on legacy systems

Before we get to the organization as a whole, there
are some goals aimed at specific subsets of the
organization.

Organization’s
Shareholders

Maximize dividends for the shareholders

Organization Growth of the business, continuity of the business, maximize profits over the
short run, maximize profits over the long run, survival of the organization,
maximize the company’s net assets and reserves, be a market leader, maximize
the market share, expand or retain market share, enter new markets, maximize
the company’s rate of growth, keep tax payments to a minimum, increase sales
growth, maintain or improve reputation, achieve business goals through financial
objectives, run a stable organization

These are goals for the organization as a whole. The
organization can be a development or acquisition
organization, although most were undoubtedly
created with the former in mind.

Nation Patriotism, national pride, national security, national welfare Before we get to society at large, this goal-object is
specifically limited to the goal owner’s own country.

Society Run an ethical organization, responsibility toward society, be a socially
responsible company, be of service to the community, operate effectively within
social environment, operate effectively within legal environment

Some interpret “society” as “my society,” which puts
this category closer to the nation goal-object, but we
are taking a broader view.

tablE 16.4 General Scenario Generation Table for Business Goals

2. Goal-subject

. .
 .

h
as

 t
h

e
g

o
al

 t
h

at
 .

. . 3. Goal-object

. .
 .

ac
h

ie
ve

s
. .

 .

5. Goal

. .
 .

in
 t

h
e

co
n

te
xt

 o
f

. .
 .

4. Environment

. .
 .

an
d

 w
ill

 b
e

sa
ti

sfi
ed

 if
 .

. . 6. Goal-measure (examples,
based on goal categories) 7. Value

Any stakeholder
or stakeholder
group identified
as having a
legitimate
interest in the
system

Individual

System

Portfolio

Organization’s
employees

Organization’s
shareholders

Organization

Nation

Society

Contributing to the
growth and continuity
of the organization

Meeting financial
objectives

Meeting personal
objectives

Meeting responsibility
to employees

Meeting responsibility
to society

Meeting responsibility
to state

Meeting responsibility
to shareholders

Managing market
position

Improving business
processes

Managing quality and
reputation of products

Managing change in
environmental factors

Social (includes
political)

Legal

Competitive

Customer

Technological

Time that business remains
viable

Financial performance vs.
objectives

Promotion or raise achieved in
period

Employee satisfaction; turnover
rate

Contribution to trade deficit/
surplus

Stock price, dividends

Market share

Time to carry out a business
process

Quality measures of products

Technology-related problems

Time window for achievement

1–n

1–10

H-M-L

Resources
willing to
expend

304 Part three architecture in the life cycle 16—Architecture and Requirements

capturing business Goals

Business goals are worth capturing because they can hold the key to discovering
ASRs that emerge in no other context. One method for eliciting and documenting
business goals is the Pedigreed Attribute eLicitation Method, or PALM. The word
“pedigree” means that the business goal has a clear derivation or background.
PALM uses the standard list of business goals and the business goal scenario
format we described earlier.

PALM can be used to sniff out missing requirements early in the life cycle.
For example, having stakeholders subscribe to the business goal of improving the
quality and reputation of their products may very well lead to (for example) se-
curity, availability, and performance requirements that otherwise might not have
been considered.

PALM can also be used to discover and carry along additional informa-
tion about existing requirements. For example, a business goal might be to pro-
duce a product that outcompetes a rival’s market entry. This might precipitate
a performance requirement for, say, half-second turnaround when the rival fea-
tures one-second turnaround. But if the competitor releases a new product with
half-second turnaround, then what does our requirement become? A conventional
requirements document will continue to carry the half-second requirement, but
the goal-savvy architect will know that the real requirement is to beat the compet-
itor, which may mean even faster performance is needed.

Finally, PALM can be used to examine particularly difficult quality attribute
requirements to see if they can be relaxed. We know of more than one system
where a quality attribute requirement proved quite expensive to provide, and only
after great effort, money, and time were expended trying to meet it was it re-
vealed that the requirement had no actual basis other than being someone’s best
guess or fond wish at the time.

16.4 capturing aSrs in a utility tree

As we have seen, ASRs can be extracted from a requirements document, captured
from stakeholders in a workshop such as a QAW, or derived from business goals.
It is helpful to record them in one place so that the list can be reviewed, refer-
enced, used to justify design decisions, and revisited over time or in the case of
major system changes.

To recap, an ASR must have the following characteristics:

 ■ A profound impact on the architecture. Including this requirement will very
likely result in a different architecture than if it were not included.

 ■ A high business or mission value. If the architecture is going to satisfy this
requirement—potentially at the expense of not satisfying others—it must be
of high value to important stakeholders.

16.4 Capturing ASRs in a Utility Tree 305

Using a single list can also help evaluate each potential ASR against these
criteria, and to make sure that no architectural drivers, stakeholder classes, or
business goals are lacking ASRs that express their needs.

A Method for Capturing Business Goals

PALM is a seven-step method, nominally carried out over a day and a half
in a workshop attended by architects and stakeholders who can speak to
the business goals of the organizations involved. The steps are these:

1. PALM overview presentation. Overview of PALM, the problem it
solves, its steps, and its expected outcomes.

2. Business drivers presentation. Briefing of business drivers
by project management. What are the goals of the customer
organization for this system? What are the goals of the
development organization? This is normally a lengthy discussion
that allows participants to ask questions about the business goals
as presented by project management.

3. Architecture drivers presentation. Briefing by the architect on the
driving business and quality attribute requirements: the ASRs.

4. Business goals elicitation. Using the standard business goal
categories to guide discussion, we capture the set of important
business goals for this system. Business goals are elaborated and
expressed as scenarios. We consolidate almost-alike business
goals to eliminate duplication. Participants then prioritize the
resulting set to identify the most important goals.

5. Identification of potential quality attributes from business goals.
For each important business goal scenario, participants describe
a quality attribute that (if architected into the system) would help
achieve it. If the QA is not already a requirement, this is recorded
as a finding.

6. Assignment of pedigree to existing quality attribute drivers.
For each architectural driver named in step 3, we identify which
business goals it is there to support. If none, that’s recorded
as a finding. Otherwise, we establish its pedigree by asking
for the source of the quantitative part. For example: Why is
there a 40-millisecond performance requirement? Why not 60
milliseconds? Or 80 milliseconds?

7. Exercise conclusion. Review of results, next steps, and participant
feedback.

306 Part three architecture in the life cycle 16—Architecture and Requirements

Architects can use a construct called a utility tree for all of these purposes. A
utility tree begins with the word “utility” as the root node. Utility is an expression
of the overall “goodness” of the system. We then elaborate this root node by listing
the major quality attributes that the system is required to exhibit. (We said in Chap-
ter 4 that quality attribute names by themselves were not very useful. Never fear:
we are using them only as placeholders for subsequent elaboration and refinement!)

Under each quality attribute, record a specific refinement of that QA. For
example, performance might be decomposed into “data latency” and “transac-
tion throughput.” Or it might be decomposed into “user wait time” and “time
to refresh web page.” The refinements that you choose should be the ones that
are relevant to your system. Under each refinement, record the appropriate ASRs
(usually expressed as QA scenarios).

Some ASRs might express more than one quality attribute and so might ap-
pear in more than one place in the tree. That is not necessarily a problem, but it
could be an indication that the ASR tries to cover too much diverse territory. Such
ASRs may be split into constituents that each attach to smaller concerns.

Once the ASRs are recorded and placed in the tree, you can now evaluate
them against the two criteria we listed above: the business value of the candidate
ASR and the architectural impact of including it. You can use any scale you like,
but we find that a simple “H” (high), “M” (medium), and “L” (low) suffice for
each criterion.

For business value, High designates a must-have requirement, Medium is for a
requirement that is important but would not lead to project failure were it omitted.
Low describes a nice requirement to have but not something worth much effort.

For architectural impact, High means that meeting this ASR will profoundly
affect the architecture. Medium means that meeting this ASR will somewhat af-
fect the architecture. Low means that meeting this candidate ASR will have little
effect on the architecture.

Table 16.5 shows a portion of a sample utility tree drawn from a health care ap-
plication called Nightingale. Each ASR is labeled with a pair of “H,” “M,” and “L”
values indicating (a) the ASR’s business value and (b) its effect on the architecture.

Once you have a utility tree filled out, you can use it to make important
checks. For instance:

 ■ A QA or QA refinement without any ASR is not necessarily an error or
omission that needs to be rectified, but it is an indication that attention should
be paid to finding out for sure if there are unrecorded ASRs in that area.

 ■ ASRs that rate a (H,H) rating are obviously the ones that deserve the most
attention from you; these are the most significant of the significant require-
ments. A very large number of these might be a cause for concern about
whether the system is achievable.

 ■ Stakeholders can review the utility tree to make sure their concerns are ad-
dressed. (An alternative to the organization we have described here is to use
stakeholder roles rather than quality attributes as the organizing rule under
“Utility.”)

16.4 Capturing ASRs in a Utility Tree 307

tablE 16.5 Tabular Form of the Utility Tree for the Nightingale ATAM Exercise

Quality
attribute

attribute
refinement aSr

Performance Transaction
response time

A user updates a patient’s account in response to a
change-of-address notification while the system is under
peak load, and the transaction completes in less than
0.75 second. (H,M)

A user updates a patient’s account in response to a
change-of-address notification while the system is under
double the peak load, and the transaction completes in
less than 4 seconds. (L,M)

Throughput At peak load, the system is able to complete 150
normalized transactions per second. (M,M)

Usability Proficiency
training

A new hire with two or more years’ experience in the
business becomes proficient in Nightingale’s core
functions in less than 1 week. (M,L)

A user in a particular context asks for help, and the
system provides help for that context, within 3 seconds.
(H,M)

Normal
operations

A hospital payment officer initiates a payment plan for a
patient while interacting with that patient and completes
the process without the system introducing delays. (M,M)

Configurability User-defined
changes

A hospital increases the fee for a particular service. The
configuration team makes the change in 1 working day;
no source code needs to change. (H,L)

Maintainability Routine
changes

A maintainer encounters search- and response-time
deficiencies, fixes the bug, and distributes the bug fix with
no more than 3 person-days of effort. (H,M)

A reporting requirement requires a change to the report-
generating metadata. Change is made in 4 person-hours
of effort. (M,L)

Upgrades to
commercial
components

The database vendor releases a new version that must
be installed in less than 3 person-weeks. (H,M)

Extensibility Adding new
product

A product that tracks blood bank donors is created within
2 person-months. (M,M)

Security Confidentiality A physical therapist is allowed to see that part of a
patient’s record dealing with orthopedic treatment but not
other parts nor any financial information. (H,M)

Integrity The system resists unauthorized intrusion and reports the
intrusion attempt to authorities within 90 seconds. (H,M)

Availability No downtime The database vendor releases new software, which is
hot-swapped into place, with no downtime. (H,L)

The system supports 24/7 web-based account access by
patients. (L,L)

308 Part three architecture in the life cycle 16—Architecture and Requirements

16.5 tying the Methods together

How should you employ requirements documents, stakeholder interviews, Qual-
ity Attribute Workshops, PALM, and utility trees in concert with each other?

As for most complex questions, the answer to this one is “It depends.” If you
have a requirements process that gathers, identifies, and prioritizes ASRs, then
use that and consider yourself lucky.

If you feel your requirements fall short of this ideal state, then you can bring
to bear one or more of the other approaches. For example, if nobody has captured
the business goals behind the system you’re building, then a PALM exercise
would be a good way to ensure that those goals are represented in the system’s
ASRs.

If you feel that important stakeholders have been overlooked in the require-
ments-gathering process, then it will probably behoove you to capture their con-
cerns through interviews. A Quality Attribute Workshop is a structured method to
do that and capture their input.

Building a utility tree is a good way to capture ASRs along with their priori-
tization—something that many requirements processes overlook.

Finally, you can blend all the methods together: PALM makes an excellent
“subroutine call” from a Quality Attribute Workshop for the step that asks about
business goals, and a quality attribute utility tree makes an excellent repository
for the scenarios that are the workshop’s output.

It is unlikely, however, that your project will have the time and resources to
support this do-it-all approach. Better to pick the approach that fills in the biggest
gap in your existing requirements: stakeholder representation, business goal man-
ifestation, or ASR prioritization.

16.6 Summary

Architectures are driven by architecturally significant requirements: requirements
that will have profound effects on the architecture. Architecturally significant
requirements may be captured from requirements documents, by interviewing
stakeholders, or by conducting a Quality Attribute Workshop.

In gathering these requirements, we should be mindful of the business goals
of the organization. Business goals can be expressed in a common, structured
form and represented as scenarios. Business goals may be elicited and docu-
mented using a structured facilitation method called PALM.

A useful representation of quality attribute requirements is in a utility tree.
The utility tree helps to capture these requirements in a structured form, starting
from coarse, abstract notions of quality attributes and gradually refining them to

16.8 Discussion Questions 309

the point where they are captured as scenarios. These scenarios are then priori-
tized, and this prioritized set defines your “marching orders” as an architect.

16.7 for further reading

PALM can be used to capture the business goals that conform to a business goal
viewpoint; that is, you can use PALM to populate a business goal view of your
system, using the terminology of ISO Standard 42010. We discuss this in The
Business Goals Viewpoint [Clements 10c]. Complete details of PALM can be
found in CMU/SEI-2010-TN-018, Relating Business Goals to Architecturally
Significant Requirements for Software Systems [Clements 10b].

The Open Group Architecture Framework, available at www.opengroup.org/
togaf/, provides a very complete template for documenting a business scenario
that contains a wealth of useful information. Although we believe architects can
make use of a lighter-weight means to capture a business goal, it’s worth a look.

The definitive reference source for the Quality Attribute Workshop is [Bar-
bacci 03].

The term architecturally significant requirement was created by the Soft-
ware Architecture Review and Assessment (SARA) group [Obbink 02].

When dealing with systems of systems (SoS), the interaction and handoff
between the systems can be a source of problems. The Mission Thread Workshop
and Business Thread Workshop focus on a single thread of activity within the
overall SoS context and identify potential problems having to do with the inter-
action of the disparate systems. Descriptions of these workshops can be found at
[Klein 10] and [Gagliardi 09].

16.8 discussion Questions

1. Interview representative stakeholders for your business’s or university’s ex-
pense recovery system. Capture the business goals that are motivating the sys-
tem. Use the seven-part business goal scenario outline given in Section 16.3.

2. Draw a relation between the business goals you uncovered for the previous
question and ASRs.

3. Consider an automated teller machine (ATM) system. Attempt to apply the
11 categories of business goals to that system and infer what goals might
have been held by various stakeholders involved in its development.

http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/

310 Part three architecture in the life cycle 16—Architecture and Requirements

4. Create a utility tree for the ATM system above. (Interview some of your
friends and colleagues if you like, to have them contribute quality attribute
considerations and scenarios.) Consider a minimum of four different quali-
ty attributes. Ensure that the scenarios that you create at the leaf nodes have
explicit responses and response measures.

5. Restructure the utility tree given in Section 16.4 using stakeholder roles as
the organizing principle. What are the benefits and drawbacks of the two
representations?

6. Find a software requirements specification that you consider to be of high
quality. Using colored pens (real ones if the document is printed, virtual
ones if the document is online), color red all the material that you find com-
pletely irrelevant to a software architecture for that system. Color yellow all
of the material that you think might be relevant, but not without further dis-
cussion and elaboration. Color green all of the material that you are certain
is architecturally significant. When you’re done, every part of the document
that’s not white space should be red, yellow, or green. Approximately what
percentage of each color did your document end up being? Do the results
surprise you?

311

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

17
Designing an
Architecture

In most people’s vocabularies, design means veneer.
It’s interior decorating. It’s the fabric of the curtains or

the sofa. But to me, nothing could be further from the
meaning of design. Design is the fundamental soul of
a human-made creation that ends up expressing itself

in successive outer layers of the product or service.
—Steve Jobs

We have discussed the building blocks for designing a software architecture,
which principally are locating architecturally significant requirements; capturing
quality attribute requirements; and choosing, generating, tailoring, and analyzing
design decisions for achieving those requirements. All that’s missing is a way to
pull the pieces together. The purpose of this chapter is to provide that way.

We begin by describing our strategy for designing an architecture and then
present a packaging of these ideas into a method: the Attribute-Driven Design
method.

17.1 design Strategy

We present three ideas that are key to architecture design methods: decomposi-
tion, designing to architecturally significant requirements, and generate and test.

decomposition

Architecture determines the quality attributes of a system. Hopefully, we have
convinced you of that by now. The quality attributes are properties of the system

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

312 Part three architecture in the life cycle 17—Designing an Architecture

as a whole. Latency, for example, is the time between the arrival of an event and
the output of the processing of that event. Availability refers to the system provid-
ing services, and so forth.

Given the fact that quality attributes refer to the system as a whole, if we
wish to design to achieve quality attribute requirements, we must begin with the
system as a whole. As the design is decomposed, the quality attribute require-
ments can also be decomposed and assigned to the elements of the decomposition.

A decomposition strategy does not mean that we are assuming the design is
a green-field design or that there are no constraints on the design to use partic-
ular preexisting components either externally developed or legacy. Just as when
you choose a route from one point to another, you may choose to stop at various
destinations along the route, constraints on the design can be accommodated by
a decomposition strategy. You as the designer must keep in mind the constraints
given to you and arrange the decomposition so that it will accommodate those
constraints. In some contexts, the system may end up being constructed mostly
from preexisting components; in others, the preexisting components may be a
smaller portion of the overall system. In either case, the goal of the design ac-
tivity is to generate a design that accommodates the constraints and achieves the
quality and business goals for the system.

We have already talked about module decomposition, but there are other
kinds of decompositions that one regularly finds in an architecture, such as the
decomposition of a component in a components-and-connectors (C&C) pattern
into its subcomponents. For example, a user interface implemented using the
model-view-controller (MVC) pattern would be decomposed into a number of
components for the model, one or more views, and one or more controllers.

designing to architecturally Significant requirements

In Chapter 16, we discussed architecturally significant requirements (ASRs) and
gave a technique for collecting and structuring them. These are the requirements
that drive the architectural design; that is why they are significant. Driving the
design means that these requirements have a profound effect on the architecture.
In other words, you must design to satisfy these requirements. This raises two
questions: What happens to the other requirements? and Do I design for one ASR
at a time or all at once?

1. What about the non-ASR requirements? The choice of ASRs implies a
prioritization of the requirements. Once you have produced a design that
satisfies the ASRs, you know that you are in good shape. However, in the
real world, there are other requirements that, while not ASRs, you would
like to be able to satisfy. You have three options with respect to meeting
these other requirements: (a) You can still meet the other requirements.
(b) You can meet the other requirements with a slight adjustment of the
existing design, and this slight adjustment does not keep the higher priority

17.1 Design Strategy 313

requirements from being met. (c) You cannot meet the other requirements
under the current design. In case (a) or (b), there is nothing more to be
done. You are happy. In case (c), you now have three options: (i) If you are
close to meeting the requirement, you can see if the requirement can be
relaxed. (ii) You can reprioritize the requirements and revisit the design.
(iii) You can report that you cannot meet the requirement. All of these
latter three options involve adjusting either the requirement or its priority.
Doing so may have a business impact, and it should be reported up the
management chain.

2. Design for all of the ASRs or one at a time? The answer to this question is a
matter of experience. When you learn chess, you begin by learning that the
horsey goes up two and over one. After you have been playing for a while,
you internalize the moves of the knight and you can begin to look further
ahead. The best players may look ahead a dozen or more moves. This situ-
ation applies to when you are designing to satisfy ASRs. Left to their own
devices, novice architects will likely focus on one ASR at a time. But you
can do better than that. Eventually, through experience and education, you
will develop an intuition for designing, and you will employ patterns to aid
you in designing for multiple ASRs.

Generate and test

One way of viewing design is as a process of “generate and test.” This gener-
ate-and-test approach views a particular design as a hypothesis: namely, the de-
sign satisfies the requirements. Testing is the process of determining whether the
design hypothesis is correct. If it is not, then another design hypothesis must be
generated. Figure 17.1 shows this iteration.

Generate
Initial

Hypothesis

Test
Hypothesis

Generate

Hypothesis

fIGurE 17.1 The generate-and-test process of architecture design

314 Part three architecture in the life cycle 17—Designing an Architecture

For this process to be effective, the generation of the next design hypothesis
must build on the results of the tests. That is, the things wrong with the current
design hypothesis are fixed in the next design hypothesis, and the things that are
right are kept. If there is no coupling between the testing and the generation of
the next design hypothesis, then this process becomes “guess and test” and that
is not effective.

Generate and test as a design strategy leads to the following questions:

1. Where does the initial hypothesis come from?
2. What are the tests that are applied?
3. How is the next hypothesis generated?
4. When are you done?

We have already seen many of the elements of the answers to these ques-
tions. But now we can think about them and organize them more systematically.

creating the Initial Hypothesis
Design solutions are created using “collateral” that is available to the project.
Collateral can include existing systems, frameworks available to the project,
known architecture patterns, design checklists, or a domain decomposition.

 ■ Existing systems. Very few systems are completely unprecedented, even
within a single organization. Organizations are in a particular business, their
business leads to specialization, and specialization leads to the development
of variations on a theme. It is likely that systems already exist that are
similar to the system being constructed in your company.

Existing systems are likely to provide the most powerful collateral,
because the business context and requirements for the existing system are
likely to be similar to the business context and requirements for the new
system, and many of the problems that occur have already been solved in
the existing design.

A common special case is when the existing system you’re drawing
on for knowledge is the same one that you’re building. This occurs when
you’re evolving a system, not building one from scratch. The existing
design serves as the initial design hypothesis. The “test” part of this pro-
cess will reveal the parts that don’t work under the current (presumably
changed) set of requirements and will therefore pinpoint the parts of the
system’s design that need to change.

Another special case is when you have to combine existing legacy sys-
tems into a single system. In this case, the collection of legacy systems can
be mined to determine the initial design hypothesis.

 ■ Frameworks. A framework is a partial design (accompanied by code) that
provides services that are common in particular domains. Frameworks exist
in a great many domains, ranging from web applications to middleware sys-
tems to decision support systems. The design of the framework (especially

17.1 Design Strategy 315

the architectural assumptions it makes) provides the initial design hypoth-
esis. For example, a design framework might constrain all communication
to be via a broker, or via a publish-subscribe bus, or via callbacks. In each
case this design framework has constrained your initial design hypothesis.

 ■ Patterns and tactics. As we discussed in Chapter 13, a pattern is a known
solution to a common problem in a given context. Cataloged architectural
patterns, possibly augmented with tactics, should be considered as candi-
dates for the design hypothesis you’re building.

 ■ Domain decomposition. Another option for the initial design hypothesis
comes from performing a domain decomposition. For example, most ob-
ject-oriented analysis and design processes begin this way, identifying ac-
tors and entities in the domain. This decomposition will divide the respon-
sibilities to make certain modifications easier, but by itself it does not speak
to many other quality attribute requirements.

 ■ Design checklists. The design checklists that we presented in Chapters 5–11
can guide an architect to making quality-attribute-targeted design choices.
The point of using a checklist is to ensure completeness: Have I thought
about all of the issues that might arise with respect to the many quality
attribute concerns that I have? The checklist will provide guidance and
confidence to an architect.

choosing the tests
Three sources provide the tests to be applied to the hypothesis:

1. The analysis techniques described in Chapter 14.
2. The design checklists for the quality attributes that we presented in Chap-

ters 5–11 can also be used to test the design decisions already made, from
the sources listed above. For the important quality attribute requirements,
use the design checklists to assess whether the decisions you’ve made so
far are sound and complete. For example, if testability is important for your
system, the checklist says to ensure that the coordination model supports
capturing the activity that led to a fault.

3. The architecturally significant requirements. If the hypothesis does not
provide a solution for the ASRs, then it must be improved.

Generating the Next Hypothesis
After applying the tests, you might be done—everything looks good. On the
other hand, you might still have some concerns; specifically, you might have a list
of quality attribute problems associated with your analysis of the current hypoth-
esis. This is the problem that tactics are intended to solve: to improve a design
with respect to a particular quality attribute. Use the sets of tactics described in
each of Chapters 5–11 to help you to choose the ones that will improve your de-
sign so that you can satisfy these outstanding quality attribute requirements.

316 Part three architecture in the life cycle 17—Designing an Architecture

terminating the Process
You are done with the generate-and-test process when you either have a design
that satisfies the ASRs or when you exhaust your budget for producing the de-
sign. In Chapter 22, we discuss how much time should be budgeted for producing
the architecture.

If you do not produce such a design within budget, then you have two op-
tions depending on the set of ASRs that are satisfied. Your first option is to pro-
ceed to implementation with the best hypothesis you were able to produce, with
the realization that some ASRs may not be met and may need to be relaxed or
eliminated. This is the most common case. Your second option is to argue for
more budget for design and analysis, potentially revisiting some of the major
early design decisions and resuming generate and test from that point. If all else
fails, you could suggest that the project be terminated. If all of the ASRs are crit-
ical and you were not able to produce an acceptable or nearly acceptable design,
then the system you produce from the design will not be satisfactory and there is
no sense in producing it.

17.2 the attribute-driven design Method

The Attribute-Driven Design (ADD) method is a packaging of the strategies that
we have just discussed. ADD is an iterative method that, at each iteration, helps
the architect to do the following:

 ■ Choose a part of the system to design.
 ■ Marshal all the architecturally significant requirements for that part.
 ■ Create and test a design for that part.

The output of ADD is not an architecture complete in every detail, but an
architecture in which the main design approaches have been selected and vetted.
It produces a “workable” architecture early and quickly, one that can be given to
other project teams so they can begin their work while the architect or architec-
ture team continues to elaborate and refine.

Inputs to add

Before beginning a design process, the requirements—functional, quality, and
constraints—should be known. In reality, waiting for all of the requirements to
be known means the project will never be finished, because requirements are con-
tinually arriving to a project as a result of increased knowledge on the part of the
stakeholders and changes in the environment (technical, social, legal, financial,
or political) over time. ADD can begin when a set of architecturally significant
requirements is known.

17.2 The Attribute-Driven Design Method 317

This increases the importance of having the correct set of ASRs. If the set
of ASRs changes after design has begun, then the design may well need to be
reworked (a truth under any design method, not just ADD). To the extent that you
have any influence over the requirements-gathering process, it would behoove
you to lobby for collection of ASRs first. Although these can’t all be known a
priori, as we saw in Chapter 16, quality attribute requirements are a good start.

In addition to the ASRs, input to ADD should include a context description.
The context description gives you two vital pieces of information as a designer:

1. What are the boundaries of the system being designed? What is inside the
system and what is outside the system must be known in order to constrain
the problem and establish the scope of the architecture you are designing.
The system’s scope is unknown or unclear surprisingly often, and it will
help the architecture to nail down the scope as soon as you can.

2. What are the external systems, devices, users, and environmental conditions
with which the system being designed must interact? By “environmental con-
ditions” here we are referring to the system’s runtime environment. The sys-
tem’s environmental conditions are an enumeration of factors such as where
the input comes from, where the output goes, what forms they take, what
quality attributes they have, and what forces may affect the operation of the
system. It is possible that not all of the external systems are known at design
time. In this case, the system must have some discovery mechanisms, but the
context description should enumerate the assumptions that can be made about
the external systems even if their specifics are not yet known. An example of
accommodating environment conditions can be seen in a system that must
be sent into space. In addition to handling its inputs, outputs, and quality
attributes, such a system must accommodate failures caused by stray gamma
rays, certainly a force affecting the operation of the system.

Output of add

The output of ADD is a set of sketches of architectural views. The views together
will identify a collection of architectural elements and their relationships or in-
teractions. One of the views produced will be a module decomposition view, and
in that view each element will have an enumeration of its responsibilities listed.

Other views will be produced according to the design solutions chosen
along the way. For example, if at one point in executing the method, you choose
the service-oriented architecture (SOA) pattern for part of the system, then you
will capture this in an SOA view (whose scope is that part of the system to which
you applied the pattern).

The interactions of the elements are described in terms of the information
being passed between the elements. For example, we might specify protocol
names, synchronous, asynchronous, level of encryption, and so forth.

318 Part three architecture in the life cycle 17—Designing an Architecture

The reason we refer to “sketches” above is that ADD does not take the
design so far as to include full-blown interface specifications, or even so far as
choosing the names and parameter types of interface programs (methods). That
can come later. ADD does identify the information that passes through the inter-
faces and important characteristics of the information. If any aspects of an inter-
face have quality attribute implications, those are captured as annotations.

When the method reaches the end, you will have a full-fledged architecture
that is roughly documented as a set of views. You can then polish this collection,
perhaps merging some of the views as appropriate, to the extent required by your
project. In an Agile project, this set of rough sketches may be all you need for
quite a while, or for the life of the project.

17.3 the Steps of add

ADD is a five-step method:

1. Choose an element of the system to design.
2. Identify the ASRs for the chosen element.
3. Generate a design solution for the chosen element.
4. Inventory remaining requirements and select the input for the next iteration.
5. Repeat steps 1–4 until all the ASRs have been satisfied.

Step 1: choose an Element of the System to design

ADD works by beginning with a part of the system that has not yet been de-
signed, and designing it. In this section, we’ll discuss how to make that choice.

For green-field designs, the “element” to begin with is simply the entire
system. The first trip through the ADD steps will yield a broad, shallow design
that will produce a set of newly identified architectural elements and their inter-
actions. These elements will almost certainly require more design decisions to
flesh out what they do and how they satisfy the ASRs allocated to them; during
the next iteration of ADD, those elements become candidates for the “choose an
element” step.

So, nominally, the first iteration of ADD will create a collection of elements
that together constitute the entire system. The second iteration will take one of
these elements—what we call the “chosen element”—and design it, resulting in
still finer-grained elements. The third iteration will take another element—either
one of the children of the whole system or one of the children that was created
from the design of one of the children of the whole system—and so forth. For ex-
ample, if you choose an SOA pattern in the first iteration, you might choose child
elements such as service clients, service providers, and the SOA infrastructure

17.3 The Steps of ADD 319

components. In the next iteration through the loop, you would refine one of these
child elements, perhaps the infrastructure components. In the next iteration you
now have a choice: refine another child of the SOA pattern, such as a service pro-
vider, or refine one of the child elements of the infrastructure components. Figure
17.2 shows these choices as a decomposition tree, annotated with the ADD itera-
tion that applies to each node. (The example components are loosely based on the
Adventure Builder system, introduced in Chapter 13.) Figure 17.2 is a decompo-
sition view of our hypothetical system after two iterations of ADD.

There are cases when the first iteration of ADD is different. Perhaps you are
not creating a system but evolving an existing one. Perhaps you are required to
use a piece of software that your company already owns, and therefore must fit it
into the design. There are many reasons why some of the design might already be
done for you, and the first time through the steps of ADD you won’t pick “whole
system” as the starting point. Nevertheless, step 1 still holds: All it requires is that
at least one of the elements you know about needs further design.

There are two main refinement strategies to pursue with ADD: breadth first
and depth first. Breadth first means that all of the second-level elements are de-
signed before any of the third-level elements, and so forth. Depth first means that
one downward chain is completed before beginning a second downward chain.
The order that you should work through ADD is influenced by the business and
technical contexts within which the project is operating. Some of the important
factors include the following:

Iteration #2:
SOA infrastructure
components refined

Or an SOA infrastructure component?

fIGurE 17.2 Iteration 1 applied the SOA pattern. Iteration 2 refined the
infrastructure components. Where will iteration 3 take you?

320 Part three architecture in the life cycle 17—Designing an Architecture

 ■ Personnel availability may dictate a refinement strategy. If an important
group or team has a window of availability that will close soon and will
work on a particular part of the system, then it behooves the architect to
design that part of the system to the point where it can be handed off for
implementation—depth first. But if the team is not currently available but
will be available at some definite time in the future, then you can defer their
part of the design until later.

 ■ Risk mitigation may dictate a refinement strategy. The idea is to design the
risky parts of the system to enough depth so that problems can be identified
and solved early. For example, if an unfamiliar technology is being intro-
duced on the project, prototypes using that technology will likely be devel-
oped to gain understanding of its implications. These prototypes are most
useful if they reflect the design of the actual system. A depth-first strategy
can provide a context for technology prototyping. Using this context you
can build the prototype in a fashion that allows for its eventual integration
into the architecture. On the other hand, if the risk is in how elements at the
same level of the design interact with each other to meet critical quality at-
tributes, then a breadth-first strategy is in order.

 ■ Deferral of some functionality or quality attribute concerns may dictate a
mixed approach. For example, suppose the system being constructed has
a medium-priority availability requirement. In this case you might adopt
a strategy of employing redundancy for availability but defer detailed
consideration of this redundancy strategy to allow for the rapid generation
of the high-priority functionality in an intermediate release. You might
therefore apply a breadth-first approach for everything but availability,
and then in subsequent design iterations you revisit some of the elements
to enable the addition of the responsibilities to support availability. In
reality this approach will require some backtracking, where you revisit
earlier decisions and refine them or modify them to accommodate this new
requirement.

All else being equal, a breadth-first refinement strategy is preferred because
it allows you to apportion the most work to the most teams soonest. Breadth first
allows for consideration of the interaction among the elements at the same level.

Step 2: Identify the aSrs for this Element

In Chapter 16 we described a number of methods for discovering the ASRs for
a system. One of those methods involved building a utility tree. To support the
design process, the utility tree has an advantage over the other methods: it guides
the stakeholders in prioritizing the QA requirements. The two factors used to pri-
oritize the ASRs in a utility tree are business value and architectural impact. The
business value of an ASR typically will not change throughout the design process
and does not need to be reconsidered.

17.3 The Steps of ADD 321

If the chosen element for design in step 1 is the whole system, then a utility
tree can be a good source for the ASRs. Otherwise, construct a utility tree spe-
cifically focused on this chosen element, using the quality attribute requirements
that apply to this element (you’ll see how to assign those in step 4). Those that
are labeled (High, High) are the ASRs for this element. As an architect you will
also need to pay attention to the (High, Medium) and (Medium, High) utility tree
leaves as well. These will almost certainly also be ASRs for this element.

Step 3: Generate a design Solution for the chosen Element

This step is the heart of the ADD. It is the application of the generate-and-test
strategy. Upon entry to this step, we have a chosen element for design and a list
of ASRs that apply to it. For each ASR, we develop a solution by choosing a can-
didate design approach.

Your initial candidate design will likely be inspired by a pattern, possibly
augmented by one or more tactics. You may then refine this candidate design by
considering the design checklists that we gave for the quality attributes in Chap-
ters 5–11. For ASRs that correspond to quality attributes, you can invoke those
checklists to help you instantiate or refine the major design approach (such as a
pattern) that you’ve chosen. For example, the layered pattern is helpful for build-
ing systems in which modifiability is important, but the pattern does not tell you
how many layers you should have or what each one’s responsibility should be.
But the checklist for the “allocation of responsibilities” design decision category
for modifiability in Chapter 7 will help you ask the right questions to make that
determination.

Although this step is performed for each ASR in turn, the sources of de-
sign candidates outlined above—patterns, tactics, and checklists—will usually do
much better than that. That is, you’re likely to find design candidates that address
several of your ASRs at once. This is because to the extent that the system you’re
building is similar to others you know about, or to the extent that the problem you
are solving is similar to the problems solved by patterns, it is likely that the solu-
tions you choose will be solving a whole collection of ASRs simultaneously. If
you can bring a solution to bear that solves more than one of your ASRs at once,
so much the better.

The design decisions made in this step now become constraints on all future
steps of the method.

Step 4: Verify and refine requirements and
Generate Input for the Next Iteration

It’s possible that the design solution you came up with in the prior step won’t
satisfy all the ASRs. Step 4 of ADD is a test step that is applied to your design for
the element you chose to elaborate in step 1 of this iteration. One of the possible

322 Part three architecture in the life cycle 17—Designing an Architecture

outcomes of step 4 is “backtrack,” meaning that an important requirement was
not satisfied and cannot be satisfied by further elaborating this design. In this
case, the design needs to be reconsidered.

The ASRs you have not yet satisfied could be related to the following:

1. A quality attribute requirement allocated to the parent element
2. A functional responsibility of the parent element
3. One or more constraints on the parent element

Table 17.1 summarizes the types of problems and the actions we recom-
mend for each.

In most real-world systems, requirements outstrip available time and re-
sources. Consequently you will find yourself unable to meet some of the QA
requirements, functional requirements, and constraints. These kinds of decisions
are outside the scope of the ADD method, but they are clearly important drivers
of the design process, and as an architect you will be continually negotiating de-
cisions of this form.

Step 4 is about taking stock and seeing what requirements are left that still
have not been satisfied by our design so far. At this point you should sequence
through the quality attribute requirements, responsibilities, and constraints for the
element just designed. For each one there are four possibilities:

tablE 17.1 Recommended Actions for Problems with the Current Hypothesis

type of aSr Not Met action recommended

1. Quality attribute requirement Consider applying (more) tactics to improve the
design with respect to the quality attribute. For
each candidate tactic, ask:

 ■ Will this tactic improve the quality attribute
behavior of the current design sufficiently?

 ■ Should this tactic be used in conjunction with
another tactic?

 ■ What are the tradeoff considerations when
applying this tactic?

2. Functional responsibility Add responsibilities either to existing modules or to
newly created modules:

 ■ Assign the responsibility to a module containing
similar responsibilities.

 ■ Break a module into portions when it is too
complex.

 ■ Assign the responsibility to a module containing
responsibilities with similar quality attribute
characteristics—for example, similar timing
behavior, similar security requirements, or
similar availability requirements.

3. Constraint Modify the design or try to relax the constraint:
 ■ Modify the design to accommodate the

constraint.
 ■ Relax the constraint.

17.3 The Steps of ADD 323

1. The quality attribute requirement, functional requirement, or constraint
has been satisfied. In this case, the design with respect to that requirement
is complete; the next time around, when you further refine the design,
this requirement will not be considered. For example, if a constraint is to
use a particular middleware and the system is decomposed into elements
that all use this middleware, the constraint has been satisfied and can be
removed from consideration. An example of a quality attribute requirement
being satisfied is a requirement to make it easy to modify elements and
their interactions. If a publish-subscribe pattern can be shown to have been
employed throughout the system, then this QA requirement can be said to
be satisfied.

2. The quality attribute requirement, functional requirement, or constraint
is delegated to one of the children. For example, if a constraint is to use a
particular middleware and the decomposition has a child element that acts
as the infrastructure, then delegating that constraint to that child will retain
the constraint and have it be reconsidered when the infrastructure element
is chosen for subsequent design. Similarly, with the example we gave ear-
lier about providing extensibility, if there is as yet no identifiable plug-in
manager, then this requirement is delegated to the child where the plug-in
manager is likely to appear.

3. The quality attribute requirement, functional requirement, or constraint is
distributed among the children. For example, a constraint might be to use
.NET. In this case, .NET Remoting might become a constraint on one child
and ASP.NET on another. Or a quality attribute requirement that constrains
end-to-end latency of a certain operation to 2 seconds could be distributed
among the element’s three children so that the latency requirement for one
element is 0.8 seconds, the latency for a second element is 0.9 seconds, and
the latency for a third is 0.3 seconds. When those elements are subsequent-
ly chosen for further design, those times will serve as constraints on them
individually.

4. The quality attribute requirement, functional requirement, or constraint
cannot be satisfied with the current design. In this case there are the same
two options we discussed previously: you can either backtrack—revisit the
design to see if the constraint or quality attribute requirement can be sat-
isfied some other way—or push back on the requirement. This will almost
certainly involve the stakeholders who care about that requirement, and you
should have convincing arguments as to why the dropping of the require-
ment is necessary.

Report to the project manager that the constraint cannot be satisfied
without jeopardizing other requirements. You must be prepared to justify
such an assertion. Essentially, this is asking, “What’s more important—the
constraint or these other requirements?”

324 Part three architecture in the life cycle 17—Designing an Architecture

Step 5: repeat Steps 1–4 until done

After the prior steps, each element has a set of responsibilities, a set of quality
attribute requirements, and a set of constraints assigned to it. If it’s clear that all
of the requirements are satisfied, then this unequivocally ends the ADD process.

In projects in which there is a high degree of trust between you and the im-
plementation teams, the ADD process can be terminated when only a sketch of
the architecture is available. This could be as soon as two levels of breadth-first
design, depending on the size of the system. In this case, you trust the implemen-
tation team to be able to flesh out the architecture design in a manner consistent
with the overall design approaches you have laid out. The test for this is if you
believe that you could begin implementation with the level of detail available and
trust the implementation team to that extent. If you have less trust in the imple-
mentation team, then an additional level (or levels) of design may be necessary.
(And, of course, you will need to subsequently ensure that the implementation is
faithfully followed by the team.)

On the other hand, if there is a contractual arrangement between your or-
ganization and the implementation organization, then the specification of the
portion of the system that the implementers are providing must be legally en-
forceable. This means that the ADD process must continue until that level of
specificity has been achieved.

Finally, another condition for terminating ADD is when the project’s design
budget has been exhausted. This happens more often than you might think.

Choosing when to terminate ADD and when to start releasing the architec-
ture that you’ve sketched out are not the same decision. You can, and in many
cases should, start releasing early architectural views based on the needs of the
project (such as scheduled design reviews or customer presentations) and your
confidence in the design so far. The unpalatable alternative is to make everyone
wait until the architecture design is finished. You-can’t-have-it-until-it’s-done is
particularly unpalatable in Agile projects, as we discussed in Chapter 15.

You should release the documentation with a caveat as to how likely you
think it is to change. But even early broad-and-shallow architectural descriptions
can be enormously helpful to implementers and other project staff. A first- or sec-
ond-level module decomposition view, for instance, lets experts start scouring the
marketplace for commercial products that provide the responsibilities of the iden-
tified modules. Managers can start making budgets and schedules for implemen-
tation that are based on the architecture and not just the requirements. Support
staff can start building the infrastructure and file systems to hold project artifacts
(these are often structured to mirror the module decomposition view). And early
release invites early feedback.

17.5 For Further Reading 325

17.4 Summary

The Attribute-Driven Design method is an application of the generate-and-test
philosophy. It keeps the number of requirements that must be satisfied to a hu-
manly achievable quantity. ADD is an iterative method that, at each iteration,
helps the architect to do the following:

 ■ Choose an element of the system to design.
 ■ Marshal all the architecturally significant requirements for the chosen

element.
 ■ Create and test a design for that chosen element.

The output of ADD is not an architecture complete in every detail, but an ar-
chitecture in which the main design approaches have been selected and validated.
It produces a “workable” architecture early and quickly, one that can be given to
other project teams so they can begin their work while the architect or architec-
ture team continues to elaborate and refine.

ADD is a five-step method:

1. Choose the element of the system to design. For green-field designs, the
“part” to begin with is simply the entire system. For designs that are already
partially completed (either by external constraints or by previous iterations
through ADD), the part is an element that is not yet designed. Choosing the
next element can proceed in a breadth-first, depth-first, or mixed manner.

2. Identify the ASRs for the chosen element.
3. Generate a design solution for the chosen element, using design collateral

such as existing systems, frameworks, patterns and tactics, and the design
checklists from Chapters 5–11.

4. Verify and refine requirements and generate input for the next iteration.
Either the design in step 3 will satisfy all of the chosen element’s ASRs or
it won’t. If it doesn’t, then either they can be allocated to elements that will
be elaborated in future iterations of ADD, or the existing design is inad-
equate and we must backtrack. Furthermore, non-ASR requirements will
either be satisfied, allocated to children, or indicated as not achievable.

5. Repeat steps 1–4 until all the ASRs have been satisfied, or until the archi-
tecture has been elaborated sufficiently for the implementers to use it.

17.5 for further reading

You can view design as the process of making decisions; this is another philoso-
phy of design. This view of design leads to an emphasis on design rationale and
tools to capture design rationale. The view of design as the process of making

326 Part three architecture in the life cycle 17—Designing an Architecture

decisions dates to the 1940s [Mettler 91], but it has been recently applied to ar-
chitecture design most prominently by Philippe Kruchten [Kruchten 04], and
Hans van Vliet and Jan Bosch [van Vliet 05].

The Software Engineering Institute has produced a number of reports de-
scribing the ADD method and its application in a variety of contexts. These in-
clude [Wojcik 06], [Kazman 04], and [Wood 07].

George Fairbanks has written an engaging book that describes a risk-driven
process of architecture design, entitled Just Enough Software Architecture: A
Risk-Driven Approach [Fairbanks 10].

Tony Lattanze has created an Architecture-Centric Design Method (ACDM),
described in his book Architecting Software Intensive Systems: A Practitioners
Guide [Lattanze 08].

Ian Gorton’s Essential Architecture, Second Edition, emphasizes the middle-
ware aspects of a design [Gorton 10].

Woods and Rozanski have written Software Systems Architecture, Second
Edition, which interprets the design process through the prism of different views
[Woods 11].

A number of authors have compared five different industrial architecture de-
sign methods. You can find this comparison at [Hofmeister 07].

Raghvinder Sangwan and his colleagues describe the design of a building
management system that was originally designed using object-oriented tech-
niques and then was redesigned using ADD [Sangwan 08].

17.6 discussion Questions

1. ADD does not help with the detailed design of interfaces for the
architectural elements it identifies. Details of an interface include what each
method does, whether you need to call a single all-encompassing method
to perform the work of the element or many methods of finer-grained
function, what exceptions are raised on the interface, and more. What are
some examples where the specific design of an interface might bring more
or less performance, security, or availability to a system? (By the way, if
there are quality attribute implications to an interface, you can capture those
as annotations on the element.)

2. What sets a constraint apart from other (even high-priority) requirements is
that it is not negotiable. Should this consideration guide the design process?
For example, would it be wise to design to satisfy all of the constraints be-
fore worrying about other ASRs?

3. In discussion question 4 of Chapter 16 you were asked to create a utility
tree for an ATM. Now choose the two most important ASRs from that util-
ity tree and create a design fragment using the ADD method employing and
instantiating a pattern.

327

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

18
Documenting Software
Architectures

If it is not written down, it does not exist.
—Philippe Kruchten

Even the best architecture, the most perfectly suited for the job, will be essen-
tially useless if the people who need to use it do not know what it is; cannot un-
derstand it well enough to use, build, or modify it; or (worst of all) misunderstand
it and apply it incorrectly. And all of the effort, analysis, hard work, and insight-
ful design on the part of the architecture team will have been wasted. They might
as well have gone on vacation for all the good their architecture will do.

Creating an architecture isn’t enough. It has to be communicated in a way
to let its stakeholders use it properly to do their jobs. If you go to the trouble of
creating a strong architecture, one that you expect to stand the test of time, then
you must go to the trouble of describing it in enough detail, without ambiguity,
and organizing it so that others can quickly find and update needed information.

Documentation speaks for the architect. It speaks for the architect today,
when the architect should be doing other things besides answering a hundred
questions about the architecture. And it speaks for the architect tomorrow, when
he or she has left the project and now someone else is in charge of its evolution
and maintenance.

The sad truth is that architectural documentation today, if it is done at all,
is often treated as an afterthought, something people do because they have to.
Maybe a contract requires it. Maybe a customer demands it. Maybe a compa-
ny’s standard process calls for it. In fact, these may all be legitimate reasons.
But none of them are compelling enough to produce high-quality documentation.
Why should the architect spend valuable time and energy just so a manager can
check off a deliverable?

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

328 Part three architecture in the life cycle 18—Documenting Software Architectures

The best architects produce good documentation not because it’s “required”
but because they see that it is essential to the matter at hand—producing a
high-quality product, predictably and with as little rework as possible. They see
their immediate stakeholders as the people most intimately involved in this un-
dertaking: developers, deployers, testers, and analysts.

But architects also see documentation as delivering value to themselves.
Documentation serves as the receptacle to hold the results of major design deci-
sions as they are confirmed. A well-thought-out documentation scheme can make
the process of design go much more smoothly and systematically. Documenta-
tion helps the architect(s) reason about the architecture design and communicate
it while the architecting is in progress, whether in a six-month design phase or a
six-day Agile sprint.

18.1 uses and audiences for
architecture documentation

Architecture documentation must serve varied purposes. It should be sufficiently
transparent and accessible to be quickly understood by new employees. It should
be sufficiently concrete to serve as a blueprint for construction. It should have
enough information to serve as a basis for analysis.

Architecture documentation is both prescriptive and descriptive. For some
audiences, it prescribes what should be true, placing constraints on decisions yet
to be made. For other audiences, it describes what is true, recounting decisions
already made about a system’s design.

The best architecture documentation for, say, performance analysis may well
be different from the best architecture documentation we would wish to hand to
an implementer. And both of these will be different from what we put in a new
hire’s “welcome aboard” package or a briefing we put together for an executive.
When planning and reviewing documentation, you need to ensure support for all
the relevant needs.

We can see that many different kinds of people are going to have a vested
interest in an architecture document. They hope and expect that the architecture
document will help them do their respective jobs. Understanding their uses of
architecture documentation is essential, as those uses determine the important
information to capture.

Fundamentally, architecture documentation has three uses:

1. Architecture documentation serves as a means of education. The education-
al use consists of introducing people to the system. The people may be new
members of the team, external analysts, or even a new architect. In many
cases, the “new” person is the customer to whom you’re showing your

18.2 Notations for Architecture Documentation 329

solution for the first time, a presentation you hope will result in funding or
go-ahead approval.

2. Architecture documentation serves as a primary vehicle for communication
among stakeholders. An architecture’s precise use as a communication ve-
hicle depends on which stakeholders are doing the communicating.

Perhaps one of the most avid consumers of architecture documentation
is none other than the architect in the project’s future. The future architect
may be the same person or may be a replacement, but in either case he or
she is guaranteed to have an enormous stake in the documentation. New
architects are interested in learning how their predecessors tackled the dif-
ficult issues of the system and why particular decisions were made. Even if
the future architect is the same person, he or she will use the documentation
as a repository of thought, a storehouse of design decisions too numerous
and hopelessly intertwined to ever be reproducible from memory alone. See
the sidebar “Schmucks and Jerks.”

3. Architecture documentation serves as the basis for system analysis and con-
struction. Architecture tells implementers what to implement. Each module
has interfaces that must be provided and uses interfaces from other mod-
ules. Not only does this provide instructions about the provided and used
interfaces, but it also determines with what other teams the development
team for the module must communicate.

During development, an architecture can be very complex, with many is-
sues left to resolve. Documentation can serve as a receptacle for registering
and communicating these issues that might otherwise be overlooked.

For those interested in the ability of the design to meet the system’s
quality objectives, the architecture documentation serves as the fodder for
evaluation. It must contain the information necessary to evaluate a vari-
ety of attributes, such as security, performance, usability, availability, and
modifiability.

For system builders who use automatic code-generation tools, the doc-
umentation may incorporate the models used for generation. These models
provide guidance to those who wish to understand the behavior of the mod-
ule in more detail than is normally documented but in less detail than exam-
ining the code would provide.

18.2 Notations for architecture documentation

Notations for documenting views differ considerably in their degree of formality.
Roughly speaking, there are three main categories of notation:

330 Part three architecture in the life cycle 18—Documenting Software Architectures

 ■ Informal notations. Views are depicted (often graphically) using gener-
al-purpose diagramming and editing tools and visual conventions chosen
for the system at hand. The semantics of the description are characterized in
natural language, and they cannot be formally analyzed. In our experience,
the most common tool for informal notations is PowerPoint.

 ■ Semiformal notations. Views are expressed in a standardized notation that
prescribes graphical elements and rules of construction, but it does not
provide a complete semantic treatment of the meaning of those elements.
Rudimentary analysis can be applied to determine if a description satisfies
syntactic properties. UML is a semiformal notation in this sense.

 ■ Formal notations. Views are described in a notation that has a precise (usu-
ally mathematically based) semantics. Formal analysis of both syntax and
semantics is possible. There are a variety of formal notations for software
architecture available. Generally referred to as architecture description lan-
guages (ADLs), they typically provide both a graphical vocabulary and an
underlying semantics for architecture representation. In some cases these
notations are specialized to particular architectural views. In others they allow
many views, or even provide the ability to formally define new views. The
usefulness of ADLs lies in their ability to support automation through associ-
ated tools: automation to provide useful analysis of the architecture or assist
in code generation. In practice, the use of such notations is rare.

Schmucks and Jerks

One day I was sitting in a meeting with a well-known compiler guru. He
was recounting some of his favorite war stories from his long career. One of
these stories particularly stuck with me. He was talking about the time that
he was chasing down a very nasty and subtle bug in the code of a compiler
that he was maintaining. After a long and exasperating search, he finally
located and eventually fixed the bug. But the search itself had gotten him
so worked up, and he was so infuriated at the irresponsible thought and
programming that led to the bug, that he decided to do a bit more detective
work and figure out who was the jerk responsible for that bug.

By going backward through the revision history, he found the culprit. It
was him. He was the jerk. It turns out that he was the one who—eight years
earlier—had written that offending piece of code. The trouble was, he had
no recollection of writing the code and no recollection of the rationale for
writing it the way he had done. Perhaps there was a good reason to do so
at the time, but if so it was lost now.

That is why we document. The documentation helps the poor schmuck
who has to maintain your code in the future, and that schmuck might very
well be you!

—RK

18.3 Views 331

Determining which form of notation to use involves making several
tradeoffs. Typically, more formal notations take more time and effort to create
and understand, but they repay this effort in reduced ambiguity and more oppor-
tunities for analysis. Conversely, more informal notations are easier to create, but
they provide fewer guarantees.

Regardless of the level of formality, always remember that different no-
tations are better (or worse) for expressing different kinds of information. For-
mality aside, no UML class diagram will help you reason about schedulability,
nor will a sequence chart tell you very much about the system’s likelihood of
being delivered on time. You should choose your notations and representation
languages always keeping in mind the important issues you need to capture and
reason about.

18.3 Views

Perhaps the most important concept associated with software architecture docu-
mentation is that of the view. A software architecture is a complex entity that can-
not be described in a simple one-dimensional fashion. A view is a representation
of a set of system elements and relations among them—not all system elements,
but those of a particular type. For example, a layered view of a system would
show elements of type “layer”—that is, it would show the system’s decompo-
sition into layers—and the relations among those layers. A pure layered view
would not, however, show the system’s services, or clients and servers, or data
model, or any other type of element.

Thus, views let us divide the multidimensional entity that is a software ar-
chitecture into a number of (we hope) interesting and manageable representations
of the system. The concept of views gives us our most fundamental principle of
architecture documentation:

Documenting an architecture is a matter of documenting the relevant
views and then adding documentation that applies to more than one view.

This maxim gives our approach to documentation its name: Views and
Beyond.

What are the relevant views? This depends entirely on your goals. As we
saw previously, architecture documentation can serve many purposes: a mission
statement for implementers, a basis for analysis, the specification for automatic
code generation, the starting point for system understanding and asset recovery,
or the blueprint for project planning.

Different views also expose different quality attributes to different degrees.
Therefore, the quality attributes that are of most concern to you and the other
stakeholders in the system’s development will affect the choice of what views to

332 Part three architecture in the life cycle 18—Documenting Software Architectures

document. For instance, a layered view will let you reason about your system’s
portability, a deployment view will let you reason about your system’s perfor-
mance and reliability, and so forth.

Different views support different goals and uses. This is why we do not ad-
vocate a particular view or collection of views. The views you should document
depend on the uses you expect to make of the documentation. Different views
will highlight different system elements and relations. How many different views
to represent is the result of a cost/benefit decision. Each view has a cost and a
benefit, and you should ensure that the benefits of maintaining a particular view
outweigh its costs.

Views may be driven by the need to document a particular pattern in your
design. Some patterns are composed of modules, others of components and con-
nectors, and still others have deployment considerations. Module views, compo-
nent-and-connector (C&C) views, and allocation views are the appropriate mech-
anisms for representing these considerations.

Module Views

A module is an implementation unit that provides a coherent set of responsibili-
ties. A module might take the form of a class, a collection of classes, a layer, an
aspect, or any decomposition of the implementation unit. Example module views
are decomposition, uses, and layers. Every module has a collection of properties
assigned to it. These properties are intended to express the important information
associated with the module, as well as constraints on the module. Sample proper-
ties are responsibilities, visibility information, and revision history. The relations
that modules have to one another include is part of, depends on, and is a.

The way in which a system’s software is decomposed into manageable
units remains one of the important forms of system structure. At a minimum,
this determines how a system’s source code is decomposed into units, what kinds
of assumptions each unit can make about services provided by other units, and
how those units are aggregated into larger ensembles. It also includes global data
structures that impact and are impacted by multiple units. Module structures of-
ten determine how changes to one part of a system might affect other parts and
hence the ability of a system to support modifiability, portability, and reuse.

It is unlikely that the documentation of any software architecture can be
complete without at least one module view.

Table 18.1 summarizes the elements, relations, constraints, and purpose of
the module views in general. Later we provide this information specific to each
of a number of often used module views.

Properties of modules that help to guide implementation or are input to anal-
ysis should be recorded as part of the supporting documentation for a module
view. The list of properties may vary but is likely to include the following:

18.3 Views 333

tablE 18.1 Summary of the Module Views

Elements Modules, which are implementation units of software that
provide a coherent set of responsibilities.

Relations ■ Is part of, which defines a part/whole relationship between
the submodule—the part—and the aggregate module—the
whole.

 ■ Depends on, which defines a dependency relationship be-
tween two modules. Specific module views elaborate what
dependency is meant.

 ■ Is a, which defines a generalization/specialization relation-
ship between a more specific module—the child—and a
more general module—the parent.

Constraints Different module views may impose specific topological
constraints, such as limitations on the visibility between
modules.

Usage ■ Blueprint for construction of the code
 ■ Change-impact analysis
 ■ Planning incremental development
 ■ Requirements traceability analysis
 ■ Communicating the functionality of a system and the struc-

ture of its code base
 ■ Supporting the definition of work assignments, implementa-

tion schedules, and budget information
 ■ Showing the structure of information that the system needs

to manage

 ■ Name. A module’s name is, of course, the primary means to refer to it. A
module’s name often suggests something about its role in the system. In ad-
dition, a module’s name may reflect its position in a decomposition hierar-
chy; the name A.B.C, for example, refers to a module C that is a submodule
of a module B, itself a submodule of A.

 ■ Responsibilities. The responsibility property for a module is a way to iden-
tify its role in the overall system and establishes an identity for it beyond
the name. Whereas a module’s name may suggest its role, a statement of
responsibility establishes it with much more certainty. Responsibilities
should be described in sufficient detail to make clear to the reader what
each module does.

 ■ Visibility of interface(s). When a module has submodules, some interfaces
of the submodules are public and some may be private; that is, the inter-
faces are used only by the submodules within the enclosing parent module.
These private interfaces are not visible outside that context.

 ■ Implementation information. Modules are units of implementation. It is
therefore useful to record information related to their implementation from
the point of view of managing their development and building the system
that contains them. This might include the following:

334 Part three architecture in the life cycle 18—Documenting Software Architectures

 ■ Mapping to source code units. This identifies the files that constitute the
implementation of a module. For example, a module Account, if imple-
mented in Java, might have several files that constitute its implementa-
tion: IAccount.java (an interface), AccountImpl.java (the implementation
of Account functionality), AccountBean.java (a class to hold the state of
an account in memory), AccountOrmMapping.xml (a file that defines the
mapping between AccountBean and a database table—object-relational
mapping), and perhaps even a unit test AccountTest.java.

 ■ Test information. The module’s test plan, test cases, test scaffolding, and
test data are important to document. This information may simply be a
pointer to the location of these artifacts.

 ■ Management information. A manager may need information about the
module’s predicted schedule and budget. This information may simply be
a pointer to the location of these artifacts.

 ■ Implementation constraints. In many cases, the architect will have an
implementation strategy in mind for a module or may know of constraints
that the implementation must follow.

 ■ Revision history. Knowing the history of a module including authors and
particular changes may help when you perform maintenance activities.

Because modules partition the system, it should be possible to determine how
the functional requirements of a system are supported by module responsibilities.
Module views that show dependencies among modules or layers (which are groups
of modules that have a specific pattern of allowed usage) provide a good basis for
change-impact analysis. Modules are typically modified as a result of problem re-
ports or change requests. Impact analysis requires a certain degree of design com-
pleteness and integrity of the module description. In particular, dependency informa-
tion has to be available and correct to be able to create useful results.

A module view can be used to explain the system’s functionality to some-
one not familiar with it. The various levels of granularity of the module decom-
position provide a top-down presentation of the system’s responsibilities and
therefore can guide the learning process. For a system whose implementation is
already in place, module views, if kept up to date, are helpful, as they explain
the structure of the code base to a new developer on the team. Thus, up-to-date
module views can simplify and regularize system maintenance.

On the other hand, it is difficult to use the module views to make inferences
about runtime behavior, because these views are just a static partition of the func-
tions of the software. Thus, a module view is not typically used for analysis of
performance, reliability, and many other runtime qualities. For those, we rely on
component-and-connector and allocation views.

Module views are commonly mapped to component-and-connector views.
The implementation units shown in module views have a mapping to components
that execute at runtime. Sometimes, the mapping is quite straightforward, even
one-to-one for small, simple applications. More often, a single module will be

18.3 Views 335

replicated as part of many runtime components, and a given component could
map to several modules. Module views also provide the software elements that
are mapped to the diverse nonsoftware elements of the system environment in the
various allocation views.

component-and-connector Views

Component-and-connector views show elements that have some runtime pres-
ence, such as processes, objects, clients, servers, and data stores. These elements
are termed components. Additionally, component-and-connector views include as
elements the pathways of interaction, such as communication links and proto-
cols, information flows, and access to shared storage. Such interactions are rep-
resented as connectors in C&C views. Sample C&C views are service-oriented
architecture (SOA), client-server, or communicating process views.

Components have interfaces called ports. A port defines a point of potential
interaction of a component with its environment. A port usually has an explicit
type, which defines the kind of behavior that can take place at that point of in-
teraction. A component may have many ports of the same type, each forming a
different input or output channel at runtime. In this respect ports differ from inter-
faces of modules, whose interfaces are never replicated. You can annotate a port
with a number or range of numbers to indicate replication; for example, “1..4”
might mean that an interface could be replicated up to four times. A component’s
ports should be explicitly documented, by showing them in the diagram and de-
fining them in the diagram’s supporting documentation.

A component in a C&C view may represent a complex subsystem, which
itself can be described as a C&C subarchitecture. This subarchitecture can be
depicted graphically in situ when the substructure is not too complex, by showing
it as nested inside the component that it refines. Often, however, it is documented
separately. A component’s subarchitecture may employ a different pattern than
the one in which the component appears.

Connectors are the other kind of element in a C&C view. Simple examples
of connectors are service invocation; asynchronous message queues; event multi-
cast supporting publish-subscribe interactions; and pipes that represent asynchro-
nous, order-preserving data streams. Connectors often represent much more com-
plex forms of interaction, such as a transaction-oriented communication channel
between a database server and a client, or an enterprise service bus that mediates
interactions between collections of service users and providers.

Connectors have roles, which are its interfaces, defining the ways in which
the connector may be used by components to carry out interaction. For exam-
ple, a client-server connector might have invokes-services and provides-services
roles. A pipe might have writer and reader roles. Like component ports, connec-
tor roles differ from module interfaces in that they can be replicated, indicating

336 Part three architecture in the life cycle 18—Documenting Software Architectures

how many components can be involved in its interaction. A publish-subscribe
connector might have many instances of the publisher and subscriber roles.

Like components, complex connectors may in turn be decomposed into col-
lections of components and connectors that describe the architectural substruc-
ture of those connectors. Connectors need not be binary. That is, they need not
have exactly two roles. For example, a publish-subscribe connector might have
an arbitrary number of publisher and subscriber roles. Even if the connector is ul-
timately implemented using binary connectors, such as a procedure call, it can be
useful to adopt n-ary connector representations in a C&C view. Connectors em-
body a protocol of interaction. When two or more components interact, they must
obey conventions about order of interactions, locus of control, and handling of
error conditions and timeouts. The protocol of interaction should be documented.

The primary relation within a C&C view is attachment. Attachments indicate
which connectors are attached to which components, thereby defining a system as a
graph of components and connectors. Specifically, an attachment is denoted by as-
sociating (attaching) a component’s port to a connector’s role. A valid attachment is
one in which the ports and roles are compatible with each other, under the semantic
constraints defined by the view. Compatibility often is defined in terms of informa-
tion type and protocol. For example, in a call-return architecture, you should check
to make sure that all “calls” ports are attached to some call-return connector. At a
deeper semantic level, you should check to make sure that a port’s protocol is con-
sistent with the behavior expected by the role to which it is attached.

An element (component or connector) of a C&C view will have various
associated properties. Every element should have a name and type. Additional
properties depend on the type of component or connector. Define values for the
properties that support the intended analyses for the particular C&C view. For
example, if the view will be used for performance analysis, latencies, queue ca-
pacities, and thread priorities may be necessary. The following are examples of
some typical properties and their uses:

 ■ Reliability. What is the likelihood of failure for a given component or connec-
tor? This property might be used to help determine overall system availability.

 ■ Performance. What kinds of response time will the component provide un-
der what loads? What kind of bandwidth, latency, jitter, transaction volume,
or throughput can be expected for a given connector? This property can
be used with others to determine system-wide properties such as response
times, throughput, and buffering needs.

 ■ Resource requirements. What are the processing and storage needs of a
component or a connector? This property can be used to determine whether
a proposed hardware configuration will be adequate.

 ■ Functionality. What functions does an element perform? This property can
be used to reason about overall computation performed by a system.

 ■ Security. Does a component or a connector enforce or provide security fea-
tures, such as encryption, audit trails, or authentication? This property can
be used to determine system security vulnerabilities.

18.3 Views 337

 ■ Concurrency. Does this component execute as a separate process or thread?
This property can help to analyze or simulate the performance of concur-
rent components and identify possible deadlocks.

 ■ Modifiability. Does the messaging structure support a structure to cater for
evolving data exchanges? Can the components be adapted to process those
new messages? This property can be defined to extend the functionality of a
component.

 ■ Tier. For a tiered topology, what tier does the component reside in? This
property helps to define the build and deployment procedures, as well as
platform requirements for each tier.

C&C views are commonly used to show to developers and other stakehold-
ers how the system works—one can “animate” or trace through a C&C view,
showing an end-to-end thread of activity. C&C views are also used to reason
about runtime system quality attributes, such as performance and availability. In
particular, a well-documented view allows architects to predict overall system
properties such as latency or reliability, given estimates or measurements of prop-
erties of the individual elements and their interactions.

Table 18.2 summarizes the elements, relations, and properties that can ap-
pear in C&C views. This table is followed by a more detailed discussion of these
concepts, together with guidelines concerning their documentation.

tablE 18.2 Summary of Component-and-Connector Views

Elements ■ Components. Principal processing units and data stores. A compo-
nent has a set of ports through which it interacts with other compo-
nents (via connectors).

 ■ Connectors. Pathways of interaction between components. Connec-
tors have a set of roles (interfaces) that indicate how components
may use a connector in interactions.

Relations ■ Attachments. Component ports are associated with connector roles
to yield a graph of components and connectors.

 ■ Interface delegation. In some situations component ports are associ-
ated with one or more ports in an “internal” subarchitecture. The case
is similar for the roles of a connector.

Constraints ■ Components can only be attached to connectors, not directly to other
components.

 ■ Connectors can only be attached to components, not directly to other
connectors.

 ■ Attachments can only be made between compatible ports and roles.
 ■ Interface delegation can only be defined between two compatible

ports (or two compatible roles).
 ■ Connectors cannot appear in isolation; a connector must be attached

to a component.

Usage ■ Show how the system works.
 ■ Guide development by specifying structure and behavior of runtime

elements.
 ■ Help reason about runtime system quality attributes, such as perfor-

mance and availability.

338 Part three architecture in the life cycle 18—Documenting Software Architectures

Notations for c&c Views

As always, box-and-line drawings are available to represent C&C views. Al-
though informal notations are limited in the semantics that can be conveyed,
following some simple guidelines can lend rigor and depth to the descriptions.
The primary guideline is simple: assign each component type and each connector
type a separate visual form (symbol), and list each of the types in a key.

UML components are a good semantic match to C&C components because
they permit intuitive documentation of important information like interfaces,
properties, and behavioral descriptions. UML components also distinguish be-
tween component types and component instances, which is useful when defining
view-specific component types.

UML ports are a good semantic match to C&C ports. A UML port can be
decorated with a multiplicity, as shown in the left portion of Figure 18.1, though
this is typically only done on component types. The number of ports on compo-
nent instances, as shown in the right portion of Figure 18.1, is typically bound to
a specific number. Components that dynamically create and manage a set of ports
should retain a multiplicity descriptor on instance descriptions.

While C&C connectors are as semantically rich as C&C components, the
same is not true of UML connectors. UML connectors cannot have substructure,
attributes, or behavioral descriptions. This makes choosing how to represent
C&C connectors more difficult, as UML connectors are not always rich enough.

You should represent a “simple” C&C connector using a UML connec-
tor—a line. Many commonly used C&C connectors have well-known, applica-
tion-independent semantics and implementations, such as function calls or data
read operations. If the only information you need to supply is the type of the
connector, then a UML connector is adequate. Call-return connectors can be rep-
resented by a UML assembly connector, which links a component’s required in-
terface (socket) to the other component’s provided interface (lollipop). You can
use a stereotype to denote the type of connector. If all connectors in a primary
presentation are of the same type, you can note this once in a comment rather
than explicitly on each connector to reduce visual clutter. Attachment is shown
by connecting the endpoints of the connector to the ports of components. Con-
nector roles cannot be explicitly represented with a UML connector because the
UML connector element does not allow the inclusion of interfaces (unlike the
UML port, which does allow interfaces). The best approximation is to label the
connector ends and use these labels to identify role descriptions that must be doc-
umented elsewhere.

You should represent a “rich” C&C connector using a UML component, or
by annotating a line UML connector with a tag or other auxiliary documentation
that explains the meaning of the complex connector.

18.3 Views 339

: Account
Database

«Repository»
Account Database

Server [1..5] Server Server

Admin Admin

Key: UML

fIGurE 18.1 A UML representation of the ports on a C&C component type (left)
and component instance (right). The Account Database component type has
two types of ports, Server and Admin (noted by the boxes on the component’s
border). The Server port is defined with a multiplicity, meaning that multiple
instances of the port are permitted on any corresponding component instance.

allocation Views

Allocation views describe the mapping of software units to elements of an envi-
ronment in which the software is developed or in which it executes. The environ-
ment might be the hardware, the operating environment in which the software is
executed, the file systems supporting development or deployment, or the devel-
opment organization(s).

Table 18.3 summarizes the characteristics of allocation views. Allocation
views consist of software elements and environmental elements. Examples of en-
vironmental elements are a processor, a disk farm, a file or folder, or a group of
developers. The software elements come from a module or C&C view.

tablE 18.3 Summary of the Characteristics of Allocation Views

Elements ■ Software element. A software element has properties that are
required of the environment.

 ■ Environmental element. An environmental element has properties
that are provided to the software.

Relations Allocated to. A software element is mapped (allocated to) an
environmental element. Properties are dependent on the particular
view.

Constraints Varies by view

Usage ■ For reasoning about performance, availability, security, and safety.
 ■ For reasoning about distributed development and allocation of

work to teams.
 ■ For reasoning about concurrent access to software versions.
 ■ For reasoning about the form and mechanisms of system

installation.

340 Part three architecture in the life cycle 18—Documenting Software Architectures

The relation in an allocation view is allocated to. We usually talk about alloca-
tion views in terms of a mapping from software elements to environmental elements,
although the reverse mapping can also be relevant and interesting. A single software
element can be allocated to multiple environmental elements, and multiple software
elements can be allocated to a single environmental element. If these allocations
change over time, either during development or execution of the system, then the
architecture is said to be dynamic with respect to that allocation. For example, pro-
cesses might migrate from one processor or virtual machine to another. Similarly
modules might migrate from one development team to another.

Software elements and environmental elements have properties in allocation
views. The usual goal of an allocation view is to compare the properties required
by the software element with the properties provided by the environmental ele-
ments to determine whether the allocation will be successful or not. For example,
to ensure a component’s required response time, it has to execute on (be allocated
to) a processor that provides sufficiently fast processing power. For another ex-
ample, a computing platform might not allow a task to use more than 10 kilo-
bytes of virtual memory. An execution model of the software element in question
can be used to determine the required virtual memory usage. Similarly, if you are
migrating a module from one team to another, you might want to ensure that the
new team has the appropriate skills and background knowledge.

Allocation views can depict static or dynamic views. A static view depicts a
fixed allocation of resources in an environment. A dynamic view depicts the condi-
tions and the triggers for which allocation of resources changes according to load-
ing. Some systems recruit and utilize new resources as their load increases. An ex-
ample is a load-balancing system in which new processes or threads are created on
another machine. In this view, the conditions under which the allocation changes,
the allocation of runtime software, and the dynamic allocation mechanism need to
be documented. (Recall from Chapter 1 that one of the allocation structures is the
work assignment structure, which allocates modules to teams for development. That
relationship, too, can be allocated dynamically, depending on “load”—in this case,
the load on development teams.)

Quality Views

Module, C&C, and allocation views are all structural views: They primarily show
the structures that the architect has engineered into the architecture to satisfy
functional and quality attribute requirements.

These views are excellent for guiding and constraining downstream develop-
ers, whose primary job it is to implement those structures. However, in systems in
which certain quality attributes (or, for that matter, some other kind of stakeholder
concerns) are particularly important and pervasive, structural views may not be the
best way to present the architectural solution to those needs. The reason is that the
solution may be spread across multiple structures that are inconvenient to combine
(for example, because the element types shown in each are different).

18.4 Choosing the Views 341

Another kind of view, which we call a quality view, can be tailored for spe-
cific stakeholders or to address specific concerns. These quality views are formed
by extracting the relevant pieces of structural views and packaging them together.
Here are five examples:

 ■ A security view can show all of the architectural measures taken to provide
security. It would show the components that have some security role or
responsibility, how those components communicate, any data repositories
for security information, and repositories that are of security interest. The
view’s context information would show other security measures (such as
physical security) in the system’s environment. The behavior part of a se-
curity view would show the operation of security protocols and where and
how humans interact with the security elements. It would also capture how
the system would respond to specific threats and vulnerabilities.

 ■ A communications view might be especially helpful for systems that are
globally dispersed and heterogeneous. This view would show all of the
component-to-component channels, the various network channels, quali-
ty-of-service parameter values, and areas of concurrency. This view can be
used to analyze certain kinds of performance and reliability (such as dead-
lock or race condition detection). The behavior part of this view could show
(for example) how network bandwidth is dynamically allocated.

 ■ An exception or error-handling view could help illuminate and draw atten-
tion to error reporting and resolution mechanisms. Such a view would show
how components detect, report, and resolve faults or errors. It would help
identify the sources of errors and appropriate corrective actions for each.
Root-cause analysis in those cases could be facilitated by such a view.

 ■ A reliability view would be one in which reliability mechanisms such as
replication and switchover are modeled. It would also depict timing issues
and transaction integrity.

 ■ A performance view would include those aspects of the architecture useful
for inferring the system’s performance. Such a view might show network
traffic models, maximum latencies for operations, and so forth.

These and other quality views reflect the documentation philosophy of ISO/
IEC/IEEE standard 42010:2011, which prescribes creating views driven by stake-
holder concerns about the architecture.

18.4 choosing the Views

Documenting decisions during the design process (something we strongly rec-
ommend) produces views, which are the heart of an architecture document. It
is most likely that these views are rough sketches more than finished products

342 Part Three Architecture in the Life Cycle 18—Documenting Software Architectures

ready for public release; this will give you the freedom to back up and rethink
design decisions that turn out to be problematic without having wasted time on
broad dissemination and cosmetic polish. They are documented purely as your
own memory aid.

By the time you’re ready to release an architecture document, you’re likely
to have a fairly well-worked-out collection of architecture views. At some point
you’ll need to decide which to take to completion, with how much detail, and
which to include in a given release. You’ll also need to decide which views can
be usefully combined with others, so as to reduce the total number of views in the
document and reveal important relations among the views.

You can determine which views are required, when to create them, and how
much detail to include if you know the following:

 ■ What people, and with what skills, are available
 ■ Which standards you have to comply with
 ■ What budget is on hand
 ■ What the schedule is
 ■ What the information needs of the important stakeholders are
 ■ What the driving quality attribute requirements are
 ■ What the size of the system is

At a minimum, expect to have at least one module view, at least one C&C
view, and for larger systems, at least one allocation view in your architecture doc-
ument. Beyond that basic rule of thumb, however, there is a three-step method for
choosing the views:

 ■ Step 1: Build a stakeholder/view table. Enumerate the stakeholders for
your project’s software architecture documentation down the rows. Be as
comprehensive as you can. For the columns, enumerate the views that ap-
ply to your system. (Use the structures discussed in Chapter 1, the views
discussed in this chapter, and the views that your design work in ADD has
suggested as a starting list of candidates.) Some views (such as decom-
position, uses, and work assignment) apply to every system, while others
(various C&C views, the layered view) only apply to some systems. For the
columns, make sure to include the views or view sketches you already have
as a result of your design work so far.

Once you have the rows and columns defined, fill in each cell to describe
how much information the stakeholder requires from the view: none, overview
only, moderate detail, or high detail. The candidate view list going into step 2
now consists of those views for which some stakeholder has a vested interest.

 ■ Step 2: Combine views. The candidate view list from step 1 is likely to
yield an impractically large number of views. This step will winnow the list
to manageable size. Look for marginal views in the table: those that require
only an overview, or that serve very few stakeholders. Combine each mar-
ginal view with another view that has a stronger constituency.

18.5 Combining Views 343

 ■ Step 3: Prioritize and stage. After step 2 you should have the minimum
set of views needed to serve your stakeholder community. At this point you
need to decide what to do first. What you do first depends on your project,
but here are some things to consider:

 ■ The decomposition view (one of the module views) is a particularly
helpful view to release early. High-level (that is, broad and shallow)
decompositions are often easy to design, and with this information the
project manager can start to staff development teams, put training in
place, determine which parts to outsource, and start producing budgets
and schedules.

 ■ Be aware that you don’t have to satisfy all the information needs of all the
stakeholders to the fullest extent. Providing 80 percent of the information
goes a long way, and this might be good enough so that the stakeholders
can do their job. Check with the stakeholder to see if a subset of informa-
tion would be sufficient. They typically prefer a product that is delivered
on time and within budget over getting the perfect documentation.

 ■ You don’t have to complete one view before starting another. People can
make progress with overview-level information, so a breadth-first ap-
proach is often the best.

18.5 Combining Views

The basic principle of documenting an architecture as a set of separate views
brings a divide-and-conquer advantage to the task of documentation, but if the
views were irrevocably different, with no association with one another, nobody
would be able to understand the system as a whole.

Because all views in an architecture are part of that same architecture and
exist to achieve a common purpose, many of them have strong associations with
each other. Managing how architectural structures are associated is an important
part of the architect’s job, independent of whether any documentation of those
structures exists.

Sometimes the most convenient way to show a strong association between
two views is to collapse them into a single combined view, as dictated by step 2
of the three-step method just presented to choose the views. A combined view
is a view that contains elements and relations that come from two or more other
views. Combined views can be very useful as long as you do not try to overload
them with too many mappings.

The easiest way to merge views is to create an overlay that combines the in-
formation that would otherwise have been in two separate views. This works well
if the coupling between the two views is tight; that is, there are strong associations

344 Part three architecture in the life cycle 18—Documenting Software Architectures

between elements in one view and elements in the other view. If that is the case,
the structure described by the combined view will be easier to understand than
the two views seen separately. For an example, see the overlay of decomposition
and uses sketches shown in Figure 18.2. In an overlay, the elements and the rela-
tions keep the types as defined in their constituent views.

The views below often combine naturally:

 ■ Various C&C views. Because C&C views all show runtime relations among
components and connectors of various types, they tend to combine well.
Different (separate) C&C views tend to show different parts of the system,
or tend to show decomposition refinements of components in other views.
The result is often a set of views that can be combined easily.

«subsystem»
CCS

utils
«subsystem»

itcservlet

«subsystem»
adlsc controller business

facadesclient entity

test taglibsobjects «subsystem»
tdc

<<uses>> <<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Server-Side Application Modules

commonsecurityportalwebservice

Notation: UML

fIGurE 18.2 A decomposition view overlaid with “uses” information, to create a
decomposition/uses overlay.

18.6 Building the Documentation Package 345

 ■ Deployment view with either SOA or communicating-processes views. An
SOA view shows services, and a communicating-processes view shows pro-
cesses. In both cases, these are components that are deployed onto proces-
sors. Thus there is a strong association between the elements in these views.

 ■ Decomposition view and any of work assignment, implementation, uses, or
layered views. The decomposed modules form the units of work, develop-
ment, and uses. In addition, these modules populate layers.

18.6 building the documentation Package

Remember the principle of architecture documentation, with which we started
this chapter. This principle tells us that our task is to document the relevant views
and to document the information that applies to more than one view.

documenting a View

Figure 18.3 shows a template for documenting a view.

Section 1. Primary Presentation

Section 2. Element Catalog
 Section 2.A. Elements and Their Properties
 Section 2.B. Relations and Their Properties
 Section 2.C. Element Interfaces
 Section 2.D. Element Behavior

Section 3. Context Diagram

Section 4. Variability Guide

Section 5. Rationale

Template for a View

fIGurE 18.3 View template

346 Part three architecture in the life cycle 18—Documenting Software Architectures

No matter what the view, the documentation for a view can be placed into a
standard organization consisting of these parts:

 ■ Section 1: The Primary Presentation. The primary presentation shows
the elements and relations of the view. The primary presentation should
contain the information you wish to convey about the system—in the vo-
cabulary of that view. It should certainly include the primary elements and
relations but under some circumstances might not include all of them. For
example, you may wish to show the elements and relations that come into
play during normal operation but relegate error handling or exception pro-
cessing to the supporting documentation.

The primary presentation is most often graphical. It might be a diagram
you’ve drawn in an informal notation using a simple drawing tool, or it
might be a diagram in a semiformal or formal notation imported from a
design or modeling tool that you’re using. If your primary presentation is
graphical, make sure to include a key that explains the notation. Lack of
a key is the most common mistake that we see in documentation in practice.

Occasionally the primary presentation will be textual, such as a table or
a list. If that text is presented according to certain stylistic rules, these rules
should be stated or incorporated by reference, as the analog to the graphi-
cal notation key. Regardless of whether the primary presentation is textual
instead of graphical, its role is to present a terse summary of the most im-
portant information in the view.

 ■ Section 2: The Element Catalog. The element catalog details at least those
elements depicted in the primary presentation. For instance, if a diagram
shows elements A, B, and C, then the element catalog needs to explain what
A, B, and C are. In addition, if elements or relations relevant to this view
were omitted from the primary presentation, they should be introduced and
explained in the catalog. Specific parts of the catalog include the following:

 ■ Elements and their properties. This section names each element in the
view and lists the properties of that element. Each view introduced in
Chapter 1 listed a set of suggested properties associated with that view.
For example, elements in a decomposition view might have the property
of “responsibility”—an explanation of each module’s role in the sys-
tem—and elements in a communicating-processes view might have tim-
ing parameters, among other things, as properties. Whether the properties
are generic to the view chosen or the architect has introduced new ones,
this is where they are documented and given values.

 ■ Relations and their properties. Each view has specific relation types that
it depicts among the elements in that view. Mostly, these relations are
shown in the primary presentation. However, if the primary presentation
does not show all the relations or if there are exceptions to what is depict-
ed in the primary presentation, this is the place to record that information.

 ■ Element interfaces. This section documents element interfaces.

18.6 Building the Documentation Package 347

 ■ Element behavior. This section documents element behavior that is not
obvious from the primary presentation.

 ■ Section 3: Context Diagram. A context diagram shows how the system or
portion of the system depicted in this view relates to its environment. The
purpose of a context diagram is to depict the scope of a view. Here “con-
text” means an environment with which the part of the system interacts.
Entities in the environment may be humans, other computer systems, or
physical objects, such as sensors or controlled devices.

 ■ Section 4: Variability Guide. A variability guide shows how to exercise
any variation points that are a part of the architecture shown in this view.

 ■ Section 5: Rationale. Rationale explains why the design reflected in the view
came to be. The goal of this section is to explain why the design is as it is and
to provide a convincing argument that it is sound. The choice of a pattern in
this view should be justified here by describing the architectural problem that
the chosen pattern solves and the rationale for choosing it over another.

documenting Information beyond Views

As shown in Figure 18.4, documentation beyond views can be divided into two
parts:

1. Overview of the architecture documentation. This tells how the documen-
tation is laid out and organized so that a stakeholder of the architecture can
find the information he or she needs efficiently and reliably.

2. Information about the architecture. Here, the information that remains to be
captured beyond the views themselves is a short system overview to ground
any reader as to the purpose of the system and the way the views are related
to one another, an overview of and rationale behind system-wide design
approaches, a list of elements and where they appear, and a glossary and an
acronym list for the entire architecture.

Figure 18.4 summarizes our template for documentation beyond views.
Documentation beyond views consists of the following sections:

 ■ Document control information. List the issuing organization, the current
version number, date of issue and status, a change history, and the procedure
for submitting change requests to the document. Usually this is captured in
the front matter. Change control tools can provide much of this information.

 ■ Section 1: Documentation Roadmap. The documentation roadmap tells
the reader what information is in the documentation and where to find it. A
documentation map consists of four sections:

 ■ Scope and summary. Explain the purpose of the document and briefly
summarize what is covered and (if you think it will help) what is not cov-
ered. Explain the relation to other documents (such as downstream design
documents or upstream system engineering documents).

348 Part three architecture in the life cycle 18—Documenting Software Architectures

Section 1. Documentation Roadmap

Section 2. How a View Is Documented

Section 3. System Overview

Section 4. Mapping Between Views

Section 5. Rationale

Section 6. Directory — index, glossary,
 acronym list

Template for Documentation
Beyond Views

Architecture
documentation

information

Architecture
information

fIGurE 18.4 Summary of documentation beyond views

 ■ How the documentation is organized. For each section in the documenta-
tion, give a short synopsis of the information that can be found there. An
alternative to this is to use an annotated table of contents. This is a table
that doesn’t just list section titles and page numbers, but also gives a syn-
opsis with each entry. It provides one-stop shopping for a reader attempt-
ing to look up a particular kind of information.

 ■ View overview. The major part of the map describes the views that the
architect has included in the package. For each view, the map gives the
following information:

 ■ The name of the view and what pattern it instantiates, if any.
 ■ A description of the view’s element types, relation types, and property

types. This lets a reader begin to understand the kind of information
that is presented in the view.

 ■ A description of language, modeling techniques, or analytical methods
used in constructing the view.

 ■ How stakeholders can use the documentation. The map follows with a
section describing which stakeholders and concerns are addressed by
each view; this is conveniently captured as a table. This section shows
how various stakeholders might use the documentation to help address
their concerns. Include short scenarios, such as “A maintainer wishes to
know the units of software that are likely to be changed by a proposed
modification. The maintainer consults the decomposition view to under-
stand the responsibilities of each module in order to identify the modules
likely to change. The maintainer then consults the uses view1 to see what

1. The uses view is a module view. It shows the uses structure discussed in Chapter 1.

18.6 Building the Documentation Package 349

modules use the affected modules (and thus might also have to change).”
To be compliant with ISO/IEC 42010-2007, you must consider the con-
cerns of at least users, acquirers, developers, and maintainers.

 ■ Section 2: How a View Is Documented. This is where you explain the
standard organization you’re using to document views—either the one de-
scribed in this chapter or one of your own. It tells your readers how to find
information in a view. If your organization has standardized on a template
for a view, as it should, then you can simply refer to that standard. If you
are lacking such a template, then text such as that given above describ-
ing our view template should appear in this section of your architecture
documentation.

 ■ Section 3: System Overview. This is a short prose description of the sys-
tem’s function, its users, and any important background or constraints. This
section provides your readers with a consistent mental model of the system
and its purpose. This might be just a pointer to a concept-of-operations
document.

 ■ Section 4: Mapping Between Views. Because all the views of an archi-
tecture describe the same system, it stands to reason that any two views
will have much in common. Helping a reader understand the associations
between views will help that reader gain a powerful insight into how the
architecture works as a unified conceptual whole.

The associations between elements across views in an architecture are,
in general, many-to-many. For instance, each module may map to multiple
runtime elements, and each runtime element may map to multiple modules.

View-to-view associations can be conveniently captured as tables. List
the elements of the first view in some convenient lookup order. The table
itself should be annotated or introduced with an explanation of the associa-
tion that it depicts; that is, what the correspondence is between the elements
across the two views. Examples include “is implemented by” for mapping
from a component-and-connector view to a module view, “implements” for
mapping from a module view to a component-and-connector view, “in-
cluded in” for mapping from a decomposition view to a layered view, and
many others.

 ■ Section 5: Rationale. This section documents the architectural decisions
that apply to more than one view. Prime candidates include documentation
of background or organizational constraints or major requirements that led
to decisions of system-wide import. The decisions about which fundamen-
tal architecture patterns to use are often described here.

 ■ Section 6: Directory. The directory is a set of reference material that helps
readers find more information quickly. It includes an index of terms, a glos-
sary, and an acronym list.

350 Part three architecture in the life cycle 18—Documenting Software Architectures

Online documentation, Hypertext, and Wikis

A document can be structured as linked web pages. Compared with documents
written with a text-editing tool, web-oriented documents typically consist of
short pages (created to fit on one screen) with a deeper structure. One page usu-
ally provides some overview information and has links to more detailed informa-
tion. When done well, a web-based document is easier to use for people who just
need overview information. On the other hand, it can become more difficult for
people who need detail. Finding information can be more difficult in multi-page,
web-based documents than in a single-file, text-based document, unless a search
engine is available.

Using readily available tools, it’s possible to create a shared document that
many stakeholders can contribute to. The hosting organization needs to decide
what permissions it wants to give to various stakeholders; the tool used has to
support the permissions policy. In the case of architecture documentation, we
would want all stakeholders to comment on and add clarifying information to the
architecture, but we would only want architects to be able to change the architec-
ture or at least provide architects with a “final approval” mechanism. A special
kind of shared document that is ideal for this purpose is a wiki.

follow a release Strategy

Your project’s development plan should specify the process for keeping the im-
portant documentation, including architecture documentation, current. The archi-
tect should plan to issue releases of the documentation to support major project
milestones, which usually means far enough ahead of the milestone to give devel-
opers time to put the architecture to work. For example, the end of each iteration
or sprint or incremental release could be associated with providing revised docu-
mentation to the development team.

documenting Patterns

Architects can, and typically do, use patterns as a starting point for their design,
as we have discussed in Chapter 13. These patterns might be published in exist-
ing catalogs or in an organization’s proprietary repository of standard designs,
or created specifically for the problem at hand by the architect. In each of these
cases, they provide a generic (that is, incomplete) solution approach that the ar-
chitect will have to refine and instantiate.

First, record the fact that the given pattern is being used. Then say why this
solution approach was chosen—why it is a good fit to the problem at hand. If the
chosen approach comes from a pattern, this will consist essentially of showing
that the problem at hand fits the problem and context of the pattern.

Using a pattern means making successive design decisions that eventually
result in an architecture. These design decisions manifest themselves as newly

18.7 Documenting Behavior 351

instantiated elements and relations among them. The architect can document a
snapshot of the architecture at each stage. How many stages there are depends on
many things, not the least of which is the ability of readers to follow the design
process in case they have to revisit it in the future.

18.7 documenting behavior

Documenting an architecture requires behavior documentation that complements
structural views by describing how architecture elements interact with each other.
Reasoning about characteristics such as a system’s potential to deadlock, a sys-
tem’s ability to complete a task in the desired amount of time, or maximum mem-
ory consumption requires that the architecture description contain information
about both the characteristics of individual elements as well as patterns of inter-
action among them—that is, how they behave with each other. In this section, we
provide guidance as to what types of things you will want to document in order
to reap these benefits. In our architecture view template, behavior has its own
section in the element catalog.

There are two kinds of notations available for documenting behavior. The
first kind of notation is called trace-oriented languages; the second is called com-
prehensive languages.

Traces are sequences of activities or interactions that describe the system’s
response to a specific stimulus when the system is in a specific state. A trace
describes a sequence of activities or interactions between structural elements of
the system. Although it is conceivable to describe all possible traces to generate
the equivalent of a comprehensive behavioral model, it is not the intention of
trace-oriented documentation to do so. Below we describe four notations for doc-
umenting traces: use cases, sequence diagrams, communication diagrams, and
activity diagrams. Although other notations are available (such as message se-
quence charts, timing diagrams, and the Business Process Execution Language),
we have chosen these four as a representative sample of trace-oriented languages.

 ■ Use cases describe how actors can use a system to accomplish their goals.
Use cases are frequently used to capture the functional requirements for a
system. UML provides a graphical notation for use case diagrams but does
not say how the text of a use case should be written. The UML use case dia-
gram can be used effectively as an overview of the actors and the behavior
of a system. The use case description is textual and should contain the use
case name and brief description, the actor or actors who initiate the use case
(primary actors), other actors who participate in the use case (secondary
actors), flow of events, alternative flows, and nonsuccess cases.

 ■ A UML sequence diagram shows a sequence of interactions among in-
stances of elements pulled from the structural documentation. It shows only

352 Part three architecture in the life cycle 18—Documenting Software Architectures

the instances participating in the scenario being documented. A sequence
diagram has two dimensions: vertical, representing time, and horizontal,
representing the various instances. The interactions are arranged in time
sequence from top to bottom. Figure 18.5 is an example of a sequence dia-
gram that illustrates the basic UML notation.

Objects (i.e., element instances) have a lifeline, drawn as a vertical
dashed line along the time axis. The sequence is usually started by an ac-
tor on the far left. The instances interact by sending messages, which are
shown as horizontal arrows. A message can be a method or function call, an
event sent through a queue, or something else. The message usually maps
to a resource (operation) in the interface of the receiver instance. A filled
arrowhead on a solid line represents a synchronous message, whereas the
open arrowhead represents an asynchronous message. The dashed arrow is
a return message. The execution occurrence bars along the lifeline indicate
that the instance is processing or blocked waiting for a return.

Key (UML)

:Login
Page

:Login
Controller

:UserDao :Logger

:User

login
login(…)

checkPwd(…)

new :User
Session

Actor Object Lifeline
Execution
occurrence

Synchronous
message

Asynchronous
message

Return
message

register User Login(…)

fIGurE 18.5 A simple example of a UML sequence diagram

18.7 Documenting Behavior 353

 ■ A UML communication diagram shows a graph of interacting elements
and annotates each interaction with a number denoting order. Similarly to
sequence diagrams, instances shown in a communication diagram are ele-
ments described in the accompanying structural documentation. Commu-
nication diagrams are useful when the task is to verify that an architecture
can fulfill the functional requirements. The diagrams are not useful if the
understanding of concurrent actions is important, as when conducting a
performance analysis.

 ■ UML activity diagrams are similar to flow charts. They show a business
process as a sequence of steps (called actions) and include notation to ex-
press conditional branching and concurrency, as well as to show sending
and receiving events. Arrows between actions indicate the flow of control.
Optionally, activity diagrams can indicate the architecture element or actor
performing the actions. Activity diagrams can express concurrency. A fork
node (depicted as a thick bar orthogonal to the flow arrows) splits the flow
into two or more concurrent flows of actions. The concurrent flows may lat-
er be synchronized into a single flow through a join node (also depicted as
an orthogonal bar). The join node waits for all incoming flows to complete
before proceeding. Different from sequence and communication diagrams,
activity diagrams don’t show the actual operations being performed on spe-
cific objects. Activity diagrams are useful to broadly describe the steps in a
specific workflow. Conditional branching (diamond symbol) allows a single
diagram to represent multiple traces, although it’s not usually the intent of
an activity diagram to show all possible traces or the complete behavior for
the system or part of it.

In contrast to trace notations, comprehensive models show the complete be-
havior of structural elements. Given this type of documentation, it is possible
to infer all possible paths from initial state to final state. The state machine for-
malism represents the behavior of architecture elements because each state is an
abstraction of all possible histories that could lead to that state. State machine
languages allow you to complement a structural description of the elements of
the system with constraints on interactions and timed reactions to both internal
and environmental stimuli.

UML state machine diagram notation is based on the statechart graphical
formalism developed by David Harel for modeling reactive systems; it allows
you to trace the behavior of your system, given specific inputs. A UML state ma-
chine diagram shows states represented as boxes and transitions between states
represented as arrows. The state machine diagrams help to model elements of the
architecture and help to illustrate their runtime interactions. Figure 18.6 is a sim-
ple example showing the states of a vehicle cruise control system.

354 Part three architecture in the life cycle 18—Documenting Software Architectures

Key: UMLpress “–”
to coast

press “+”
to accelerate

 press “set” or
“resume” buttons

press “cruise
on/off” button

press “cruise
on/off” button

press “cruise on/off” button

tap brake pedal

push
throttle
pedal

off
on,

disengaged
on,

engaged

fIGurE 18.6 UML state machine diagram for the cruise control system of a
motor vehicle

Each transition in a state machine diagram is labeled with the event caus-
ing the transition. For example, in Figure 18.6, the transitions correspond to the
buttons the driver can press or driving actions that affect the cruise control sys-
tem. Optionally, the transition can specify a guard condition, which is enclosed in
brackets. When the event corresponding to the transition occurs, the guard condi-
tion is evaluated and the transition is only enabled if the guard is true at that time.
Transitions can also have consequences, called actions or effects, indicated by a
slash. When an action is noted, it indicates that the behavior following the slash
will be performed when the transition occurs. The states may also specify entry
and exit actions.

Other notations exist for describing comprehensive behavior. For exam-
ple, Architecture Analysis and Design Language (AADL) can be used to reason
about runtime behavior. Specification and Description Language (SDL) is used
in telephony.

18.8 architecture documentation and Quality attributes

If architecture is largely about the achievement of quality attributes and if one of
the main uses of architecture documentation is to serve as a basis for analysis (to
make sure the architecture will achieve its required quality attributes), where do
quality attributes show up in the documentation? Short of a full-fledged quality
view (see page 340), there are five major ways:

1. Any major design approach (such as an architecture pattern) will have
quality attribute properties associated with it. Client-server is good for
scalability, layering is good for portability, an information-hiding-based
decomposition is good for modifiability, services are good for interopera-
bility, and so forth. Explaining the choice of approach is likely to include
a discussion about the satisfaction of quality attribute requirements and

18.9 Documenting Architectures That Change Faster Than You Can Document Them 355

tradeoffs incurred. Look for the place in the documentation where such an
explanation occurs. In our approach, we call that rationale.

2. Individual architectural elements that provide a service often have qual-
ity attribute bounds assigned to them. Consumers of the services need to
know how fast, secure, or reliable those services are. These quality attri-
bute bounds are defined in the interface documentation for the elements,
sometimes in the form of a service-level agreement. Or they may simply be
recorded as properties that the elements exhibit.

3. Quality attributes often impart a “language” of things that you would look
for. Security involves security levels, authenticated users, audit trails,
firewalls, and the like. Performance brings to mind buffer capacities, dead-
lines, periods, event rates and distributions, clocks and timers, and so on.
Availability conjures up mean time between failure, failover mechanisms,
primary and secondary functionality, critical and noncritical processes, and
redundant elements. Someone fluent in the “language” of a quality attribute
can search for the kinds of architectural elements (and properties of those
elements) that were put in place precisely to satisfy that quality attribute
requirement.

4. Architecture documentation often contains a mapping to requirements that
shows how requirements (including quality attribute requirements) are sat-
isfied. If your requirements document establishes a requirement for avail-
ability, for instance, then you should be able to look it up by name or refer-
ence in your architecture document to see the places where that requirement
is satisfied.

5. Every quality attribute requirement will have a constituency of stakeholders
who want to know that it is going to be satisfied. For these stakeholders, the
architect should provide a special place in the documentation’s introduction
that either provides what the stakeholder is looking for, or tells the stake-
holder where in the document to find it. It would say something like this:
“If you are a performance analyst, you should pay attention to the processes
and threads and their properties (defined [here]), and their deployment on
the underlying hardware platform (defined [here]).” In our documentation
approach, we put this here’s-what-you’re-looking-for information in a sec-
tion called the documentation roadmap.

18.9 documenting architectures that change
faster than you can document them

When your web browser encounters a file type it’s never seen before, odds are
that it will go to the Internet, search for and download the appropriate plug-in to
handle the file, install it, and reconfigure itself to use it. Without even needing to

356 Part three architecture in the life cycle 18—Documenting Software Architectures

shut down, let alone go through the code-integrate-test development cycle, the
browser is able to change its own architecture by adding a new component.

Service-oriented systems that utilize dynamic service discovery and binding
also exhibit these properties. More challenging systems that are highly dynamic,
self-organizing, and reflective (meaning self-aware) already exist. In these cases,
the identities of the components interacting with each other cannot be pinned
down, let alone their interactions, in any static architecture document.

Another kind of architectural dynamism, equally challenging from a docu-
mentation perspective, is found in systems that are rebuilt and redeployed with
great rapidity. Some development shops, such as those responsible for commer-
cial websites, build and “go live” with their system many times every day.

Whether an architecture changes at runtime, or as a result of a high-frequency
release-and-deploy cycle, the changes occur much faster than the documentation
cycle. In either case, nobody is going to hold up things until a new architecture
document is produced, reviewed, and released.

But knowing the architecture of these systems is every bit as important, and
arguably more so, than for systems in the world of more traditional life cycles.
Here’s what you can do if you’re an architect in a highly dynamic environment:

 ■ Document what is true about all versions of your system. Your web brows-
er doesn’t go out and grab just any piece of software when it needs a new
plug-in; a plug-in must have specific properties and a specific interface.
And it doesn’t just plug in anywhere, but in a predetermined location in
the architecture. Record those invariants as you would for any architecture.
This may make your documented architecture more a description of con-
straints or guidelines that any compliant version of the system must follow.
That’s fine.

 ■ Document the ways the architecture is allowed to change. In the previous
examples, this will usually mean adding new components and replacing
components with new implementations. In the Views and Beyond approach,
the place to do this is called the variability guide (captured in Section 4 of
our view template).

18.10 documenting architecture in an
agile development Project

“Agile” refers to an approach to software development that emphasizes rapid and
flexible development and de-emphasizes project and process infrastructure for their
own sake. In Chapter 15 we discuss the relationships between architecture and Ag-
ile. Here we focus just on how to document architecture in an Agile environment.

18.10 Documenting Architecture in an Agile Development Project 357

The Views and Beyond and Agile philosophies agree strongly on a central
point: If information isn’t needed, don’t document it. All documentation should
have an intended use and audience in mind, and be produced in a way that serves
both. One of the fundamental principles of technical documentation is “Write
for the reader.” That means understanding who will read the documentation and
how they will use it. If there is no audience, there is no need to produce the
documentation.

Architecture view selection is an example of applying this principle. The
Views and Beyond approach prescribes producing a view if and only if it ad-
dresses the concerns of an explicitly identified stakeholder community.

Another central idea to remember is that documentation is not a monolithic
activity that holds up all other progress until it is complete. The view selection
method given earlier prescribes producing the documentation in prioritized stages
to satisfy the needs of the stakeholders who need it now.

When producing Views and Beyond-based architecture documentation us-
ing Agile principles, keep the following in mind:

 ■ Adopt a template or standard organization to capture your design decisions.
 ■ Plan to document a view if (but only if) it has a strongly identified stake-

holder constituency.
 ■ Fill in the sections of the template for a view, and for information beyond

views, when (and in whatever order) the information becomes available.
But only do this if writing down this information will make it easier (or
cheaper or make success more likely) for someone downstream doing their
job.

 ■ Don’t worry about creating an architectural design document and then a
finer-grained design document. Produce just enough design information to
allow you to move on to code. Capture the design information in a format
that is simple to use and simple to change—a wiki, perhaps.

 ■ Don’t feel obliged to fill up all sections of the template, and certainly not
all at once. We still suggest you define and use rich templates because they
may be useful in some situations. But you can always write “N/A” for the
sections for which you don’t need to record the information (perhaps be-
cause you will convey it orally).

 ■ Agile teams sometimes make models in brief discussions by the white-
board. When documenting a view, the primary presentation may consist of
a digital picture of the whiteboard. Further information about the elements
(element catalog), rationale discussion (architecture background), variabil-
ity mechanisms being used (variability guide), and all else can be com-
municated verbally to the team—at least for now. Later on, if you find out
that it’s useful to record a piece of information about an element, a context
diagram, rationale for a certain design decision, or something else, the tem-
plate will have the right place ready to receive it.

358 Part three architecture in the life cycle 18—Documenting Software Architectures

The Software You’re Delivering Isn’t the Only Software That Matters

About ninety-nine percent of the treatment of architecture in this book (and
others) is concerned with the software elements that make up the opera-
tional system that is delivered to its customer. Component-and-connector
views show the units of runtime behavior of that system. Module views
show the units of implementation that have to be built in order to create
that system.

A colleague of mine is a project manager for a Fortune 500 software
company. On the day I wrote this sidebar, she found out that the develop-
ment platform her project relied on had been infected with a virulent new
virus, and the company’s IT department was removing it from service,
along with all the backup images, until the virus could be completely re-
moved. That was going to take about five days. After that, all of her project’s
software and tooling would have to be reinstalled and brought back up to
latest-version status. Her project was in user final acceptance test, racing
against a delivery deadline, and the IT department’s decision doomed
her project to join the countless others in our industry that are delivered
late. The snarling email she sent to the IT department for (a) allowing the
platform to become infected and (b) not providing a backup platform (real
or virtual) in a timely fashion would melt your screen.

The treatment of software architecture we describe in this book is
perfectly capable of representing and usefully incorporating software other
than the software that your customer is paying you to deliver. Allocation
views, recall, are about mapping that software to structures in the envi-
ronment. “Uses” views show which software elements rely on the correct
presence of other software in order to work. Context diagrams are all about
showing relations between your system and important elements of its envi-
ronment. It would be the easiest thing in the world to use these constructs
to represent support software including, in my friend’s case, the develop-
ment platform.

An avionics project I worked on years ago included in our decomposition
view a module called the System Generation Module. This consisted of all
of the software we needed to construct a loadable image of the product
we were building. Not a single byte of code from the System Generation
Module made it onto the aircraft, but it was as important as any other.
Even if you don’t build any of your support software but use off-the-shelf
development tools from your favorite vendor, someone in your organiza-
tion is responsible for the care and feeding of that software: its acquisition,
installation, configuration, and upgrade. That constitutes a nontrivial work
assignment, which suggests that support software also belongs in the work
assignment view (a kind of allocation view). And of course you always build
some of it yourself—test scripts, build scripts, and so forth—so it’s even
more deserving of a place in your architecture.

18.11 Summary 359

Promoting support and development software to first-class architec-
tural status makes us ask the right questions about it, especially the most
important one: What quality attributes do we require of it? Will it provide
us with the right security if (for example) we want to exclude our subcon-
tracting partners from access to some of our IP during development? Will it
have the availability to be up and running at 2 a.m. Sunday morning when
our project goes into its inevitable final delivery crunch? And if it crashes,
will the IT folks have someone standing by to bring it back up? Will it be
modifiable or configurable enough to support the way your project intends
to use it?

Think about what other software and environmental resources your proj-
ect depends on, and consider using the architectural tools, models, views,
and concepts at your disposal to help you do what architecture always
helps you do: Ask the right questions at the right time to expose risks and
begin to mitigate them. These concepts include quality attribute scenarios,
“uses” views, and deployment and work assignment views that include
support software.

—PCC

18.11 Summary

Writing architectural documentation is much like other types of writing. You
must understand the uses to which the writing is to be put and the audience for
the writing. Architectural documentation serves as a means for communication
among various stakeholders, not only up the management chain and down to the
developers but also across to peers.

An architecture is a complicated artifact, best expressed by focusing on par-
ticular perspectives depending on the message to be communicated. These per-
spectives are called views, and you must choose the views to document, must
choose the notation to document these views, and must choose a set of views that
is both minimal and adequate. This may involve combining various views that
have a large overlap. You must document not only the structure of the architecture
but also the behavior.

Once you have decided on the views, you must decide how to package the
documentation. The packaging will depend on the media used for expressing the
documentation. Print has different characteristics for understanding and group-
ing than various online media. Different online media will also have different
characteristics.

The context of the project will also affect the documentation. Some of the
contextual factors are the important quality attributes of the system, the rate of
change of the system, and the project management strategy.

360 Part three architecture in the life cycle 18—Documenting Software Architectures

18.12 for further reading

Documenting Software Architectures (second edition) [Clements 10a] is a com-
prehensive treatment of the Views and Beyond approach. It describes a multitude
of different views and notations for them. It also describes how to package the
documentation into a coherent whole.

ISO/IEC/IEEE 42010:2011 (“eye-so-forty-two-ten” for short) is the ISO
(and IEEE) standard [ISO 11] Systems and software engineering—Architecture
description. The first edition of that standard, IEEE Std. 1471-2000, was devel-
oped by an IEEE working group drawing on experience from industry, academia,
and other standards bodies between 1995 and 2000. ISO/IEC/IEEE 42010 is cen-
tered on two key ideas: a conceptual framework for architecture description and a
statement of what information must be found in any ISO/IEC/IEEE 42010-com-
pliant architecture description, using multiple viewpoints driven by stakeholders’
concerns.

Under ISO/IEC/IEEE 42010, as in the Views and Beyond approach, views
have a central role in documenting software architecture. The architecture de-
scription of a system includes one or more views.

If you want to use the Views and Beyond approach to produce an ISO/IEC/
IEEE 42010-compliant architecture document, you certainly can. The main addi-
tional obligation is to choose and document a set of viewpoints, identifying the
stakeholders, their concerns, and the elements catalog for each view, and (to a
lesser degree) address ISO/IEC/IEEE 42010’s other required information content.

AADL is an SAE standard. The SAE is an organization for engineering pro-
fessionals in the aerospace, automotive, and commercial vehicle industries. The
website for the AADL standard is at www.aadl.info.

SDL is a notation used in the telecom industry. It is targeted at describing
the behavior of reactive and distributed systems in general and telecom systems
in particular. A real-time version of SDL can be found at www.sdl-rt.org/stan-
dard/V2.2/pdf/SDL-RT.pdf.

UML 2.0 added several features specifically to allow architecture to be mod-
eled, such as ports. It is managed by the Object Management Group and can be
found at www.omg.org/spec/UML/.

18.13 discussion Questions

1. Go to the website of your favorite open source system. On the site, look
for the architectural documentation for that system. What is there? What
is missing? How would this affect your ability to contribute code to this
project?

http://www.aadl.info
http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT.pdf
http://www.sdl-rt.org/standard/V2.2/pdf/SDL-RT.pdf
http://www.omg.org/spec/UML/

18.13 Discussion Questions 361

2. Banks are justifiably cautious about security. Sketch the documentation you
would need for an automatic teller machine (ATM) in order to reason about
its security architecture.

3. Suppose your company has just purchased another company and that you
have been given the task of merging a system in your company with a simi-
lar system in the other company. What views of the other system’s architec-
ture would you like to see and why? Would you ask for the same views of
both systems?

4. When would you choose to document behavior using trace models or using
comprehensive models? What value do you get and what effort is required
for each of them?

5. How much of a project’s budget would you devote to software architecture
documentation? Why? How would you measure the cost and the benefit?

6. Antony Tang, an architect and one of the reviewers of this book, says that
he has used a development view—a kind of quality view—that describes
how the software should be developed in relation to the use of tools and
development workflows, the use of standard library routines such as for ex-
ception handling, some coding conventions and standards, and some testing
and deployment conventions. Sketch a definition of a development view.

This page intentionally left blank

363

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

19
Architecture,
Implementation,
and Testing

You don’t make progress by standing on the
sidelines, whimpering and complaining. You

make progress by implementing ideas.
—Shirley Hufstedler

Although this is a book about software architecture—you’ve noticed that by now,
no doubt—we need to remind ourselves from time to time that architecture is
not a goal unto itself, but only the means to an end. Building systems from the
architecture is the end game, systems that have the qualities necessary to meet the
concerns of their stakeholders.

This chapter covers two critical areas in system-building—implementation
and testing—from the point of view of architecture. What is the relationship of
architecture to implementation (and vice versa)? What is the relationship of ar-
chitecture to testing (and vice versa)?

19.1 architecture and Implementation

Architecture is intended to serve as the blueprint for implementation. The sidebar
“Potayto, Potahto . . .” makes the point that architectures and implementations
rely on different sets of vocabulary, which results in development tools usually
serving one community or the other fairly well, but not both. Frequently the
implementers are so engrossed in their immediate task at hand that they make

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

364 Part three 19—Architecture, Implementation, and Testing

implementation choices that degrade the modular structure of the architecture,
for example.

This leads to one of the most frustrating situations for architects. It is very
easy for code and its intended architecture to drift apart; this is sometimes called
“architecture erosion.” This section talks about four techniques to help keep the
code and the architecture consistent.

Embedding the design in the code

A key task for implementers is to faithfully execute the prescriptions of the ar-
chitecture. George Fairbanks, in Just Enough Architecture, prescribes using an
“architecturally-evident coding style.” Throughout the code, implementers can
document the architectural concept or guidance that they’re reifying. That is, they
can “embed” the architecture in their implementations. They can also try to local-
ize the implementation of each architectural element, as opposed to scattering it
across different implementation entities.

This practice is made easier if implementers (consistently across a project)
adopt a set of conventions for how architectural concepts “show up” in code. For
example, identifying the layer to which a code unit belongs will make it more
likely that implementers and maintainers will respect (and hence not violate) the
layering.

frameworks

“Framework” is a terribly overused term, but here we mean a reusable set of
libraries or classes for a software system. “Library” and “class” are implementa-
tion-like terms, but frameworks have broad architectural implications—they are a
place where architecture and implementation meet. The classes (in an object-ori-
ented framework) are appropriate to the application domain of the system that is
being constructed. Frameworks can range from small and straightforward (such
as ones that provide a set of standard and commonly used data types to a system)
to large and sophisticated. For example, the AUTomotive Open System ARchi-
tecture (AUTOSAR) is a framework for automotive software, jointly developed
by automobile manufacturers, suppliers, and tool developers.

Frameworks that are large and sophisticated often encode architectural in-
teraction mechanisms, by encoding how the classes (and the objects derived from
them) communicate and synchronize with each other. For example, AUTOSAR is
an architecture and not (just) an architecture framework.

A framework amounts to a substantial (in some cases, enormous) piece
of reusable software, and it brings with it all of the advantages of reuse: saving
time and cost, avoiding a costly design task, encoding domain knowledge, and
decreasing the chance of errors from individual implementers coding the same
thing differently and erroneously. On the other hand, frameworks are difficult to

19.1 Architecture and Implementation 365

design and get correct. Adopting a framework means investing in a selection pro-
cess as well as training, and the framework may not provide all the functionality
that you require. The learning curve for a framework is often extremely steep.
A framework that provides a complete set of functionality for implementing an
application in a particular domain is called a “platform.”

code templates

A template provides a structure within which some architecture-specific func-
tionality is achieved, in a consistent fashion system-wide. Many code generators,
such as user interface builders, produce a template into which a developer inserts
code, although templates can also be provided by the development environment.

Suppose that an architecture for a high-availability system prescribes that
every component that implements a critical responsibility must use a failover
technique that switches control to a backup copy of itself in case a fault is de-
tected in its operation.

The architecture could, and no doubt would, describe the failover protocol.
It might go something like this:

In the event that a failure is detected in a critical-application component, a
switchover occurs as follows:

1. A secondary copy, executing in parallel in background on a different pro-
cessor, is promoted to the new primary.

2. The new primary reconstitutes with the application’s clients by sending
them a message that means, essentially: The operational unit that was
serving you has had a failure. Were you waiting for anything from us at the
time? It then proceeds to service any requests received in response.

3. A new secondary is started to serve as a backup for the new primary.
4. The newly started secondary announces itself to the new primary, which

starts sending it messages as appropriate to keep it up to date while it is
executing in background.

If failure is detected within a secondary, a new one is started on some other
processor. It coordinates with its primary and starts receiving state data.

Even though the primary and secondary copies are never doing the same
thing at the same time (the primary is performing its duty and sending state up-
dates to its backups, and the secondaries are waiting to leap into action and ac-
cepting state updates), both components come from identical copies of the same
source code.

To accomplish this, the coders of each critical component would be ex-
pected to implement that protocol. However, a cleverer way is to give the coder
a code template that contains the tricky failover part as boilerplate and contains
fill-in-the-blank sections where coders can fill in the implementation for the func-
tionality that is unique to each application. This template could be embedded in

366 Part three 19—Architecture, Implementation, and Testing

the development environment so that when the developer specifies that the mod-
ule being developed is to support a failover protocol, the template appears as the
initial code for the module.

An example of such a template, taken from an air traffic control system,
is illustrated in Figure 19.1. The structure is a continuous loop that services in-
coming events. If the event is one that causes the application to take a normal
(non-fault-tolerance-related) action, it carries out the appropriate action, followed
by an update of its backup counterparts’ data so that the counterpart can take
over if necessary. Most applications spend most of their time processing normal
events. Other events that may be received involve the transfer (transmission and
reception) of state and data updates. Finally, there is a set of events that involves
both the announcement that this unit has become the primary and requests from
clients for services that the former (now failed) primary did not complete.

Using a template has architectural implications: it makes it simple to add
new applications to the system with a minimum of concern for the actual work-
ings of the fault-tolerant mechanisms designed into the approach. Coders and
maintainers of applications do not need to know about message-handling mecha-
nisms except abstractly, and they do not need to ensure that their applications are
fault tolerant—that has been handled architecturally.

Code templates have implications for reliability: once the template is de-
bugged, then entire classes of coding errors across the entire system disappear.
But in the context of this discussion, templates represent a true common ground
where the architecture and the implementation come together in a consistent and
useful fashion.

Keeping code and architecture consistent

Code can drift away from architecture in a depressingly large number of ways.
First, there may be no constraints imposed on the coders to follow the archi-
tecture. This makes no apparent sense, for why would we bother to invest in an
architecture if we aren’t going to use it to constrain the code? However, this hap-
pens more often than you might think. Second, some projects use the published
architecture to start out, but when problems are encountered (either technical or
schedule-related), the architecture is abandoned and coders scramble to field the
system as best they can. Third (and perhaps most common), after the system has
been fielded, changes to it are accomplished with code changes only, but these
changes affect the architecture. However, the published architecture is not up-
dated to guide the changes, nor updated afterward to keep up with them.

One simple method to remedy the lack of updating the architecture is to
not treat the published architecture as an all-or-nothing affair—it’s either all cor-
rect or all useless. Parts of the architecture may become out of date, but it will
help enormously if those parts are marked as “no longer applicable” or “to be
revised.” Conscientiously marking sections as out of date keeps the architecture

19.1 Architecture and Implementation 367

documentation a living document and (paradoxically) sends a stronger message
about the remainder: it is still correct and can still be trusted.

terminate:= false
initialize application/application protocols
ask for current state (image request)
Loop
Get_event
Case Event_Type is
-- “normal” (non-fault-tolerant-related) requests to
-- perform actions; only happens if this unit is the
-- current primary address space
when X => Process X
Send state data updates to other address spaces
when Y => Process Y
Send state data updates to other address spaces
...
when Terminate_Directive => clean up resources; terminate
 := true
when State_Data_Update => apply to state data
-- will only happen if this unit is a secondary address
-- space, receiving the update from the primary after it
-- has completed a “normal” action sending, receiving
-- state data
when Image_Request => send current state data to new
 address space
when State_Data_Image => Initialize state data
when Switch_Directive => notify service packages of
 change in rank
-- these are requests that come in after a PAS/SAS
-- switchover; they report services that they had
-- requested from the old (failed) PAS which this unit
-- (now the PAS) must complete. A, B, etc. are the names
-- of the clients.
when Recon_from_A => reconstitute A
when Recon_from_B => reconstitute B
...
when others => log error
end case
exit when terminate
end loop

fIGurE 19.1 A code template for a failover protocol. “Process X” and
“Process Y” are placeholders for application-specific code.

368 Part three 19—Architecture, Implementation, and Testing

In addition, strong management and process discipline will help prevent ero-
sion. One way is to mandate that changes to the system, no matter when they oc-
cur, are vetted through the architecture first. The alternatives for achieving code
alignment with the architecture include the following:

 ■ Sync at life-cycle milestone. Developers change the code until the end of
some phase, such as a release or end of an iteration. At that point, when the
schedule pressure is less, the architecture is updated.

 ■ Sync at crisis. This undesirable approach happens when a project has found
itself in a technical quagmire and needs architectural guidance to get itself
going again.

 ■ Sync at check-in. Rules for the architecture are codified and used to vet any
check-in. When a change to the code “breaks” the architecture rules, key
project stakeholders are informed and then either the code or the architec-
ture rules must be modified. This process is typically automated by tools.

These alternatives can work only if the implementation follows the archi-
tecture mostly, departing from it only here and there and in small ways. That is,
it works when syncing the architecture involves an update and not a wholesale
overhaul or do-over.

Potayto, Potahto, Tomayto, Tomahto—
Let’s Call the Whole Thing Off!

One of the most vexing realities about architecture-based software de-
velopment is the gulf between architectural and implementation ontolo-
gies, the set of concepts and terms inherent in an area. Ask an architect
what concepts they work with all day, and you’re likely to hear things like
modules, components, connectors, stakeholders, evaluation, analysis,
documentation, views, modeling, quality attributes, business goals, and
technology roadmaps.

Ask an implementer the same question, and you likely won’t hear any of
those words. Instead you’ll hear about objects, methods, algorithms, data
structures, variables, debugging, statements, code comments, compilers,
generics, operator overloading, pointers, and build scripts.

This is a gap in language that reflects a gap in concepts. This gap is, in
turn, reflected in the languages of the tools that each community uses. UML
started out as a way to model object-oriented designs that could be quickly
converted to code—that is, UML is conceptually “close” to code. Today it is
a de facto architecture description language, and likely the most popular
one. But it has no built-in concept for the most ubiquitous of architectural
concepts, the layer. If you want to represent layers in UML, you have to adopt
some convention to do it. Packages stereotyped as <<layer>>, associated
with stereotyped <<allowed to use>> dependencies do the trick. But it is a
trick, a workaround for a language deficiency. UML has “connectors,” two of

19.1 Architecture and Implementation 369

them in fact. But they are a far cry from what architects think of as connec-
tors. Architectural connectors can and do have rich functionality. For instance,
an enterprise service bus (ESB) in a service-oriented architecture handles
routing, data and format transformation, technology adaptation, and a host of
other work. It is most natural to depict the ESB as a connector tying together
services that interact with each other through it. But UML connectors are
impoverished things, little more than bookkeeping mechanisms that have no
functionality whatsoever. The delegation connector in UML exists merely to
associate the ports of a parent component with ports of its nested children,
to send inputs from the outside into a child’s input port, and outputs from a
child to the output port of the parent. And the assembly connector simply ties
together one component’s “requires” interface with another’s “provides” inter-
face. These are no more than bits of string to tie two components together. To
represent a true architectural connector in UML, you have to adopt a conven-
tion—another workaround—such as using simple associations tagged with
explanatory annotations, or abandon the architectural concept completely
and capture the functionality in another component.

Part of the concept gap between architecture and implementation is inevi-
table. Architectures, after all, are abstractions of systems and their implemen-
tations. Back in Chapter 2, we said that was one of the valuable properties
of architecture: you could build many different systems from one. And that’s
what an abstraction is: a one-to-many mapping. One abstraction, many
instances; one architecture, many implementations. That architecture is an
abstraction of implementation is almost its whole point: architecture lets us
achieve intellectual control over a system without having to capture, let alone
master, all of the countless and myriad truths about its implementation.

And here comes the gap again: All of those truths about its implementa-
tion are what coders produce for a living, without which the system remains
but an idea. Architects, on the other hand, dismiss all of that reality by
announcing that they are not interested in implementation “details.”

Can’t we all get along?
We could. There is nothing inherently impossible about a language that

embraces architectural as well as coding concepts, and several people have
proposed some. But UML is beastly difficult to change, and programming
language purveyors all seem to focus their attention down on the underlying
machine and not up to the architecture that is directing the implementation.

Until this gap is resolved, until architects and coders (and their tools)
speak the same conceptual language, we are likely to continue to deal with
the most vexing result of this most vexing reality: writing code (or introducing
a code change) that ignores the architecture is the easiest thing in the world.

The good news is that even though architecture and implementation
speak different languages, they aren’t languages from different planets.
Concepts in one ontology usually correspond pretty well to concepts in an-
other. Frameworks are an area where the languages enjoy a fair amount of
overlap. So are interfaces. These constructs live on the cusp of the two do-
mains, and provide hope that we might one day speak the same language.

—PCC

370 Part three 19—Architecture, Implementation, and Testing

19.2 architecture and testing

What is the relationship between architecture and testing? One possible answer is
“None,” or “Not much.” Testing can be seen as the process of making sure that a
software system meets its requirements, that it brings the necessary functionality
(endowed with the necessary quality attributes) to its user community. Testing,
seen this way, is simply connected to requirements, and hardly connected to ar-
chitecture at all. As long as the system works as expected, who cares what the ar-
chitecture is? Yes, the architecture played the leading role in getting the system to
work as expected, thank you very much, but once it has played that role it should
make a graceful exit off the stage. Testers work with requirements: Thanks, archi-
tecture, but we’ll take it from here.

Not surprisingly, we don’t like that answer. This is an impoverished view of
testing, and in fact an unrealistic one as well. As we’ll see, architecture cannot
help but play an important role in testing. Beyond that, though, we’ll see that
architecture can help make testing less costly and more effective when embraced
in testing activities. We’ll also see what architects can do to help testers, and what
testers can do to take advantage of the architecture.

levels of testing and How architecture Plays a role in Each

There are “levels” of testing, which range from testing small, individual pieces in
isolation to an entire system.

 ■ Unit testing refers to tests run on specific pieces of software. Unit testing is
usually a part of the job of implementing those pieces. In fact, unit tests are
typically written by developers themselves. When the tests are written be-
fore developing the unit, this practice is known as test-driven development.

Certifying that a unit has passed its unit tests is a precondition for delivery
of that unit to integration activities. Unit tests test the software in a standalone
fashion, often relying on “stubs” to play the role of other units with which the
tested unit interacts, as those other units may not yet be available. Unit tests
won’t usually catch errors dealing with the interaction between elements—
that comes later—but unit tests provide confidence that each of the system’s
building blocks is exhibiting as much correctness as is possible on its own.

A unit corresponds to an architectural element in one of the architec-
ture’s module views. In object-oriented software, a unit might correspond to
a class. In a layered system, a unit might correspond to a layer, or a part of
a layer. Most often a unit corresponds to an element at the leaf of a module
decomposition tree.

Architecture plays a strong role in unit testing. First, it defines the units:
they are architectural elements in one or more of the module views. Second,
it defines the responsibilities and requirements assigned to each unit.

19.2 Architecture and Testing 371

Modifiability requirements can also be tested at unit test time. How long
it will take to make specified changes can be tested, although this is seldom
done in practice. If specified changes take too long for the developers to
make, imagine how long they will take when a new and separate mainte-
nance group is in charge without the intimate knowledge of the modules.

Although unit testing goes beyond architecture (tests are based on
nonarchitectural information such as the unit’s internal data structures,
algorithms, and control flows), they cannot begin their work without the
architecture.

 ■ Integration testing tests what happens when separate software units start to
work together. Integration testing concentrates on finding problems related
to the interfaces between elements in a design. Integration testing is inti-
mately connected to the specific increments or subsets that are planned in a
system’s development.

The case where only one increment is planned, meaning that integration
of the entire system will occur in a single step, is called “big bang integra-
tion” and has largely been discredited in favor of integrating many incre-
mentally larger subsets. Incremental integration makes locating errors much
easier, because any new error that shows up in an integrated subset is likely
to live in whatever new parts were added this time around.

At the end of integration testing, the project has confidence that the
pieces of software work together correctly and provide at least some correct
system-wide functionality (depending on how big a subset of the system is
being integrated). Special cases of integration testing are these:

 ■ System testing, which is a test of all elements of the system, including
software and hardware in their intended environment

 ■ Integration testing that involves third-party software

Once again, architecture cannot help but play a strong role in integration
testing. First, the increments that will be subject to integration testing must
be planned, and this plan will be based on the architecture. The uses view is
particularly helpful for this, as it shows what elements must be present for a
particular piece of functionality to be fielded. That is, if the project requires
that (for example) in the next increment of a social networking system users
will be able to manage photographs they’ve allowed other users to post in
their own member spaces, the architect can report that this new functionality
is part of the user_permissions module, which will use a new part of the
photo_sharing module, which in turn will use a new structure in the mas-
ter user_links database, and so forth. Project management will know, then,
that all of the software must be ready for integration at the same time.

Second, the interfaces between elements are part of the architecture, and
those interfaces determine the integration tests that are created and run.

Integration testing is where runtime quality attribute requirements can
be tested. Performance and reliability testing can be accomplished. A

372 Part three 19—Architecture, Implementation, and Testing

sophisticated test harness is useful for performing these types of tests. How
long does an end-to-end synchronization of a local database with a global
database take? What happens if faults are injected into the system? What
happens when a process fails? All of these conditions can be tested at inte-
gration time.

Integration testing is also the time to test what happens when the system
runs for an extended period. You could monitor resource usage during the
testing and look for resources that are consumed but not freed. Does your
pool of free database connections decrease over time? Then maybe data-
base connections should be managed more aggressively. Does the thread
pool show signs of degradation over time? Ditto.

 ■ Acceptance testing is a kind of system testing that is performed by users,
often in the setting in which the system will run. Two special cases of ac-
ceptance testing are alpha and beta testing. In both of these, users are given
free rein to use the system however they like, as opposed to testing that
occurs under a preplanned regimen of a specific suite of tests. Alpha testing
usually occurs in-house, whereas beta testing makes the system available to
a select set of end users under a “User beware” proviso. Systems in beta test
are generally quite reliable—after all, the developing organization is highly
motivated to make a good first impression on the user community—but us-
ers are given fair warning that the system might not be bug-free or (if “bug-
free” is too lofty a goal) at least not up to its planned quality level.

Architecture plays less of a role in acceptance testing than at the other
levels, but still an important one. Acceptance testing involves stressing the
system’s quality attribute behavior by running it at extremely heavy loads,
subjecting it to security attacks, depriving it of resources at critical times,
and so forth. A crude analogy is that if you want to bring down a house, you
can whale away at random walls with a sledgehammer, but your task will
be accomplished much more efficiently if you consult the architecture first
to find which of the walls is holding up the roof. (The point of testing is,
after all, to “bring down the house.”)

Overlaying all of these types of testing is regression testing, which is testing
that occurs after a change has been made to the system. The name comes from
the desire to uncover old bugs that might resurface after a change, a sign that the
software has “regressed” to a less mature state. Regression testing can occur at
any of the previously mentioned levels, and often consists of rerunning the bank
of tests and checking for the occurrence of old (or for that matter, new) faults.

black-box and White-box testing

Testing (at any level) can be “black box” or “white box.” Black-box testing
treats the software as an opaque “black box,” not using any knowledge about the

19.2 Architecture and Testing 373

internal design, structure, or implementation. The tester’s only source of informa-
tion about the software is its requirements.

Architecture plays a role in black-box testing, because it is often the archi-
tecture document where the requirements for a piece of the system are described.
An element of the architecture is unlikely to correspond one-to-one with a re-
quirement nicely captured in a requirements document. Rather, when the archi-
tect creates an architectural element, he or she usually assigns it an amalgamation
of requirements, or partial requirements, to carry out. In addition, the interface to
an element also constitutes a set of “requirements” for it—the element must hap-
pily accept the specified parameters and produce the specified effect as a result.
Testers performing black-box testing on an architectural element (such as a major
subsystem) are unlikely to be able to do their jobs using only requirements pub-
lished in a requirements document. They need the architecture as well, because
the architecture will help the tester understand what portions of the requirements
relate to the specified subsystem.

White-box testing makes full use of the internal structures, algorithms, and
control and data flows of a unit of software. Tests that exercise all control paths
of a unit of software are a primary example of white-box testing. White-box test-
ing is most often associated with unit testing, but it has a role at higher levels as
well. In integration testing, for example, white-box testing can be used to con-
struct tests that attempt to overload the connection between two components by
exploiting knowledge about how a component (for example) manages multiple
simultaneous interactions.

Gray-box testing lies, as you would expect, between black and white. Tes-
ters get to avail themselves of some, but not all, of the internal structure of a
system. For example, they can test the interactions between components but not
employ tests based on knowledge of a component’s internal data structures.

There are advantages and disadvantages with each kind of testing. Black-
box testing is not biased by a design or implementation, and it concentrates on
making sure that requirements are met. But it can be inefficient by (for example)
running many unit tests that a simple code inspection would reveal to be unnec-
essary. White-box testing often keys in on critical errors more quickly, but it can
suffer from a loss of perspective by concentrating tests to make the implemen-
tation break, but not concentrating on the software delivering full functionality
under all points in its input space.

risk-based testing

Risk-based testing concentrates effort on areas where risk is perceived to be the
highest, perhaps because of immature technologies, requirements uncertainty, de-
veloper experience gaps, and so forth. Architecture can inform risk-based testing
by contributing categories of risks to be considered. Architects can identify areas
where architectural decisions (if wrong) would have a widespread impact, where

374 Part three 19—Architecture, Implementation, and Testing

architectural requirements are uncertain, quality attributes are demanding on the
architecture, technology selections risky, or third-party software sources unre-
liable. Architecturally significant requirements are natural candidates for risk-
based test cases. If the architecturally significant requirements are not met, then
the system is unacceptable, by definition.

test activities

Testing, depending on the project, can consume from 30 to 90 percent of a devel-
opment’s schedule and budget. Any activity that gobbles resources as voraciously
as that doesn’t just happen, of course, but needs to be planned and carried out
purposefully and as efficiently as possible. Here are some of the activities associ-
ated with testing:

 ■ Test planning. Test activities have to be planned so that appropriate resourc-
es can be allocated. “Resources” includes time in the project schedule,
labor to run the tests, and technology with which the testing will be carried
out. Technology might include test tools, automatic regression testers, test
script builders, test beds, test equipment or hardware such as network sniff-
ers, and so forth.

 ■ Test development. This is an activity in which the test procedures are writ-
ten, test cases are chosen, test datasets are created, and test suites are script-
ed. The tests can be developed either before or after development. Develop-
ing the tests prior to development and then developing a module to satisfy
the test is a characteristic of test-first development.

 ■ Test execution. Here, testers apply the tests to the software and capture and
record errors.

 ■ Test reporting and defect analysis. Testers report the results of specific tests
to developers, and they report overall metrics about the test results to the
project’s technical management. The analysis might include a judgment
about whether the software is ready for release. Defect analysis is done by
the development team usually along with the customer, to adjudicate dispo-
sition of each discovered fault: fix it now, fix it later, don’t worry about it,
and so on.

 ■ Test harness creation. One of the architect’s common responsibilities is to
create, along with the architecture, a set of test harnesses through which
elements of the architecture may be conveniently tested. Such test harness-
es typically permit setting up the environment for the elements to be tested,
along with controlling their state and the data flowing into and out of the
elements.

Once again, architecture plays a role and informs each of these activities;
the architect can contribute useful information and suggestions for each. For
test planning, the architecture provides the list of software units and incremental

19.2 Architecture and Testing 375

subsets. The architect can also provide insight as to the complexity or, if the soft-
ware does not yet exist, the expected complexity of each of the software units.
The architect can also suggest useful test technologies that will be compatible
with the architecture; for example, Java’s ability to support assertions in the code
can dramatically increase software testability, and the architect can provide ar-
guments for or against adopting that technology. For test development, the ar-
chitecture can make it easy to swap datasets in and out of the system. Finally,
test reporting and defect analysis are usually reported in architectural terms: this
element passed all of its tests, but that element still has critical errors showing.
This layer passed the delivery test, but that layer didn’t. And so forth.

the architect’s role

Here are some of the things an architect can do to facilitate quality testing. First
and foremost, the architect can design the system so that it is highly testable.
That is, the system should be designed with the quality attribute of testability in
mind. Applying the cardinal rule of architecture (“Know your stakeholders!”),
the architect can work with the test team (and, to the extent they have a stake in
testing, other stakeholders) to establish what is needed. Together, they can come
up with a definition of the testability requirements using scenarios, as described
in Chapter 10. Testability requirements are most likely to be a concern of the de-
veloping organization and not so much of the customer or users, so don’t expect
to see many testing requirements in a requirements document. Using those test-
ability requirements, the testability tactics in Chapter 10 can be brought to bear to
provide the testability needed.

In addition to designing for testability, the architect can also do these other
things to help the test effort:

 ■ Insure that testers have access to the source code, design documents, and
the change records.

 ■ Give testers the ability to control and reset the entire dataset that a program
stores in a persistent database. Reverting the database to a known state is
essential for reproducing bugs or running regression tests. Similarly, load-
ing a test bed into the database is helpful. Even products that don’t use da-
tabases can benefit from routines to automatically preload a set of test data.
One way to achieve this is to design a “persistence layer” so that the whole
program is database independent. In this way, the entire database can be
swapped out for testing, even using an in-memory database if desired.

 ■ Give testers the ability to install multiple versions of a software product on
a single machine. This helps testers compare versions, isolating when a bug
was introduced. In distributed applications, this aids testing deployment
configurations and product scalability. This capability could require con-
figurable communication ports and provisions for avoiding collisions over
resources such as the registry.

376 Part three 19—Architecture, Implementation, and Testing

As a practical matter, the architect cannot afford to ignore the testing pro-
cess because if, after delivery, something goes seriously wrong, the architect will
be one of the first people brought in to diagnose the problem. In one case we
heard about, this involved flying to the remote mountains of Peru to diagnose a
problem with mining equipment.

19.3 Summary

Architecture plays a key role in both implementation and testing. In the imple-
mentation phase, letting future readers of the code know what architectural con-
structs are being used, using frameworks, and using code templates all make life
easier both at implementation time and during maintenance.

During testing the architecture determines what is being tested at which
stage of development. Development quality attributes can be tested during unit
test and runtime quality attributes can be tested during integration testing.

Testing, as with other activities in architecture-based development, is a cost/
benefit activity. Do not spend as much time testing for faults whose consequences
are small and spend the most time testing for faults whose consequences are se-
rious. Do not neglect testing for faults that show up after the system has been
executing for an extended period.

19.4 for further reading

George Fairbanks gives an excellent treatment of architecture and implementa-
tion in Chapter 10 of his book Just Enough Software Architecture, which is enti-
tled “The Code Model” [Fairbanks 10].

Mary Shaw long ago recognized the conceptual gap between architecture
and implementation and wrote about it eloquently in her article “Procedure Calls
Are the Assembly Language of Software Interconnections: Connectors Deserve
First-Class Status” [Shaw 94]. In it she pointed out the disparity between rich
connectors available in architecture and the impoverished subroutine call that is
the mainstay of nearly every programming language.

Details about the AUTOSAR framework can be found at www.autosar.org.
Architecture-based testing is an active field of research. [Bertolino 96b],

[Muccini 07], [Muccini 03], [Eickelman 96], [Pettichord 02], and [Binder 94]
specifically address designing systems so that they are more testable. In fact, the
three bullets concerning the architect’s role in Section 19.2 are drawn from Petti-
chord’s work.

http://www.autosar.org

19.5 Discussion Questions 377

Voas [Voas 95] defines testability, identifies its contributing factors, and de-
scribes how to measure it.

Bertolino extends Voas’s work and ties testability to dependability [Berto-
lino 96].

Finally, Baudry et al. have written an interesting paper that examines the
testability of well-known design patterns [Baudry 03].

19.5 discussion Questions

1. In a distributed system each computer will have its own clock. It is difficult
to perfectly synchronize those clocks. How will this complicate making
performance measures of distributed systems? How would you go about
testing that the performance of a particular system activity is adequate?

2. Plan and implement a modification to a module. Ask your colleagues to do
the same modification independently. Now compare your results to those of
your colleagues. What is the mean and the standard deviation for the time it
takes to make that modification?

3. List some of the reasons why an architecture and a code base inevitably
drift apart. What processes and tools might address this gap? What are their
costs and benefits?

4. Most user interface frameworks work by capturing events from the user
and by establishing callbacks or hooks to application-specific functionality.
What limitations do these architectural assumptions impose on the rest of
the system?

5. Consider building a test harness for a large system. What quality attributes
should this harness exhibit? Create scenarios to concretize each of the qual-
ity attributes.

6. Testing requires the presence of a test oracle, which determines the success
(or failure) of a test. For scalability reasons, the oracle must be automatic.
How can you ensure that your oracle is correct? How do you ensure that
its performance will scale appropriately? What process would you use to
record and fix faults in the testing infrastructure?

7. In embedded systems faults often occur “in the field” and it is difficult to
capture and replicate the state of the system that led to its failure. What ar-
chitectural mechanisms might you use to solve this problem?

8. In integration testing it is a bad idea to integrate everything all at once (big
bang integration). How would you use architecture to help you plan integra-
tion increments?

This page intentionally left blank

379

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

20
Architecture
Reconstruction and
Conformance

It was six men of Indostan / To learning much inclined,
Who went to see the Elephant / (Though all of them were blind),

That each by observation / Might satisfy his mind.

The First approach’d the Elephant, / And happening to fall
Against his broad and sturdy side, / At once began to bawl:

“God bless me! but the Elephant / Is very like a wall!”

The Second, feeling of the tusk, / Cried, — “Ho! what have we here
So very round and smooth and sharp? / To me ’tis mighty clear

This wonder of an Elephant / Is very like a spear!”

The Third approached the animal, / And happening to take
The squirming trunk within his hands, / Thus boldly up and spake:

“I see,” quoth he, “the Elephant / Is very like a snake!”

The Fourth reached out his eager hand, / And felt about the knee.
“What most this wondrous beast is like / Is mighty plain,” quoth he,

“’Tis clear enough the Elephant / Is very like a tree!”

The Fifth, who chanced to touch the ear, / Said: “E’en the blindest man
Can tell what this resembles most; / Deny the fact who can,

This marvel of an Elephant / Is very like a fan!”

The Sixth no sooner had begun / About the beast to grope,
Then, seizing on the swinging tail / That fell within his scope,

“I see,” quoth he, “the Elephant / Is very like a rope!”

And so these men of Indostan / Disputed loud and long,
Each in his own opinion / Exceeding stiff and strong,

Though each was partly in the right, / And all were in the wrong!
—“The Blind Men and the Elephant,” by John Godfrey Saxe

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

380 Part three 20—Architecture Reconstruction and Conformance

Throughout this book we have treated architecture as something largely under
your control and shown how to make architectural decisions to achieve the goals
and requirements in place for a system under development. But there is another
side to the picture. Suppose you have been given responsibility for a system that
already exists, but you do not know its architecture. Perhaps the architecture
was never recorded by the original developers, now long gone. Perhaps it was
recorded but the documentation has been lost. Or perhaps it was recorded but
the documentation is no longer synchronized with the system after a series of
changes. How do you maintain such a system? How do you manage its evolution
to maintain the quality attributes that its architecture (whatever it may be) has
provided for us?

This chapter surveys techniques that allow an analyst to build, maintain, and
understand a representation of an existing architecture. This is a process of re-
verse engineering, typically called architecture reconstruction. Architecture re-
construction is used, by the architect, for two main purposes:

 ■ To document an architecture where the documentation never existed or
where it has become hopelessly out of date

 ■ To ensure conformance between the as-built architecture and the as-de-
signed architecture.

In architecture reconstruction, the “as-built” architecture of an implemented
system is reverse-engineered from existing system artifacts.

When a system is initially developed, its architectural elements are mapped
to specific implementation elements: functions, classes, files, objects, and so
forth. This is forward engineering. When we reconstruct those architectural el-
ements, we need to apply the inverses of the original mappings. But how do we
go about determining these mappings? One way is to use automated and semiau-
tomated extraction tools; the second way is to probe the original design intent of
the architect. Typically we use a combination of both techniques in reconstruct-
ing an architecture.

In practice, architecture reconstruction is a tool-intensive activity. Tools ex-
tract information about the system, typically by scouring the source code, but
they may also analyze other artifacts as well, such as build scripts or traces from
running systems. But architectures are abstractions—they can not be seen in the
low-level implementation details, the programming constructs, of most systems.
So we need tools that aid in building and aggregating the abstractions that we
need, as architects, on top of the ground facts that we develop, as developers. If
our tools are usable and accurate, the end result is an architectural representation
that aids the architect in reasoning about the system. Of course, if the original
architecture and its implementation are “spaghetti,” the reconstruction will faith-
fully expose this lack of organization.

Architecture reconstruction tools are not, however, a panacea. In some cases,
it may not be possible to generate a useful architectural representation. Further-
more, not all aspects of architecture are easy to automatically extract. Consider

20.1 Architecture Reconstruction Process 381

this: there is no programming language construct in any major programming lan-
guage for “layer” or “connector” or other architectural elements; we can’t simply
pick these out of a source code file. Similarly, architectural patterns, if used, are
typically not explicitly documented in code.

Architecture reconstruction is an interpretive, interactive, and iterative pro-
cess involving many activities; it is not automatic. It requires the skills and atten-
tion of both the reverse-engineering expert and, in the best case, the architect (or
someone who has substantial knowledge of the architecture). And whether the
reconstruction is successful or not, there is a price to pay: the tools come with a
learning curve that requires time to climb.

20.1 architecture reconstruction Process

Architecture reconstruction requires the skillful application of tools, often with a
steep learning curve. No single tool does the entire job. For one reason, there is
often diversity in the number of implementation languages and dialects in which
a software system is implemented—a mature MRI scanner or a legacy banking
application may easily comprise more than ten different programming and script-
ing languages. No tool speaks every language.

Instead we are inevitably led to a “tool set” approach to support architecture
reconstruction activities. And so the first step in the reconstruction process is to
set up the workbench.

An architecture reconstruction workbench should be open (making it easy to
integrate new tools as required) and provide an integration framework whereby
new tools that are added to the tool set do not impact the existing tools or data
unnecessarily.

Whether or not an explicit workbench is used, the software architecture re-
construction process comprises the following phases (each elaborated in a subse-
quent section):

1. Raw view extraction. In the raw view extraction phase, raw information
about the architecture is obtained from various sources, primarily source
code, execution traces, and build scripts. Each of these sets of raw informa-
tion is called a view.1

2. Database construction. The database construction phase involves convert-
ing the raw extracted information into a standard form (because the various
extraction tools may each produce their own form of output). This standard-
ized form of the extracted views is then used to populate a reconstruction

1. This use of the term “view” is consistent with our definition in Chapter 18: “a representation of a
set of system elements and relations among them.”

382 Part three 20—Architecture Reconstruction and Conformance

database. When the reconstruction process is complete, the database will be
used to generate authoritative architecture documentation.

3. View fusion and manipulation. The view fusion phase combines the var-
ious views of the information stored in the database. Individual views
may not contain complete or fully accurate information. View fusion can
improve the overall accuracy. For example, a static view extracted from
source code might miss dynamically bound information such as calling
relationships. This could then be combined with a dynamic view from an
execution trace, which will capture all dynamically bound calling infor-
mation, but which may not provide complete coverage. The combination
of these views will provide higher quality information than either could
provide alone. Furthermore, view creation and fusion is typically associ-
ated with some expert interpretation and manipulation. For example, an
expert might decide that a group of elements should be aggregated togeth-
er to form a layer.

4. Architecture analysis. View fusion will result in a set of hypotheses about
the architecture. These hypotheses take the form of architectural elements
(such as layers) and the constraints and relationships among them. These
hypotheses need to be tested to see if they are correct, and that is the func-
tion of the analysis step. Some of these hypotheses might be disproven,
requiring additional view extraction, fusion, and manipulation.

The four phases of architecture reconstruction are iterative. Figure 20.1
depicts the major tasks of architecture reconstruction and their relationships
and outputs. Solid lines represent data flow and dashed lines represent human
interaction.

All of these activities are greatly facilitated by engaging people who are fa-
miliar with the system. They can provide insights about what to look for—that is,
what views are amenable to extraction—and provide a guided approach to view
fusion and analysis. They can also point out or explain exceptions to the design
rules (which will show up as violations of the hypotheses during the analysis
phase). If the experts are long gone, reconstruction is still possible, but it may
well require more backtracking from incorrect initial guesses.

20.2 raw View Extraction

Raw view extraction involves analyzing a system’s existing design and implementa-
tion artifacts to construct one or more models of it. The result is a set of information
that is used in the view fusion activity to construct more-refined views of the system
that directly support the goals of the reconstruction, goals such as these:

20.2 Raw View Extraction 383

Key:

View Extraction

Lexical Parsing Instrumentation
. . .

Database
Construction

Architecture
Analysis

Process step

Data flow

Informs

View Fusion
and Manipulation

Database

Architecture
Documentation

fIGurE 20.1 Architecture reconstruction process

 ■ Extracting and representing a target set of architectural views, to support
the overall architecture documentation effort.

 ■ Answering specific questions about the architecture. For example, “What
components are potentially affected if I choose to rewrite component X?”
or “How can I refactor my layering to remove cyclic dependencies?”

The raw view extraction process is a blend of the ideal (what information
do you want to discover about the architecture that will most help you meet the
goals of your reconstruction effort?) and the practical (what information can your
available tools actually extract and present?).

From the source artifacts (code, header files, build files, and so on) and other
artifacts (e.g., execution traces), you can identify and capture the elements of in-
terest within the system (e.g., files, functions, variables) and their relationships to
obtain several base system views. Table 20.1 shows a typical list of the elements
and several relationships among them that might be extracted.

384 Part three 20—Architecture Reconstruction and Conformance

tablE 20.1 Examples of Extracted Elements and Relations

Source
Element relation

target
Element description

File includes File C preprocessor #include of one
file by another

File contains Function Definition of a function in a file

File defines _ var Variable Definition of a variable in a file

Directory contains Directory Directory contains a subdirectory

Directory contains File Directory contains a file

Function calls Function Static function call

Function access _ read Variable Read access on a variable

Function access _ write Variable Write access on a variable

Each of the relationships between the elements gives different information
about the system:

 ■ The calls relationship between functions helps us build a call graph.
 ■ The includes relationship between the files gives us a set of dependen-

cies between system files.
 ■ The access_read and access_write relationships between func-

tions and variables show us how data is used. Certain functions may write
a set of data and others may read it. This information is used to determine
how data is passed between various parts of the system. We can determine
whether or not a global data store is used or whether most information is
passed through function calls.

 ■ Certain elements or subsystems may be stored in particular directories, and
capturing relations such as dir_contains_file and dir_contains_
dir is useful when trying to identify elements later.

 ■ If the system to be reconstructed is object oriented, classes and methods
are added to the list of elements to be extracted, and relationships such as
class_is_subclass_of_class and class_contains_method
are extracted and used.

Information obtained can be categorized as either static or dynamic. Static
information is obtained by observing only the system artifacts, while dynamic in-
formation is obtained by observing how the system runs. The goal is to fuse both
to create more accurate system views.

If the architecture of the system changes at runtime, that runtime config-
uration should be captured and used when carrying out the reconstruction. For

20.2 Raw View Extraction 385

example, in some systems a configuration file is read in by the system at startup,
or a newly started system examines its operating environment, and certain ele-
ments are executed or connections are made as a result.

Another reason to capture dynamic information is that some architecturally
relevant information may not exist in the source artifacts because of late binding.
Examples of late binding include the following:

 ■ Polymorphism
 ■ Function pointers
 ■ Runtime parameterization
 ■ Plug-ins
 ■ Service interactions mediated by brokers

Further, the precise topology of a system may not be determined until
runtime. For example, in peer-to-peer systems, service-oriented architectures,
and cloud computing, the topology of the system is established dynamically,
depending on the availability, loading, and even dynamic pricing of system re-
sources. The topology of such systems cannot be directly recovered from their
source artifacts and hence cannot be reverse-engineered using static extraction
tools.

Therefore, it may be necessary to use tools that can generate dynamic in-
formation about the system (e.g., profiling tools, instrumentation that generates
runtime traces, or aspects in an aspect-oriented programming language that can
monitor dynamic activity). Of course, this requires that such tools be available
on the platforms on which the system executes. Also, it may be difficult to col-
lect the results from code instrumentation. For example, embedded systems often
have no direct way to output such information.

Table 20.2 summarizes some of the common categories of tools that might
be used to populate the views loaded into the reconstruction database.

Tools to analyze design models, build files, and executables can also be used
to extract further information as required. For instance, build files include in-
formation on module or file dependencies that exist within the system, and this
information may not be reflected in the source code, or anywhere else.

An additional activity that is often required prior to loading a raw view into
the database is to prune irrelevant information. For example, in a C code base
there may be several main() routines, but only one of those (and its resulting
call graph) will be of concern for analysis. The others may be for test harnesses
and other utility functions. Similarly if you are building or using libraries that
are operating-system specific, you may only be interested in a specific OS (e.g.,
Linux) and thus want to discard the libraries for other platforms.

386 Part three 20—Architecture Reconstruction and Conformance

tablE 20.2 Tool Categories for Populating Reconstructed Architecture Views

tool
Static or
dynamic description

Parsers

Static

Parsers analyze the code and generate internal
representations from it (for the purpose of
generating machine code). It is possible to save
this internal representation to obtain a view.

Abstract Syntax
Tree (AST)
Analyzers

AST analyzers do a similar job to parsers, but
they build an explicit tree representation of
the parsed information. We can build analysis
tools that traverse the AST and output selected
pieces of architecturally relevant information in
an appropriate format.

Lexical Analyzers Lexical analyzers examine source artifacts
purely as strings of lexical elements or tokens.
The user of a lexical analyzer can specify
a set of code patterns to be matched and
output. Similarly, a collection of ad hoc tools
such as grep and Perl can carry out pattern
matching and searching within the code to
output some required information. All of these
tools—code-generating parsers, AST-based
analyzers, lexical analyzers, and ad hoc pattern
matchers—are used to output static information.

Profilers

Dynamic

Profiling and code coverage analysis tools can
be used to output information about the code as
it is being executed, and usually do not involve
adding new code to the system.

Code
Instrumentation
Tools

Code instrumentation, which has wide
applicability in the field of testing, involves
adding code to the system to output specific
information while the system is executing.
Aspects, in an aspect-oriented programming
language, can serve the same purpose
and have the advantage of keeping the
instrumentation code separate from the code
being monitored.

20.3 database construction

Some of the information extracted from the raw view extraction phase, while
necessary for the process of reconstruction, may be too specific to aid in archi-
tectural understanding. Consider Figure 20.2. In this figure we show a set of facts
extracted from a code base consisting of classes and methods, and inclusion and
calling relations. Each element is plotted on a grid and each relation is drawn as a

20.3 Database Construction 387

line between the elements. This view, while accurate, provides no insight into the
overarching abstractions or coarse-grained structures present in the architecture.

Thus we need to manipulate such raw views, to collapse information (for
example, hiding methods inside class definitions), and to show abstractions (for
example, showing all of the connections between business objects and user inter-
face objects, or identifying distinct layers).

It is helpful to use a database to store the extracted information because the
amount of information being stored is large, and the manipulations of the data
are tedious and error-prone if done manually. Some reverse-engineering tools,
such as Lattix, SonarJ, and Structure101, fully encapsulate the database, and so
the user of the tool need not be concerned with its operation. However, those who
are using a suite of tools together—a workbench—will need to choose a database
and decide on internal representations of the views.

fIGurE 20.2 A raw extracted view: white noise

388 Part three 20—Architecture Reconstruction and Conformance

20.4 View fusion

Once the raw facts have been extracted and stored in a database, the reconstructor
can now perform view fusion. In this phase, the extracted views are manipulated
to create fused views. Fused views combine information from one or more ex-
tracted views, each of which may contain specialized information. For example,
a static call view might be fused with a dynamic call view. One might want to
combine these two views because a static call view will show all explicit calls
(where method A calls method B) but will miss calls that are made via late bind-
ing mechanisms. A dynamically extracted call graph will never miss a call that is
made during an execution, but it suffers the “testing” problem: it will only report
results from those paths through the system that are traversed during its execu-
tion. So a little-used part of the system—perhaps for initialization or error recov-
ery—might not show up in the dynamic view. Therefore we fuse these two views
to produce a more complete and more accurate graph of system relationships.

The process of creating a fused view is the process of creating a hypothesis
about the architecture and a visualization of it to aid in analysis. These hypothe-
ses result in new aggregations that show various abstractions or clusterings of the
elements (which may be source artifacts or previously identified abstractions).
By interpreting these fused views and analyzing them, it is possible to produce
hypothesized architectural views of the system. These views can be interpreted,
further refined, or rejected. There are no universal completion criteria for this
process; it is complete when the architectural representation is sufficient to sup-
port the analysis needs of its stakeholders.

For example, Figure 20.3 shows the early results of interacting with the tool
SonarJ. SonarJ first extracts facts from a set of source code files (in this case,
written in Java) and lets you define a set of layers and vertical slices through
those layers in a system. SonarJ will then instantiate the user-specified definitions
of layers and slices and populate them with the extracted software elements.

fIGurE 20.3 Hypothesized layers and vertical slices

20.5 Architecture Analysis: Finding Violations 389

In the figure there are five layers: Controller, Data, Domain, DSI, and Ser-
vice. And there are six vertical slices defined that span these layers: Common,
Contact, Customer, Distribution, Request, and User. At this point, however, there
are no relationships between the layers or vertical slides shown—this is merely
an enumeration of the important system abstractions.

20.5 architecture analysis: finding Violations

Consider the following situation: You have designed an architecture but you have
suspicions that the developers are not faithfully implementing what you devel-
oped. They may do this out of ignorance, or because they have differing agendas
for the system, or simply because they were rushing to meet a deadline and ig-
nored any concern not on their critical path. Whatever the root cause, this diver-
gence of the architecture and the implementation spells problems for you, the
architect. So how do you test and ensure conformance to the design?

There are two major possibilities for maintaining conformance between
code and architecture:

 ■ Conformance by construction. Ensuring consistency by construction—that
is, automatically generating a substantial part of the system based on an
architectural specification—is highly desirable because tools can guarantee
conformance. Unfortunately, this approach has limited applicability. It can
only be applied in situations where engineers can employ specific architec-
ture-based development tools, languages, and implementation strategies.
For systems that are composed of existing parts or that require a style of
architecture or implementation outside those supported by generation tools,
this approach does not apply. And this is the vast majority of systems.

 ■ Conformance by analysis. This technique aims to ensure conformance by
analyzing (reverse-engineering) system information to flag nonconform-
ing elements, so that they can be fixed: brought into conformance. When
an implementation is sufficiently constrained so that modularization and
coding patterns can be identified with architectural elements, this tech-
nique can work well. Unfortunately, however, the technique is limited in
its applicability. There is an inherent mismatch between static, code-based
structures such as classes and packages (which are what programmers see)
and the runtime structures, such as processes, threads, clients, servers, and
databases, that are the essence of most architectural descriptions. Further
complicating this analysis, the actual runtime structures may not be known
or established until the program executes: clients and servers may come and
go dynamically, components not under direct control of the implementers
may be dynamically loaded, and so forth.

390 Part three 20—Architecture Reconstruction and Conformance

We will focus on the second option: conformance by analysis.
In the previous step, view fusion gave us a set of hypotheses about the ar-

chitecture. These hypotheses take the form of architectural elements (sometimes
aggregated, such as layers) and the constraints and relationships among them.
These hypotheses need to be tested to see if they are correct—to see if they con-
form with the architect’s intentions. That is the function of the analysis step.

Figure 20.4 shows the results of adding relationships and constraints to the
architecture initially created in Figure 20.3. These relationship and constraints
are information added by the architect, to reflect the design intent. In this ex-
ample, the architect has indicated the relationships between the layers of Figure
20.3. These relationships are indicated by the directed lines drawn between the
layers (and vertical slices). Using these relationships and constraints, a tool such
as SonarJ is able to automatically detect and report violations of the layering in
the software.

We can now see that the Data layer (row 2 in Figure 20.4) can access, and
hence depends on, the DSI layer. We can further see that it may not access, and
has no dependencies on, Domain, Service, or Controller (rows 1, 3, and 5 in the
figure).

In addition we can see that the JUnit component in the “External” compo-
nent is defined to be inaccessible. This is an example of an architectural con-
straint that is meant to pervade the entire system: no portion of the application
should depend upon JUnit, because this should only be used by test code.

fIGurE 20.4 Layers, vertical slices, relationships, and constraints

20.5 Architecture Analysis: Finding Violations 391

Figure 20.5 shows an example of an architecture violation of the previous
restriction. This violation is found by SonarJ by searching through its database,
applying the user-defined patterns, and finding violations of those patterns. In this
figure you can see an arc between the Service layer and JUnit. This arc is high-
lighted to indicate that this is an illegal dependency and an architectural viola-
tion. (This figure also shows some additional dependencies, to external modules.)

Architecture reconstruction is a means of testing the conformance to such
constraints. The preceding example showed how these constraints might be de-
tected and enforced using static code analysis. But static analysis is primarily
useful for understanding module structures. What if one needed to understand
runtime information, as represented by C&C structures?

In the example given in Figure 20.6, an architecture violation was discov-
ered via dynamic analysis, using the research DiscoTect system. In this case an
analysis of the runtime architecture of the Duke’s Bank application—a simple
Enterprise JavaBeans (EJB) banking application created by Sun Microsystems
as a demonstration of EJB functionality—was performed. The code was “instru-
mented” using AspectJ; instrumentation aspects were woven into the compiled
bytecode of the EJB application. These aspects emitted events when methods en-
tered or exited and when objects were constructed.

fIGurE 20.5 Highlighting an architecture violation

392 Part three 20—Architecture Reconstruction and Conformance

fIGurE 20.6 An architecture violation discovered by dynamic analysis

Figure 20.6 shows that a “database write” connector was discovered in the
dynamic analysis of the architecture. Sun’s EJB specification and its documented
architecture of Duke’s Bank forbid such connections. All database access is sup-
posed to be managed by entity beans, and only by entity beans. Such architec-
tural violations are difficult to find in the source code—often just a single line
of code is involved—and yet can substantially affect the quality attributes of the
resulting system.

20.6 Guidelines

The following are a set of guidelines for the reconstruction process:

 ■ Have a goal and a set of objectives or questions in mind before undertaking
an architecture reconstruction project. In the absence of these, a lot of effort
could be spent on extracting information and generating architecture views
that may not be helpful or serve any useful purpose.

20.7 Summary 393

 ■ Obtain some representation, however coarse, of the system before begin-
ning the detailed reconstruction process. This representation serves several
purposes, including the following:

 ■ It identifies what information needs to be extracted from the system.
 ■ It guides the reconstructor in determining what to look for in the architec-

ture and what views to generate.

Identifying layers is a good place to start.

 ■ In many cases, the existing documentation for a system may not accurate-
ly reflect the system as it is implemented. Therefore it may be necessary
to disregard the existing documentation and use it only to generate the
high-level views of the system, because it should give an indication of the
high-level concepts.

 ■ Tools can support the reconstruction effort and shorten the reconstruction
process, but they cannot do an entire reconstruction effort automatically.
The work involved in the effort requires the involvement of people (archi-
tects, maintainers, and developers) who are familiar with the system. It
is important to get these people involved in the effort at an early stage as
it helps the reconstructor get a better understanding of the system being
reconstructed.

20.7 Summary

Architecture reconstruction and architecture conformance are crucial tools in the
architect’s toolbox to ensure that a system is built the way it was designed, and
that it evolves in a way that is consistent with its creators’ intentions. All nontriv-
ial long-lived systems evolve: the code and the architecture both evolve. This is a
good thing. But if the code evolves in an ad hoc manner, the result will be the big
ball of mud, and the system’s quality attributes will inevitably suffer. The only
defense against this erosion is consistent attention to architecture quality, which
implies the need to maintain architecture conformance.

The results of architectural reconstruction can be used in several ways:

 ■ If no documentation exists or if it is seriously out of date, the recovered
architectural representation can be used as a basis for documenting the ar-
chitecture, as discussed in Chapter 18.

 ■ It can be used to recover the as-built architecture, or to check conformance
against an “as-designed” architecture. Conformance checking assures us
that our developers and maintainers have followed the architectural edicts
set forth for them and are not eroding the architecture by breaking down ab-
stractions, bridging layers, compromising information hiding, and so forth.

394 Part three 20—Architecture Reconstruction and Conformance

 ■ The reconstruction can be used as the basis for analyzing the architec-
ture or as a starting point for reengineering the system to a new desired
architecture.

 ■ Finally, the representation can be used to identify elements for reuse or to
establish an architecture-based software product line (see Chapter 25).

The software architecture reconstruction process comprises the following
phases:

1. Raw view extraction. In the raw view extraction phase, raw information
about the architecture is obtained from various sources, primarily source
code, execution traces, and build scripts. Each of these sets of raw informa-
tion is called a view.

2. Database construction. The database construction phase involves convert-
ing the extracted information into a standard form (because the various
extraction tools may each produce their own form of output) and populating
a reconstruction database with this information.

3. View fusion. The view fusion phase combines views of the information
stored in the database.

4. Architecture analysis. View fusion has given us a set of hypotheses about
the architecture. These hypotheses take the form of architectural elements
(sometimes aggregated, such as layers) and the constraints and relationships
among them. These hypotheses need to be tested to see if they are correct,
and that is the function of the analysis step.

20.8 for further reading

The Software Engineering Institute (SEI) has developed two reconstruction
workbenches: Dali and Armin. Dali was our first attempt at creating a workbench
for architecture recovery and conformance [Kazman 99]. Armin, a complete re-
write and rethink of Dali, is described in [O’Brien 03].

Both Armin and Dali were primarily focused on module structures of an
architecture. A later tool, called DiscoTect, was aimed at discovering C&C struc-
tures. This is described in [Schmerl 06].

Many other architecture reverse-engineering tools have been created. A few
of the notable ones created in academia are [van Deursen 04], [Murphy 01], and
[Storey 97].

In addition there are a number of commercial architecture extraction and
reconstruction tools that have been slowly gaining market acceptance in the past
decade. Among these are the following:

 ■ SonarJ (www.hello2morrow.com)
 ■ Lattix (www.lattix.com)

http://www.hello2morrow.com
http://www.lattix.com

20.9 Discussion Questions 395

 ■ Understand (www.scitools.com)

Cai et al. [Cai 2011] compellingly demonstrate the need for architecture
conformance testing in an experimental study that they conducted, wherein they
found that software engineering students, given UML designs for a variety of rel-
atively simple systems, violate those designs over 70 percent of the time.

Finally, the set of guidelines presented in this chapter for how to go about
reconstructing an architecture was excerpted from [Kazman 02].

20.9 discussion Questions

1. Suppose that for a given system you wanted to extract the architectural
structures (as discussed in Chapter 1) listed in the table rows below. For
each row, fill in each column to appraise each strategy listed in the columns.
“VH” (very high) means the strategy would be very effective at extracting
this structure; “VL” means it would be very ineffective; “H,” M,” and “L”
have the obvious in-between values.

architectural Structures
Interviewing experts on
the system

reconstruction Strategies

analyzing
structure of
source code files

Static
analysis of
source code

dynamic
analysis of system’s
execution

M
od

ul
e

st
ru

ct
ur

es

Decomposition

Uses

Layers

Class

Data model

C
&

C

st
ru

ct
ur

es

Service (for SOA
systems)

Concurrency

A
llo

ca
tio

n
st

ru
ct

ur
es

Deployment

Implementation

Work assignment

http://www.scitools.com

396 Part three 20—Architecture Reconstruction and Conformance

2. Recall that in layered systems, the relationship among layers is allowed to
use. Also recall that it is possible for one piece of software to use another
piece without actually calling it—for example, by depending on it leaving
some shared resource in a usable state. Does this interpretation change your
answer above for the “Uses” and “Layers” structures?

3. What inferences can you make about a system’s module structures from
examining a set of behavioral traces gathered dynamically?

4. Suppose you believe that the architecture for a system follows a broker
pattern. What information would you want to extract from the source code
to confirm or refute this hypothesis? What behavioral or interaction pattern
would you expect to observe at runtime?

5. Suppose you hypothesize that a system makes use of particular tactics to
achieve a particular quality attribute. Fill in the columns of the table below
to show how you would go about verifying your hypothesis. (Begin by fill-
ing in column 1 with a particular tactic for the named quality attribute.)

tactics for…

reconstruction Strategies

Interviewing
experts on
the system

analyzing
structure of
source code
files

Static
analysis of
source code

dynamic
analysis of
system’s
execution

Availability

Interoperability

Modifiability

Performance

Security

Testability

Usability

6. Suppose you want to confirm that developers and maintainers had remained
faithful to an architecture over the lifetime of the system. Describe the re-
construction and/or auditing processes you would undertake.

397

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

21
Architecture Evaluation

Fear cannot be banished, but it can be calm and without
panic; it can be mitigated by reason and evaluation.

—Vannevar Bush

We discussed analysis techniques in Chapter 14. Analysis lies at the heart of ar-
chitecture evaluation, which is the process of determining if an architecture is fit
for the purpose for which it is intended. Architecture is such an important con-
tributor to the success of a system and software engineering project that it makes
sense to pause and make sure that the architecture you’ve designed will be able
to provide all that’s expected of it. That’s the role of evaluation. Fortunately there
are mature methods to evaluate architectures that use many of the concepts and
techniques you’ve already learned in previous chapters of this book.

21.1 Evaluation factors

Evaluation usually takes one of three forms:

 ■ Evaluation by the designer within the design process
 ■ Evaluation by peers within the design process
 ■ Analysis by outsiders once the architecture has been designed

Evaluation by the designer

Every time the designer makes a key design decision or completes a design
milestone, the chosen and competing alternatives should be evaluated using the
analysis techniques of Chapter 14. Evaluation by the designer is the “test” part
of the “generate-and-test” approach to architecture design that we discussed in
Chapter 17.

398 Part three architecture in the life cycle 21—Architecture Evaluation

How much analysis? This depends on the importance of the decision. Ob-
viously, decisions made to achieve one of the driving architectural requirements
should be subject to more analysis than others, because these are the ones that
will shape critical portions of the architecture. But in all cases, performing anal-
ysis is a matter of cost and benefit. Do not spend more time on a decision than it
is worth, but also do not spend less time on an important decision than it needs.
Some specific considerations include these:

 ■ The importance of the decision. The more important the decision, the more
care should be taken in making it and making sure it’s right.

 ■ The number of potential alternatives. The more alternatives, the more time
could be spent in evaluating them. Try to eliminate alternatives quickly so
that the number of viable potential alternatives is small.

 ■ Good enough as opposed to perfect. Many times, two possible alternatives
do not differ dramatically in their consequences. In such a case, it is more
important to make a choice and move on with the design process than it is
to be absolutely certain that the best choice is being made. Again, do not
spend more time on a decision than it is worth.

Peer review

Architectural designs can be peer reviewed just as code can be peer reviewed.
A peer review can be carried out at any point of the design process where a can-
didate architecture, or at least a coherent reviewable part of one, exists. There
should be a fixed amount of time allocated for the peer review, at least several
hours and possibly half a day. A peer review has several steps:

1. The reviewers determine a number of quality attribute scenarios to
drive the review. Most of the time these scenarios will be architecturally
significant requirements, but they need not be. These scenarios can be
developed by the review team or by additional stakeholders.

2. The architect presents the portion of the architecture to be evaluated. (At
this point, comprehensive documentation for it may not exist.) The review-
ers individually ensure that they understand the architecture. Questions at
this point are specifically for understanding. There is no debate about the
decisions that were made. These come in the next step.

3. For each scenario, the designer walks through the architecture and explains
how the scenario is satisfied. (If the architecture is already documented,
then the reviews can use it to assess for themselves how it satisfies the
scenario.) The reviewers ask questions to determine two different types of
information. First, they want to determine that the scenario is, in fact, sat-
isfied. Second, they want to determine whether any of the other scenarios
being considered will not be satisfied because of the decisions made in the
portion of the architecture being reviewed.

21.1 Evaluation Factors 399

4. Potential problems are captured. The list of potential problems forms the
basis for the follow-up of the review. If the potential problem is a real prob-
lem, then it either must be fixed or a decision must be explicitly made by
the designers and the project manager that they are willing to accept the
problem and its probability of occurrence.

If the designers are using the ADD process described in Chapter 17, then a
peer review can be done at the end of step 3 of each ADD iteration.

analysis by Outsiders

Outside evaluators can cast an objective eye on an architecture. “Outside” is rel-
ative; this may mean outside the development project, outside the business unit
where the project resides but within the same company; or outside the company
altogether. To the degree that evaluators are “outside,” they are less likely to be
afraid to bring up sensitive problems, or problems that aren’t apparent because of
organizational culture or because “we’ve always done it that way.”

Often, outsiders are chosen because they possess specialized knowledge
or experience, such as knowledge about a quality attribute that’s important to
the system being examined, or long experience in successfully evaluating
architectures.

Also, whether justified or not, managers tend to be more inclined to listen to
problems uncovered by an outside team hired at considerable cost. (This can be
understandably frustrating to project staff who may have been complaining about
the same problems to no avail for months.)

In principle, an outside team may evaluate a completed architecture, an in-
complete architecture, or a portion of an architecture. In practice, because en-
gaging them is complicated and often expensive, they tend to be used to evaluate
complete architectures.

contextual factors

For peer reviews or outside analysis, there are a number of contextual factors
that must be considered when structuring an evaluation. These include the arti-
facts available, whether the results are public or private, the number and skill of
evaluators, the number and identity of the participating stakeholders, and how the
business goals are understood by the evaluators.

 ■ What artifacts are available? To perform an architectural evaluation, there
must be an artifact that describes the architecture. This must be located
and made available. Some evaluations may take place after the system is
operational. In this case, recovery tools as described in Chapter 20 may be
used both to assist in discovering the architecture and to test that the as-
built system conforms to the as-designed system.

400 Part three architecture in the life cycle 21—Architecture Evaluation

 ■ Who sees the results? Some evaluations are performed with the full knowl-
edge and participation of all of the stakeholders. Others are performed more
privately. The private evaluations may be done for a variety of reasons,
ranging from corporate culture to (in one case we know about) an execu-
tive wanting to determine which of a collection of competitive systems he
should back in an internal dispute about the systems.

 ■ Who performs the evaluation? Evaluations can be carried out by an individ-
ual or a team. In either case, the evaluator(s) should be highly skilled in the
domain and the various quality attributes for which the system is to be eval-
uated. And for carrying out evaluation methods with extensive stakeholder
involvement, excellent organizational and facilitation skills are a must.

 ■ Which stakeholders will participate? The evaluation process should provide
a method to elicit the goals and concerns that the important stakeholders
have regarding the system. Identifying the individuals who are needed and
assuring their participation in the evaluation is critical.

 ■ What are the business goals? The evaluation should answer whether
the system will satisfy the business goals. If the business goals are not
explicitly captured and prioritized prior to the evaluation, then there should
be a portion of the evaluation dedicated to doing so.

21.2 the architecture tradeoff analysis Method

The Architecture Tradeoff Analysis Method (ATAM) has been used for over a de-
cade to evaluate software architectures in domains ranging from automotive to fi-
nancial to defense. The ATAM is designed so that evaluators need not be familiar
with the architecture or its business goals, the system need not yet be constructed,
and there may be a large number of stakeholders.

Participants in the ataM

The ATAM requires the participation and mutual cooperation of three groups:

 ■ The evaluation team. This group is external to the project whose
architecture is being evaluated. It usually consists of three to five people.
Each member of the team is assigned a number of specific roles to play
during the evaluation. (See Table 21.1 for a description of these roles, along
with a set of desirable characteristics for each. A single person may adopt
several roles in an ATAM.) The evaluation team may be a standing unit in
which architecture evaluations are regularly performed, or its members may
be chosen from a pool of architecturally savvy individuals for the occasion.

21.2 The Architecture Tradeoff Analysis Method 401

They may work for the same organization as the development team whose
architecture is on the table, or they may be outside consultants. In any case,
they need to be recognized as competent, unbiased outsiders with no hidden
agendas or axes to grind.

 ■ Project decision makers. These people are empowered to speak for the
development project or have the authority to mandate changes to it. They
usually include the project manager, and if there is an identifiable customer
who is footing the bill for the development, he or she may be present (or
represented) as well. The architect is always included—a cardinal rule of
architecture evaluation is that the architect must willingly participate.

 ■ Architecture stakeholders. Stakeholders have a vested interest in the
architecture performing as advertised. They are the ones whose ability to do
their job hinges on the architecture promoting modifiability, security, high
reliability, or the like. Stakeholders include developers, testers, integrators,
maintainers, performance engineers, users, builders of systems interacting
with the one under consideration, and others listed in Chapter 3. Their job
during an evaluation is to articulate the specific quality attribute goals that
the architecture should meet in order for the system to be considered a
success. A rule of thumb—and that is all it is—is that you should expect to
enlist 12 to 15 stakeholders for the evaluation of a large enterprise-critical
architecture. Unlike the evaluation team and the project decision makers,
stakeholders do not participate in the entire exercise.

tablE 21.1 ATAM Evaluation Team Roles

role responsibilities

Team Leader Sets up the evaluation; coordinates with client, making sure client’s
needs are met; establishes evaluation contract; forms evaluation
team; sees that final report is produced and delivered (although the
writing may be delegated)

Evaluation
Leader

Runs evaluation; facilitates elicitation of scenarios; administers
scenario selection/prioritization process; facilitates evaluation of sce-
narios against architecture; facilitates on-site analysis

Scenario
Scribe

Writes scenarios on flipchart or whiteboard during scenario elicitation;
captures agreed-on wording of each scenario, halting discussion until
exact wording is captured

Proceedings
Scribe

Captures proceedings in electronic form on laptop or workstation:
raw scenarios, issue(s) that motivate each scenario (often lost in the
wording of the scenario itself), and resolution of each scenario when
applied to architecture(s); also generates a printed list of adopted
scenarios for handout to all participants

Questioner Raises issues of architectural interest, usually related to the quality
attributes in which he or she has expertise

402 Part three architecture in the life cycle 21—Architecture Evaluation

Outputs of the ataM

As in any testing process, a large benefit derives from preparing for the test. In
preparation for an ATAM exercise, the project’s decision makers must prepare the
following:

1. A concise presentation of the architecture. One of the requirements of the
ATAM is that the architecture be presented in one hour, which leads to an
architectural presentation that is both concise and, usually, understandable.

2. Articulation of the business goals. Frequently, the business goals presented in
the ATAM are being seen by some of the assembled participants for the first
time, and these are captured in the outputs. This description of the business
goals survives the evaluation and becomes part of the project’s legacy.

The ATAM uses prioritized quality attribute scenarios as the basis for
evaluating the architecture, and if those scenarios do not already exist (perhaps
as a result of a prior requirements capture exercise or ADD activity), they are
generated by the participants as part of the ATAM exercise. Many times, ATAM
participants have told us that one of the most valuable outputs of ATAM is this
next output:

3. Prioritized quality attribute requirements expressed as quality attribute sce-
narios. These quality attribute scenarios take the form described in Chap-
ter 4. These also survive past the evaluation and can be used to guide the
architecture’s evolution.

The primary output of the ATAM is a set of issues of concern about the
architecture. We call these risks:

4. A set of risks and nonrisks. A risk is defined in the ATAM as an architec-
tural decision that may lead to undesirable consequences in light of stated
quality attribute requirements. Similarly, a nonrisk is an architectural deci-
sion that, upon analysis, is deemed safe. The identified risks form the basis
for an architectural risk mitigation plan.

5. A set of risk themes. When the analysis is complete, the evaluation team
examines the full set of discovered risks to look for overarching themes that
identify systemic weaknesses in the architecture or even in the architecture
process and team. If left untreated, these risk themes will threaten the
project’s business goals.

Finally, along the way, other information about the architecture is discovered
and captured:

6. Mapping of architectural decisions to quality requirements. Architectural
decisions can be interpreted in terms of the qualities that they support or
hinder. For each quality attribute scenario examined during an ATAM, those

21.2 The Architecture Tradeoff Analysis Method 403

architectural decisions that help to achieve it are determined and captured.
This can serve as a statement of rationale for those decisions.

7. A set of identified sensitivity and tradeoff points. These are architectural
decisions that have a marked effect on one or more quality attributes.

The outputs of the ATAM are used to build a final written report that recaps
the method, summarizes the proceedings, captures the scenarios and their
analysis, and catalogs the findings.

There are intangible results of an ATAM-based evaluation. These include a
palpable sense of community on the part of the stakeholders, open communica-
tion channels between the architect and the stakeholders, and a better overall un-
derstanding on the part of all participants of the architecture and its strengths and
weaknesses. While these results are hard to measure, they are no less important
than the others and often are the longest-lasting.

Phases of the ataM

Activities in an ATAM-based evaluation are spread out over four phases:

 ■ In phase 0, “Partnership and Preparation,” the evaluation team leadership
and the key project decision makers informally meet to work out the details
of the exercise. The project representatives brief the evaluators about the
project so that the team can be supplemented by people who possess the
appropriate expertise. Together, the two groups agree on logistics, such as
the time and place of meetings, who brings the flipcharts, and who supplies
the donuts and coffee. They also agree on a preliminary list of stakeholders
(by name, not just role), and they negotiate on when the final report is to
be delivered and to whom. They deal with formalities such as a statement
of work or nondisclosure agreements. The evaluation team examines the
architecture documentation to gain an understanding of the architecture and
the major design approaches that it comprises. Finally, the evaluation team
leader explains what information the manager and architect will be expect-
ed to show during phase 1, and helps them construct their presentations if
necessary.

 ■ Phase 1 and phase 2 are the evaluation phases, where everyone gets down
to the business of analysis. By now the evaluation team will have studied
the architecture documentation and will have a good idea of what the
system is about, the overall architectural approaches taken, and the quality
attributes that are of paramount importance. During phase 1, the evaluation
team meets with the project decision makers (for one to two days) to
begin information gathering and analysis. For phase 2, the architecture’s
stakeholders join the proceedings and analysis continues, typically for
two days. Unlike the other phases, phase 1 and phase 2 comprise a set of
specific steps; these are detailed in the next section.

404 Part three architecture in the life cycle 21—Architecture Evaluation

tablE 21.2 ATAM Phases and Their Characteristics

Phase activity Participants typical duration

0 Partnership and
preparation

Evaluation team lead-
ership and key project
decision makers

Proceeds informally as
required, perhaps over
a few weeks

1 Evaluation Evaluation team and
project decision makers

1–2 days followed by a
hiatus of 1–3 weeks

2 Evaluation
(continued)

Evaluation team, project
decision makers, and
stakeholders

2 days

3 Follow-up Evaluation team and
evaluation client

1 week

Source: Adapted from [Clements 01b].

 ■ Phase 3 is follow-up, in which the evaluation team produces and delivers
a written final report. It is first circulated to key stakeholders to make sure
that it contains no errors of understanding, and after this review is complete
it is delivered to the person who commissioned the evaluation.

Table 21.2 shows the four phases of the ATAM, who participates in each
one, and an approximate timetable.

Steps of the Evaluation Phases

The ATAM analysis phases (phase 1 and phase 2) consist of nine steps. Steps 1
through 6 are carried out in phase 1 with the evaluation team and the project’s
decision makers: typically, the architecture team, project manager, and project
sponsor. In phase 2, with all stakeholders present, steps 1 through 6 are
summarized and steps 7 through 9 are carried out.

Table 21.3 shows a typical agenda for the first day of phase 1, which covers
steps 1 through 5. Step 6 in phase 1 is carried out the next day.

Step 1: Present the ataM. The first step calls for the evaluation leader to
present the ATAM to the assembled project representatives. This time is used to
explain the process that everyone will be following, to answer questions, and to
set the context and expectations for the remainder of the activities. Using a stan-
dard presentation, the leader describes the ATAM steps in brief and the outputs of
the evaluation.

Step 2: Present the business drivers. Everyone involved in the eval-
uation—the project representatives as well as the evaluation team members—
needs to understand the context for the system and the primary business drivers

21.2 The Architecture Tradeoff Analysis Method 405

motivating its development. In this step, a project decision maker (ideally the
project manager or the system’s customer) presents a system overview from a
business perspective. The presentation should describe the following:

 ■ The system’s most important functions
 ■ Any relevant technical, managerial, economic, or political constraints
 ■ The business goals and context as they relate to the project
 ■ The major stakeholders
 ■ The architectural drivers (that is, the architecturally significant

requirements)

Step 3: Present the architecture. Here, the lead architect (or architecture
team) makes a presentation describing the architecture at an appropriate level
of detail. The “appropriate level” depends on several factors: how much of the
architecture has been designed and documented; how much time is available; and
the nature of the behavioral and quality requirements.

In this presentation the architect covers technical constraints such as
operating system, hardware, or middleware prescribed for use, and other systems
with which the system must interact. Most important, the architect describes the
architectural approaches (or patterns, or tactics, if the architect is fluent in that
vocabulary) used to meet the requirements.

To make the most of limited time, the architect’s presentation should have a
high signal-to-noise ratio. That is, it should convey the essence of the architecture
and not stray into ancillary areas or delve too deeply into the details of just a few
aspects. Thus, it is extremely helpful to brief the architect beforehand (in phase
0) about the information the evaluation team requires. A template such as the one
in the sidebar can help the architect prepare the presentation. Depending on the
architect, a dress rehearsal can be included as part of the phase 0 activities.

tablE 21.3 Agenda for Day 1 of the ATAM

time activity

0830 – 1000 Introductions; Step 1: Present the ATAM

1000 – 1100 Step 2: Present Business Drivers

1100 – 1130 Break

1130 – 1230 Step 3: Present Architecture

1230 – 1330 Lunch

1330 – 1430 Step 4: Identify Architectural Approaches

1430 – 1530 Step 5: Generate Utility Tree

1530 – 1600 Break

1600 – 1700 Step 5: Generate Utility Tree (continued)

406 Part three architecture in the life cycle 21—Architecture Evaluation

Architecture Presentation (Approximately 20 slides; 60 Minutes)

Driving architectural requirements, the measurable quantities you
associate with these requirements, and any existing standards/models/
approaches for meeting these (2–3 slides)

Important architectural information (4–8 slides):

 ■ Context diagram—the system within the context in which it will exist.
Humans or other systems with which the system will interact.

 ■ Module or layer view—the modules (which may be subsystems or
layers) that describe the system’s decomposition of functionality, along
with the objects, procedures, functions that populate these, and the
relations among them (e.g., procedure call, method invocation, callback,
containment).

 ■ Component-and-connector view—processes, threads along with the
synchronization, data flow, and events that connect them.

 ■ Deployment view—CPUs, storage, external devices/sensors along with
the networks and communication devices that connect them. Also shown
are the processes that execute on the various processors.

Architectural approaches, patterns, or tactics employed, including what
quality attributes they address and a description of how the approaches
address those attributes (3–6 slides):

 ■ Use of commercial off-the-shelf (COTS) products and how they are cho-
sen/integrated (1–2 slides).

 ■ Trace of 1 to 3 of the most important use case scenarios. If possible,
include the runtime resources consumed for each scenario (1–3 slides).

 ■ Trace of 1 to 3 of the most important change scenarios. If possible,
describe the change impact (estimated size/difficulty of the change) in
terms of the changed modules or interfaces (1–3 slides).

 ■ Architectural issues/risks with respect to meeting the driving
architectural requirements (2–3 slides).

 ■ Glossary (1 slide).

Source: Adapted from [Clements 01b].

As may be seen in the presentation template, we expect architectural views,
as described in Chapters 1 and 18, to be the primary vehicle for the architect
to convey the architecture. Context diagrams, component-and-connector views,
module decomposition or layered views, and the deployment view are useful in
almost every evaluation, and the architect should be prepared to show them. Other
views can be presented if they contain information relevant to the architecture
at hand, especially information relevant to achieving important quality attribute
goals.

21.2 The Architecture Tradeoff Analysis Method 407

As a rule of thumb, the architect should present the views that he or she
found most important during the creation of the architecture and the views that
help to reason about the most important quality attribute concerns of the system.

During the presentation, the evaluation team asks for clarification based on
their phase 0 examination of the architecture documentation and their knowledge
of the business drivers from the previous step. They also listen for and write down
any architectural tactics or patterns they see employed.

Step 4: Identify architectural approaches. The ATAM focuses on
analyzing an architecture by understanding its architectural approaches. As we
saw in Chapter 13, architectural patterns and tactics are useful for (among other
reasons) the known ways in which each one affects particular quality attributes.
A layered pattern tends to bring portability and maintainability to a system,
possibly at the expense of performance. A publish-subscribe pattern is scalable
in the number of producers and consumers of data. The active redundancy tactic
promotes high availability. And so forth.

By now, the evaluation team will have a good idea of what patterns and
tactics the architect used in designing the system. They will have studied the
architecture documentation, and they will have heard the architect’s presentation
in step 3. During that step, the architect is asked to explicitly name the patterns
and tactics used, but the team should also be adept at spotting ones not mentioned.

In this short step, the evaluation team simply catalogs the patterns and
tactics that have been identified. The list is publicly captured by the scribe for all
to see and will serve as the basis for later analysis.

Step 5: Generate Quality attribute utility tree. In this step, the quality
attribute goals are articulated in detail via a quality attribute utility tree. Utility
trees, which were described in Chapter 16, serve to make the requirements
concrete by defining precisely the relevant quality attribute requirements that the
architects were working to provide.

The important quality attribute goals for the architecture under consideration
were named in step 2, when the business drivers were presented, but not to
any degree of specificity that would permit analysis. Broad goals such as
“modifiability” or “high throughput” or “ability to be ported to a number of
platforms” establish important context and direction, and provide a backdrop
against which subsequent information is presented. However, they are not
specific enough to let us tell if the architecture suffices. Modifiable in what way?
Throughput that is how high? Ported to what platforms and in how much time?

In this step, the evaluation team works with the project decision makers to
identify, prioritize, and refine the system’s most important quality attribute goals.
These are expressed as scenarios, as described in Chapter 4, which populate the
leaves of the utility tree.

408 Part three architecture in the life cycle 21—Architecture Evaluation

Step 6: analyze architectural approaches. Here the evaluation team
examines the highest-ranked scenarios (as identified in the utility tree) one
at a time; the architect is asked to explain how the architecture supports each
one. Evaluation team members—especially the questioners—probe for the
architectural approaches that the architect used to carry out the scenario. Along
the way, the evaluation team documents the relevant architectural decisions and
identifies and catalogs their risks, nonrisks, sensitivity points, and tradeoffs. For
well-known approaches, the evaluation team asks how the architect overcame
known weaknesses in the approach or how the architect gained assurance that
the approach sufficed. The goal is for the evaluation team to be convinced that
the instantiation of the approach is appropriate for meeting the attribute-specific
requirements for which it is intended.

Scenario walkthrough leads to a discussion of possible risks, nonrisks,
sensitivity points, or tradeoff points. For example:

 ■ The frequency of heartbeats affects the time in which the system can detect
a failed component. Some assignments will result in unacceptable values of
this response—these are risks.

 ■ The number of simultaneous database clients will affect the number of
transactions that a database can process per second. Thus, the assignment
of clients to the server is a sensitivity point with respect to the response as
measured in transactions per second.

 ■ The frequency of heartbeats determines the time for detection of a fault.
Higher frequency leads to improved availability but will also consume
more processing time and communication bandwidth (potentially leading to
reduced performance). This is a tradeoff.

These, in turn, may catalyze a deeper analysis, depending on how the architect
responds. For example, if the architect cannot characterize the number of clients
and cannot say how load balancing will be achieved by allocating processes
to hardware, there is little point in a sophisticated performance analysis. If such
questions can be answered, the evaluation team can perform at least a rudimentary,
or back-of-the-envelope, analysis to determine if these architectural decisions are
problematic vis-à-vis the quality attribute requirements they are meant to address.

The analysis is not meant to be comprehensive. The key is to elicit sufficient
architectural information to establish some link between the architectural
decisions that have been made and the quality attribute requirements that need to
be satisfied.

Figure 21.1 shows a template for capturing the analysis of an architectural
approach for a scenario. As shown, based on the results of this step, the evaluation
team can identify and record a set of sensitivity points and tradeoffs, risks, and
nonrisks.

At the end of step 6, the evaluation team should have a clear picture of the
most important aspects of the entire architecture, the rationale for key design
decisions, and a list of risks, nonrisks, sensitivity points, and tradeoff points.

At this point, phase 1 is concluded.

21.2 The Architecture Tradeoff Analysis Method 409

Scenario #: A12 Scenario: Detect and recover from HW failure
of main switch.

Attribute(s) Availability

Environment Normal operations

Stimulus One of the CPUs fails

Response 0.999999 availability of switch

Architectural decisions Sensitivity Tradeoff Risk Nonrisk

Backup CPU(s) S2 R8

No backup data channel S3 T3 R9

Watchdog S4 N12

Heartbeat S5 N13

Failover routing S6 N14

Reasoning Ensures no common mode failure by using different hardware
and operating system (see Risk 8)

Worst-case rollover is accomplished in 4 seconds as computing
state takes that long at worst

Guaranteed to detect failure within 2 seconds based on rates of
heartbeat and watchdog

Watchdog is simple and has proved reliable

Availability requirement might be at risk due to lack of backup
data channel ... (see Risk 9)

Architecture
diagram

Backup

y

Switch
CPU

heartbeat
(1 sec.)

(OS1)

CPU with
Watchdog

(OS2)

Primarimaimary
CPU
(OS1)

Figure 21.1 Example of architecture approach analysis (adapted from
[Clements 01b])

Hiatus and Start of Phase 2. The evaluation team summarizes what it has
learned and interacts informally (usually by phone) with the architect during a
hiatus of a week or two. More scenarios might be analyzed during this period, if
desired, or questions of clarification can be resolved.

410 Part three architecture in the life cycle 21—Architecture Evaluation

Phase 2 is attended by an expanded list of participants with additional
stakeholders attending. To use an analogy from programming: Phase 1 is akin to
when you test your own program, using your own criteria. Phase 2 is when you
give your program to an independent quality assurance group, who will likely
subject your program to a wider variety of tests and environments.

In phase 2, step 1 is repeated so that the stakeholders understand the method
and the roles they are to play. Then the evaluation leader recaps the results of
steps 2 through 6, and shares the current list of risks, nonrisks, sensitivity points,
and tradeoffs. Now the stakeholders are up to speed with the evaluation results so
far, and the remaining three steps can be carried out.

Step 7: brainstorm and Prioritize Scenarios. In this step, the evaluation
team asks the stakeholders to brainstorm scenarios that are operationally
meaningful with respect to the stakeholders’ individual roles. A maintainer will
likely propose a modifiability scenario, while a user will probably come up with
a scenario that expresses useful functionality or ease of operation, and a quality
assurance person will propose a scenario about testing the system or being able to
replicate the state of the system leading up to a fault.

While utility tree generation (step 5) is used primarily to understand how
the architect perceived and handled quality attribute architectural drivers, the
purpose of scenario brainstorming is to take the pulse of the larger stakeholder
community: to understand what system success means for them. Scenario
brainstorming works well in larger groups, creating an atmosphere in which the
ideas and thoughts of one person stimulate others’ ideas.

Once the scenarios have been collected, they must be prioritized, for the
same reasons that the scenarios in the utility tree needed to be prioritized: the
evaluation team needs to know where to devote its limited analytical time. First,
stakeholders are asked to merge scenarios they feel represent the same behavior
or quality concern. Then they vote for those they feel are most important. Each
stakeholder is allocated a number of votes equal to 30 percent of the number of
scenarios,1 rounded up. So, if there were 40 scenarios collected, each stakeholder
would be given 12 votes. These votes can be allocated in any way that the
stakeholder sees fit: all 12 votes for 1 scenario, 1 vote for each of 12 distinct
scenarios, or anything in between.

The list of prioritized scenarios is compared with those from the utility tree
exercise. If they agree, it indicates good alignment between what the architect
had in mind and what the stakeholders actually wanted. If additional driving
scenarios are discovered—and they usually are—this may itself be a risk, if the
discrepancy is large. This would indicate that there was some disagreement in the
system’s important goals between the stakeholders and the architect.

1. This is a common facilitated brainstorming technique.

21.2 The Architecture Tradeoff Analysis Method 411

Step 8: analyze architectural approaches. After the scenarios have
been collected and prioritized in step 7, the evaluation team guides the architect
in the process of carrying out the highest ranked scenarios. The architect explains
how relevant architectural decisions contribute to realizing each one. Ideally this
activity will be dominated by the architect’s explanation of scenarios in terms of
previously discussed architectural approaches.

In this step the evaluation team performs the same activities as in step 6,
using the highest-ranked, newly generated scenarios.

Typically, this step might cover the top five to ten scenarios, as time permits.

Step 9: Present results. In step 9, the evaluation team groups risks into
risk themes, based on some common underlying concern or systemic deficiency.
For example, a group of risks about inadequate or out-of-date documentation
might be grouped into a risk theme stating that documentation is given insufficient
consideration. A group of risks about the system’s inability to function in the face
of various hardware and/or software failures might lead to a risk theme about
insufficient attention to backup capability or providing high availability.

For each risk theme, the evaluation team identifies which of the business
drivers listed in step 2 are affected. Identifying risk themes and then relating them
to specific drivers brings the evaluation full circle by relating the final results
to the initial presentation, thus providing a satisfying closure to the exercise.
As important, it elevates the risks that were uncovered to the attention of
management. What might otherwise have seemed to a manager like an esoteric
technical issue is now identified unambiguously as a threat to something the
manager is on record as caring about.

The collected information from the evaluation is summarized and presented
to stakeholders. This takes the form of a verbal presentation with slides. The
evaluation leader recapitulates the steps of the ATAM and all the information
collected in the steps of the method, including the business context, driving
requirements, constraints, and architecture. Then the following outputs are
presented:

 ■ The architectural approaches documented
 ■ The set of scenarios and their prioritization from the brainstorming
 ■ The utility tree
 ■ The risks discovered
 ■ The nonrisks documented
 ■ The sensitivity points and tradeoff points found
 ■ Risk themes and the business drivers threatened by each one

412 Part three architecture in the life cycle 21—Architecture Evaluation

“. . . but it was OK.”

Years of experience have taught us that no architecture evaluation exer-
cise ever goes completely by the book. And yet for all the ways that an
exercise might go terribly wrong, for all the details that can be overlooked,
for all the fragile egos that can be bruised, and for all the high stakes that
are on the table, we have never had an architecture evaluation exercise
spiral out of control. Every single one has been a success, as measured
by the feedback we gather from clients.

While they all turned out successfully, there were a few memorable
cliffhangers.

More than once, we began an architecture evaluation only to discover
that the development organization had no architecture to be evaluated.
Sometimes there was a stack of class diagrams or vague text descriptions
masquerading as an architecture. Once we were promised that the archi-
tecture would be ready by the time the exercise began, but in spite of good
intentions, it wasn’t. (We weren’t always so prudent about pre-exercise
preparation and qualification. Our current diligence was a result of experi-
ences like these.) But it was OK. In cases like these, the evaluation’s main
results included the articulated set of quality attributes, a “whiteboard” ar-
chitecture sketched during the exercise, plus a set of documentation obliga-
tions on the architect. In all cases, the client felt that the detailed scenarios,
the analysis we were able to perform on the elicited architecture, plus the
recognition of what needed to be done, more than justified the exercise.

A couple of times we began an evaluation only to lose the architect in
the middle of the exercise. In one case, the architect resigned between
preparation and execution of the evaluation. This was an organization in
turmoil and the architect simply got a better offer in a calmer environment
elsewhere. Normally we don’t proceed without the architect, but it was OK.
In this case the architect’s apprentice stepped in. A little additional prework
to prepare him, and we were all set. The evaluation went off as planned,
and the preparation that the apprentice did for the exercise helped mightily
to prepare him to step into the architect’s shoes.

Once we discovered halfway through an ATAM exercise that the archi-
tecture we had prepared to evaluate was being jettisoned in favor of a new
one that nobody had bothered to mention. During step 6 of phase 1, the ar-
chitect responded to a problem raised by a scenario by casually mentioning
that “the new architecture” would not suffer from that deficiency. Everyone
in the room, stakeholders and evaluators alike, looked at each other in the
puzzled silence that followed. “What new architecture?” I asked blankly, and
out it came. The developing organization (a contractor for the U.S. military,
which had commissioned the evaluation), had prepared a new architecture
for the system, to handle the more stringent requirements they knew were
coming in the future. We called a timeout, conferred with the architect and
the client, and decided to continue the exercise using the new architecture
as the subject instead of the old. We backed up to step 3 (the architecture
presentation), but everything else on the table—business drivers, utility

21.2 The Architecture Tradeoff Analysis Method 413

tree, scenarios—still were completely valid. The evaluation proceeded as
before, and at the conclusion of the exercise our military client was ex-
tremely pleased at the knowledge gained.

In perhaps the most bizarre evaluation in our experience, we lost the
architect midway through phase 2. The client for this exercise was the
project manager in an organization undergoing a massive restructuring.
The manager was a pleasant gentleman with a quick sense of humor, but
there was an undercurrent about him that said he was not to be crossed.
The architect was being reassigned to a different part of the organization
in the near future; this was tantamount to being fired from the project, and
the manager said he wanted to establish the quality of the architecture
before his architect’s awkward departure. (We didn’t find any of this out
until after the evaluation.) When we set up the ATAM exercise, the manager
suggested that the junior designers attend. “They might learn something,”
he said. We agreed. As the exercise began, our schedule (which was very
tight to begin with) kept being disrupted. The manager wanted us to meet
with his company’s executives. Then he wanted us to have a long lunch
with someone who could, he said, give us more architectural insights. The
executives, it turned out, were busy just now, and so could we come back
and meet with them a bit later? By now, phase 2 was thrown off schedule
by so much that the architect, to our horror, had to leave to fly back to his
home in a distant city. He was none too happy that his architecture was
going to be evaluated without him. The junior designers, he said, would
never be able to answer our questions. Before his departure, our team
huddled. The exercise seemed to be teetering on the brink of disaster. We
had an unhappy departing architect, a blown schedule, and questionable
expertise available. We decided to split our evaluation team. One half of the
team would continue with phase 2 using the junior designers as our infor-
mation resource. The second half of the team would continue with phase 2
by telephone the next day with the architect. Somehow we would make the
best of a bad situation.

Surprisingly, the project manager seemed completely unperturbed by
the turn of events. “It will work out, I’m sure,” he said pleasantly, and then
retreated to confer with various vice presidents about the reorganization.

I led the team interviewing the junior designers. We had never gotten
a completely satisfactory architecture presentation from the architect.
Discrepancies in the documentation were met with a breezy “Oh, well,
that’s not how it really works.” So I decided to start over with ATAM step 3.
We asked the half dozen or so designers what their view of the architecture
was. “Could you draw it?” I asked them. They looked at each other ner-
vously, but one said, “I think I can draw part of it.” He took to the whiteboard
and drew a very reasonable component-and-connector view. Someone else
volunteered to draw a process view. A third person drew the architecture for
an important offline part of the system. Others jumped in to assist.

As we looked around the room, everyone was busy transcribing the
whiteboard pictures. None of the pictures corresponded to anything we
had seen in the documentation so far. “Are these diagrams documented

414 Part three architecture in the life cycle 21—Architecture Evaluation

anywhere?” I asked. One of the designers looked up from his busy scrib-
bling for a moment to grin. “They are now,” he said.

As we proceeded to step 8, analyzing the architecture using the
scenarios previously captured, the designers did an astonishingly good
job of working together to answer our questions. Nobody knew everything,
but everybody knew something. Together in a half day, they produced a
clear and consistent picture of the whole architecture that was much more
coherent and understandable than anything the architect had been willing
to produce in two whole days of pre-exercise discussion. And by the end
of phase 2, the design team was transformed. This erstwhile group of
information-starved individuals with limited compartmentalized knowledge
became a true architecture team. The members drew out and recognized
each others’ expertise. This expertise was revealed and validated in front
of everyone—and most important, in front of their project manager, who
had slipped back into the room to observe. There was a look of supreme
satisfaction on his face. It began to dawn on me that—you guessed it—it
was OK.

It turned out that this project manager knew how to manipulate events
and people in ways that would have impressed Machiavelli. The architect’s
departure was not because of the reorganization, but merely coincident
with it. The project manager had orchestrated it. The architect had, the
manager felt, become too autocratic and dictatorial, and the manager
wanted the junior design staff to be given the opportunity to mature and
contribute. The architect’s mid-exercise departure was exactly what the
project manager had wanted. And the design team’s emergence under
fire had been the primary purpose of the evaluation exercise all along.
Although we found several important issues related to the architecture, the
project manager knew about every one of them before we ever arrived. In
fact, he made sure we uncovered some of them by a few discreet remarks
during breaks or after a day’s session.

Was this exercise a success? The client could not have been more
pleased. His instincts about the architecture’s strengths and weaknesses
were confirmed. We were instrumental in helping his design team, which
would guide the system through the stormy seas of the company’s
reorganization, come together as an effective and cohesive unit at exactly
the right time. And the client was so pleased with our final report that he
made sure the company’s board of directors saw it.

These cliffhangers certainly stand out in our memory. There was no
architecture documented. But it was OK. It wasn’t the right architecture.
But it was OK. There was no architect. But it was OK. The client really only
wanted to effect a team reorganization. In every instance we reacted as
reasonably as we could, and each time it was OK.

Why? Why, time after time, does it turn out OK? I think there are three
reasons.

First, the people who have commissioned the architecture evaluation
really want it to succeed. The architect, developers, and stakeholders

21.3 Lightweight Architecture Evaluation 415

assembled at the client’s behest also want it to succeed. As a group, they
help to keep the exercise marching toward the goal of architectural insight.
Second, we are always honest. If we feel that the exercise is derailing,
we call a timeout and confer among ourselves, and usually confer with
the client. While a small amount of bravado can come in handy during
an exercise, we never, ever try to bluff our way through an evaluation.
Participants can detect that instinctively, and the evaluation team must
never lose the respect of the other participants. Third, the methods are
constructed to establish and maintain a steady consensus throughout the
exercise. There are no surprises at the end. The participants lay down
the ground rules for what constitutes a suitable architecture, and they
contribute to the risks uncovered at every step of the way.

So: Do the best job you can. Be honest. Trust the methods. Trust in the
goodwill and good intentions of the people you have assembled. And it will
be OK. (Adapted from [Clements 01b])

—PCC

21.3 lightweight architecture Evaluation

Although we attempt to use time in an ATAM exercise as efficiently as possible,
it remains a substantial undertaking. It requires some 20 to 30 person-days of
effort from an evaluation team, plus even more for the architect and stakeholders.
Investing this amount of time only makes sense on a large and costly project,
where the risks of making a major mistake in the architecture are unacceptable.

For this reason, we have developed a Lightweight Architecture Evaluation
method, based on the ATAM, for smaller, less risky projects. A Lightweight
Architecture Evaluation exercise may take place in a single day, or even
a half-day meeting. It may be carried out entirely by members internal to the
organization. Of course this lower level of scrutiny and objectivity may not
probe the architecture as deeply, but this is a cost/benefit tradeoff that is entirely
appropriate for many projects.

Because the participants are all internal to the organization and fewer in
number than for the ATAM, giving everyone their say and achieving a shared
understanding takes much less time. Hence the steps and phases of a Lightweight
Architecture Evaluation can be carried out more quickly. A suggested schedule
for phases 1 and 2 is shown in Table 21.4.

416 Part three architecture in the life cycle 21—Architecture Evaluation

tablE 21.4 A Typical Agenda for Lightweight Architecture Evaluation

Step
time
allotted Notes

1: Present the ATAM 0 hrs The participants are familiar with the process.
This step may be omitted.

2: Present Business
Drivers

0.25 hrs The participants are expected to understand
the system and its business goals and their
priorities. Fifteen minutes is allocated for a brief
review to ensure that these are fresh in every-
one’s mind and that there are no surprises.

3: Present Architecture 0.5 hrs Again, all participants are expected to be famil-
iar with the system and so a brief overview of
the architecture, using at least module and C&C
views, is presented and 1 to 2 scenarios are
traced through these views.

4: Identify Architectural
Approaches

0.25 hrs The architecture approaches for specific quality
attribute concerns are identified by the architect.
This may be done as a portion of step 3.

5: Generate Quality
Attribute Utility Tree

Variable
0.5 hrs –
1.5 hrs

Scenarios might exist: part of previous evals,
part of design, part of requirements elicitation.
If you’ve got ’em, use ’em and make them into a
tree. Half hour. Otherwise, it will take longer.
A utility tree should already exist; the team re-
views the existing tree and updates it, if needed,
with new scenarios, new response goals, or new
scenario priorities and risk assessments.

6: Analyze Architectural
Approaches

2–3 hrs This step—mapping the highly ranked scenari-
os onto the architecture—consumes the bulk of
the time and can be expanded or contracted as
needed.

7: Brainstorm and
Prioritize Scenarios

0 hrs This step can be omitted as the assembled (in-
ternal) stakeholders are expected to contribute
scenarios expressing their concerns in step 5.

8: Analyze Architectural
Approaches

0 hrs This step is also omitted, since all analysis is
done in step 6.

9: Present Results 0.5 hrs At the end of an evaluation, the team reviews
the existing and newly discovered risks, non-
risks, sensitivities, and tradeoffs and discusses
whether any new risk themes have arisen.

tOtal 4–6 hrs

There is no final report, but (as in the regular ATAM) a scribe is responsible
for capturing results, which can then be distributed and serve as the basis for risk
remediation.

An entire Lightweight Architecture Evaluation can be prosecuted in less than
a day—perhaps an afternoon. The results will depend on how well the assembled
team understands the goals of the method, the techniques of the method, and the
system itself. The evaluation team, being internal, is typically not objective, and
this may compromise the value of its results—one tends to hear fewer new ideas

21.5 For Further Reading 417

and fewer dissenting opinions. But this version of evaluation is inexpensive, easy
to convene, and relatively low ceremony, so it can be quickly deployed whenever
a project wants an architecture quality assurance sanity check.

21.4 Summary

If a system is important enough for you to explicitly design its architecture, then
that architecture should be evaluated.

The number of evaluations and the extent of each evaluation may vary from
project to project. A designer should perform an evaluation during the process of
making an important decision. Lightweight evaluations can be performed several
times during a project as a peer review exercise.

The ATAM is a comprehensive method for evaluating software architectures.
It works by having project decision makers and stakeholders articulate a precise
list of quality attribute requirements (in the form of scenarios) and by illuminating
the architectural decisions relevant to carrying out each high-priority scenario.
The decisions can then be understood in terms of risks or nonrisks to find any
trouble spots in the architecture.

Lightweight Architecture Evaluation, based on the ATAM, provides an
inexpensive, low-ceremony architecture evaluation that can be carried out in an
afternoon.

21.5 for further reading

For a more comprehensive treatment of the ATAM, see [Clements 01b].
Multiple case studies of applying the ATAM are available. They can be found

by going to www.sei.cmu.edu/library and searching for “ATAM case study.”
To understand the historical roots of the ATAM, and to see a second (simpler)

architecture evaluation method, you can read about the software architecture
analysis method (SAAM) in [Kazman 94].

Several lighter weight architecture evaluation methods have been developed.
They can be found in [Bouwers 10], [Kanwal 10], and [Bachmann 11].

Maranzano et al. have published a paper dealing with a long tradition of
architecture evaluation at AT&T and its successor companies [Maranzano 05].

http://www.sei.cmu.edu/library

418 Part three architecture in the life cycle 21—Architecture Evaluation

21.6 discussion Questions

1. Think of a software system that you’re working on. Prepare a 30-minute
presentation on the business drivers for this system.

2. If you were going to evaluate the architecture for this system, who would
you want to participate? What would be the stakeholder roles and who
could you get to represent those roles?

3. Use the utility tree that you wrote for the ATM in Chapter 16 and the
design that you sketched for the ATM in Chapter 17 to perform the scenario
analysis step of the ATAM. Capture any risks and nonrisks that you
discover. Better yet, perform the analysis on the design carried out by a
colleague.

4. It is not uncommon for an organization to evaluate two competing
architectures. How would you modify the ATAM to produce a quantitative
output that facilitates this comparison?

5. Suppose you’ve been asked to evaluate the architecture for a system in
confidence. The architect isn’t available. You aren’t allowed to discuss the
evaluation with any of the system’s stakeholders. How would you proceed?

6. Under what circumstances would you want to employ a full-strength ATAM
and under what circumstances would you want to employ a Lightweight
Architecture Evaluation?

419

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

22
Management and
Governance

How does a project get to be a year behind
schedule? One day at a time.

—Fred Brooks

In this chapter we deal with those aspects of project management and governance
that are important for an architect to know. The project manager is the person
with whom you, as the architect, must work most closely, from an organizational
perspective, and consequently it is important for you to have an understanding of
the project manager’s problems and the techniques available to solve those prob-
lems. We will deal with project management from the perspectives of planning,
organizing, implementing, and measuring. We will also discuss various gover-
nance issues associated with architecture.
In this chapter, we advocate a middleweight approach to architecture. It has the
following aspects:

 ■ Design the software architecture
 ■ Use the architecture to develop realistic schedules
 ■ Use incremental development to get to market quickly

Architecture is most useful in medium- to large-scale projects—projects that typ-
ically have multiple teams, too much complexity for any individual to fully com-
prehend, substantial investment, and multiyear duration. For such projects the
teams need to coordinate, quality attribute problems are not easily corrected, and
management demands both short time to market and adequate oversight. Light-
weight management methods do not provide for a framework to guide team coor-
dination and frequently require extensive restructuring to repair quality attribute
problems. Heavyweight management is usually associated with heavy oversight
and a great emphasis on contractual commitments. In some contexts, this is un-
avoidable, but it has an inherent overhead that slows down development.

420 Part three architecture in the life cycle 22—Management and Governance

22.1 Planning

The planning for a project proceeds over time. There is an initial plan that is nec-
essarily top-down to convince upper management to build this system and give
them some idea of the cost and schedule. This top-down schedule is inherently
going to be incorrect, possibly by large amounts. It does, however, enable the
project manager to educate upper managers as to different elements necessary in
software development. According to Dan Paulish, based on his experience at Sie-
mens Corporation, some rules of thumb that can be used to estimate the top-down
schedule for medium-sized (~150 KSLOC) projects are these:

 ■ Number of components to be estimated: ~150
 ■ Paper design time per component: ~4 hours
 ■ Time between engineering releases: ~8 weeks
 ■ Overall project development allocation:

 ■ 40 percent design: 5 percent architectural, 35 percent detailed
 ■ 20 percent coding
 ■ 40 percent testing

Once the system has been given a go-ahead and a budget, the architecture
team is formed and produces an initial architecture design. The budget item de-
serves some further mention. One case is that the budget is for the whole project
and includes the schedule as well. We will call this case top-down planning. The
second case is that the budget is just for the architecture design phase. In this case,
the overall project budget emerges from the architecture design phase. This pro-
vides a gate that the team has to pass through and gives the holders of the purse
strings a chance to consider whether the value of the project is worth the cost.

We now describe a merged process that includes both the top-down budget
and schedule as well as a bottom-up budget and schedule that emerges from the
architecture design phase.

The architecture team produces the initial architecture design and the re-
lease plans for the system: what features will be released and when the releases
will occur. Once an initial architecture design has been produced, then leads
for the various pieces of the project can be assigned and they can build their
teams. The definition of the various pieces of the project and their assignment
to teams is sometimes called the work breakdown structure. At this point, cost
and schedule estimates from the team leads and an overall project schedule can
be produced. This bottom-up schedule is usually much more accurate than the
top-down schedule, but there may also be significant differences due to differing
assumptions. These differences between the top-down and bottom-up schedules
need to be discussed and sometimes negotiated. Finally, a software development
plan can be written that shows the initial (internal) release as the architectural
skeleton with feature-oriented incremental development after that. The features
to be in each release are developed in consultation with marketing.

22.1 Planning 421

Software
Development Plan

Top-Down
Schedule

Bottom-Up
Schedule

First-Level
Decomposition

Reconciliation

fIGurE 22.1 Overview of planning process

Figure 22.1 shows a process that includes both a top-down schedule and a
bottom-up schedule.

Once the software development plan has been written, the teams can deter-
mine times and groups for integration and can define the coordination needs for
the various projects. As we will see in the subsection on global development in
Section 22.2, the coordination needs for distributed teams can be significant.

422 Part three architecture in the life cycle 22—Management and Governance

22.2 Organizing

Some of the elements of organizing a project are team organization, division of
responsibilities between project manager and software architect, and planning for
global or distributed development.

Software development team Organization

Once the architecture design is in place, it can be used to define the project or-
ganization. Each member of the team that designed the software architecture be-
comes the lead for a team whose responsibility is to implement a portion of the
architecture. Thus, responsibility for fleshing out and implementing the design is
distributed to those who had a role in its definition.

In addition, many support functions such as writing user documentation,
system testing, training, integration, quality assurance, and configuration man-
agement are done in a “matrix” form. That is, individuals who are “matrixed”
report to one person—a functional manager—for their tasking and professional
advancement and to another individual (or to several individuals)—project man-
agers—for their project responsibilities. Matrix organizations have the advantage
of being able to allocate and balance resources as needed rather than assign them
permanently to a project that may have sporadic needs for individuals with par-
ticular skills. They have the disadvantage that the people in them tend to work on
several projects simultaneously. This can cause problems such as divided loyal-
ties or competition among projects for resources.

Typical roles within a software development team are the following:

 ■ Team leader—manages tasks within the team.
 ■ Developer—designs and implements subsystem code.
 ■ Configuration manager—performs regular builds and integration tests. This

role can frequently be shared among multiple software development teams.
 ■ System test manager—system test and acceptance testing.
 ■ Product manager—represents marketing; defines feature sets and how

system being developed integrates with other systems in a product suite.

division of responsibilities between Project Manager and
Software architect

One of the important relations within a team is between the software architect
and the project manager. You can view the project manager as responsible for the
external-facing aspects of the project and the software architect as responsible
for the internal aspects of the project. This division will only work if the external
view accurately reflects the internal situation and the internal activities accurately

22.2 Organizing 423

reflect the expectations of the external stakeholders. That is, the project manager
should know, and reflect to management, the progress and the risks within the
project, and the software architect should know, and reflect to developers, stake-
holder concerns. The relationship between the project manager and the software
architect will have a large impact on the success of a project. They need to have a
good working relation and be mindful of the roles they are filling and the bound-
aries of those roles.

We use the knowledge areas for project management taken from the Proj-
ect Management Body of Knowledge (PMBOK) to show the duties of these two
roles in a variety of categories. Table 22.1 (on the next page) gives the knowledge
area in the language of the PMBOK, defines the knowledge area in English, what
that means in software terms, and how the project manager and the software ar-
chitect collaborate to satisfy that category.

Observe in this table that the project manager is responsible for the business
side of the project—providing resources, creating and managing the budget and
schedule, negotiating with marketing, ensuring quality—and the software archi-
tect is responsible for the technical side of the project—achieving quality, deter-
mining measures to be used, reviewing requirements for feasibility, generating
develop-time requirements, and leading the development team.

Global development

Most substantial projects today are developed by distributed teams. In many or-
ganizations these teams are globally distributed. Some reasons for this trend are
the following:

 ■ Cost. Labor costs vary depending on location, and there is a perception that
moving some development to a low-cost venue will decrease the overall
cost of the project. Experience has shown that, at least for software devel-
opment, savings may only be reaped in the long term. Until the developers
in the low-cost venue have a sufficient level of domain expertise and until
the management practices are adapted to compensate for the difficulties of
distributed development, a large amount of rework must be done, thereby
cutting into and perhaps overwhelming any savings from wages.

 ■ Skill sets and labor availability. Organizations may not be able to hire
developers at a single location: relocation costs are high, the size of the de-
veloper pool may be small, or the skill sets needed are specialized and un-
available in a single location. Developing a system in a distributed fashion
allows for the work to move to where the workers are rather than forcing
the workers to move to the work location.

 ■ Local knowledge of markets. Developers who are developing variants of a
system to be sold in their market have more knowledge about the types of
features that are assumed and the types of cultural issues that may arise.

424
P

art t
h

ree
a

rch
itectu

re in
 th

e l
ife c

ycle
22—

M
anagem

ent and G
overnance

tablE 22.1 Division of Responsibilities between Project Manager and Architect

PMbOK Knowledge
area

description task Project Manager Software architect

Project Integration
Management

Ensuring that the
various elements of
the project are properly
coordinated

Developing, oversee-
ing, and updating the
project plan. Manag-
ing change control
process.

Organize project, man-
age resources, bud-
gets and schedules.
Define metrics and
metric collection strat-
egy. Oversee change
control process.

Create, design, and organize
team around design. Manage de-
pendencies. Implement the cap-
ture of the metrics. Orchestrate
requests for changes. Ensure
that appropriate IT infrastructure
exists.

Project Scope
Management

Ensuring that the proj-
ect includes all of the
work required and only
the work required

Requirements Negotiate project
scope with marketing
and software architect.

Elicit, negotiate, and review run-
time requirements and generate
development requirements.
Estimate cost, schedule, and risk
of meeting requirements.

Project Time
Management

Ensuring that the
project completes in a
timely fashion

Work breakdown
structure and comple-
tion tracking. Project
network diagram with
dates.

Oversee progress
against schedule. Help
define work breakdown
structure. Schedule
coarse activities to
meet deadlines.

Help define work breakdown
structure. Define tracking mea-
sures. Recommend assignment
of resources to software develop-
ment teams.

Project Cost
Management

Ensuring that the proj-
ect is completed within
the required budget

Resource planning,
cost estimation, cost
budgeting

Calculate cost to
completion at various
stages. Make deci-
sions regarding build/
buy and allocation of
resources.

Gather costs from individual
teams. Make recommendations
regarding build/buy and resource
allocations.

Project Quality
Management

Ensuring that the
project will satisfy the
needs for which it was
undertaken

Quality and metrics Define productivity,
size, and project-level
quality measures.

Design for quality and track
system against design. Define
code-level quality metrics.

22.2
O

rganizing
425

PMbOK Knowledge
area

description task Project Manager Software architect

Project Human
Resource
Management

Ensuring that the
project makes the most
effective use of the
people involved with the
project

Managing people and
their careers

Map skill sets of peo-
ple against required
skill sets. Ensure that
appropriate training is
provided. Monitor and
mentor career paths of
individuals. Authorize
recruitment.

Define required technical skill
sets. Mentor developers about ca-
reer paths. Recommend training.
Interview candidates.

Project
Communications
Management

Ensuring timely and
appropriate generation,
collection, dissemi-
nation, storage, and
disposition of project
information

Communicating Manage communi-
cation between team
and external entities.
Report to upper man-
agement.

Ensure communication and
coordination among developers.
Solicit feedback as to progress,
problems, and risks.

Project Risk
Management

Identifying, analyzing,
and responding to
project risk

Risk management Prioritize risks. Report
risks to management.
Take steps to mitigate
risks.

Identify and quantify risks. Adjust
architecture and processes to
mitigate risk.

Project
Procurement
Management

Acquiring goods and
services from outside
organization

Technology Procure necessary
resources. Introduce
new technology.

Determine technology require-
ments. Recommend technology,
training, and tools.

426 Part three architecture in the life cycle 22—Management and Governance

A consequence of performing global or distributed development is that ar-
chitecture and allocation of responsibilities to teams is more important than in
co-located development, where all of the developers are in a single office, or at
least in close proximity. For example, assume Module A uses an interface from
Module B. In time, as circumstances change, this interface may need to be mod-
ified. This means the team responsible for Module B must coordinate with the
team responsible for Module A, as indicated in Figure 22.2.

Methods for coordination include the following:

 ■ Informal contacts. Informal contacts, such as meeting at the coffee room or
in the hallway, are only possible if the teams are co-located.

 ■ Documentation. Documentation, if it is well written, well organized, and
properly disseminated, can be used as a means to coordinate the teams,
whether co-located or at a distance.

 ■ Meetings. Teams can hold meetings, either scheduled or ad hoc and either
face to face or remote, to help bring the team together and raise awareness
of issues.

 ■ Electronic communication. Various forms of electronic communication can
be used as a coordination mechanism, such as email, news groups, blogs,
and wikis.

The choice of method depends on many factors, including infrastructure
available, corporate culture, language skills, time zones involved, and the number
of teams dependent on a particular module. Until an organization has established
a working method for coordinating among distributed teams, misunderstandings
among the teams are going to cause delays and, in some cases, serious defects in
a project.

Coordina�on	

Module	 A	

	 	
	 	 	 	 	 	 	 	

Team	 A	

Dependency	
Module	 B	

	 	
	 	 	 	 	 	 	 	

Team	 B	

fIGurE 22.2 If there is a dependency between Module A and Module B, then
the teams must coordinate to develop and modify the interface.

22.3 Implementing 427

22.3 Implementing

During the implementation phase of a project, the project manager and architect
have a series of decisions to make. In this section we discuss those involving
tradeoffs, incremental development, and managing risk.

tradeoffs

From the project manager’s perspective, tradeoffs are between quality, schedule,
functionality, and cost. These are the aspects of the project that are important to
the external stakeholders, and the external stakeholders are the project manager’s
constituency. Which of these aspects is most important depends on the project
context, and one of the project manager’s major responsibilities is to make this
determination.

Over time, there is always new functionality that someone wants to have
added to the project. Frequently these requests come from the marketing depart-
ment. It is important that the consequences of these new requirements, in terms
of cost and schedule, be communicated to all concerned stakeholders. This is an
area where the project manager and the architect must cooperate. What appear
to be small requirements changes from an outsider’s perspective can, at times,
require major modifications to the architecture and consequently delay a project
significantly.

The project manager’s first response to creeping functionality is to resist
it. Acting as a gatekeeper for the project and shielding it from distractions is a
portion of the job description. One technique that is frequently used to manage
change is a change control board. Bureaucracy can, at times, be your friend.
Change control boards are committees set up for the purpose of managing change
within a project. The original architecture team members are good candidates to
sit on the change control board. Before changing an interface, for example, the
impact on those modules that depend on the interface needs to be considered.

Any change to the architecture will incur costs, and it is the architect’s re-
sponsibility to be the gatekeeper for such changes. A change in the architecture
implies changes in code, changes in the architecture documentation, and perhaps
changes in build-time tools that enforce architectural conformance.

Documentation is especially important in distributed development. Co-lo-
cated teams have a variety of informal coordination possibilities, such as going
to the next office or meeting in the coffee room or the hall. Remote teams do not
have these informal mechanisms and so must rely on more formal mechanisms
such as documentation; team members must have the initiative to talk to each
other when doubts arise. One company mounted a webcam on each developer’s
desktop to facilitate personal communication.

428 Part three architecture in the life cycle 22—Management and Governance

Incremental development

Recall that the software development plan lays out the overall schedule. Every six
to eight weeks a new release should be available and the specifics of the next re-
lease are decided. Forty percent of a typical project’s effort is devoted to testing.
This means that testing should begin as soon as possible. Testing for a release can
begin once the forward development has begun on the next release. The schedule
also has to accommodate repairing the faults uncovered by the testing. This leads
to a release being in one of three states:

1. Planning. This occurs toward the end of the prior development release.
Enough of the prior release must be completed to understand what will be
unfinished in that release and must be carried forward to the next one. At
this stage, the software development plan is updated.

2. Development. The planned release is coded. We will discuss below how
the project manager and architect track progress on the release. Daily
builds and automated testing can give some insight into problems during
development.

3. Test and repair. The release is tested through exercise of the test plan. In
Chapter 19 we described how the architecture can inform the test plan
and even obviate the need for certain types of testing. The problems found
during test are repaired or are carried forward to the next release.

tracking Progress

The project manager can track progress through personal contact with developers
(this tends to not scale up well), formal status meetings, metrics, and risk man-
agement. Metrics will be discussed in the next section. Personal contact involves
checking with key personnel individually to determine progress. These are one-
on-one meetings, either scheduled or unscheduled.

Meetings, in general, are either status or working meetings. The two types
of meetings should not be mixed. In a status meeting, various teams report on
progress. This allows for communication among the teams. Issues raised at status
meetings should be resolved outside of these meetings—either by individuals or
by separately scheduled working meetings. When an issue is raised at a status
meeting, a person should be assigned to be responsible for the resolution of that
issue.

Meetings are expensive. Holding effective meetings is an important skill for
a manager, whether the project manager or the architect. Meetings should have
written agendas that are circulated before the meetings begin, attendees should be
expected to have done some prework for the meeting (such as read-ahead), and
only essential individuals should attend.

One of the outputs of status meetings is a set of risks. A risk is a potential
problem together with the consequences if it occurs. The likelihood of the risk

22.4 Measuring 429

occurring should also be recorded. Risks are also raised at reviews. We have dis-
cussed architecture evaluation, and it is important from a project management
perspective that reviews are included in the schedule. These can be code reviews,
architecture reviews, or requirements reviews. Risks are also raised by develop-
ers. They are the ones who have the best perspective on potential problems at the
implementation level. Architecture evaluation is also important because it is a
source of discovering risks.

The project manager must prioritize the risks, frequently with the assistance
of the architect, and, for the most serious risks, develop a mitigation strategy.
Mitigating risks is also a cost, and so implementing the strategy to reduce a risk
depends on its priority, likelihood of occurrence, and cost if it does occur.

22.4 Measuring

Metrics are an important tool for project managers. They enable the manager to
have an objective basis both for their own decision making and for reporting to
upper management on the progress of the project.

Metrics can be global—pertaining to the whole project—or they may de-
pend on a particular phase of the project. Another important class of metrics is
“cost to complete.” We discuss each of these below.

Global Metrics

Global metrics aid the project manager in obtaining an overall sense of the proj-
ect and tracking its progress over time. All global metrics should be updated from
time to time as the project proceeds.

First, the project manager needs a measure of project size. The three most
common measures of project size are lines of code, function points, and size of
the test suite. None of these is completely satisfactory as a predictor of cost or
effort, but these are the most commonly used size metrics in practice.

Schedule deviation is another global metric. Schedule deviation is measured
by taking the difference between the planned work time and the actual work time.
Once time has passed, it can never be recovered. If a project falls behind in its
schedule, a tradeoff must be made between the aspects we mentioned before:
schedule, quality, functionality, and cost. As the project proceeds, schedule de-
viation indicates a failure of estimation or an unforeseen occurrence. By drilling
down in this metric and discovering which teams are slipping, the project man-
ager can decide to reallocate resources, if necessary.

Developer productivity is another metric that the project manager can
track. The project manager should look for anomalies in the productivity of the

430 Part three architecture in the life cycle 22—Management and Governance

developers. An anomaly indicates a potential problem that should be investigated:
perhaps a developer is inadequately trained for a task, or perhaps the task was im-
properly estimated. Earned value management is one technique for measuring the
productivity of developers.

Finally, defects should be tracked. Again, anomalies in the number of defects
discovered over time indicate a potential problem that should be investigated. Not
only defects but technical debt should be tracked as well (see Chapter 15).

All of these measures have both a historical basis and a project basis. The
historical basis is used to make the initial estimates and then the project basis is
used for ongoing management activities.

Phase Metrics and costs to complete

Open issues should be kept for each phase. For example, until a design is com-
plete, there are always open issues. These should be tracked and additional re-
sources allocated if they are not resolved in a timely fashion. Risks represent
open issues that should be tracked, as does the project backlog.

Unmitigated risks from reviews are treated in a similar fashion. We have al-
ready discussed risk management, but one item a project manager can report to upper
management is the number of high-priority risks and the status of their mitigation.

Costs to complete is a bottom-up measure that derives from the bottom-up
schedule. Once the various pieces of the architecture have been assigned to teams,
then the teams take ownership of their schedule and the cost to complete their pieces.

22.5 Governance

Up to this point, we have maintained a focus in this chapter. We have focused
on the project manager as the embodiment of the project and have not discussed
the external forces that act on the project manager. The topic of governance deals
directly with these other forces. The Open Group defines architecture governance
as “the practice and orientation by which enterprise architectures and other archi-
tectures are managed and controlled.” Implicit in this definition is the idea that
the project—which is the focus of this book—exists in an organizational context.
This context will mediate the interactions of the system being constructed with
the other systems in the organization.

The Open Group goes on to identify four items as responsibilities of a gov-
ernance board:

 ■ Implementing a system of controls over the creation and monitoring of all
architectural components and activities, to ensure the effective introduction,
implementation, and evolution of architectures within the organization

22.5 Governance 431

 ■ Implementing a system to ensure compliance with internal and external
standards and regulatory obligations

 ■ Establishing processes that support effective management of the above pro-
cesses within agreed parameters

 ■ Developing practices that ensure accountability to a clearly identified stake-
holder community, both inside and outside the organization

Note the emphasis on processes and practices. Maintaining an effective gov-
ernance process without excessive overhead is a line that is difficult to maintain
for an organization.

The problem comes about because each system that exists in an enterprise has
its own stakeholders and its own internal governance processes. Creating a system
that utilizes a collection of other systems raises the issue of who is in control.

Consider the following example. Company A has a collection of products
that cover different portions of a manufacturing facility. One collection of sys-
tems manages the manufacturing process, another manages the processes by
which various portions of the end product are integrated, and a third collection
manages the enterprise. Each of these collections of systems has its own set of
customers.

Now suppose that the board of directors wishes to market the collection as
an end-to-end solution for a manufacturing facility. It further turns out that the
systems that manage the manufacturing process have a 6-month release cycle be-
cause the technology is changing quickly in this area. The systems that manage
the integration process have a 9-month release cycle because they are based on
a widely used commercial product with a 9-month release cycle. The enterprise
systems have a 12-month release cycle because they are based on an organiza-
tion’s fiscal year and reflect tax and regulatory changes that are likely to occur
on fiscal year boundaries. Table 22.2 shows these schedules beginning at date 0.

What should the release schedule be for the combined end-to-end solution?
Recall that each of these sets of products has reasons for their release schedule
and each has its own set of customers who will not be receptive to changes in the
release schedule. This is typical of the sort of problem that a governance commit-
tee deals with.

tablE 22.2 Release Schedules of Different Types of Products

Manufacturing Process
control

Integration Process
control Enterprise Management

Version 1—date 0 Version 1—date 0 Version 1—date 0

Version 2—date 6 months Version 2—date 9 months Version 2—date 12 months

Version 3—date 12 months Version 3—date 18 months Version 3—date 24 months

432 Part three architecture in the life cycle 22—Management and Governance

22.6 Summary

A project must be planned, organized, implemented, tracked, and governed.
The plan for a project is initially developed as a top-down schedule with

an acknowledgement that it is only an estimate. Once the decomposition of the
system has been done, a bottom-up schedule can be developed. The two must be
reconciled, and this becomes the basis for the software development plan.

Teams are created based on the software development plan. The software
architect and the project manager must coordinate to oversee the implementation.
Global development creates a need for an explicit coordination strategy that is
based on more formal methods than needed for co-located development.

The implementation itself causes tradeoffs between schedule, function, and
cost. Releases are done in an incremental fashion and progress is tracked by both
formal metrics and informal communication.

Larger systems require formal governance mechanisms. The issue of who
has control over a particular portion of the system may prevent some business
goals from being realized.

22.7 for further reading

Dan Paulish has written an excellent book on managing in an architecture-centric
environment— [Paulish 02]—and much of the material in this chapter is adapted
from his book.

The Agile community has independently arrived at a medium-weight man-
agement process that advocates up-front architecture. See [Coplein 10] for an
example of the Agile community’s description of architecture.

The responsibilities of a governance board can be found in The Open Group
Architecture Framework (TOGAF), produced by the Open Group. www.open-
group.org/architecture/togaf8-doc/arch/chap26.html

Basic concepts of project management are covered in [IEEE 11].
Using concepts of lean manufacturing, Kanban is a method for scheduling

the production of a system [Ladas 09].
Earned value management is discussed in en.wikipedia.org/wiki/Earned_

value_management

http://www.open-group.org/architecture/togaf8-doc/arch/chap26.html
http://www.open-group.org/architecture/togaf8-doc/arch/chap26.html

22.8 Discussion Questions 433

22.8 discussion Questions

1. What are the reasons that top-down and bottom-up schedule estimates dif-
fer and how would you resolve this conflict in practice?

2. Generic project management practices advocate creating a work breakdown
structure as the first artifact produced by a project. What is wrong with this
practice from an architectural perspective?

3. If you were managing a globally distributed team, what architectural docu-
mentation artifacts would you want to create first?

4. If you were managing a globally distributed team, what aspects of project
management would have to change to account for cultural differences?

5. Enumerate three different global metrics and discuss the advantages and
disadvantages of each?

6. How could you use architectural evaluation as a portion of a governance
plan?

7. In Chapter 1 we described a work assignment structure for software archi-
tecture, which can be documented as a work assignment view. (Because it
maps software elements—modules—to a nonsoftware environmental struc-
ture—the organizational units that will be responsible for implementing the
modules—it is a kind of allocation view.) Discuss how documenting a work
assignment view for your architecture provides a vehicle for software archi-
tects and managers to work together to staff a project. Where is the dividing
line between the part of the work assignment view that the architect should
provide and the part that the manager should provide?

This page intentionally left blank

435

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T FO U R

arcHItEcturE aNd
buSINESS

Perhaps the most important job of an architect is to be a fulcrum where business
and technical decisions meet and interact. The architect is responsible for many
aspects of the business, and must be continually translating business needs and
goals into technical realizations, and translating technical opportunities and lim-
itations into business consequences.

In this section of the book, we explore some of the most important business
consequences of architecture. This includes treating software architecture deci-
sions as business investments, dealing with the organizational aspects of architec-
ture (such as organizational learning and knowledge management), and looking
at architecture as the key enabler of software product lines.

In Chapter 23 we discuss the economic implications of architectural de-
cisions and provide a method—called the CBAM, or Cost Benefit Analysis
Method—for making rational, business-driven architectural choices. The CBAM
builds upon other architecture methods and principles that you have already seen
in this book—scenarios, quality attributes, active stakeholder involvement—but
adds a new twist to the evaluation of architectural improvements: an explicit con-
sideration of the utility that an architectural improvement brings.

In Chapter 24 we consider the fact that architectures are created by actual
human beings, called architects working in actual organizations. This chapter
considers the questions of how to foster individual competence—that is, how

436

to create competent architects—and how to create architecturally competent
organizations.

Finally, in Chapter 25 we look at the concept of software product lines. Not
surprisingly, we find that software architectures are the most important compo-
nent of software-intensive product lines.

437

23
Economic Analysis of
Architectures

Arthur Dent: “I think we have different value systems.”
Ford Prefect: “Well mine’s better.”

—Douglas Adams, Mostly Harmless

Thus far, we have been primarily investigating the relationships between archi-
tectural decisions and the quality attributes that the architecture’s stakeholders
have deemed important: If I make this architectural decision, what effect will it
have on the quality attributes? If I have to achieve that quality attribute require-
ment, what architectural decisions will do the trick?

As important as this effort is, this perspective is missing a crucial consider-
ation: What are the economic implications of an architectural decision?

Usually an economic discussion is focused on costs, primarily the costs of
building the system in the first place. Other costs, often but not always down-
played, include the long-term costs incurred through cycles of maintenance and
upgrade. However, as we argue in this chapter, as important as costs are the bene-
fits that an architectural decision may bring to an organization.

Given that the resources for building and maintaining a system are finite,
there must be a rational process that helps us choose among architectural options,
during both an initial design phase and subsequent upgrade periods. These op-
tions will have different costs, will consume differing amounts of resources, will
implement different features (each of which brings some benefit to the organiza-
tion), and will have some inherent risk or uncertainty. To capture these aspects,
we need economic models of software that take into account costs, benefits, risks,
and schedule implications.

438 Part four architecture and business 23—Economic Analysis of Architectures

23.1 decision-Making context

As we saw in Chapter 16, business goals play a key role in requirements for ar-
chitectures. Because major architectural decisions have technical and economic
implications, the business goals behind a software system should be used to
directly guide those decisions. The most immediate economic implication of a
business goal decision on an architecture is how it affects the cost of implement-
ing the system. The quality attributes achieved by the architecture decisions have
additional economic implications because of the benefits (which we call utility)
that can be derived from those decisions; for example, making the system faster
or more secure or easier to maintain and update. It is this interplay between the
costs and the benefits of architectural decisions that guides (and torments) the
architect. Figure 23.1 show this interplay.

For example, using redundant hardware to achieve a desired level of avail-
ability has a cost; checkpointing to a disk file has a different cost. Furthermore,
both of these architectural decisions will result in (presumably different) measur-
able levels of availability that will have some value to the organization develop-
ing the system. Perhaps the organization believes that its stakeholders will pay
more for a highly available system (a telephone switch or medical monitoring
software, for example) or that it will be sued if the system fails (for example, the
software that controls antilock brakes in an automobile).

Knowing the costs and benefits associated with particular decisions enables
reasoned selection from among competing alternatives. The economic analysis
does not make decisions for the stakeholders, just as a financial advisor does not
tell you how to invest your money. It simply aids in the elicitation and documen-
tation of value for cost (VFC): a function of the costs, benefits, and uncertainty of
a “portfolio” of architectural investments. It gives the stakeholders a framework
within which they can apply a rational decision-making process that suits their
needs and their risk aversion.

Business Architecture
Strategies

Cost

Benefit

•
•
•

Performance

Security

Modifiability

Usability

Goals

fIGurE 23.1 Business goals, architectural decisions, costs, and benefits

23.2 The Basis for the Economic Analyses 439

Economic analysis isn’t something to apply to every architectural decision,
but rather to the most basic ones that put an overarching architectural strategy in
place. It can help you assess the viability of that strategy. It can also be the key to
objective selection among competing strategies, each of which might have advo-
cates pushing their own self-interests.

23.2 the basis for the Economic analyses

We now describe the key ideas that form the basis for the economic analyses. The
practical realization of these ideas can be packaged in a variety of ways, as we
describe in Section 23.3. Our goal here is to develop the theory underpinning a
measure of VFC for various architectural strategies in light of scenarios chosen
by the stakeholders.

We begin by considering a collection of scenarios generated as a portion of
requirements elicitation, an architectural evaluation, or specifically for the eco-
nomic analysis. We examine how these scenarios differ in the values of their pro-
jected responses and we then assign utility to those values. The utility is based on
the importance of each scenario being considered with respect to its anticipated
response value.

Armed with our scenarios, we next consider the architectural strategies that
lead to the various projected responses. Each strategy has a cost, and each im-
pacts multiple quality attributes. That is, an architectural strategy could be imple-
mented to achieve some projected response, but while achieving that response,
it also affects some other quality attributes. The utility of these “side effects”
must be taken into account when considering a strategy’s overall utility. It is this
overall utility that we combine with the project cost of an architectural strategy to
calculate a final VFC measure.

utility-response curves

Our economic analysis uses quality attribute scenarios (from Chapter 4) as the
way to concretely express and represent specific quality attributes. We vary the
values of the responses, and ask what the utility is of each response. This leads to
the concept of a utility-response curve.

Each scenario’s stimulus-response pair provides some utility (value) to the
stakeholders, and the utility of different possible values for the response can be
compared. This concept of utility has roots that go back to the eighteenth cen-
tury, and it is a technique to make comparable very different concepts. To help
us make major architectural decisions, we might wish to compare the value of
high performance against the value of high modifiability against the value of high
usability, and so forth. The concept of utility lets us do that.

440 Part four architecture and business 23—Economic Analysis of Architectures

Although sometimes it takes a little prodding to get them to do it, stakehold-
ers can express their needs using concrete response measures, such as “99.999
percent available.” But that leaves open the question of how much they would
value slightly less demanding quality attributes, such as “99.99 percent avail-
able.” Would that be almost as good? If so, then the lower cost of achieving that
lower value might make that the preferred option, especially if achieving the
higher value was going to play havoc with another quality attribute like perfor-
mance. Capturing the utility of alternative responses of a scenario better enables
the architect to make tradeoffs involving that quality attribute.

We can portray each relationship between a set of utility measures and a cor-
responding set of response measures as a graph—a utility-response curve. Some
examples of utility-response curves are shown in Figure 23.2. In each, points la-
beled a, b, or c represent different response values. The utility-response curve
thus shows utility as a function of the response value.

Utility

100

0

Quality attribute response
a b

Utility

100

0

Quality attribute response
a b

Utility

100

0

Quality attribute response
a b

Utility

100

0

Quality attribute response
a b

Utility

100

0

Quality attribute response
a b c

(a) (b)

(c) (d)

(e)

fIGurE 23.2 Some sample utility-response curves

23.2 The Basis for the Economic Analyses 441

The utility-response curve depicts how the utility derived from a particular
response varies as the response varies. As seen in Figure 23.2, the utility could
vary nonlinearly, linearly, or even as a step function. For example, graph (c) por-
trays a steep rise in utility over a narrow change in a quality attribute response
level. In graph (a), a modest change in the response level results in only a very
small change in utility to the user.

In Section 23.3 we illustrate some ways to engage stakeholders to get them
to construct utility curves.

Weighting the Scenarios

Different scenarios will have different importance to the stakeholders; in order
to make a choice of architectural strategies that is best suited to the stakeholders’
desires, we must weight the scenarios. It does no good to spend a great deal of ef-
fort optimizing a particular scenario in which the stakeholders actually have very
little interest. Section 23.3 presents a technique for applying weights to scenarios.

Side Effects

Every architectural strategy affects not only the quality attributes it was selected
to achieve, but also other quality attributes as well. As you know by now, these
side effects on other quality attributes are often negative. If those effects are too
negative, we must make sure there is a scenario for the side effect attribute and
determine its utility-response curve so that we can add its utility to the deci-
sion-making mix. We calculate the benefit of applying an architectural strategy
by summing its benefits to all relevant quality attributes; for some quality attri-
butes the benefit of a strategy might be negative.

determining benefit and Normalization

The overall benefit of an architectural strategy across quality attribute scenarios
is the sum of the utility associated with each one, weighted by the importance of
the scenario. For each architectural strategy i, its benefit Bi over j scenarios (each
with weight Wj) is

B
i
 = ∑

j
 (b

i,j
 × W

j
)

Referring to Figure 23.2, each bi,j is calculated as the change in utility (over
whatever architectural strategy is currently in place, or is in competition with the
one being considered) brought about by the architectural strategy with respect to
this scenario:

b
i,j

 = U
expected

 – U
current

442 Part four architecture and business 23—Economic Analysis of Architectures

That is, the utility of the expected value of the architectural strategy minus
the utility of the current system relative to this scenario.

calculating Value for cost

The VFC for each architectural strategy is the ratio of the total benefit, Bi, to the
cost, Ci, of implementing it:

VFC = B
i
 / C

i

The cost Ci is estimated using a model appropriate for the system and the
environment being developed, such as a cost model that estimates implementa-
tion cost by measuring an architecture’s interaction complexity. You can use this
VFC score to rank-order the architectural strategies under consideration.

Consider curves (a) and (b) in Figure 23.2. Curve (a) flattens out as the qual-
ity attribute response improves. In this case, it is likely that a point is reached past
which VFC decreases as the quality attribute response improves; spending more
money will not yield a significant increase in utility. On the other hand, curve (b)
shows that a small improvement in quality attribute response can yield a very sig-
nificant increase in utility. In that situation, an architectural strategy whose VFC
is low might rank significantly higher with a modest improvement in its quality
attribute response.

23.3 Putting theory into Practice: the cbaM

With the concepts in place we can now describe techniques for putting
them into practice, in the form of a method we call the Cost Benefit Analysis
Method (CBAM). As we describe the method, remember that, like all of our
stakeholder-based methods, it could take any of the forms for stakeholder interac-
tion that we discussed in the introduction to Part III.

Practicalities of utility curve determination

To build the utility-response curve, we first determine the quality attribute levels
for the best-case and worst-case situations. The best-case quality attribute level is
that above which the stakeholders foresee no further utility. For example, a sys-
tem response to the user of 0.1 second is perceived as instantaneous, so improv-
ing it further so that it responds in 0.03 second has no additional utility. Simi-
larly, the worst-case quality attribute level is a minimum threshold above which a

23.3 Putting Theory into Practice: The CBAM 443

system must perform; otherwise it is of no use to the stakeholders. These levels—
best-case and worst-case—are assigned utility values of 100 and 0, respectively.
We then determine the current and desired utility levels for the scenario. The re-
spective utility values (between 0 and 100) for various alternative strategies are
elicited from the stakeholders, using the best-case and worst-case values as refer-
ence points. For example, our current design provides utility about half as good
as we would like, but an alternative strategy being considered would give us 90
percent of the maximum utility. Hence, the current utility level is set to 50 and the
desired utility level is set to 90.

In this manner the utility curves are generated for all of the scenarios.

Show Business or Accounting?

As software architects, what kind of business are we in? One of Irving
Berlin’s most famous songs is entitled “There’s No Business Like Show
Business.” David Letterman, riffing off this song title, once quipped,
“There’s no business like show business, but there are several businesses
like accounting.”

How should we think of ourselves, as architects? Consider two more
quotations from famous business leaders:

I never get the accountants in before I start up a business. It’s done on gut
feeling. —Richard Branson

It has been my experience that competency in mathematics, both in numeri-
cal manipulations and in understanding its conceptual foundations, enhances
a person’s ability to handle the more ambiguous and qualitative relationships
that dominate our day-to-day financial decision-making. —Alan Greenspan

Architectures are at the fulcrum of a set of business, social, and techni-
cal decisions. A poor decision in any dimension can be disastrous for an
organization. A decision in any one dimension is influenced by the other
dimensions. So in our roles as architects, which are we, Alan Greenspan or
Richard Branson?

My claim is that, as an industry, we in software are more like Richard
Branson. We make decisions that have enormous economic consequences
on a gut feeling, without ever examining their financial consequences in
a disciplined way. This might be OK if you are an intuitive genius, but it
doesn’t work well for most of us. Engineering is about making good deci-
sions in a rational, predictable way. For this we need methods.

—RK

444 Part four architecture and business 23—Economic Analysis of Architectures

Practicalities of Weighting determination

One method of weighting the scenarios is to prioritize them and use their prior-
ity ranking as the weight. So for N scenarios, the highest priority one is given a
weight of 1, the next highest is given a weight of (N–1)/N, and so on. This turns
the problem of weighting the scenarios into one of assigning priorities.

The stakeholders can determine the priorities through a variety of voting
schemes. One simple method is to have each stakeholder prioritize the scenarios
(from 1 to N) and the total priority of the scenario is the sum of the priorities it
receives from all of the stakeholders. This voting can be public or secret.

Other schemes are possible. Regardless of the scheme used, it must make
sense to the stakeholders and it must suit their culture. For example, in some cor-
porate environments, everything is done by consensus. In others there is a strict
hierarchy, and in still others decisions are made in a democratic fashion. In the
end it is up to the stakeholders to make sure that the scenario weights agree with
their intuition.

Practicalities of cost determination

One of the shortcomings of the field of software architecture is that there are very
few cost models for various architectural strategies. There are many software cost
models, but they are based on overall system characteristics such as size or func-
tion points. These are inadequate to answer the question of how much does it
cost to, for example, use a publish-subscribe pattern in a particular portion of the
architecture. There are cost models that are based on complexity of modules (by
function point analysis according to the requirements assigned to each module)
and the complexity of module interaction, but these are not widely used in prac-
tice. More widely used in practice are corporate cost models based on previous
experience with the same or similar architectures, or the experience and intuition
of senior architects.

Lacking cost models whose accuracy can be assured, architects often turn
to estimation techniques. To proceed, remember that an absolute number for cost
isn’t necessary to rank candidate architecture strategies. You can often say some-
thing like “Suppose strategy A costs $x. It looks like strategy B will cost $2x, and
strategy C will cost $0.5x.” That’s enormously helpful. A second approach is to
use very coarse estimates. Or if you lack confidence for that degree of certainty,
you can say something like “Strategy A will cost a lot, strategy B shouldn’t cost
very much, and strategy C is probably somewhere in the middle.”

cbaM

Now we describe the method we use for economic analysis: the Cost Benefit
Analysis Method. CBAM has for the most part been applied when an organization

23.3 Putting Theory into Practice: The CBAM 445

was considering a major upgrade to an existing system and they wanted to un-
derstand the utility and value for cost of making the upgrade, or they wanted to
choose between competing architectural strategies for the upgrade. CBAM is also
applicable for new systems as well, especially for helping to choose among com-
peting strategies. Its key concepts (quality attribute response curves, cost, and
utility) do not depend on the setting.

Steps. A process flow diagram for the CBAM is given in Figure 23.3. The first
four steps are annotated with the relative number of scenarios they consider. That
number steadily decreases, ensuring that the method concentrates the stakehold-
ers’ time on the scenarios believed to be of the greatest potential in terms of VFC.

This description of CBAM assumes that a collection of quality attribute sce-
narios already exists. This collection might have come from a previous elicitation
exercise such as an ATAM exercise (see Chapter 21) or quality attribute utility
tree construction (see Chapter 16).

The stakeholders in a CBAM exercise include people who can authorita-
tively speak to the utility of various quality attribute responses, and probably
include the same people who were the source of the quality attribute scenarios
being used as input. The steps are as follows:

1. Collate scenarios. Give the stakeholders the chance to contribute new sce-
narios. Ask the stakeholders to prioritize the scenarios based on satisfying
the business goals of the system. This can be an informal prioritization
using a simple scheme such as “high, medium, low” to rank the scenarios.
Choose the top one-third for further study.

2. Refine scenarios. Refine the scenarios chosen in step 1, focusing on their
stimulus-response measures. Elicit the worst-case, current, desired, and
best-case quality attribute response level for each scenario. For example,
a refined performance scenario might tell us that worst-case performance
for our system’s response to user input is 12 seconds, the best case is 0.1
seconds, and our desired response is 0.5 seconds. Our current architecture
provides a response of 1.5 seconds:

Scenario Worst case current desired best case

Scenario #17:
Response to
user input

12 seconds 1.5 seconds 0.5 seconds 0.1 seconds

…

3.	 Prioritize scenarios. Prioritize the refined scenarios, based on stakeholder
votes. You give 100 votes to each stakeholder and have them distribute the
votes among the scenarios, where their voting is based on the desired response
value for each scenario. Total the votes and choose the top 50 percent of
the scenarios for further analysis. Assign a weight of 1.0 to the highest-rated
scenario; assign the other scenarios a weight relative to the highest rated. This

446 Part four architecture and business 23—Economic Analysis of Architectures

becomes the weighting used in the calculation of a strategy’s overall benefit.
Make a list of the quality attributes that concern the stakeholders.

4.	 Assign utility. Determine the utility for each quality attribute response level
(worst-case, current, desired, best-case) for the scenarios from step 3. You can
conveniently capture these utility curves in a table (one row for each scenario,
one column for each of the four quality attribute response levels). Continuing
our example from step 2, this step would assign utility values from 1 to 100
for each of the latency values elicited for this scenario in step 2:

Scenario Worst case current desired best case

Scenario #17:
Response to
user input

12 seconds 1.5 seconds 0.5 seconds 0.1 seconds

Utility 5 Utility 50 Utility 80 Utility 85

5. Map architectural strategies to scenarios and determine their expected
quality attribute response levels. For each architectural strategy under con-
sideration, determine the expected quality attribute response levels that will
result for each scenario.

6. Determine the utility of the expected quality attribute response levels by
interpolation. Using the elicited utility values (that form a utility curve),
determine the utility of the expected quality attribute response level for the
architectural strategy. Do this for each relevant quality attribute enumerated
in step 3. For example, if we are considering a new architectural strategy
that would result in a response time of 0.7 seconds, we would assign this
a utility proportionately between 50 (which it exceeds) and 80 (which it
doesn’t exceed).

The formula for interpolation between two data points (x
a
, y

a
) and (x

b
, y

b
)

is given by:

y = ya + (yb – ya)
(x – xa)
(xb – xa)

For us, the x values are the quality attribute response levels and the y
values are the utility values. So, employing this formula, the utility value of
a 0.7-second response time is 74.

7. Calculate the total benefit obtained from an architectural strategy. Subtract
the utility value of the “current” level from the expected level and normal-
ize it using the votes elicited in step 3. Sum the benefit due to a particular
architectural strategy across all scenarios and across all relevant quality
attributes.

8.	 Choose architectural strategies based on VFC subject to cost and schedule
constraints. Determine the cost and schedule implications of each archi-
tectural strategy. Calculate the VFC value for each as a ratio of benefit to
cost. Rank-order the architectural strategies according to the VFC value and
choose the top ones until the budget or schedule is exhausted.

23.3 Putting Theory into Practice: The CBAM 447

9. Confirm results with intuition. For the chosen architectural strategies, con-
sider whether these seem to align with the organization’s business goals. If
not, consider issues that may have been overlooked while doing this analy-
sis. If there are significant issues, perform another iteration of these steps.

Step 5: Map architectural strategies to
scenarios and determine quality attribute
response levels

Step 1: Collate scenarios:
Prioritize to choose top one-third

N
scenarios

Step 2: Refine scenarios: Determine quality
attribute response levels for best, worst,
current, and desired cases of the scenario

N/3
scenarios

Step 3: Prioritize scenarios:
Eliminate half of the scenarios

N/3
scenarios

Step 4: Assign utility for the current and the
desired levels for each scenario

N/6
scenarios

Step 6: Determine the expected utility value
of architectural strategy using interpolation

Step 7: Calculate total benefit obtained
from an architectural strategy

Step 8: Choose architectural strategies
based on ROI subject to cost constraints

Step 9: Confirm results with intuition

fIGurE 23.3 Process flow diagram for the CBAM

448 Part four architecture and business 23—Economic Analysis of Architectures

Computing Benefit for Architectural Variation Points

This chapter is about calculating the cost and benefit of competing archi-
tectural options. While there are plenty of metrics and methods to mea-
sure cost, usually as some function of complexity, benefit is more slippery.
CBAM uses an assemblage of stakeholders to work out jointly what utility
each architectural option will bring with it. At the end of the day, CBAM’s
measures of utility are subjective, intuitive, and imprecise. That’s all right;
stakeholders seldom are able to express benefit any better than that, and
so CBAM takes what stakeholders know and formulates it into a justified
choice. That is, CBAM elicits inputs that are imprecise, because nothing
better is available, and does the best that can be done with them.

As a counterpoint to CBAM, there is one area of architecture in which
the architectural options are of a specific variety: product-line architectures.
In Chapter 25, you’ll be introduced to software architectures that serve
for an entire family of systems. The architect introduces variation points
into the architecture, which are places where it can be quickly tailored
in preplanned ways so that it can serve each of a variety of different but
related products. In the product-line context, the major architectural option
is whether to build a particular variation point in the architecture. Doing so
isn’t free; otherwise, every product-line architecture would have an infin-
itude of variation points. So the question becomes: When will adding a
variation point pay off?

CBAM would work for this case as well; you could ask the product line’s
stakeholders what the utility of a new variation point would be, vis-à-vis other
options such as including a different variation point instead, or none at all.
But in this case, there is a quantitative formula to measure the benefit. John
McGregor of Clemson University has long been interested in the econom-
ics of software product lines, and along with others (including me) invented
SIMPLE, a cost-modeling language for software product lines. SIMPLE is
great at estimating the cost of product-line options, but not so great at estimat-
ing its benefits. Recently, McGregor took a big step toward remedying that.

Here is his formula for modeling the marginal value of building in an
additional variation point to the architecture:

vi(t,T) = max(0, –E ci(τ)e–r(τ–t)

τ=t

T

�
+Þi,T E[

k

τ=T

T*

� �Xi,k(τ)e –r(τ–t))])max(0,

Got that? No? Right, me neither. But we can understand it if we build it
up from pieces.

The equation says (as all value equations do) that value is benefit minus
cost, and so those are the two terms.

The first term measures the expected cost of building variation point i
over a time period from now until time T (some far-off horizon of interest
such as fielding your fifth system or getting your next round of venture

23.3 Putting Theory into Practice: The CBAM 449

capital funding). The function ci(τ) measures the cost of building variation
point i at time τ; it’s evaluated using conventional cost-estimating tech-
niques for software. The e factor is a standard economic term that accounts
for the net present value of money; r is the assumed current interest rate.
This is summed up over all time between now and T, and made negative to
reflect that cost is negative value. So here’s the first term decomposed:

 E ci(τ)e–r(τ–t)

τ=t

T

�
The second term evaluates the benefit. The function Xi,k(τ) is the key; it

measures the value of the variation point in the kth product of the product
line. This is equal to the marginal value of the variation point to the kth
product, minus the cost of using (exercising) the variation point in that kth
product. That first part is the hardest part to come by, but your marketing
department should be able to help by expressing the marginal value in
terms of the additional products that the variation point would enable you to
build and how much revenue each would bring in. (That’s what marketing
departments are paid to figure out.)

value of variation point i in product k
at time

Xi,k(τ)e –r(τ–t)

VMPi,k(τ) – MCi,k(τ)τ=

marginal value of the i th variation
point in the k th product at time τ

marginal cost of tailoring variation
point i for use in product k

. . . adjusted by a factor to account
for net present value of money

To the function X we apply the same factor as before to account for the
net present value of money, sum it up over all time periods between now
and T, and make it nonnegative:

SYMBOLS FOR TIME
τ = time variable
t = time now
T = target date
T* = modeling limit (t=forever)
i = index over variation points
r = assumed interest rate

Cost spent to build variation point i at time τ
Expected cost summed over
all relevant time intervals

. . . adjusted by a factor to account
for net present value of money

450 Part four architecture and business 23—Economic Analysis of Architectures

Then we sum that up over all products k in the product line and multiply
it by the probability that the variation point will in fact be ready by the time
it’s needed:

Add the two terms together and there you have it. It’s easy to put this
in a spreadsheet that calculates the result given the relevant inputs, and it
provides a quantitative measurement to help guide selection of architectural
options—in this case, introduction of variation points to support a product line.

—PCC

23.4 case Study: the NaSa EcS Project

We will now apply the CBAM to a real-world system as an example of the
method in action.

The Earth Observing System is a constellation of NASA satellites that gathers
data for the U.S. Global Change Research Program and other scientific communities
worldwide. The Earth Observing System Data Information System (EOSDIS) Core

SYMBOLS FOR TIME
τ = time variable
t = time now
T = target date
T* = modeling limit (t=forever)
i = index over variation points
r = assumed interest rate
k = index over products

Value cannot
be negative

summed over all time

value of variation point i in product k
at time

Xi,k(τ)e)]–r(τ–t)max (0, �
τ=T

T*

VMPi,k(τ) – MCi,k(τ)τ=
marginal value of the i th variation
point in the k th product at time τ

marginal cost of tailoring variation
point i for use in product k

. . . adjusted by a factor to account
for net present value of money

probability that variation point i
will be ready for use by time T value of variation point i in product k over

all time . . .
 . . . and over all products

 Þi,T E[
k

τ=T

T*

� �Xi,k(τ)e –r(τ–t))])max(0,

23.4 Case Study: The NASA ECS Project 451

System (ECS) collects data from various satellite downlink stations for further pro-
cessing. ECS’s mission is to process the data into higher-form information and make
it available to scientists in searchable form. The goal is to provide both a common
way to store (and hence process) data and a public mechanism to introduce new data
formats and processing algorithms, thus making the information widely available.

The ECS processes an input stream of hundreds of gigabytes of raw environ-
ment-related data per day. The computation of 250 standard “products” results in
thousands of gigabytes of information that is archived at eight data centers in the
United States. The system has important performance and availability require-
ments. The long-term nature of the project also makes modifiability important.

The ECS project manager had a limited annual budget to maintain and en-
hance his current system. From a prior analysis—in this case an ATAM exercise—a
large set of desirable changes to the system was elicited from the system stakehold-
ers, resulting in a large set of architectural strategies. The problem was to choose
a (much) smaller subset for implementation, as only 10 to 20 percent of what was
being proposed could actually be funded. The manager used the CBAM to make a
rational decision based on the economic criterion of return on investment.

In the execution of the CBAM described next, we concentrated on analyzing
the Data Access Working Group (DAWG) portion of the ECS.

Step 1: collate Scenarios

A subset of the raw scenarios put forward by the DAWG team were as shown in
Table 23.1. Note that they are not yet well formed and that some of them do not
have defined responses. These issues are resolved in step 2, when the number of
scenarios is reduced.1

tablE 23.1 Collected Scenarios in Priority Order

Scenario Scenario description

 1 Reduce data distribution failures that result in hung distribution requests
requiring manual intervention.

 2 Reduce data distribution failures that result in lost distribution requests.

 3 Reduce the number of orders that fail on the order submission process.

 4 Reduce order failures that result in hung orders that require manual intervention.

 5 Reduce order failures that result in lost orders.

 6 There is no good method of tracking ECSGuest failed/canceled orders without
much manual intervention (e.g., spreadsheets).

 7 Users need more information on why their orders for data failed.

 8 Because of limitations, there is a need to artificially limit the size and number of
orders.

 9 Small orders result in too many notifications to users.

10 The system should process a 50-GB user request in one day, and a 1-TB user
request in one week.

1. In the presentation of the DAWG case study, we only show the reduced set of scenarios.

452 Part four architecture and business 23—Economic Analysis of Architectures

Step 2: refine Scenarios

The scenarios were refined, paying particular attention to precisely specifying
their stimulus-response measures. The worst-case, current-case, desired-case,
and best-case response goals for each scenario were elicited and recorded, as
shown in Table 23.2.

tablE 23.2 Response Goals for Refined Scenarios

Scenario

response Goals

Worst current desired best

 1 10% hung 5% hung 1% hung 0% hung

 2 > 5% lost < 1% lost 0% lost 0% lost

 3 10% fail 5% fail 1% fail 0% fail

 4 10% hung 5% hung 1% hung 0% hung

 5 10% lost < 1% lost 0% lost 0% lost

 6 50% need help 25% need help 0% need help 0% need help

 7 10% get
information

50% get
information

100% get
information

100% get
information

 8 50% limited 30% limited 0% limited 0% limited

 9 1/granule 1/granule 1/100 granules 1/1,000 granules

10 < 50% meet goal 60% meet goal 80% meet goal > 90% meet goal

Step 3: Prioritize Scenarios

In voting on the refined representation of the scenarios, the close-knit team devi-
ated slightly from the method. Rather than vote individually, they chose to dis-
cuss each scenario and arrived at a determination of its weight via consensus. The
votes allocated to the entire set of scenarios were constrained to 100, as shown in
Table 23.3. Although the stakeholders were not required to make the votes mul-
tiples of 5, they felt that this was a reasonable resolution and that more precision
was neither needed nor justified.

Step 4: assign utility

In this step the utility for each scenario was determined by the stakeholders, again
by consensus. A utility score of 0 represented no utility; a score of 100 represented
the most utility possible. The results of this process are given in Table 23.4.

23.4 Case Study: The NASA ECS Project 453

tablE 23.3 Refined Scenarios with Votes

Scenario

response Goals

Votes Worst current desired best

 1 10 10% hung 5% hung 1% hung 0% hung

 2 15 > 5% lost < 1% lost 0% lost 0% lost

 3 15 10% fail 5% fail 1% fail 0% fail

 4 10 10% hung 5% hung 1% hung 0% hung

 5 15 10% lost < 1% lost 0% lost 0% lost

 6 10 50% need help 25% need help 0% need help 0% need help

 7 5 10% get
information

50% get
information

100% get
information

100% get
information

 8 5 50% limited 30% limited 0% limited 0% limited

 9 10 1/granule 1/granule 1/100 granules 1/1,000 granules

10 5 < 50% meet
goal

60% meet goal 80% meet goal > 90% meet goal

tablE 23.4 Scenarios with Votes and Utility Scores

Scenario

utility Scores

Votes Worst current desired best

 1 10 10 80 95 100

 2 15 0 70 100 100

 3 15 25 70 100 100

 4 10 10 80 95 100

 5 15 0 70 100 100

 6 10 0 80 100 100

 7 5 10 70 100 100

 8 5 0 20 100 100

 9 10 50 50 80 90

10 5 50 50 80 90

Step 5: develop architectural Strategies for Scenarios and
determine their Expected Quality attribute response levels

Based on the requirements implied by the preceding scenarios, a set of 10 archi-
tectural strategies was developed by the ECS architects. Recall that an architec-
tural strategy may affect more than one scenario. To account for these complex
relationships, the expected quality attribute response level that each strategy is
predicted to achieve had to be determined with respect to each relevant scenario.
The set of architectural strategies, along with the determination of the scenar-
ios they address, is shown in Table 23.5. For each architectural strategy/scenario
pair, the response levels expected to be achieved with respect to that scenario are
shown (along with the current response, for comparison purposes).

tablE 23.5 Architectural Strategies and Scenarios Addressed

Strategy Name description
Scenarios
affected

current
response

Expected
response

 1 Order persistence on
submission

Store an order as soon as it arrives in the system. 3 5% fail 2% Fail

5 <1% lost 0% lost

6 25% need help 0% need help

 2 Order chunking Allow operators to partition large orders into multiple small orders. 8 30% limited 15% limited

 3 Order bundling Combine multiple small orders into one large order. 9 1 per granule 1 per 100

10 60% meet goal 55% meet goal

 4 Order segmentation Allow an operator to skip items that cannot be retrieved due to data
quality or availability issues.

4 5% hung 2% hung

 5 Order reassignment Allow an operator to reassign the media type for items in an order. 1 5% hung 2% hung

 6 Order retry Allow an operator to retry an order or items in an order that may
have failed due to temporary system or data problems.

4 5% hung 3% hung

 7 Forced order
completion

Allow an operator to override an item’s unavailability due to data
quality constraints.

1 5% hung 3% hung

 8 Failed order
notification

Ensure that users are notified only when part of their order has truly
failed and provide detailed status of each item; user notification
occurs only if operator okays notification; the operator may edit
notification.

6 25% need help 20% need help

7 50% get
information

90% get
information

 9 Granule-level order
tracking

An operator and user can determine the status for each item in their
order.

6 25% need help 10% need help

7 50% get
information

95% get
information

10 Links to user
information

An operator can quickly locate a user’s contact information.
Server will access SDSRV information to determine any data
restrictions that might apply and will route orders/order segments to
appropriate distribution capabilities, including DDIST, PDS, external
subsetters and data processing tools, etc.

7 50% get
information

60% get
information

23.4 Case Study: The NASA ECS Project 455

Step 6: determine the utility of the “Expected” Quality
attribute response levels by Interpolation

Once the expected response level of every architectural strategy has been char-
acterized with respect to a set of scenarios, their utility can be calculated by con-
sulting the utility scores for each scenario’s current and desired responses for all
of the affected attributes. Using these scores, we may calculate, via interpolation,
the utility of the expected quality attribute response levels for the architectural
strategy/scenario pair applied to the DAWG of ECS.

tablE 23.6 Architectural Strategies and Their Expected Utility

Strategy Name
Scenarios
affected

current
utility

Expected
utility

 1 Order persistence on submission 3
5
6

70
70
80

 90
100
100

 2 Order chunking 8 20 60

 3 Order bundling 9
10

50
70

 80
 65

 4 Order segmentation 4 80 90

 5 Order reassignment 1 80 92

 6 Order retry 4 80 85

 7 Forced order completion 1 80 87

 8 Failed order notification 6
7

80
70

 85
 90

 9 Granule-level order tracking 6
7

80
70

 90
 95

10 Links to user information 7 70 75

Step 7: calculate the total benefit Obtained
from an architectural Strategy

Based on the information collected, as represented in Table 23.6, the total benefit
of each architectural strategy can now be calculated, following the equation from
Section 23.2, repeated here:

B
i
 = ∑

j
 (b

i,j
 × W

j
)

This equation calculates total benefit as the sum of the benefit that accrues to
each scenario, normalized by the scenario’s relative weight. Using this formula,
the total benefit scores for each architectural strategy are now calculated, and the
results are given in Table 23.7.

456 Part four architecture and business 23—Economic Analysis of Architectures

tablE 23.7 Total Benefit of Architectural Strategies

Strategy
Scenario
affected

Scenario
Weight

raw
architectural
Strategy
benefit

Normalized
architectural
Strategy
benefit

total architectural
Strategy benefit

 1 3 15 20 300

 1 5 15 30 450

 1 6 10 20 200 950

 2 8 5 40 200 200

 3 9 10 30 300

 3 10 5 –5 –25 275

 4 4 10 10 100 100

 5 1 10 12 120 120

 6 4 10 5 50 50

 7 1 10 7 70 70

 8 6 10 5 50

 8 7 5 20 100 150

 9 6 10 10 100

 9 7 5 25 125 225

10 7 5 5 25 25

Step 8: choose architectural Strategies based
on Vfc Subject to cost constraints

To complete the analysis, the team estimated cost for each architectural strategy.
The estimates were based on experience with the system, and a return on invest-
ment for each architectural strategy was calculated. Using the VFC, we were able
to rank each strategy. This is shown in Table 23.8. Not surprisingly, the ranks
roughly follow the ordering in which the strategies were proposed: strategy 1 has
the highest rank; strategy 3 the second highest. Strategy 9 has the lowest rank;
strategy 8, the second lowest. This simply validates stakeholders’ intuition about
which architectural strategies were going to be of the greatest benefit. For the
ECS these were the ones proposed first.

results of the cbaM Exercise

The most obvious results of the CBAM are shown in Table 23.8: an ordering of
architectural strategies based on their predicted VFC. However, just as for the
ATAM method, the benefits of the CBAM extend beyond the qualitative out-
comes. There are social and cultural benefits as well.

23.5 Summary 457

tablE 23.8 VFC of Architectural Strategies

Strategy cost total Strategy benefit Strategy Vfc Strategy rank

 1 1200 950 0.79 1

 2 400 200 0.5 3

 3 400 275 0.69 2

 4 200 100 0.5 3

 5 400 120 0.3 7

 6 200 50 0.25 8

 7 200 70 0.35 6

 8 300 150 0.5 3

 9 1000 225 0.22 10

10 100 25 0.25 8

Just as important as the ranking of architectural strategies in CBAM is the
discussion that accompanies the information-collecting and decision-making pro-
cesses. The CBAM process provides a great deal of structure to what is always
largely unstructured discussions, where requirements and architectural strategies
are freely mixed and where stimuli and response goals are not clearly articulated.
The CBAM process forces the stakeholders to make their scenarios clear in ad-
vance, to assign utility levels of specific response goals, and to prioritize these
scenarios based on the resulting determination of utility. Finally, this process re-
sults in clarification of both scenarios and requirements, which by itself is a sig-
nificant benefit.

23.5 Summary

Architecture-based economic analysis is grounded on understanding the utili-
ty-response curve of various scenarios and casting them into a form that makes
them comparable. Once they are in this common form—based on the common
coin of utility—the VFC for each architecture improvement, with respect to each
relevant scenario, can be calculated and compared.

Applying the theory in practice has a number of practical difficulties, but in
spite of those difficulties, we believe that the application of economic techniques
is inherently better than the ad hoc decision-making approaches that projects
(even quite sophisticated ones) employ today. Our experience with the CBAM
tells us that giving people the appropriate tools to frame and structure their dis-
cussions and decision making is an enormous benefit to the disciplined develop-
ment of a complex software system.

458 Part four architecture and business 23—Economic Analysis of Architectures

23.6 for further reading

The origins of the CBAM can be found in two papers: [Moore 03] and Kazman
[01].

A more general background in economic approaches to software engineer-
ing may be found in the now-classic book by Barry Boehm [Boehm 81].

And a more recent, and somewhat broader, perspective on the field can be
found in [Biffl 10].

The product-line analysis we used in the sidebar on the value of variation
points came from a paper in the 2011 International Software Product Line Con-
ference by John McGregor and his colleagues [McGregor 11].

23.7 discussion Questions

1. This chapter is about choosing an architectural strategy using rational, eco-
nomic criteria. See how many other ways you can think of to make a choice
like this. Hint: Your candidates need not be “rational.”

2. Have two or more different people generate the utility curve for a quality
attribute scenario for an ATM. What are the difficulties in generating the
curve? What are the differences between the two curves? How would you
reconcile the differences?

3. Discuss the advantages and disadvantages of the method for generating
scenario priorities used in the CBAM. Can you think of a different way to
prioritize the scenarios? What are the pluses and minuses of your method?

4. Using the results of your design exercise for the ATM from Chapter 17 as a
starting point, develop an architectural strategy for achieving a quality attri-
bute scenario that your design does not cover.

5. Generate the utility curves for two different systems in the same domain.
What are the differences? Do you believe that there are standard curves de-
pending on the domain? Defend your answer.

459

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

24
Architecture
Competence

The ideal architect should be a man of letters, a
skillful draftsman, a mathematician, familiar with

historical studies, a diligent student of philosophy,
acquainted with music, not ignorant of medicine,
learned in the responses of jurisconsults, familiar

with astronomy and astronomical calculations.
—Vitruvius, De Architectura (25 B.C.)

The lyf so short, the craft so long to lerne.
—Geoffrey Chaucer

If software architecture is worth “doing,” surely it’s worth doing well. Most of
the literature about architecture concentrates on the technical aspects. This is
not surprising; it is a deeply technical discipline. There is little information that
speaks to the fact that architectures are created by architects working in organiza-
tions, full of actual human beings. Dealing with these humans is decidedly non-
technical. What can be done to help architects, especially architects-in-training,
be better at this important dimension of their job? And what can be done to help
architecture organizations do a better job in fostering their architects to produce
their best work?

An organization’s ability to routinely produce high-quality architectures that
are aligned with its business goals well cannot be understood simply through ex-
amination of past architectures and measurement of their deficiencies. The or-
ganizational and human causes of those deficiencies also need to be understood.

This chapter is about the competence of individual architects and the orga-
nizations that wish to produce high-quality architects. We define the architecture
competence of an organization as follows:

The architecture competence of an organization is the ability of
that organization to grow, use, and sustain the skills and knowledge

460 Part four architecture and business 24—Architecture Competence

necessary to effectively carry out architecture-centric practices at the
individual, team, and organizational levels to produce architectures
with acceptable cost that lead to systems aligned with the organization’s
business goals.

Because the architecture competence of an organization depends, in part, on
the competence of architects, we begin by asking what it is that architects are ex-
pected to do, know, and be skilled at. Then we’ll look at what organizations can and
should do to help their architects produce better architectures. Individual and orga-
nizational competencies are intertwined. Studying only one or the other won’t do.

24.1 competence of Individuals: duties,
Skills, and Knowledge of architects

Architects perform many activities beyond directly producing an architecture.
These activities, which we call duties, form the backbone of an individual’s ar-
chitecture competence. We surveyed a broad body of information aimed at archi-
tects (such as websites, courses, books, and position descriptions for architects).
We also surveyed practicing architects. These surveys tell us that duties are but
one aspect of individual competence. Writers about architects also speak of skills
and knowledge. For example, the ability to communicate ideas clearly and to ne-
gotiate effectively are skills often ascribed to competent architects. In addition,
architects need to have up-to-date knowledge about patterns, database platforms,
web services standards, quality attributes, and a host of other topics.

Duties, skills, and knowledge1 form a triad upon which architecture compe-
tence for individuals rests. The relationship among these three is shown in Figure
24.1—namely, skills and knowledge support the ability to perform the required du-
ties. Infinitely talented architects are of no use if they cannot (for whatever reason)
perform the duties required of the position; we would not say they were competent.

To give examples of these concepts:

 ■ “Design the architecture” is a duty.
 ■ “Ability to think abstractly” is a skill.
 ■ “Patterns and tactics” is a part of the body of knowledge.

This example purposely illustrates that skills and knowledge are important
(only) for supporting the ability to carry out duties effectively. As another exam-
ple, “documenting the architecture” is a duty, “ability to write clearly” is a skill,
and “ISO Standard 42010” is part of the related body of knowledge. Of course, a
skill or knowledge area can support more than one duty.

1. Some writers speak of the importance of experience. We count experience as a form of
knowledge.

24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 461

Duties

KnowledgeSkills

Support

fIGurE 24.1 Skills and knowledge support the execution of duties.

Knowing the duties, skills, and knowledge of architects (or, more precisely,
the duties, skills, and knowledge that are needed of architects in a particular or-
ganizational setting) can help establish measurement and improvement strategies
for individual architects. If you want to improve your individual architectural
competence, you should do the following:

1. Gain experience carrying out the duties. Apprenticeship is a productive
path to achieving experience. Education alone is not enough, because edu-
cation without on-the-job application merely enhances knowledge.

2. Improve your nontechnical skills. This dimension of improvement involves
taking professional development courses, for example, in leadership or time
management. Some people will never become truly great leaders or com-
municators, but we can all improve on these skills.

3. Master the body of knowledge. One of the most important things a compe-
tent architect must do is master the body of knowledge and remain up to
date on it. To emphasize the importance of remaining up to date, consider
the advances in knowledge required for architects that have emerged in
just the last few years. For example, the cloud and edge computing that we
discuss in Chapters 26 and 27 were not important topics several years ago.
Taking courses, becoming certified, reading books and journals, visiting
websites and portals, reading blogs, attending architecture-oriented confer-
ences, joining professional societies, and meeting with other architects are
all useful ways to improve knowledge.

duties

This section summarizes a wide variety of an architect’s duties. Not every architect
in every organization will perform every one of these duties on every project. But
a competent architect should not be surprised to find himself or herself engaged in

462 Part four architecture and business 24—Architecture Competence

any of the activities listed here. We divide the duties into technical duties (Table
24.1) and nontechnical duties (Table 24.2). One immediate observation you should
make is how many nontechnical duties there are. An obvious implication, for those
of you who wish to be architects, is that you must pay adequate attention to the
nontechnical aspects of your education and your professional activities.

tablE 24.1 The Technical Duties of a Software Architect

General duty
area

Specific duty
area

Example
duties

Architecting Creating an
architecture

Design or select an architecture. Create software
architecture design plan. Build product line or product
architecture. Make design decisions. Expand detail
and refine design to converge on final design. Identify
the patterns and tactics and articulate the principles
and key mechanisms of the architecture. Partition the
system. Define how the components fit together and
interact.

Evaluating and
analyzing an
architecture

Evaluate an architecture (for your current system
or for other systems) to determine satisfaction of
use cases and quality attribute scenarios. Create
prototypes. Participate in design reviews. Review
construction-level designs. Review the designs
of the components designed by junior engineers.
Review designs for compliance with the architecture.
Compare software architecture evaluation
techniques. Apply value-based architecting
techniques to evaluate architectural decisions. Model
alternatives. Perform tradeoff analysis.

Documenting an
architecture

Prepare architectural documents and presentations
useful to stakeholders. Document software
interfaces. Produce documentation standards.
Document variability and dynamic behavior.

Working with
and transforming
existing
system(s)

Maintain and evolve existing system and its
architecture. Redesign existing architecture(s) for
migration to new technology and platforms.

Performing other
architecting
duties

Sell the vision, keep the vision alive. Participate in
product design meetings. Give technical advice
on architecture, design, and development. Provide
architectural guidelines for software design activities.
Lead architecture improvement activities. Participate
in software process definition and improvement.
Define philosophy and principles for global
architecture. Oversee or manage the architecture
definition process. Provide architecture oversight of
software development projects.

24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 463

General duty
area

Specific duty
area

Example
duties

Duties
concerned
with life-cycle
activities
other than
architecting

Managing the
requirements

Analyze functional and quality attribute software
requirements. Understand business and customer
needs and ensure that the requirements meet
these needs. Capture customer, organizational, and
business requirements on the architecture. Create
software specifications from business requirements.
Articulate and refine architectural requirements.
Listen to and understand the scope of the project.
Understand the client’s key design needs and
expectations.

Implementing
the product

Produce code. Conduct code reviews. Develop
reusable software components. Analyze, select,
and integrate software components. Set and ensure
adherence to coding guidelines. Recommend
development methodologies and coding standards.
Monitor, mentor, and review the work of outside
consultants and vendors.

Testing the
product

Establish architecture-based testing procedures.
Support system testers. Support field testing. Support
bug fixing and maintenance.

Evaluating future
technologies

Evaluate and recommend enterprise’s software
solutions. Manage the introduction of new software
solutions. Analyze current IT environment and
recommend solutions for deficiencies. Work with
vendors to represent organization’s requirements
and influence future products. Develop and present
technical white papers.

Selecting tools
and technology

Perform technical feasibility studies of new
technologies and architectures. Evaluate commercial
tools and software components from an architectural
perspective. Develop internal technical standards and
contribute to the development of external technical
standards.

Skills

Given the wide range of duties enumerated in the previous section, what skills
(beyond mastery of the technical body of knowledge) does an architect need to
possess? Much has been written about the architect’s special role of leadership in
a project; the ideal architect is an effective communicator, manager, team builder,
visionary, and mentor. Some certificate or certification programs emphasize non-
technical skills. Common to these certification programs are nontechnical assess-
ment areas of leadership, organization dynamics, and communication.

Table 24.3 enumerates the set of nontechnical skills most useful to an
architect.

464 Part four architecture and business 24—Architecture Competence

tablE 24.2 The Nontechnical Duties of a Software Architect

General duty
area

Specific duty
area

Example
duties

Management Managing the
project

Help with budgeting and planning. Follow budgetary
constraints. Manage resources. Perform sizing and
estimation. Perform migration planning and risk
assessment. Take care of or oversee configuration
control. Create development schedules. Measure
results using quantitative metrics and improve both
personal results and teams’ productivity. Identify and
schedule architectural releases.

Managing the
people

Build “trusted advisor” relationships. Coordinate.
Motivate. Advocate. Delegate. Act as a supervisor.

Supporting the
management

Provide feedback on appropriateness and difficulty of
project. Advise the project manager on the tradeoffs
between software design choices and requirements
choices. Provide input to software project manager in
the software project planning and estimation process.
Serve as a “bridge” between the technical team and
the project manager.

Organization and
business-related
duties

Supporting the
organization

Grow an architecture evaluation capability in the
organization. Review and contribute to research and
development efforts. Participate in the hiring process
for the team. Help with product marketing. Institute
and oversee cost-effective software architecture
design reviews. Help develop intellectual property.

Supporting the
business

Translate business strategy into technical vision and
strategy. Influence the business strategy. Understand
and evaluate business processes. Understand
and communicate the business value of software
architecture. Help the organization meet its business
goals. Understand customer and market trends.
Identify, understand, and resolve business issues.
Align architecture with the business goals and
objectives.

Leadership and
team building

Providing
technical
leadership

Mentor other architects. Produce technology trend
analysis or roadmaps.

Building a team Set team context (vision). Build the architecture
team and align them with the vision. Mentor junior
architects. Educate the team on the use of the
architecture. Maintain morale, both within and outside
the architecture group. Foster the professional
development of team members. Coach teams of
software design engineers for planning, tracking, and
completion of work within the agreed plan. Mentor
and coach staff in the use of software technologies.
Work both as a leader and as an individual
contributor.

24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects 465

tablE 24.3 The Nontechnical Skills of a Software Architect

General Skill
area

Specific Skill
area

Example
Skills

Communication
skills

Outward Ability to make oral and written communications
and presentations. Ability to present and explain
technical information to diverse audiences. Ability
to transfer knowledge. Ability to persuade. Ability to
see from and sell to multiple viewpoints.

Inward Ability to listen, interview, consult, and negotiate.
Ability to understand and express complex topics.

Interpersonal
skills

Within team Ability to be a team player. Ability to work
effectively with superiors, colleagues, and
customers. Ability to maintain constructive
working relationships. Ability to work in a diverse
team environment. Ability to inspire creative
collaboration. Ability to build consensus.

With other
people

Ability to demonstrate interpersonal skills. Ability to
be diplomatic and respect others. Ability to mentor
others. Ability to handle and resolve conflict.

Work skills Leadership Ability to make decisions. Ability to take initiative
and be innovative. Ability to demonstrate
independent judgment, be influential, and
command respect.

Workload
management

Ability to work well under pressure, plan, manage
time, estimate. Ability to support a wide range
of issues and work on multiple complex projects
concurrently. Ability to effectively prioritize and
execute tasks in a high-pressure environment.

Skills to excel
in corporate
environment

Ability to think strategically. Ability to work under
general supervision and under given constraints.
Ability to organize workflow. Ability to sense where
the power is and how it flows in an organization.
Ability to do what it takes to get the job done. Ability
to be entrepreneurial, be assertive without being
aggressive, and receive constructive criticism.

Skills for
handling
information

Ability to be detail oriented while maintaining
overall vision and focus. Ability to see the big
picture. Ability to deal with abstraction.

Skills for
handling the
unexpected

Ability to tolerate ambiguity. Ability to take and
manage risks. Ability to solve problems.
Ability to be adaptable, flexible, open minded, and
resilient. Ability to do the juggling necessary to
deploy successful software projects.

466 Part four architecture and business 24—Architecture Competence

Knowledge

A competent architect has an intimate familiarity with the architectural body of
knowledge. The software architect should

 ■ Be comfortable with all branches of software engineering from require-
ments definition to implementation, development, verification and valida-
tion, and deployment

 ■ Be familiar with supporting disciplines such as configuration management
and project management

 ■ Understand current design and implementation tools and technologies

Knowledge and experience in one or more application domains is also
necessary.

Table 24.4 is the set of knowledge areas for an architect.

tablE 24.4 The Knowledge Areas of a Software Architect

General
Knowledge
area

Specific
Knowledge
area

Specific
Knowledge
Examples

Computer
science
knowledge

Knowledge of
architecture
concepts

Knowledge of architecture frameworks,
architectural patterns, tactics, viewpoints,
standard architectures, relationship
to system and enterprise architecture,
architecture description languages, emerging
technologies, architecture evaluation models
and methods, and quality attributes.

Knowledge
of software
engineering

Knowledge of systems engineering.
Knowledge of software development life
cycle, software process management,
and improvement techniques. Knowledge
of requirements analysis, mathematics,
development methods and modeling
techniques, elicitation techniques. Knowledge
of component-based software development,
reuse methods and techniques, software
product-line techniques, documentation,
testing and debugging tools.

Design knowledge Knowledge of different tools and design
techniques. Knowledge of how to design
complex multi-product systems. Knowledge
of object-oriented analysis and design, UML
diagrams, and UML analysis modeling.

Programming
knowledge

Knowledge of programming languages and
programming language models. Knowledge
of specialized programming techniques for
security, real time, etc.

24.2 Competence of a Software Architecture Organization 467

General
Knowledge
area

Specific
Knowledge
area

Specific
Knowledge
Examples

Knowledge of
technologies
and platforms

Knowledge
of specific
technologies and
platforms

Knowledge of hardware/software interfaces,
web-based applications, and Internet
technologies. Knowledge of specific software/
operating systems, such as RDBMS concepts,
cloud platforms, and SOA implementations.

General
knowledge of
technologies and
platforms

Knowledge of IT industry future directions and
the ways in which infrastructure impacts an
application.

Knowledge
about the
organization’s
context and
management

Domain
knowledge

Knowledge of the most relevant domain(s)
and domain-specific technologies.

Industry
knowledge

Knowledge of the industry’s best practices and
industry standards. Knowledge of how to work
in onshore/offshore team environment.

Enterprise
knowledge

Knowledge of the company’s business
practices, and your competition’s products,
strategies, and processes. Knowledge of
business and technical strategy, and business
reengineering principles and processes.
Knowledge of strategic planning, financial
models, and budgeting.

Leadership and
management
techniques

Knowledge of coaching, mentoring, and
training software developers. Knowledge of
project management. Knowledge of project
engineering.

24.2 competence of a Software
architecture Organization

Organizations by their practices and structure can help or hinder architects in per-
forming their duties. For example, if an organization has a career path for archi-
tects, that will motivate employees to become architects. If an organization has a
standing architecture review board, then the project architect will know how and
with whom to schedule a review. Lack of these items will mean that an architect
has to fight battles with the organization or determine how to carry out a review
without internal guidance. It makes sense, therefore, to ask whether a particular
organization is architecturally competent and to develop instruments whose goal
is measuring the architectural competence of an organization. The architectural
competence of organizations is the topic of this section.

468 Part four architecture and business 24—Architecture Competence

activities carried Out by a competent Organization

Organizations have duties, skills, and knowledge for architecture as well. For ex-
ample, adequately funding the architecture effort is an organizational duty, as is
effectively using the available architecture workforce (by appropriate teaming,
and so on). These are organizational duties because they are outside the control
of individual architects. An organization-level skill might be effective knowl-
edge management or human resource management as applied to architects. An
example of organizational knowledge is the composition of an architecture-based
life-cycle model that software projects may employ.

Here are some things—duties—that an organization can perform to help im-
prove the success of its architecture efforts:

 ■ Hire talented architects.
 ■ Establish a career track for architects.
 ■ Make the position of architect highly regarded through visibility, reward,

and prestige.
 ■ Establish a clear statement of responsibilities and authority for architects.
 ■ Establish a mentoring program for architects.
 ■ Establish an architecture training and education program.
 ■ Establish an architect certification program.
 ■ Have architects receive external architect certifications.
 ■ Measure architects’ performance.
 ■ Establish a forum for architects to communicate and share information and

experience.
 ■ Establish a repository of reusable architectures and architecture-based

artifacts.
 ■ Develop reusable reference architectures.
 ■ Establish organization-wide architecture practices.
 ■ Establish an architecture review board.
 ■ Measure the quality of architectures produced.
 ■ Provide a centralized resource to analyze and help with architecture tools.
 ■ Hold an organization-wide architecture conference.
 ■ Have architects join professional organizations.
 ■ Bring in outside expert consultants on architecture.
 ■ Include architecture milestones in project plans.
 ■ Have architects provide input into product definition.
 ■ Have architects advise on the development team structure.
 ■ Give architects influence throughout the entire project life cycle.
 ■ Reward or penalize architects based on project success or failure.

24.2 Competence of a Software Architecture Organization 469

assessment Goals

The activities enumerated above can be assessed. What are the potential goals
from an assessment of an organization’s architecture competence? There are at
least four sets of reasons for assessing organizational architectural competence:

1. There are goals relevant to any business that wishes to improve their archi-
tectural competence. Businesses regularly assess their own performance in
a variety of means—technical, fiscal, operational (for example, consider the
widespread use of multi-criteria techniques such as the Balanced Scorecard
or Business/IT Alignment in industry)—for a variety of reasons. These
include determining whether they are meeting industry norms and gauging
their progress over time in meeting organizational goals.

2. There are goals relevant to an acquisition organization. For example, an
organization can use an assessment of architecture competence to assess
a contractor in much the same way that contractors are scrutinized with
respect to their CMMI level. Or an organization might use an assessment
of architecture competence to aid in deciding among competing bids from
contractors. All other things being equal, an acquiring organization would
prefer a contractor with a higher level of architectural competence because
this typically means fewer downstream problems and rework. An acquisi-
tion organization might assess the contractors directly, or hire a third party
to do the assessment.

3. There are goals relevant to service organizations: such organizations might
be motivated to maintain, measure, and advertise their architectural compe-
tence as a means of attracting and retaining customers. In such a case they
would typically rely on outside organizations to assess their level of compe-
tence in an objective fashion.

4. Finally, there are goals that are relevant to product builders: these organi-
zations would be motivated to assess, monitor (and, over time, increase)
their level of architectural competence as it would (1) aid in advertising the
quality of their products and (2) aid in their internal productivity and pre-
dictability. In fact, in these ways their motivations are aligned with those of
service organizations.

assessing an Organization’s competence

In addition to duties, skills, and knowledge, there are other models of individual
and organizational competence that are helpful in building an instrument for as-
sessing an organization’s competence. They are the following:

 ■ The Human Performance Technology model, which measures the value of
an individual or department’s output and the cost of producing that output.

470 Part four architecture and business 24—Architecture Competence

It holds that competent people produce the most value for every organiza-
tional dollar spent.

 ■ The Organizational Coordination model, which measures how teams in
multiple sites developing a single product or related set of products cooper-
ate to produce a functioning product. An organization that is architecturally
competent will have more effective and efficient coordination mechanisms
than an organization that is not architecturally competent.

 ■ The Organizational Learning model, which measures how well an organi-
zation’s learning processes transform experience into knowledge, moderat-
ed by context.

We have created a framework for organizational architecture competence
that forms the foundation for a competence assessment procedure. A small team
of trained assessors can use the framework to conduct interviews (with architects,
developers, and technical and organizational managers), examine current prac-
tices, read documents and evidentiary artifacts (such as organizational standards),
and investigate architecture-based successes and failures in the recent past. They
can use their findings to identify systemic trouble spots and recommend improve-
ment strategies.

Table 24.5 shows the framework. For convenience, it is divided into prac-
tice areas that relate to software and system engineering, technical management
(which is by and large the management of single projects or small numbers of re-
lated projects), and organizational management (which is management at a scope
more broad than that of projects).

The framework is populated by questions inspired by the four models of
competence that we previously described. Each question has a set of answers
that we might expect to see in a competent organization. For example, a ques-
tion associated with the practice area “Hire talented architects” deals with how a
candidate architect’s experience and capabilities are assessed. Expected answers
might include having the architect take a test, requiring that candidates possess
an architecture certification, or examining previous architectures designed by the
candidate. (Our expected answers grow as we visit more and more organizations.
It’s a pleasant surprise when we find an organization carrying out a practice area
in a clever way that we hadn’t thought of.)

Questions based on the duties, Skills, and Knowledge Model. Our
assessment framework contains dozens of questions related to duties, skills, and
knowledge. The questions are posed in terms of the organization: The questions
ask how the organization ensures that the architectural duties are carried out in
a competent manner, and how the organization measures and nurtures its archi-
tects’ skills and knowledge. Here is a small set of example questions based on
the Duties, Skills, and Knowledge model (chosen from among the dozens that
populate our assessment framework) that we use in an architecture competence
assessment exercise with an organization.

24.2 Competence of a Software Architecture Organization 471

tablE 24.5 Framework for Organizational Architecture Competence

Software
Engineering
Practice Areas

Quality Attribute Elicitation Practices

Tools and Technology Selection

Modeling and Prototyping Practices

Architecture Design Practices

Architecture Description Practices

Architecture Evaluation Practices

System Implementation Practices
 ■ Software design practices (design conforms to

architecture)
 ■ Software coding practices (code conforms to design and

architecture)

Software Verification Practices
 ■ Proving properties of the software
 ■ Software testing

Architecture Reconstruction Practices

Technical
Management
Practice Areas

Business or Mission Goals Practices
 ■ Setting goals
 ■ Measuring achievement of organization’s goals
 ■ Performance-based compensation

Product or System Definition Practices
 ■ Setting functional requirements

Allocating Resources
 ■ Setting architect’s workload and schedule
 ■ Funding stakeholder involvement

Project Management Practices
 ■ Project plan structure aligned with architecture structure
 ■ Adequate time planned for architecture evaluation

Process Discipline Practices
 ■ Establish organization-wide architecture practices
 ■ Process monitoring and improvement practices
 ■ Reuse practices

Collaboration with Manager Practices
 ■ Architects advise managers
 ■ Architects support managers

continues

472 Part four architecture and business 24—Architecture Competence

tablE 24.5 Framework for Organizational Architecture Competence, continued

Organizational
Management
Practice Areas

Hire Talented Architects

Establish a Career Track for Architects
 ■ Leadership roles for architects
 ■ Succession planning

Professional Development Practices
 ■ Ongoing training
 ■ Creating and sustaining an internal community of

architects
 ■ Supporting participation in external communities

Organizational Planning Practices

Technology Planning and Forecasting Practices

duty: creating an architecture
Question: How do you create an architecture?

 ■ How do you ensure that the architecture is aligned with the business goals?
 ■ What is the input into the architecture creation process? What inputs are

provided to the architect?
 ■ How does the architect validate the information provided? What does the

architect do in case the input is insufficient or inadequate?

duty: architecture Evaluation and analysis
Question: How do you evaluate and analyze an architecture?

 ■ Are evaluations part of the normal software development life cycle or are
they done when problems are encountered?

 ■ Is the evaluation incremental or “big bang”? How is the timing determined?
 ■ Does the evaluation include an explicit activity relating architecture to busi-

ness goals?
 ■ What are the inputs to the evaluation? How are they validated?
 ■ What are the outputs from an evaluation? How are the outputs of the evalu-

ation utilized? Are the outputs differentiated according to impact or impor-
tance? How are the outputs validated? Who is communicated what outputs?

Knowledge: architecture concepts
Question: How does your organization ensure that its architects have adequate
architectural knowledge?

 ■ How are architects trained in general knowledge of architecture?
 ■ How do architects learn about architectural frameworks, patterns, tactics,

standards, documentation notations, and architecture description languages?

24.2 Competence of a Software Architecture Organization 473

 ■ How do architects learn about new or emerging architectural technologies
(e.g., multi-core processors)?

 ■ How do architects learn about analysis and evaluation techniques and
methods?

 ■ How do architects learn quality attribute-specific knowledge, such as tech-
niques for analyzing and managing availability, performance, modifiability,
and security?

 ■ How are architects tested to ensure that their level of knowledge is ade-
quate, and remains adequate, for the tasks that they face?

Questions based on the Organizational coordination Model. Ques-
tions based on the Organizational Coordination model focus on how the organi-
zation establishes its teams and what support it provides for those teams to coor-
dinate effectively. Here are a couple of example questions:

Question: How is the architecture designed with distribution of work to
teams in mind?

 ■ How available or broadly shared is the architecture to various teams?
 ■ How do you manage the evolution of architecture during development?
 ■ Is the work assigned to the teams before or after the architecture is defined,

and with due consideration of the architectural structure?

Question: Are the aspects of the architecture that will require a lot of inter-
team coordination supported by the organization’s coordination/communication
infrastructure?

 ■ Do you co-locate teams with high coordination? Or at least put them in the
same time zone?

 ■ Must all coordination among teams go through the architecture team?

Questions based on the Human Performance technology Model.

The Human Performance Technology questions deal with the value and cost of
the organization’s architectural activities. Here are examples of questions based
on the Human Performance Technology model:

Question: Do you track how much the architecture effort costs, and how it
impacts overall project cost and schedule?

 ■ How do you track the end of architecture activities?
 ■ How do you track the impact of architecture activities?

Question: Do you track the value or benefits of the architecture?

 ■ How do you measure stakeholder satisfaction?
 ■ How do you measure quality?

474 Part four architecture and business 24—Architecture Competence

Questions based on the Organizational learning Model. Finally, a
set of example questions, based on the Organizational Learning model, which
deal with how the organization systematically internalizes knowledge to its
advantage:

Question: How do you capture and share experiences, lessons learned, techno-
logical decisions, techniques and methods, and knowledge about available tooling?

 ■ Do you use any knowledge management tools?
 ■ Is capture and use of architectural knowledge embedded in your processes?
 ■ Where is the information about “who knows what” captured and how is this

information maintained?
 ■ How complete and up to date is your architecture documentation? How

widely disseminated is it?

Performing an assessment

Our organizational competence assessment is carried out using a team of three
to four assessors. The exercise is set up by establishing the scope of the review:
Are we assessing the entire company? One of its divisions? Or perhaps a single
important project?

After we establish the scope, we identify the groups we wish to interview. Of
course, we’ll want to interview the architecture team(s) within the scope. From there
we identify groups both upstream and downstream of the architects. Upstream are
groups that manage the architects or provide organization-wide architecture training.
Downstream, we interview the “consumers” of the architectures, such as developers,
integrators, testers, and maintainers. We interview small groups, making sure that no
members of an interview group have reporting relationships with each other.

We try hard to establish an informal atmosphere in the group interviews, to
avoid inhibiting the participants. The tone is conversational, not inquisitional. We
begin each interview by reminding the participants of the purpose of the exercise,
and to assure them that nothing they say will be quoted to anyone outside the
group in any way that could identify them.

For each group, we have planned which parts of the framework we wish to
discuss with that group. We won’t ask testers, for example, questions intended for
managers, and vice versa. We use the questions as a guide for the conversation, but
not a rigid script. Whenever we pose a question in the assessment instrument, there
are a number of meta-questions that automatically accompany it. For example:

 ■ What evidence could you show us to support your answer? Supporting ev-
idence might include a software development plan that lays out the role of
architecture in a project, an organization’s architecture-based training cur-
riculum, or many other kinds of documentation.

 ■ How sustainable is your answer over time, over different systems, and
across different architects? For example, we might ask how an answer
might change if a different architect came on board the project.

24.4 For Further Reading 475

The outcome of an assessment is organized by the practice areas of the
framework. For each practice, we assign one of three values that correspond to
“you’re doing this well,” “you could be doing this better (and experiencing more
benefit),” and “this is an area of high risk.” Graphically, we show this as green
light, yellow light, red light. We have found that this simple metric provides orga-
nizations with enough granularity to turn their attention to problem areas, which
is the whole point of the assessment. We do not give an overall rating. Thus, we
closely mirror the “continuous representation” option of maturity models such as
CMMI, in which the result is a vector rather than a scalar.

We present the findings in a written report and a slide presentation. In both,
we describe and justify each finding, based on what we were told in the inter-
views and/or read in provided documents.

24.3 Summary

The vast majority of work on software and systems architecture (including our
own) has focused on the technical aspects. But an architecture is much more
than a technical “blueprint” for a system. This has led us to try to understand, in
a more holistic way, what an architect and an architecture-centric organization
must do to succeed. To this end, we have developed a framework that aids us in
assessing an organization for competence.

We use the framework to ask questions about an organization’s practices.
We can also ask about recent architecture successes and failures, and investigate
the causes of each. The output of this exercise is a formal report that assesses
competence at organization, team, and individual levels. Along with this report
we make improvement recommendations based on assessment results; these, too,
are tied to the underlying competence models.

You can do the same sort of evaluation on your own organization. The key
to the process is in understanding the various models and in creating questions
based on these models that aid you in assessing how well you are doing in those
areas that you care about. Given this knowledge, you can create your own im-
provement plan, as an individual architect or for an entire organization.

24.4 for further reading

The four models that underlie the assessment framework presented here are de-
scribed in more detail in the Technical Note “Models for Evaluating and Improv-
ing Architecture Competence” [Bass 08]. These models are the following:

476 Part four architecture and business 24—Architecture Competence

 ■ Duties, Skills, and Knowledge (DSK) model of competence. This model is
predicated on the belief that architects and architecture-producing organiza-
tions are useful sources for understanding the tasks necessary to the job of ar-
chitecting. To assemble a comprehensive set of duties, skills, and knowledge
for architects, we surveyed approximately 200 sources of information target-
ed to professional architects—books, websites, blogs, position descriptions,
and more. The results of this survey can be found in [Clements 07].

 ■ Human Performance model of competence. This model is based on the hu-
man performance engineering work of Thomas Gilbert [Gilbert 07]. This
model is predicated on the belief that competent individuals in any pro-
fession are the ones who produce the most valuable results at a reasonable
cost. Using this model will involve figuring out how to measure the value
and cost of the outputs of architecture efforts, finding areas where that ratio
can be improved, and crafting improvement strategies based on environ-
mental and behavioral factors.

 ■ Organizational Coordination model of competence. The focus of this mod-
el is on creating an interteam coordination model for teams developing a
single product or a closely related set of products. The architecture for the
product induces a requirement for teams to coordinate during the realiza-
tion or refinement of architectural decisions. The organizational structure,
practices, and tool environment of the teams allow for particular types of
coordination with a particular interteam communication bandwidth. The
coordination model of competence compares the requirements for coor-
dination that the architecture induces with the bandwidth for coordination
supported by the organizational structure, practices, and tool environment
[Cataldo 07].

 ■ Organizational Learning model of competence. This model is based on
the concept that organizations, and not just individuals, can learn. Organi-
zational learning is a change in the organization that occurs as a function
of experience. This change can occur in the organization’s cognitions or
knowledge (e.g., as presented by Fiol and Lyles [Fiol 85]), its routines or
practices (e.g., as demonstrated by Levitt and March [Levitt 88]), or its
performance (e.g., as presented by Dutton and Thomas [Dutton 84]). Al-
though individuals are the medium through which organizational learning
generally occurs, learning by individuals within the organization does not
necessarily imply that organizational learning has occurred. For learning to
be organizational, it has to have a supra-individual component [Levitt 88].
There are three approaches to measure organizational learning: (1) measure
knowledge directly through questionnaires, interviews, and verbal proto-
cols; (2) treat changes in routines and practices as indicators of changes in
knowledge; or (3) view changes in organizational performance indicators
associated with experience as reflecting changes in knowledge [Argote 07].

24.5 Discussion Questions 477

The Open Group offers a certification program for qualifying the skills,
knowledge, and experience of IT, business, and enterprise architects, which is
related to measuring and certifying an individual architect’s competence. Visit
opengroup.org for details. The International Association of Software Architects
(IASA) offers a similar certification; see iasahome.org.

Dana Bredemeyer and Ruth Malan have written many articles on the
role of the software architect (www.bredemeyer.com/who.htm), including
their duties and skills [Bredemeyer 11] (www.bredemeyer.com/Architect/
ArchitectSkillsLinks.htm). They have their own competence framework as well
as a skills development program.

The U.K. Chapter of the International Council on Systems Engineering (IN-
COSE) maintains a “Core Competencies Framework” for systems engineers that
includes a “Basic Skills and Behaviours” section listing “the usual common at-
tributes required by any professional engineer” [INCOSE 05]. The list includes
coaching, communication, negotiation and influencing, and “team working.”

The classic work on the Balanced Scorecard was created by Kaplan and
Norton [Kaplan 92] and the classic work on Business/IT Alignment was origi-
nally created by Luftman [Luftman 00], although this has been updated to explic-
itly consider the role of architecture in alignment [Chen 10].

Boehm, Valerdi, and Honour [Boehm 07] provide one of the few empirical
studies of systems engineering and how an investment in “better” engineering
pays off (or doesn’t) in the future.

24.5 discussion Questions

1. In which skills and knowledge discussed in this chapter do you think you
might be deficient? How would you reduce these deficiencies?

2. Which duties, skills, or knowledge do you think are the most important or
cost-effective to improve in an individual architect? Justify your answer.

3. How would you measure the specific value of architecture in a project?
How would you distinguish the value added by architecture from the val-
ue added by other activities such as quality assurance or configuration
management?

4. How do you measure items such as “customer satisfaction” or “negotiation
skills”? How would you validate such measurements?

5. How would you distinguish benefits caused by systematic organizational
learning from the benefits due to heroic efforts by individuals within the
organization?

http://www.bredemeyer.com/who.htm
http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm
http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm

478 Part four architecture and business 24—Architecture Competence

6. Section 24.2 listed a number of practices of an architecturally competent
organization. Prioritize that list based on expected benefit over expected
cost.

7. Suppose you are in charge of hiring an architect for an important system
in your company. How would you go about it? What would you ask the
candidates in an interview? Would you ask them to produce anything? If so,
what? Would you have them take a test of some kind? If so, what? Who in
your company would you have interview them? Why?

479

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

25
Architecture and
Software Product Lines

Coming together is a beginning. Keeping together
is progress. Working together is success.

—Henry Ford

A software architecture represents a significant investment of time and effort,
usually by senior talent. So it is natural to want to maximize the return on this
investment by reusing an architecture across multiple systems.

There are many ways this happens in practice. The patterns we discussed in
Chapter 13 are a big step in this direction; using a pattern is reusing a package of
architectural decisions (albeit not a complete architecture). And strictly speaking,
every time you make a change to a system, you are reusing its architecture (or
whatever portion of its architecture you don’t have to change).

This chapter shows yet another way to reuse a software architecture (and
many other assets as well) across a family of related systems, and the benefits
that doing so can bring. Many software-producing organizations tend to produce
systems or products that resemble each other more than they differ. This is an
opportunity for reusing the architecture across these similar products. These soft-
ware product lines simplify the creation of new members of a family of similar
systems.

This kind of reuse has been shown to bring substantial benefits that include
reduced cost of construction, higher quality, and greatly reduced time to market.
This is the lure of the software product line approach to system building.

The Software Engineering Institute defines a software product line as “a set
of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way.”

The vision is of a set of reusable assets (called core assets) based on a com-
mon architecture and the software elements that populate that architecture. The

480 Part four 25—Architecture and Software Product Lines

core assets also include designs and their documentation, user manuals, project
management artifacts such as budgets and schedules, software test plans and test
cases, and more.

The product line approach works because the core assets were built specifi-
cally to support multiple members of the same family of products. Hence, reusing
them is faster and less expensive than reinventing those software assets for each
new product or system in the organization’s portfolio. Core assets, including the
architecture, are usually designed with built-in variation points—places where
they can be quickly tailored in preplanned ways.

Once the core assets are in place, system building becomes a matter of

 ■ Accessing the appropriate assets in the core asset base
 ■ Exercising the variation points to configure them as required for the system

being built
 ■ Assembling that system

In the ideal case, this can be done automatically. Additional software developed
for an individual product, if needed at all, tends to account for a small fraction of
the total software. Integration and testing replace design and coding as the pre-
dominant activities.
Product lines are nothing new in manufacturing. Many historians trace the con-
cept to Eli Whitney’s use of interchangeable parts to build rifles in the early
1800s, but earlier examples also exist. Today, there are hundreds of examples
in manufacturing: think of the products of companies like General Motors, Toy-
ota, Boeing, Airbus, Dell, even McDonald’s, and the portfolio of similar products
that each one produces. Each company exploits commonality in different ways.
Boeing, for example, developed the 757 and 767 in tandem, and the parts lists of
these two very different aircraft overlap by about 60 percent.
The improvements in cost, time to market, and productivity that come with a suc-
cessful software product line can be breathtaking. Consider:

 ■ Nokia credits the software product line approach with giving it flexibility to
bring over a dozen phones to market each year, as opposed to the three or
so it could manage before, all with an unprecedented variety of features.

 ■ Cummins, Inc., was able to reduce the time it takes to produce the software
for a diesel engine from about a year to about a week.

 ■ Hewlett-Packard builds products using one-quarter of the staff, in one-third
of the time, and with one twenty-fifth the number of defects, compared with
software built before the advent of software product line engineering.

 ■ Deutsche Bank estimates $4 million in savings per year realized from
building its global transaction and settlement software as a product line.

 ■ Philips reports reduced faults during integration in its high-end television
portfolio by adopting the product line approach. Product diversity used
to be one of the top three concerns of their architects. Now it doesn’t
even make the list of concerns at all; the product line approach has taken

25—Architecture and Software Product Lines 481

software development off the critical path—the software no longer deter-
mines the delivery date of the product.

 ■ With a product line of satellite ground control systems it commissioned, the
U.S. National Reconnaissance Office reported the first product requiring
10 percent the expected number of developers and having one-tenth the ex-
pected number of defects.

 ■ In Philips’s medical systems product line, the software product line ap-
proach has cut both software defects and time to market by more than half.

Creating a successful product line depends on a coordinated strategy involving
software engineering, technical management, and organization management. Be-
cause this is a book on software architecture, we focus on the architectural as-
pects of software product lines, but all aspects must work together in order for an
organization to successfully create a product line.

That Silver Lining Might Have a Cloud

The software product line paradigm is a powerful way to leverage an
investment in architecture (and other core assets) into a family of related
systems and thus see order-of-magnitude improvements in time to mar-
ket, quality, and productivity. These results are possible and have been
demonstrated by companies large and small in many different domains.
The effects are real. Further, data from many sources and companies con-
firms with astonishing consistency that, to make the investment pay off,
an organization needs to build only three products. This is the minimum
number we would expect to have in a product line.

But other results are possible as well, and a spectacular crash-and-burn
is not out of the question when trying to adopt this approach. Product line
practice, like any technology, needs careful thought given to its adoption,
and a company’s history, situation, and culture must be taken into account.
Factors that can contribute to product line failure include these:

 ■ Lack of a champion in a position of sufficient control and visibility
 ■ Failure of management to provide sustained and unwavering support
 ■ Reluctance of middle managers to relinquish autocratic control of projects
 ■ Failure to clearly identify business goals for adopting the product line

approach
 ■ Abandoning the approach at the first sign of difficulty
 ■ Failure to adequately train staff in the approach and failure to explain or

justify the change adequately
 ■ Lack of discipline in managing the architecture’s variation points
 ■ Scoping the product line too broadly or too narrowly
 ■ Lack of product line tooling to help manage and exercise the variation

points

482 Part four 25—Architecture and Software Product Lines

Fortunately, there are strategies for overcoming most of these factors.
One good strategy is to launch a small but visible pilot project to demon-
strate the quantitative benefits of software product lines. The pilot can
be staffed by those most willing to try something new while the skeptics
go about their business. It can work out process issues, clarify roles and
responsibilities, and in general work out the bugs before the approach is
transitioned to a wider setting.

—PCC

25.1 an Example of Product line Variability

The following example will help us illustrate the concept of product line vari-
ability. In a product line of software to support U.S. bank loan offices, suppose
we have a software module that calculates what a customer owes in the current
month. For 18 of the 21 products in our product line, this module is completely
adequate. However, our company is about to enter the market in the state of Del-
aware, which has certain laws that affect what a customer can owe. For the three
products we plan to sell in Delaware, we need a module that differs from the
“standard” module. Analysis shows that the difference will affect about 250 lines
of source code in our 8,000-line module.

To build one of the Delaware products, what do we do? An obvious op-
tion is to copy the module, change the 250 or so lines, and use the new version
in the three products. This practice is called “clone-and-own”—the new projects
“clone” the module, change it, and then “own” the new version. Most companies,
when faced with this situation, resort to clone-and-own. It’s expedient in that it
provides a quick start to a new product, but it comes with a substantial cost down
the road.

The problem with clone-and-own is that it doesn’t scale. Suppose each of
our 21 products comprises roughly 100 modules. If each module is allowed to
diverge for each product, that’s potentially 2,100 modules that the maintenance
staff has to deal with, each one spiraling off on its own separate maintenance
trajectory based on the needs of the lone project each version is used in. Many
companies’ growth in a market is limited—brought to a halt, in fact—by their in-
ability to staff the maintenance of so many separate versions of so many different
assets composing the products in their portfolio. An organization fielding several
versions of several products finds itself dealing with a staggeringly complex code
base. The strain begins to show when a systematic change needs to be made to all
of the products—for example, to add a new feature, or migrate to a new platform,
or make the user interface work in a different language. Because each version
of each component used in each product has been allowed to evolve separately,
now suddenly making a systematic change becomes prohibitively expensive (and

25.2 What Makes a Software Product Line Work? 483

only gets worse each time a new product is added—the labor involved grows as
the square of the number of products). It only takes a few such portfolio-wide
changes before organizations feel that they’ve hit a wall of complexity and
expense.

So much for clone-and-own. What else can we do? Instead of allowing up to
21 versions of each module, we would much rather find a way to take advantage
of the fact that these nearly identical modules vary only in small, well-defined
ways. To take advantage of their similarities, we introduce a variation mechanism
into the module. (Variation mechanisms are often realized as tactics, such as the
“defer binding” set of tactics described in Chapter 7.) This variation mechanism
will let us maintain a single module that can adapt to the range of variations in
the applications (in our example, the 21 banking products) that it has to support.
If we plan to market our products in states that, like Delaware, have their own
laws affecting what a customer owes, we may need to support additional varia-
tions of the module. So our variation mechanism should be able to accommodate
those possibilities as well.

The payoff for this up-front planning is that an asset used in any of the prod-
ucts exists as a single version that (through the exercising of built-in variation
mechanisms) works for all of the products in the product line. And now, mak-
ing a portfolio-wide change merely consists of changing the core assets that are
affected. Because all future versions of all products use the same core assets,
changing the core asset base has the effect of changing all of the products in the
organization’s portfolio.

25.2 What Makes a Software Product line Work?

What makes product lines succeed is that the commonalities shared by the prod-
ucts can be exploited through reuse to achieve production economies. The poten-
tial for reuse is broad and far-ranging, including the following:

 ■ Requirements. Most of the requirements are common with those of earlier
systems and so can be reused. In fact, many organizations simply maintain
a single set of requirements that apply across the entire family as a core
asset; the requirements for a particular system are then written as “delta”
documents off the full set. In any case, most of the effort consumed by re-
quirements analysis is saved from system to system.

 ■ Architectural design. An architecture for a software system represents a
large investment of time from the organization’s most talented engineers.
As we have seen, the quality goals for a system—performance, reliability,
modifiability, and so forth—are largely promoted or inhibited once the
architecture is in place. If the architecture is wrong, the system cannot be

484 Part four 25—Architecture and Software Product Lines

saved. For a new product, however, this most important design step is al-
ready done and need not be repeated.

 ■ Software elements. Software elements are applicable across individual
products. Element reuse includes the (often difficult) initial design work.
Design successes are captured and reused; design dead ends are avoided,
not repeated. This includes design of each element’s interface, its docu-
mentation, its test plans and procedures, and any models (such as perfor-
mance models) used to predict or measure its behavior. One reusable set of
elements is the system’s user interface, which represents an enormous and
vital set of design decisions. And as a result of this interface reuse, products
in a product line usually enjoy the same look and feel as each other, an ad-
vantage in the marketplace.

 ■ Modeling and analysis. Performance models, schedulability analysis, dis-
tributed system issues (such as proving the absence of deadlock), allocation
of processes to processors, fault tolerance schemes, and network load poli-
cies all carry over from product to product. Companies that build real-time
distributed systems report that one of the major headaches associated with
production has all but vanished. When they field a new product in their
product line, they have high confidence that the timing problems have been
worked out and that the bugs associated with distributed computing—
synchronization, network loading, and absence of deadlock—have been
eliminated.

 ■ Testing. Test plans, test processes, test cases, test data, test harnesses, and
the communication paths required to report and fix problems are already in
place.

 ■ Project planning artifacts. Budgeting and scheduling are more predictable
because experience is a high-fidelity indicator of future performance. Work
breakdown structures need not be invented each time. Teams, team size,
and team composition are all easily determined.

All of these represent valuable core assets, each of which can be imbued
with its own variation points that can be exercised to build a product. We’ll look
at architectural variation points later in this chapter, but for now imagine that any
artifact represented by text can consist of text blocks that are exposed or hidden
for a particular product. Thus, the artifact that is maintained in the core asset base
represents a superset of any version that will be produced for a product.

Artifact reuse in turn enables reuse of knowledge:

 ■ Processes, methods, and tools. Configuration control procedures and fa-
cilities, documentation plans and approval processes, tool environments,
system generation and distribution procedures, coding standards, and many
other day-to-day engineering support activities can all be carried over from
product to product. The software development process is in place and has
been used before.

25.2 What Makes a Software Product Line Work? 485

Giving Software Reuse a New Lease on Life

Software product lines rely on reuse, but reuse has a long but less than
stellar history in software engineering, with the promise almost always
exceeding the payoff. One reason for this failure is that until now reuse
has been predicated on the idea of “If you build it, they will come.” A reuse
library is stocked with snippets from previous projects, and developers are
expected to check it first before coding new elements. Almost everything
conspires against this model. If the library is too sparse, the developer will
not find anything of use and will stop looking. If the library is too rich, it will
be hard to understand and search. If the elements are too small, it is eas-
ier to rewrite them than to find them and carry out whatever modifications
they might need. If the elements are too large, it is difficult to determine
exactly what they do in detail, which in any case is not likely to be exactly
right for the new application. In most reuse libraries, pedigree is hazy at
best. The developer cannot be sure exactly what the element does, how
reliable it is, or under what conditions it was tested. And there is almost
never a match between the quality attributes needed for the new applica-
tion and those provided by the elements in the library.

In any case, it is common that the elements were written for a different
architectural model than the one the developer of the new system is using.
Even if you find something that does the right thing with the right quality
attributes, it is doubtful that it will be the right kind of architectural element
(if you need an object, you might find a process), that it will have the right
interaction protocol, that it will comply with the new application’s error-han-
dling or failover policies, and so on.

This has led to so many reuse failures that many project managers have
given up on the idea. “Bah!” they exclaim. “We tried reuse before, and it
doesn’t work!”

Software product lines make reuse work by establishing a strict context for
it. The architecture is defined; the functionality is set; the quality attributes are
known. Nothing is placed in the reuse library—or “core asset base” in product
line terms—that was not built to be reused in that product line. Product lines
work by relying on strategic or planned, not opportunistic, reuse.

—PCC

 ■ People. Because of the commonality of applications, personnel can be
transferred among projects as required. Their expertise is applicable across
the entire line.

 ■ Exemplar systems. Deployed products serve as high-quality demonstration
prototypes or engineering models of performance, security, safety, and
reliability.

486 Part four 25—Architecture and Software Product Lines

 ■ Defect elimination. Product lines enhance quality because each new system
takes advantage of the defect elimination in its forebears. Developer and cus-
tomer confidence both rise with each new instantiation. The more complicat-
ed the system, the higher the payoff for solving vexing performance, distribu-
tion, reliability, and other engineering issues once for the entire family.

All of this reuse helps products launch more quickly, with higher quality,
lower cost, and more predictable budget and schedule. This is critical for getting
a product to market in a timely fashion. However, these benefits do not come
for free. A product line may require a substantial up-front investment of time
and effort to set up and manage, as well as to keep the core assets responsive to
changing market needs.

25.3 Product line Scope

One of the most important inputs to an architect building an architecture for a
software product line is the product line’s scope. A product line’s scope is a state-
ment about what systems an organization is willing to build as part of its line
and what systems it is not willing to build. Defining a product line’s scope is like
drawing a doughnut in the space of all possible systems, as shown in Figure 25.1.
The doughnut’s center represents the systems that the organization could eas-
ily build using its base of core assets; these are within its production capability.
Systems outside the doughnut are out of scope because they are ones the product
line’s core assets are not well equipped to handle; this would be like asking Toy-
ota to build, say, apple pies on one of its automotive assembly lines.

fIGurE 25.1 The space of all possible systems is divided into areas within
scope (white), areas outside of scope (speckled), and areas that require case-by-
case disposition (gray).

25.3 Product Line Scope 487

Systems on the doughnut itself could be handled, but with some effort.
These often represent invitations from the marketplace asking the organization
to extend its product line. To take advantage of such an opportunity, the orga-
nization would have to broaden its production capability—that is, make its core
asset base able to handle the new product. These opportunities require case-by-
case disposition as they arise, to see if the potential payoff (such as entry into a
slightly different area of the market) would outweigh the cost to modify the core
assets. This would be like asking Toyota to build a riding lawnmower.

The scope represents the organization’s best prediction about what products
it will be asked to build in the foreseeable future. Input to the scoping process
comes from the organization’s strategic planners, marketing staff, domain ana-
lysts who can catalog similar systems (both existing and on the drawing board),
and technology experts.

A product line scope is a critical factor in the success of the product line.
Scope too narrowly (the products only vary in a small number of features) and
an insufficient number of products will be derived to justify the investment in
development. Scope too broadly (the products vary in kind as well as in features)
and the effort required to develop individual products from the core assets is too
great to lead to significant savings. Scope can be refined as a portion of the initial
establishment of the product line or opportunistically depending on the product
line adoption strategy (see the section on adoption strategies in Section 25.8).

The problem in defining the scope is not in finding commonality—a cre-
ative architect can find points of commonality between any two systems—but
in finding commonality that can be exploited to substantially reduce the cost of
constructing the systems that an organization intends to build. When consider-
ing scope, more than just the systems being built should be considered. Market
segmentation and types of customer interactions assumed will help determine
the scope of any particular product line. For example, Philips, the Dutch manu-
facturer of consumer electronics, has distinct product lines for home video elec-
tronic systems and digital video communication. Video is the common thread,
but one is a mass market, where the customer is assumed to have very little video
sophistication, and the other is a much smaller market consisting purely of video
professionals. The products being developed reflect these assumptions about the
sophistication of customers and the amount of care each customer will receive.
These differences were sufficient to keep Philips from attempting to develop a
single product line for both markets.

Narrowly scoped product lines offer opportunities to build specialized tools
to support the specification of new products. For example, General Motors’ Pow-
ertrain division builds a software product line of automotive software. It makes
an individual product from its product line core assets based on contracts stored
in a database. Each element has well-defined interfaces and possible variation
points. A tool searches the database based on desired features and assembles the
product.

488 Part four 25—Architecture and Software Product Lines

The scope definition is vital to the product line architect because the scope
defines what is common across all members of the product line, and the specific
ways in which the products differ from each other. The fixed part of a product
line architecture reflects what is constant, and the architecture’s variation points
accommodate the variations among products.

25.4 the Quality attribute of Variability

Scoping decisions, which tell the product line architect what kinds of systems are
“in” and what kinds of systems are “out” of the product line, lead to the introduc-
tion of variability in the core assets. In fact, the quality attribute of variability is
most closely associated with product lines. Some may feature high-performance
products, or high-security products, or high-availability products, but all prod-
uct lines feature variability aimed at satisfying the commonalities and variations
identified by the product line’s scope.

We introduced variability in Chapter 12. There we said that variability is a
special form of modifiability, pertaining to the ability of a core asset to adapt to
usages in the different product contexts that are within the product line scope.
The goal of variability in a software product line is to make it easy to build and
maintain products in the product line over time.

Table 25.1 gives the general scenario for variability. The source is some actor in
the product line organization who identifies a need for variation; this actor is proba-
bly someone involved in setting the product line’s scope, such as a marketer.

Identifying variation is a constant, iterative process in the life of a software
product line. Because of the many different ways a product can vary, particu-
lar variants can be identified at virtually any time during the development pro-
cess. Some variations are identified during product line requirement elicitations;
others, during architecture design; and still others, during implementation. Vari-
ations may also be identified during implementation of the second (and subse-
quent) products as well.

Product line architectures feature variability as an important quality attri-
bute. They achieve this by incorporation of variation mechanisms, which we will
discuss in more detail shortly.

25.5 the role of a Product line architecture

Of all of the assets in a core asset repository, the software architecture plays the
most central role. There is both a tactical and a strategic reason for this.

25.5 The Role of a Product Line Architecture 489

tablE 25.1 The General Scenario for Variability

Portion of Scenario Possible Values

Source Actor requesting variability

Stimulus Requests to support variations in the following:
 ■ Hardware
 ■ Feature sets
 ■ Technologies
 ■ User interfaces
 ■ Quality attributes
 ■ . . . and more

for the range of products affected, such as:
 ■ All
 ■ A specified subset
 ■ Those that include feature set x
 ■ New products

Environment Variants are to be created at:
 ■ Runtime
 ■ Build time
 ■ Development time

Artifact Asset(s) affected, such as:
 ■ Requirements
 ■ Architecture
 ■ Component x
 ■ Test suite y
 ■ Project plan z
 ■ . . . and more

Response The requested variants can be created.

Response measure A specified cost and/or time to create the core assets and
to create the variants using these core assets

The tactical reason is the importance the architecture plays in building prod-
ucts in a product line. The essence of building a successful software product line
is discriminating between what is expected to remain constant across all family
members and what is expected to vary. Software architecture is ideal for handling
this variation, because all architectures are abstractions that admit multiple in-
stances. By its very nature every architecture is a statement about what we expect
to remain constant and what we admit may vary. For example, interfaces to com-
ponents are designed to remain stable, with anticipated changes hidden behind
those interfaces.

In a software product line, the architecture has to encompass both the
varying and the nonvarying aspects. A product line architecture must be de-
signed to accommodate a set of explicitly allowed variations. Thus, identifying

490 Part four 25—Architecture and Software Product Lines

the allowable variations is part of the architect’s responsibility, as is providing
built-in mechanisms for achieving them. Those variations may be substantial.
Products in a software product line exist simultaneously and may vary in terms
of their behavior, quality attributes, platform, network, physical configuration,
middleware, scale factors, and so forth.

The strategic reason has to do with the capability it imparts to an organiza-
tion outside the realm of an existing product line. As we saw in Chapters 2 and 3,
an architecture can serve as a technical platform for launching new applications
and even new business models, and it can serve as a springboard for an organiza-
tion diving into a new business area. This seems to be especially true for product
line architectures. There are many cases where an organization has taken advan-
tage of its production capability—that is, its core asset base crowned by a product
line architecture—by using that capability to enter new markets. For example,
Cummins took its product line of automotive diesel engines to enter and quickly
dominate the neighboring market for industrial diesel engines. Industrial diesel
engines power things like rock crushers and ski lifts, markets of low volume and
high specialization. Systems in that market built uniquely for each application are
expensive and don’t yield a high return. But a product line that includes industrial
diesel engines in its scope, and whose production capability supports industrial
diesel engines, is a recipe for rapid market capture.

A product line architect needs to consider three things that are unique to
product line architectures:

 ■ Identifying variation points. This is done by using the scope definition and
product line requirements as input. The product line architect determines
where in the architecture variation points should be made available to sup-
port the rapid building of products.

 ■ Supporting variation points. This is done by introducing variation mecha-
nisms, which will be discussed in the next section.

 ■ Evaluating the architecture for product line suitability, which will be dis-
cussed later in this chapter.

25.6 Variation Mechanisms

In a conventional architecture, the mechanism for achieving different instances
often comes down to modifying the code. But in a software product line, modify-
ing code is undesirable, because this leads to a large number of separately main-
tained implementations that quickly outstrip an organization’s ability to keep
them up to date and consistent.

Three primary architectural variation mechanisms are these:

25.6 Variation Mechanisms 491

 ■ Inclusion or omission of elements. This decision can be reflected in the
build procedures for different products, or the implementation of an ele-
ment can be conditionally compiled based on some parameter indicating its
presence or absence.

 ■ Inclusion of a different number of replicated elements. For instance,
high-capacity variants might be produced by adding more servers—the ac-
tual number should be unspecified, as a point of variation, and may be done
dynamically.

 ■ Selection of different versions of elements that have the same interface but
different behavioral or quality attribute characteristics. Selection can occur
at compile time, build time, or runtime. Selection mechanisms include stat-
ic libraries, which contain external functions linked after compilation time;
dynamic link libraries, which have the flexibility of static libraries but defer
the decision until runtime based on context and execution conditions; and
add-ons (e.g., plug-ins, extensions, and themes), which add or modify ap-
plication functionality at runtime. By changing the libraries, we can change
the implementation of functions whose names and signatures are known.

Some variation mechanisms can be introduced that change aspects of a par-
ticular software element. Modifying the source code each time the element is
used in a new product—that is, clone-and-own—falls into this category, although
it is undesirable. More sophisticated techniques include the following:

 ■ Extension points. These are identified places in the architecture where addi-
tional behavior or functionality can be safely added.

 ■ Reflection. This is the ability of a program to manipulate data on itself or its
execution environment or state. Reflective programs can adjust their behav-
ior based on their context.

 ■ Overloading. This is a means of reusing a named functionality to operate
on different types. Overloading promotes code reuse, but at the cost of un-
derstandability and code complexity.

Other commonly used variation mechanisms include those in Table 25.2.
Choosing the right variation mechanism affects numerous costs:

 ■ The skill set required to implement, or learn and use, the specific variation
mechanism, such as server or framework programming

 ■ The one-time costs of building or acquiring the tools (such as compilers or
generators) required to create the variation mechanism

 ■ The recurring cost and time to exercise the variation mechanism

The choice of variation mechanism also affects downstream users and
developers:

 ■ The targeted group of users that use the mechanism for product-specific
adaptation, such as product developer, integrator, system administrator, and
end user

492 Part four 25—Architecture and Software Product Lines

Finally, the choice of variation mechanism affects product quality:

 ■ The impact of the variation mechanism on quality, such as possible perfor-
mance penalties or memory consumption

 ■ The impact on the mechanism’s maintainability

The architect should document the choice of variation mechanisms. In fact,
the documentation of variation mechanisms is the primary way in which the doc-
umentation for a product line architecture differs from that of a conventional ar-
chitecture. In the documentation template we presented in Chapter 18, the section

tablE 25.2 Common Variation Mechanisms

Variation
Mechanism

Properties relevant to
building the core assets

Properties relevant to Exercising
the Variation Mechanism When
building Products

Inheritance;
specializing or
generalizing a
particular class

cost: Medium
Skills: Object-oriented
languages

Stakeholder: Product developers
tools: Compiler
cost: Medium

Component
substitution

cost: Medium
Skills: Interface definitions

Stakeholder: Product developer, system
administrator
tools: Compiler
cost: Low

Add-ons, plug-
ins

cost: High
Skills: Framework
programming

Stakeholder: End user
tools: None
cost: Low

Templates cost: Medium
Skills: Abstractions

Stakeholder: Product developer, system
administrator
tools: None
cost: Medium

Parameters
(including text
preprocessors)

cost: Medium
Skills: No special skills
required

Stakeholder: Product developer, system
administrator, end user
tools: None
cost: Low

Generator cost: High
Skills: Generative
programming

Stakeholder: System administrator, end
user
tools: Generator
cost: Low

Aspects cost: Medium
Skills: Aspect-oriented
programming

Stakeholder: Product developer
tools: Aspect-oriented language
compiler
cost: Medium

Runtime
conditionals

cost: Medium
Skills: No special skills
required

Stakeholder: None
tools: None
cost: No development cost; some
performance cost

Configurator cost: Medium
Skills: No special skills
required

Stakeholder: Product developer
tools: Configurator
cost: Low to medium

25.7 Evaluating a Product Line Architecture 493

called the variability guide is reserved for exactly this purpose. The variability
guide should describe each variation mechanism, how and when to exercise it,
and what allowed variations it supports. The architecture documentation should
also describe the architecture’s instantiation process—that is, how its variation
points are exercised. Also, if certain combinations of variations are disallowed,
then the documentation needs to explain valid and invalid variation choices.

25.7 Evaluating a Product line architecture

Like any other, the architecture for a software product line should be evaluated
for fitness of purpose. The architecture should be evaluated for its robustness and
generality, to make sure it can serve as the basis for products in the product line’s
envisioned scope. It should also be evaluated to make sure it meets the specific
behavioral and quality requirements of the product at hand. We begin by focusing
on the what and how of the evaluation and then turn to when it should take place.

What and How to Evaluate. The evaluation will have to focus on the vari-
ation points to make sure they are appropriate, that they offer sufficient flexibility
to cover the product line’s intended scope, that they allow products to be built
quickly, and that they do not impose unacceptable runtime performance costs. If
your evaluation is scenario based, expect to elicit scenarios that involve instanti-
ating the architecture to support different products in the family. Also, different
products in the product line may have different quality attribute requirements,
and the architecture will have to be evaluated for its ability to provide all required
combinations. Here again, try to elicit scenarios that capture the quality attributes
required of family members.

Often, some of the hardware and other performance-affecting factors for
a product line architecture are unknown to begin with. In this case, evaluation
can establish bounds on the performance that the architecture is able to achieve,
assuming bounds on hardware and other variables. The evaluation can identify
potential contention so that you can put in place the policies and strategies to
resolve it.

When to Evaluate. An evaluation should be performed on an instance or vari-
ation of the architecture that will be used to build one or more products in the prod-
uct line. The extent to which this is a separate, dedicated evaluation depends on the
extent to which the product’s requirements differ from the product line architecture
envelope. If it does not differ, the product architecture evaluation can be abbreviated,
because many of the issues normally raised in a single product evaluation will have
been dealt with in the product line evaluation. In fact, just as the product architecture
is a variation of the product line architecture, the product architecture evaluation is
a variation of the product line architecture evaluation. Therefore, depending on the
evaluation method used, the evaluation artifacts (scenarios, checklists, and so on)

494 Part four 25—Architecture and Software Product Lines

will have reuse potential, and you should create them with that in mind. The results
of evaluation of product architectures often provide useful feedback to the product
line architects and fuel architectural improvements.

When a new product is proposed that falls outside the scope of the original
product line (for which the architecture was presumably evaluated), the product
line architecture can be reevaluated to see if it will suffice for it. If it does, the
product line’s scope can be expanded to include the new product, or to spawn a
new product line. If it does not, the evaluation can determine how the architecture
will have to be modified to accommodate the new product. The product line and
product instance architectures can be evaluated not only to determine architec-
tural risks but also to understand economic consequences (see Chapter 23), to
determine which products will yield the most return.

25.8 Key Software Product line Issues

It takes considerable maturity in the developing organization to successfully field
a product line. Technology is not the only barrier to this; organization, process,
and business issues are equally vital to master to fully reap the benefits of the
software product line approach.

Architecture definition is an important activity for any project, but as we saw
in the previous section, it needs to emphasize variation points in a software product
line. Configuration management is also an important activity for any project, but it is
more complex for a software product line because each product is the result of bind-
ing a large number of variations. The configuration management problem for prod-
uct lines is to reproduce any version of any product delivered to any customer, where
“product” means code and supporting artifacts ranging from requirement specs and
test cases to user manuals and installation guides. This involves knowing what ver-
sion of each core asset was used in a product’s construction, how every asset was
tailored, and what special-purpose code or documentation was added.

Examining every facet of launching a product line and institutionalizing a
product line culture is outside the scope of this book, but the next sections will
examine a few of the key areas that must be addressed. These are issues that an
organization will have to face when considering whether to adopt a product line
approach for software development and, if so, how to go about it.

adoption Strategies

An organization’s culture and context will dramatically affect how it goes about
adopting a product line approach. Here are some of the important organizational
and process factors that we have seen in practice.

25.8 Key Software Product Line Issues 495

top-down vs. bottom-up. Top-down adoption arises when a (typically
high level) manager decrees that the organization will use the approach. The
problem is to get employees in the trenches to change the way they work. Bot-
tom-up adoption happens when designers and developers working at the product
level realize that they are needlessly duplicating each other’s work and begin to
share resources and develop generic core assets. The problem is finding a man-
ager willing to sponsor the work and spread the technique to other parts of the
organization. Both approaches work; both are helped enormously by the presence
of a strong champion—someone who has thoroughly internalized the product
line vision and can share that compelling vision with others. (It works better if
the champion is in a position of some authority.)

Proactive vs. reactive. There are two primary models for how an organiza-
tion may grow a product line:

 ■ In a proactive product line, an organization defines the family using a com-
prehensive definition of scope. They do this not with a crystal ball but by
taking advantage of their experience in the application area, their knowledge
about the market and technology trends, and their good business sense.
The proactive model allows the organization to make the most far-reaching
strategic decisions. Explicitly scoping the product line allows you to look
at areas that are underrepresented by products already in the marketplace,
make small extensions to the product line, and move quickly to fill the gap. In
short, proactive product line scope allows an organization to take charge of its
own fate. Sometimes an organization does not have the ability to forecast the
needs of the market with the certainty suggested by the proactive model. The
proactive model also takes some time to define and implement, and in that
time the organization needs to continue to construct products.

 ■ In a reactive product line, an organization builds the next member or mem-
bers of the product family from earlier products. This is best used when
there is uncertainty of requirements. Perhaps the domain is a new one.
Perhaps the market is in flux. Or perhaps the organization cannot afford to
build a core asset base that will cover the entire scope all at once. In the
reactive model, with each new product the architecture is extended as need-
ed and the core asset base is built up from what has turned out to be com-
mon. The reactive model puts much less emphasis on up-front planning and
strategic direction setting. Rather, the organization lets itself be taken where
the market dictates. This is an example of agile architecting, as described in
Chapter 15.

Incremental vs. big bang. If you are proactively building a product line,
you still need to choose how to populate it: all at once or incrementally over time.
Populating the core asset base all at once is a strategy that has worked success-
fully for some organizations. However, it tends to require all or nearly all of the

496 Part four 25—Architecture and Software Product Lines

organization’s resources be focused on that task, at the expense of new product
production. A different approach is to populate the core asset base incrementally,
as circumstances and resources permit. Each product that goes out the door is
built with whatever core assets are available at the time. That means that early
products will include software not derived from core assets. But those products
will still be better off (that is, faster to market, of higher quality, and easier to
maintain) than products built entirely from unique code. And it’s entirely pos-
sible that some of the software unique to those early products can be extracted,
adapted, and generalized to become core assets themselves, thus helping populate
the core asset base in a reactive fashion.

Knowing the various adoption models can help an organization choose the
one that is right for it. For example, the proactive model requires a heavier initial
investment but less rework than the reactive model. The reactive model relies
exclusively on rework with little initial investment. Which model should act as a
guide for a particular organization depends on the business situation.

creating Products and Evolving a Product line

An organization that has a product line will have an architecture and a collection
of elements associated with it. From time to time, the organization will create a
new member of the product line that will have features both in common with and
different from those of other members.

One problem associated with a product line is managing its evolution. As
time passes, the line—or, more precisely, the set of core assets from which prod-
ucts are built—must evolve. That evolution will be driven by both external and
internal sources:

External sources

 ■ New versions of existing elements within the line will be released by their
vendors, and future products will need to be constructed from them.

 ■ New externally created elements may be added to the line. Thus, for ex-
ample, functions that were previously performed by internally developed
elements may now be performed by elements acquired externally, or vice
versa. Or future products will need to take advantage of new technology, as
embodied in externally developed elements.

 ■ New features may be added to the product line to keep it responsive to user
needs or competitive pressures.

Internal sources

 ■ Some entity within the organization must determine if new functions add-
ed to a product are within the product line’s scope. If so, they can simply
be built from the asset base. If not, a decision must be made: either the
enhanced product spins off from the product line, following its own evolu-
tionary path, or the asset base must be expanded to include it. Updating the

25.9 Summary 497

line may be the wisest choice if the new functionality is likely to be used in
future products, but this capability comes at the cost of the time necessary
to update the core assets.

 ■ An organization may wish to replace old products with ones built from the
most up-to-date version of the asset base. Keeping products compatible
with the product line takes time and effort. But not doing so may make fu-
ture upgrades more time consuming, because either the product will need to
be brought into compliance with the latest product line elements or it will
not be able to take advantage of improvements in the line.

Organizational Structure

An asset base on which products depend, but which has its own evolutionary
path (perhaps driven by technology change), requires an organization to decide
how to manage both it and product development. There are two main organiza-
tional strategies from which to choose, plus a number of minor variations. The
two main structures reflect different answers to the question “Shall we have a
dedicated group whose sole job is to build and maintain our core asset base?”

1. We’re all in this together. In this scheme, there is no separate core asset
group. The product-building development teams coordinate closely, and
divide up the core asset responsibilities among themselves. That is, Product
Team 1 might be assigned responsibility for the development and mainte-
nance of Core Assets 3, 6, 9, 12, and 15; Product Team 2 might take Core
Assets 1, 4, and 8; and so forth. This works well enough for small organi-
zations, but as size grows the communication channels become untenable.
Also, each team has to resist the temptation to build core assets that are
especially appropriate to its needs, but less so to other teams’ needs.

2. Separate core asset unit. In this scheme, a special unit is given responsibility
for the development and maintenance of the core asset base. Separate devel-
opment teams in the organization’s business units build the products. In this
scheme, the core asset unit (sometimes called a domain engineering unit)
assumes the responsibility for the overall strategic direction of the product
line. To the product teams, they appear almost like an external supplier. The
product teams coordinate among themselves to set the core asset team’s de-
velopment and test priorities, based on product delivery obligations.

25.9 Summary

This chapter presented an architecture-based development paradigm known
as software product lines. The product line approach is steadily climbing in

498 Part four 25—Architecture and Software Product Lines

popularity as more organizations see true order-of-magnitude improvements in
cost, schedule, and quality from using it.

Like all technologies, however, this one holds some surprises for the un-
aware. Architecturally, the key is identifying and managing commonalities and
variations, but nontechnical issues must be addressed as well, including how
the organization adopts the model, structures itself, and maintains its external
interfaces.

25.10 for further reading

[Clements 01a] is a comprehensive treatment of software product lines. It in-
cludes a number of case studies as well as a thorough discussion of product line
“practice areas,” which are areas of expertise a product line organization should
have (or should develop) to help bring about product line success.

[van der Linden 07] contains a rich set of product line case studies.
[Anastasopoulos 00] presents a good list of variation mechanisms, as do [Ja-

cobson 97] and [Svahnberg 00]. [Bachmann 05] provides a list of their own, as
well as a treatment of each in terms of cost (it was the source for Table 25.2).
Organizational models for software product lines are treated in [Bosch 00].

There is an active software product line community of research and practice.
The Software Product Line Conference (SPLC) is the mainstream forum for new
software product line research and success stories. You can find it at www.splc.
net. SPLC maintains a “Software Product Line Hall of Fame,” which showcases
successful software product lines that can serve as engineering models (and in-
spiration) to aspiring product line organizations. Each year, new members of the
Hall of Fame are nominated, and in most years a new candidate is inducted. You
can see the winners at www.splc.net/fame.html.

The SEI’s website contains a wealth of material about software product
lines, including a collection of “getting started” material: www.sei.cmu.edu/
productlines.

25.11 discussion Questions

1. Variability is achieved by adding variation mechanisms to a system. Vari-
ation mechanisms include inheritance, component substitution, plug-ins,
templates, parameters (including text preprocessors), generators, aspects,
runtime conditionals, and a configurator tool. Because variability can be
seen as a kind of modifiability, see if you can map each of these variation
mechanisms to one or more modifiability tactics given in Chapter 7.

http://www.splc.net
http://www.splc.net/fame.html
http://www.sei.cmu.edu/productlines
http://www.sei.cmu.edu/productlines
http://www.splc.net

25.11 Discussion Questions 499

2. Suppose a company builds two similar systems using a large set of common
assets, including an architecture. Which of the following would you say
constitutes a product line?

 ■ Sharing only an architecture but no elements.
 ■ Sharing only a single element.
 ■ Sharing the same operating system and programming language runtime

libraries.
 ■ Sharing the same team of developers.

Defend your answer.

3. Pick a type of system you’re familiar with—for example, an automobile or
a smartphone. Think of three instances of that kind of system. Make a list
of all of the things the three instances have in common. Now make a list of
all of the things that distinguish the three instances from each other (that is,
their variation points). If automobiles turn out to be too complex, start with
a simpler kind of “system,” such as an electric light.

4. Write some concrete scenarios to express the variability you identified in
the previous question.

5. Do the list of variation mechanisms in this chapter constitute tactics for
variability? Discuss.

6. In many software product lines, products differ by the quality attributes
they exhibit. For instance, a company might sell a cheap, low-security ver-
sion of its product alongside a more expensive, high-security version of the
same product. Which variation mechanisms might you choose to achieve
this kind of variability?

This page intentionally left blank

501

1

PA R T O N E

ENVISIONING
ARCHITECTURE

Where do architectures come from? They spring from the minds of architects, of
course, but how? What must go

into

 the mind of an architect for an architecture to
come

out?

 For that matter, what

is

 a software architecture? Is it the same as
design? If so, what’s the fuss? If it’s different, how so and why is it important?

In Part One, we focus on the forces and influences that are at work as the
architect begins creating—

envisioning

—the central artifact of a system whose
influences persist beyond the lifetime of the system. Whereas we often think of
design as taking the right steps to ensure that the system will perform as
expected—produce the correct answer or provide the expected functionality—
architecture is additionally concerned with much longer-range issues. The archi-
tect is faced with a swarm of competing, if not conflicting, influences and
demands, surprisingly few of which are concerned with getting the system to
work correctly. The organizational and technical environment brings to bear a
weighty set of sometimes implicit demands, and in practice these are as impor-
tant as any of the explicit requirements for the software even though they are
almost never written down.

Also surprising are the ways in which the architecture produces a deep influ-
ence on the organization that spawned it. It is decidedly not the case that the orga-
nization produces the architecture, ties it to the system for which it was developed,
and locks it away in that compartment. Instead, architectures and their developing
organizations dance an intricate waltz of influence and counterinfluence, helping
each other to grow, evolve, and take on larger roles.

Bass.book Page 1 Thursday, March 20, 2003 7:21 PM

PA R T F I V E

tHE braVE NEW WOrld

Parts I through IV of this book have dealt with the technical, organizational, and
business perspectives on software architecture. In this part, we turn our atten-
tion to emerging technologies. We have often been asked whether principles or
technology is more important, and the answer, of course, is “Yes, they are both
important.” Principles have a long lifetime; technology that affects architects
tends to change every decade or so. In this part, we provide brief introductions
to two technologies that we believe will last and have a significant impact on
architects—the cloud and the edge. We also discuss one of the continuing prob-
lems of many architects: How do I get my organization to embrace architectural
principles?

The cloud provides you with the option of outsourcing your data center. The
vision is that computing resources are available to an application as electricity
is available to a consumer. That is, one plugs in an appliance and electricity is
available. In data center terms, you hook your web browser up to an application
and computation power is available. All of the capacity, management, and opera-
tional issues of a data center are taken care of by a third party, and all you, as an
architect, need to do is to utilize the resources you need. This trend has been ac-
companied by a vast expansion of the amount of data that organizations manage.
Google, Yahoo!, Facebook, and the other web giants all must manage petabytes
of data. In Chapter 26, we provide a brief introduction to the technologies associ-
ated with the cloud and with managing these vast amounts of data.

Cloud computing is associated with the world of social networks and open
source. The term “edge-periphery” is used to describe both the crowdsource and
the open source movements. The term refers simultaneously to crowdsourced

502

systems such as Facebook and Wikipedia and open source systems such as the
Apache Web Server and Hadoop. In Chapter 27, we describe this phenomenon
and explore some of the architectural implications of this aspect of the brave new
world.

We end by discussing “adoption.” It describes an approach to dealing with
the following problem: “OK, you guys have convinced me. Now I need to con-
vince my organization of the importance of architectural principles. How do I do
that?”

503

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

26
Architecture in the
Cloud

There was a time when every household, town, farm
or village had its own water well. Today, shared public
utilities give us access to clean water by simply turning
on the tap; cloud computing works in a similar fashion.

—Vivek Kundra

If you have read anything about the history of computing, you will have read
about time-sharing. This was the era, in the late 1960s and the 1970s, sandwiched
between eras when individuals had sole, although limited, access to multimil-
lion-dollar computers and when individuals had access to their own personal
computers. Time-sharing involved multiple users (maybe as many as several
hundred) simultaneously accessing a powerful mainframe computer through a
terminal, potentially remote from the mainframe. The operating system on the
mainframe made it appear as if each user had sole access to that computer except,
possibly, for performance considerations. The driving force behind the develop-
ment of time-sharing was economic; it was infeasible to provide every user with
a multimillion-dollar computer, but efficiently sharing this expensive but power-
ful resource was the solution.

In some ways, cloud computing is a re-creation of that era. In fact, some
of the basic techniques—such as virtualization—that are used in the cloud to-
day date from that period. Any user of an application in the cloud does not need
to know that the application and the data it uses are situated several time zones
away, and that thousands of other users are sharing it. Of course, with the advent
of the Internet, the availability of much more powerful computers today, and the
requirement for controlled sharing, designing the architecture for a cloud-based
application is much different from designing the architecture for a time-shar-
ing-based application. The driving forces, however, remain much the same. The

504 Part five brave New World 26—Architecture in the Cloud

economics of using the cloud as a deployment platform are so compelling that
few organizations today can afford to ignore this set of technologies.

In this chapter we introduce cloud concepts, and we discuss various ser-
vice models and deployment options for the cloud, the economic justification
for the cloud, the base architectures and mechanisms that make the cloud work,
and some sample technologies. We will conclude by discussing how an architect
should approach building a system in the cloud.

26.1 basic cloud definitions

The essential characteristics of cloud computing (based, in part, on definitions
provided by the U.S. National Institute of Standards and Technology, or NIST)
are the following:

1. On-demand self-service. A resource consumer can unilaterally provision
computing services, such as server time and network storage, as needed
automatically without requiring human interaction with each service’s pro-
vider. This is sometimes called empowerment of end users of computing
resources. Examples of resources include storage, processing, memory, net-
work bandwidth, and virtual machines.

2. Ubiquitous network access. Cloud services and resources are available over
the network and accessed through standard networking mechanisms that
promote use by a heterogeneous collection of clients. For example, you can
effectively run large applications on small platforms such as smart phones,
laptops, and tablets by running the resource-intensive portion of those
applications on the cloud. This capability is independent of location and
device; all you need is a client and the Internet.

3. Resource pooling. The cloud provider’s computing resources are pooled.
In this way they can efficiently serve multiple consumers. The provider can
dynamically assign physical and virtual resources to consumers, according
to their instantaneous demands.

4. Location independence. The location independence provided by ubiquitous
network access is generally a good thing. It does, however, have one poten-
tial drawback. The consumer generally has less control over, or knowledge
of, the location of the provided resources than in a traditional implementa-
tion. This can have drawbacks for data latency. The consumer may be able
to ameliorate this drawback by specifying abstract location information
(e.g., country, state, or data center).

5. Rapid elasticity. Due to resource pooling, it is easy for capabilities to be
rapidly and elastically provisioned, in some cases automatically, to quickly
scale out or in. To the consumer, the capabilities available for provisioning
often appear to be virtually unlimited.

26.2 Service Models and Deployment Options 505

6. Measured service. Cloud systems automatically control and optimize re-
source use by leveraging a metering capability for the chosen service (e.g.,
storage, processing, bandwidth, and user accounts). Resource usage can be
monitored, controlled, and reported so that consumers of the services are
billed only for what they use.

7. Multi-tenancy. Multi-tenancy is the use of a single application that is re-
sponsible for supporting distinct classes or users. Each class or user has its
own set of data and access rights, and different users or classes of users are
kept distinct by the application.

26.2 Service Models and deployment Options

In this section we discuss more terminology and basic concepts. First we discuss
the most important models for a consumer using the cloud.

cloud Service Models

Software as a Service (SaaS). The consumer in this case is an end user.
The consumer uses applications that happen to be running on a cloud. The ap-
plications can be as varied as email, calendars, video streaming, and real-time
collaboration. The consumer does not manage or control the underlying cloud
infrastructure, including network, servers, operating systems, storage, or even in-
dividual application capabilities, with the possible exception of limited user-spe-
cific application configuration settings.

Platform as a Service (PaaS). The consumer in this case is a developer or
system administrator. The platform provides a variety of services that the con-
sumer may choose to use. These services can include various database options,
load-balancing options, availability options, and development environments. The
consumer deploys applications onto the cloud infrastructure using programming
languages and tools supported by the provider. The consumer does not manage or
control the underlying cloud infrastructure, including network, servers, operating
systems, or storage, but has control over the deployed applications and possibly
application hosting environment configurations. Some levels of quality attributes
(e.g., uptime, response time, security, fault correction time) may be specified by
service-level agreements (SLAs).

Infrastructure as a Service (IaaS). The consumer in this case is a de-
veloper or system administrator. The capability provided to the consumer is to
provision processing, storage, networks, and other fundamental computing re-
sources where the consumer is able to deploy and run arbitrary software, which

506 Part five brave New World 26—Architecture in the Cloud

can include operating systems and applications. The consumer can, for example,
choose to create an instance of a virtual computer and provision it with some
specific version of Linux. The consumer does not manage or control the underly-
ing cloud infrastructure but has control over operating systems, storage, deployed
applications, and possibly limited control of select networking components (e.g.,
host firewalls). Again, SLAs are often used to specify key quality attributes.

deployment Models

The various deployment models for the cloud are differentiated by who owns and
operates the cloud. It is possible that a cloud is owned by one party and operated
by a different party, but we will ignore that distinction and assume that the owner
of the cloud also operates the cloud.

There are two basic models and then two additional variants of these. The
two basic models are private cloud and public cloud:

 ■ Private cloud. The cloud infrastructure is owned solely by a single organi-
zation and operated solely for applications owned by that organization. The
primary purpose of the organization is not the selling of cloud services.

 ■ Public cloud. The cloud infrastructure is made available to the general pub-
lic or a large industry group and is owned by an organization selling cloud
services.

The two variants are community cloud and hybrid cloud:

 ■ Community cloud. The cloud infrastructure is shared by several organiza-
tions and supports a specific community that has shared concerns (e.g., mis-
sion, security requirements, policy, and compliance considerations).

 ■ Hybrid cloud. The cloud infrastructure is a composition of two or more
clouds (private, community, or public) that remain unique entities. The con-
sumer will deploy applications onto some combination of the constituent
cloud. An example is an organization that utilizes a private cloud except for
periods when spikes in load lead to servicing some requests from a public
cloud. Such a technique is called “cloud bursting.”

26.3 Economic Justification

In this section we discuss three economic distinctions between (cloud) data cen-
ters based on their size and the technology that they use:

1. Economies of scale

26.3 Economic Justification 507

2. Utilization of equipment
3. Multi-tenancy

The aggregated savings of the three items we discuss may be as large as 80
percent for a 100,000-server data center compared to a 10,000-server data center.
Economic considerations have made almost all startups deploy into the cloud.
Many larger enterprises deploy a portion of their applications into the cloud, and
almost every enterprise with substantial computation needs at least considers the
cloud as a deployment platform.

Economies of Scale

Large data centers are inherently less expensive to operate per unit measure, such
as cost per gigabyte, than smaller data centers. Large data centers may have hun-
dreds of thousands of servers. Smaller data centers have servers numbered in the
thousands or maybe even the hundreds. The cost of maintaining a data center
depends on four factors:

1. Cost of power. The cost of electricity to operate a data center currently is
15 to 20 percent of the total cost of operation. The per-server power usage
tends to be significantly lower in large data centers than in smaller ones
because of the ability to share items such as racks and switches. In addi-
tion, large power users can negotiate significant discounts (as much as 50
percent) compared to the retail rates that operators of small data centers
must pay. Some areas of the United States provide power at significantly
lower rates than the national average, and large data centers can be located
in those areas. Finally, organizations such as Google are buying or building
innovative and cheaper power sources, such as on- and offshore wind farms
and rooftop solar energy.

2. Infrastructure labor costs. Large data centers can afford to automate many
of the repetitive management tasks that are performed manually in smaller
data centers. In a traditional data center, an administrator can service ap-
proximately 140 servers, whereas in a cloud data center, the same adminis-
trator can service thousands of servers.

3. Security and reliability. Maintaining a given level of security, redundancy,
and disaster recovery essentially requires a fixed level of investment. Larger
data centers can amortize that investment over their larger number of serv-
ers and, consequently, the cost per server will be lower.

4. Hardware costs. Operators of large data centers can get discounts on hard-
ware purchases of up to 30 percent over smaller buyers.

These economies of scale depend only on the size of the data center and
do not depend on the deployment model being used. Operators of public clouds

508 Part five brave New World 26—Architecture in the Cloud

have priced their offerings so that many of the cost savings are passed on to their
consumers.

utilization of Equipment

Common practice in nonvirtualized data centers is to run one application per
server. This is caused by the dependency of many enterprise applications on par-
ticular operating systems or even particular versions of these operating systems.
One result of the restriction of one application per server is extremely low utili-
zation of the servers. Figures of 10 to 15 percent utilization for servers are quoted
by several different vendors.

Use of virtualization technology, described in Section 26.4, allows for easy
co-location of distinct applications and their associated operating systems on the
same server hardware. The effect of this co-location is to increase the utilization
of servers. Furthermore, variations in workload can be managed to further in-
crease the utilization. We look at five different sources of variation and discuss
how they might affect the utilization of servers:

1. Random access. End users may access applications randomly. For example,
the checking of email is for some people continuous and for others time-
boxed into a particular time period. The more users that can be supported
on a single server, the more likely that the randomness of their accesses will
end up imposing a uniform load on the server.

2. Time of day. Those services that are workplace related, unsurprisingly, tend
to be more heavily used during the work day. Those that are consumer re-
lated tend to be heavily used during evening hours. Co-locating different
services with different time-of-day usage patterns will increase the overall
utilization of a server. Furthermore, time differences among geographically
distinct locations will also affect utilization patterns and can be considered
when planning deployment schedules.

3. Time of year. Some applications respond to dates as well as time of day.
Consumer sites will see increases during the Christmas shopping season,
and floral sites will see increases around Valentine’s Day and Mother’s Day.
Tax preparation software will see increases around the tax return submis-
sion due date. Again, these variations in utilization are predictable and can
be considered when planning deployment schedules.

4. Resource usage patterns. Not all applications use resources in the same
fashion. Search, for example, is heavier in its usage of CPU than email but
lighter in its use of storage. Co-locating applications with complementary
resource usage patterns will increase the overall utilization of resources.

5. Uncertainty. Organizations must maintain sufficient capacity to support
spikes in usage. Such spikes can be caused by news events if your site is a
news provider, by marketing events if your site is consumer-facing, or even

26.4 Base Mechanisms 509

sporting events because viewers of sporting events may turn to their com-
puters during breaks in the action. Startups can face surges in demand if
their product catches on more quickly than they can build capacity.

The first four sources of variation are supported by virtualization without
reference to the cloud or the cloud deployment model. The last source of varia-
tion (uncertainty) depends on having a deployment model that can accommodate
spikes in demand. This is the rationale behind cloud bursting, or keeping applica-
tions in a private data center and offloading spikes in demand to the public cloud.
Presumably, a public cloud provider can deploy sufficient capacity to accommo-
date any single organization’s spikes in demand.

Multi-tenancy

Multi-tenancy applications such as Salesforce.com or Microsoft Office 365 are
architected explicitly to have a single application that supports distinct sets of
users. The economic benefit of multi-tenancy is based on the reduction in costs
for application update and management. Consider what is involved in updating
an application for which each user has an individual copy on their own desk-
top. New versions must be tested by the IT department and then pushed to the
individual desktops. Different users may be updated at different times because
of disconnected operation, user resistance to updates, or scheduling difficulties.
Incidents result because the new version may have some incompatibilities with
older versions, the new version may have a different user interface, or users with
old versions are unable to share information with users of the new version.

With a multi-tenant application, all of these problems are pushed from IT
to the vendor, and some of them even disappear. Any update is available at the
same instant to all of the users, so there are no problems with sharing. Any user
interface changes are referred to the vendor’s hotline rather than the IT hotline,
and the vendor is responsible for avoiding incompatibilities for older versions.

The problems of upgrading do not disappear, but they are amortized over all
of the users of the application rather than being absorbed by the IT department
of every organization that uses the application. This amortization over more users
results in a net reduction in the costs associated with installing an upgraded ver-
sion of an application.

26.4 base Mechanisms

In this section we discuss the base mechanisms that clouds use to provide their
low-level services. In an IaaS instance, the cloud provides to the consumer a vir-
tual machine loaded with a machine image. Virtualization is not a new concept;

510 Part five brave New World 26—Architecture in the Cloud

it has been around since the 1960s. But today virtualization is economically en-
ticing. Modern hardware is designed to support virtualization, and the overhead
it adds has been measured to be just 1 percent per instance running on the bare
hardware.

We will discuss the architecture of an IaaS platform in Section 26.5. In this
section, we describe the concepts behind a virtual machine: the hypervisor and
how it manages virtual machines, a storage system, and the network.

Hypervisor

A hypervisor is the operating system used to create and manage virtual machines.
Because each virtual machine has its own operating system, a consumer applica-
tion is actually managed by two layers of operating system: the hypervisor and
the virtual machine operating system. The hypervisor manages the virtual ma-
chine operating system and the virtual machine operating system manages the
consumer application. The key services used by the hypervisor to support the
virtual machines it manages are a virtual page mapper and a scheduler. A hyper-
visor, of course, provides additional services and has a much richer structure than
we present here, but these key services are the two that we will discuss.

Page Mapper

We begin by describing how virtual memory works on a bare (nonvirtualized)
machine. All modern servers utilize virtual memory. Virtual memory allows an
application to assume it has a large amount of memory in which to execute. The
assumed memory is mapped into a much smaller physical memory through the
use of page tables. The consumer application is divided into pages that are either
in physical memory or temporarily residing on a disk. The page table contains the
mapping of logical address (consumer application address) to physical address
(actual machine address) or disk location. Figure 26.1 shows the consumer ap-
plication executing its next instruction. This causes the CPU to generate a target
address from which to fetch the next instruction or data item. The target address
is used to address into a page table. The page table provides a physical address
within the computer where the actual instruction or data item can be found if it is
currently in main memory. If the physical address is not currently resident in the
main memory of the computer, an interrupt is generated that causes a page that
contains the target address to be loaded. This is the mechanism that allows a large
(virtual) address space to be supported on much smaller physical memory.

Turning the virtual memory mechanism into a virtualization mechanism in-
volves adding another level of indirection. Figure 26.2 shows a logical sequence
that maps from the consumer application to a physical machine address. Modern
processors contain many optimizations to make this process more efficient. A
consumer application generates the next instruction with its target address. This
target address is within the virtual machine in which the consumer application is

26.4 Base Mechanisms 511

Target address of
next instruction

Fetch next
instruction
from
physical
address

Fetch next
instruction
from
interrupt
handler

Physical
address
inside
current
address
space

Physical
address
outside
current
address
space

Software
component

Key:

Hardware
component

CPU

Page table
used to
convert
target
address to
physical
address

Data flow

fIGurE 26.1 Virtual memory page table

Software
component

Key:

Hardware
component

Data flow

Host Server

Target address of
next instruction

Page
Table

VMn

Page
Table

next
instruction

VM1

Hypervisor

Host page table
points to VM
page table

CPU

fIGurE 26.2 Adding a second level of indirection to determine which virtual
machine the address references

512 Part five brave New World 26—Architecture in the Cloud

executing. The virtual machine page table maps this target address to an address
within the virtual machine based on the target address as before (or indicates that
the page is not currently in memory). The address within the virtual machine is
converted to a physical address by use of a page table within the hypervisor that
manages the current virtual machines.

Scheduler

The hypervisor scheduler operates like any operating system scheduler. When-
ever the hypervisor gets control, it decides on the virtual machine to which it will
pass control. A simple round-robin scheduling algorithm assigns the processor to
each virtual machine in turn, but many other possible scheduling algorithms ex-
ist. Choosing the correct scheduling algorithm requires you to make assumptions
about the demand characteristics of the different virtual machines hosted within
a single server. One area of research is the application of real-time scheduling
algorithms to hypervisors. Real-time schedulers would be appropriate for the use
of virtualization within embedded systems, but not necessarily within the cloud.

Storage

A virtual machine has access to a storage system for persistent data. The storage
system is managed across multiple physical servers and, potentially, across clus-
ters of servers. In this section we describe one such storage system: the Hadoop
Distributed File System (HDFS).

We describe the redundancy mechanism used in HDFS as an example of the
types of mechanisms used in cloud virtual file systems. HDFS is engineered for
scalability, high performance, and high availability.

A component-and-connector view of HDFS within a cluster is shown in
Figure 26.3. There is one NameNode process for the whole cluster, multiple
DataNodes, and potentially multiple client applications. To explain the function
of HDFS, we trace through a use case. We describe the successful use case for
“write.” HDFS also has facilities to handle failure, but we do not describe these.
See the “For Further Reading” section for a reference to the HDFS failure-han-
dling mechanisms.

For the “write” use case, we will assume that the file has already been
opened. HDFS does not use locking to allow for simultaneous writing by differ-
ent processes. Instead, it assumes a single writer that writes until the file is com-
plete, after which multiple readers can read the file simultaneously. The applica-
tion process has two portions: the application code and a client library specific to
HDFS. The application code can write to the client using a standard (but over-
loaded) Java I/O call. The client buffers the information until a block of 64 MB
has been collected. Two of the techniques used by HDFS for enhancing perfor-
mance are the avoidance of locks and the use of 64-MB blocks as the only block

26.4 Base Mechanisms 513

size supported. No substructure of the blocks is supported by HDFS. The blocks
are undifferentiated byte strings. Any substructure and typing of the information
is managed solely by the application. This is one example of a phenomenon that
we will notice in portions of the cloud: moving application-specific functionality
up the stack as opposed to moving it down the stack to the infrastructure.

For reliability purposes each block is replicated a parameterizable number
of times, with a default of three. For each block to be written, the NameNode al-
locates DataNodes to write the replicas. The DataNodes are chosen based on two
criteria: (1) their location—replicas are spread across racks to protect against the
possibility that a rack fails; and (2) the dynamic load on the DataNode. Lightly
loaded DataNodes are given preference over heavily loaded DataNodes to reduce
the possibility of contention for the DataNodes among different files being simul-
taneously accessed.

Once the client has collected a buffer of 64 MB, it asks the NameNode for
the identities of the DataNodes that will contain the actual replicas. The NameNode
manages only metadata; it is not involved in the actual transfer or recording of
data. These DataNode identities are sent from the NameNode to the client, which
then treats them as a pipeline. At this point the client streams the block to the first
DataNode in the pipeline. The first DataNode then streams the data to the second

ProcessKey:

Connector

Application layer

Client layer

RPC

Streaming Protocol

RPC

NameNode Process

DataNode Processes

fIGurE 26.3 A component-and-connector view of an HDFS deployment. Each
process exists on a distinct computer.

514 Part five brave New World 26—Architecture in the Cloud

DataNode in the pipeline, and so forth until the pipeline (of three DataNodes, unless
the client has specified a different replication value) is completed. Each DataNode
reports back to the client when it has successfully written the block, and also reports
to the NameNode that it has successfully written the block.

Network

In this section we describe the basic concepts behind Internet Protocol (IP) ad-
dressing and how a message arrives at your computer. In Section 26.5 we discuss
how an IaaS system manages IP addresses.

An IP address is assigned to every “device” on a network whether this de-
vice is a computer, a printer, or a virtual machine. The IP address is used both to
identify the device and provide instructions on how to find it with a message. An
IPv4 address is a constrained 32-bit number that is, typically, represented as four
groups for human readability. For example, 192.0.2.235 is a valid IP address.
The familiar names that we use for URLs, such as “http://www.pearsonhighered.
com/”, go through a translation process, typically through a domain name server
(DNS), that results in a numeric IP address. A message destined for that IP ad-
dress goes through a routing process to arrive at the appropriate location.

Every IP message consists of a header plus a payload. The header contains
the source IP address and the destination IP address. IPv6 replaces the 32-bit
number with a 128-bit number, but the header of an IP message still includes the
source and destination IP addresses.

It is possible to replace the header of an IP message for various reasons. One
reason is that an organization uses a gateway to manage traffic between external
computers and computers within the organization. An IP address is either “public,”
meaning that it is unique within the Internet, or “private,” meaning that multiple
copies of the IP address are used, with each copy owned by a different organization.
Private IP addresses must be accessed through a gateway into the organization that
owns it. For outgoing messages, the gateway records the address of the internal ma-
chine and its target and replaces the source address in the TCP header with its own
public IP address. On receipt of a return message, the gateway would determine the
internal address for the message and overwrite the destination address in the header
and then send the message onto the internal network. Network address translation
(NAT) is the name of this process of translation.

26.5 Sample technologies

Building on the base mechanisms, we now discuss some of the technologies that
exist in the cloud. We begin by discussing the design of a generic IaaS platform,

http://www.pearsonhighered.com/
http://www.pearsonhighered.com/

26.5 Sample Technologies 515

then we move up the stack to a PaaS, and finally we discuss database technology
in the cloud.

Infrastructure as a Service

Fundamentally, an IaaS installation provides three services: virtualized computa-
tion, virtualized networking, and a virtualized file system. In the previous section
on base mechanisms, we described how the operating system for an individual
server manages memory to isolate each virtual machine and how TCP/IP mes-
sages could be manipulated. An IaaS provides a management structure around
these base concepts. That is, virtual machines must be allocated and deallocated,
messages must be routed to the correct instance, and persistence of storage must
be ensured.

We now discuss the architecture of a generic IaaS platform. Various provid-
ers will offer somewhat different services within different architectures. Open-
Stack is an open source movement to standardize IaaS services and interfaces,
but as of this writing, it is still immature.

Figure 26.4 shows an allocation view of a generic cloud platform. Each
server shown provides a different function to the platform, as we discuss next.

An IaaS installation has a variety of clusters. Each cluster may have thousands
of physical servers. Each cluster has a cluster manager responsible for that cluster’s

Virtual resource manager Persistent object manager

Cluster Manager File System Manager

Node Manager

Node Manager

Node Manager

Cluster Manager File System Manager

Node Manager

Node Manager

Node Manager

Cluster Cluster

Key:

Internet message

Internal cloud message

Cluster

Server

SOAP- or REST-
based toolsWeb Browser

fIGurE 26.4 A generic cloud allocation view

516 Part five brave New World 26—Architecture in the Cloud

resources. The persistent object manager supports the manipulation of persistent
objects, and the virtual resource managers are in charge of the other virtualized re-
sources. For requests for new resources, the virtual resource manager is in charge
of determining which cluster manager will service the request. For requests sent to
existing resources, the virtual resource manager is responsible for seeing that the re-
quests get forwarded to the correct server. The virtual resource manager, in this case,
acts as a gateway, as described in Section 26.4.

Some of the services that IaaS providers offer to support applications are
these:

 ■ Automatic reallocation of IP addresses in the case of a failure of the under-
lying virtual machine instance. This service is useful in case the instance
has a public IP address. Unless the provider offers this service, the client
must register the IP address of a replacement instance with a domain name
server to ensure that messages are sent to the correct location.

 ■ Automatic scaling. One of the virtues of the cloud is that new instances
can be created or deleted relatively quickly in the event of a variation in
demand. Detecting the variation in demand, allocating (or deleting) an in-
stance in the event of a variation, and ensuring that the remaining instances
are allocated their fair share of messages is another service that could be
provided by the IaaS.

The persistent object manager is responsible for maintaining files that are in-
tended to persist past the deletion of a virtual machine instance. It may maintain
these files across multiple clusters in a variety of different geographic locations.

Failure of the underlying hardware is a common occurrence in a large data
center, consequently the virtual resource manager has mechanisms to manage re-
quests in the event of failure. These mechanisms are typically designed to main-
tain the availability of the IaaS infrastructure and do not extend to the applica-
tions deployed with the virtual machines. What this means in practice is that if
you make a request for a new resource, it will be honored. If you make a request
to an existing virtual machine instance, the infrastructure will guarantee that, if
your virtual machine instance is active, your request is delivered. If, however, the
host on which your virtual machine instance has been allocated has failed, then
your virtual machine instance is no longer active and it is your responsibility as
an application architect to install mechanisms to recognize a failure of your vir-
tual machine instances and recover from them.

The file system manager manages the file system for each cluster. It is sim-
ilar to the Hadoop Distributed File System that we discussed in Section 26.4. It
also assumes that failure is a common occurrence and has mechanisms to repli-
cate the blocks and to manage handoffs in the event of failures.

The cluster manager controls the execution of virtual machines running on
the nodes within its clusters and manages the virtual networking between virtual
machines and between virtual machines and external users.

26.5 Sample Technologies 517

The final piece of Figure 26.4 is the node manager; it (through the function-
ality of a hypervisor) controls virtual machine activities, including the execution,
inspection, and termination of virtual machine instances.

A client initially requests a virtual machine instance and the virtual resource
manager decides on which cluster the virtual machine instance should reside. It
passes the instance request to the cluster manager, which in turn decides which
node should host the virtual machine instance.

Subsequent requests are routed through the pieces of the generic infrastruc-
ture to the correct instance. The instance can create files using the file system
manager. These files will either be deleted when the virtual machine instance is
finished or will be persisted past the existence of the virtual machine instance.
The choice is the client’s as to how long storage is persisted. If the storage is
persisted, it can be accessed independently of the creating instance through the
persistence manager.

Platform as a Service

A Platform as a Service provides a developer with an integrated stack within the
cloud to develop and deploy applications. IaaS provides virtual machines, and it
is the responsibility of the developer using IaaS to provision the virtual machines
with the software they desire. PaaS is preprovisioned with a collection of inte-
grated software.

Consider a virtual machine provisioned with the LAMP (Linux, Apache,
MySQL, PHP/Perl/Python) stack. The developer writes code in Python, for ex-
ample, and has available the services provided by the other elements of the stack.
Take this example and add automatic scaling across virtual machines based on
customer load, automatic failure detection and recovery, backup/restore, security,
operating system patch installation, and built-in persistence mechanisms. This
yields a simple example of a PaaS.

The vendors offering PaaS and the substance of their offerings are rapidly
evolving. Google and Microsoft are two of the current vendors.

1. The Google App Engine provides the developer with a development en-
vironment for Python or Java. Google manages deploying and executing
developed code. Google provides a database service that is automatically
replicated across data centers.

2. Microsoft Azure provides an operating system and development platform
to access/develop applications on Microsoft data centers. Azure provides
a development environment for applications running on Windows using
.NET. It also provides for the automatic scaling and replication of instances.
For example, if an application instance fails, then the Azure infrastructure
will detect the failure and deploy another instance automatically. Azure also
has a database facility that automatically keeps replicas of your databases.

518 Part five brave New World 26—Architecture in the Cloud

databases

A number of different forces have converged in the past decade, resulting in the
creation of database systems that are substantially different from the relational
database management systems (RDBMSs) that were prevalent during the 1980s
and ’90s.

 ■ Massive amounts of data began to be collected from web systems. A search
engine must index billions of pages. Facebook, today, has over 800 million
users. Much of this data is processed sequentially and, consequently, the so-
phisticated indexing and query optimizations of RDBMSs are not necessary.

 ■ Large databases are continually being created during various types of pro-
cessing of web data. The creation and maintenance of databases using a
traditional RDBMS requires a sophisticated data administrator.

 ■ A theoretical result (the so-called CAP theorem) shows that it is not pos-
sible to simultaneously achieve consistency, availability, and partitioning.
One of these properties must be sacrificed. For many applications, the
choice is to sacrifice consistency and provide immediate availability and
“eventual consistency.” What this means, in practice, is that occasionally a
user will access stale data, but updates will be subsequently available. The
alternative approach, taken by RDBMSs, is to lock values and not allow
access until they become consistent.

 ■ The relational model is not the best model for some applications. The
relational model assumes there is one data item for each row-value/col-
umn-name pair. One method for handling web searches, for example, is to
store different versions of a single web page indexed by the same row-val-
ue/column-name pair so that the different versions of the web page can be
quickly accessed and differences easily determined. Using the relational
model requires that the system perform joins to retrieve all of the attributes
associated with a particular row value. Joins are expensive from a perfor-
mance perspective, and consequently, newly emerging database systems
tend to not support joins and require storing data in a denormalized form.

These forces resulted in the creation of new types of databases with different
data models and different access mechanisms. These new types of databases go
under the name of NoSQL—although as Michael Stonebraker has pointed out,
the existence or nonexistence of SQL within the database system is irrelevant to
the rationale for their existence.

We discuss two open source NoSQL database systems: a key-value one
(HBase) and a document-centric one (MongoDB) .

HBase
HBase is a key-value database system based on the BigTable database system
developed by Google. Google uses BigTable to store data for many of their ap-
plications. The number of data items in a HBase database can be in the billions
or trillions.

26.5 Sample Technologies 519

HBase supports tables, although there is no schema used. One column is
designated as the key. The other columns are treated as field names. A data value
is indexed by a row value, a column name, and a time stamp. Each row value/
column name can contain multiple versions of the same data differentiated by
time stamps.

One use of HBase is for web crawling. In this application, the row value is
the URL for the web page. Each column name refers to an attribute of a web page
that will support the analysis of the web page. For example, “contents” might be
one column name. In the relational model, each row value/column name would
retrieve the contents of the web page. Web pages change over time, however,
and so in the relational model, there would need to be a separate column with
the time stamp, and the primary key for the table would be the URL/time stamp.
In HBase, the versions of the web page are stored together and retrieved by the
URL value/“contents”. All of the versions of the web page are retrieved, and it is
the responsibility of the application to separate the versions of the web page and
determine which one is desired based on the time stamp.

MongoDB
MongoDB uses a document-centric data model. You can think of it as storing ob-
jects rather than tables. An object contains all of the information associated with
a particular concept without regard to whether relations among data items are
stored in multiple different objects. Two distinct objects may have no field names
in common, some field names in common, or all of the field names in common.

You may store links rather than data items. Links support the concept of
joining different objects without requiring the maintenance of indices and query
optimization. It is the responsibility of the application to follow the link.

Documents are stored in binary JavaScript Object Notation (JSON) form.
Indices can be created on fields and can be used for retrieval, but there is no con-
cept of primary versus secondary keys. A field is either indexed or it is not. Be-
cause the same field can occur in multiple different documents, a field is indexed
wherever it occurs.

What Is left Out of NoSQl databases

One motivation for NoSQL databases is performance when accessing millions or
billions of data items. To this end, several standard RDBMS facilities are omit-
ted in NoSQL databases. If an application wishes to have these features, it must
implement them itself. Mainly, the features are omitted for performance reasons.

 ■ Schemas. NoSQL databases typically do not require schemas for their
data model and, consequently, there is no checking of field names for
consistency.

 ■ Transactions. NoSQL typically does not support transactions. Transactions
lock data items, which hinders performance. Applications use techniques

520 Part five brave New World 26—Architecture in the Cloud

such as time stamps to determine whether fields have been modified
through simultaneous access.

 ■ Consistency. NoSQL databases are “eventually consistent.” This means that
after some time has passed, different replicas of a data item will have the
same value, but in the interim, it is possible to run two successive queries
that access the same data item and retrieve two different values.

 ■ Normalization. NoSQL databases do not support joins. Joins are a require-
ment if you are to normalize your database.

26.6 architecting in a cloud Environment

Now we take the point of view of an architect who is designing a system to exe-
cute in the cloud. In some ways, the cloud is a platform, and architecting a system
to execute in the cloud, especially using IaaS, is no different than architecting for
any other distributed platform. That is, the architect needs to pay attention to us-
ability, modifiability, interoperability, and testability, just as he or she would for
any other platform. The quality attributes that have some significant differences
are security, performance, and availability.

Security

Security, as always, has both technical and nontechnical aspects. The nontechnical
aspects of security are items such as what trust is placed in the cloud provider, what
physical security does the cloud provider utilize, how are employees of the cloud
provider screened, and so forth. We will focus on the technical aspects of security.

Applications in the cloud are accessed over the Internet using standard Inter-
net protocols. The security and privacy issues deriving from the use of the Inter-
net are substantial but no different from the security issues faced by applications
not hosted in the cloud. The one significant security element introduced by the
cloud is multi-tenancy. Multi-tenancy means that your application is utilizing a
virtual machine on a physical computer that is hosting multiple virtual machines.
If one of the other tenants on your machine is malicious, what damage can they
do to you?

There are four possible forms of attack utilizing multi-tenancy:

1. Inadvertent information sharing. Each tenant is given a set of virtual re-
sources. Each virtual resource is mapped to some physical resource. It is
possible that information remaining on a physical resource from one tenant
may “leak” to another tenant.

2. A virtual machine “escape.” A virtual machine is isolated from other vir-
tual machines through the use of a distinct address space. It is possible,

26.6 Architecting in a Cloud Environment 521

however, that an attacker can exploit software errors in the hypervisor to
access information they are not entitled to. Thus far, such attacks are ex-
tremely rare.

3. Side-channel attacks. It is possible for a malicious attacker to deduce infor-
mation about keys and other sensitive information by monitoring the timing
activity of the cache. Again, so far, this is primarily an academic exercise.

4. Denial-of-service attacks. Other tenants may use sufficient resources on the
host computer so that your application is not able to provide service.

Some providers allow customers to reserve entire machines for their exclu-
sive use. Although this defeats some of the economic benefits of using the cloud,
it is a mechanism to prevent multi-tenancy attacks. An organization should con-
sider possible attacks when deciding which applications to host in the cloud, just
as they should when considering any hosting option.

Performance

The instantaneous computational capacity of any virtual machine will vary de-
pending on what else is executing on that machine. Any application will need to
monitor itself to determine what resources it is receiving versus what it will need.

One virtue of the cloud is that it provides an elastic host. Elasticity means
that additional resources can be acquired as needed. An additional virtual ma-
chine, for example, will provide additional computational capacity. Some
cloud providers will automatically allocate additional resources as needed,
whereas other providers view requesting additional resources as the customer’s
responsibility.

Regardless of whether the provider automatically allocates additional re-
sources, the application should be self-aware of both its current resource usage
and its projected resource usage. The best the provider can do is to use general
algorithms to determine whether there is a need to allocate or free resources. An
application should have a better model of its own behavior and be better equipped
to do its own allocation or freeing of resources. In the worst case, the application
can compare its predictions to those of the provider to gain insight into what will
happen. It takes time for the additional resources to be allocated and freed. The
freeing of resources may not be instantaneously reflected in the charging algo-
rithm used by the provider, and that charging algorithm also needs to be consid-
ered when allocating or freeing resources.

availability

The cloud is assumed to be always available. But everything can fail. A virtual
machine, for example, is hosted on a physical machine that can fail. The virtual

522 Part five brave New World 26—Architecture in the Cloud

network is less likely to fail, but it too is fallible. It behooves the architect of a
system to plan for failure.

The service-level agreement that Amazon provides for its EC2 cloud service
provides a 99.95 percent guarantee of service. There are two ways of looking at
that number: (1) That is a high number. You as an architect do not need to worry
about failure. (2) That number indicates that the service may be unavailable for
.05 percent of the time. You as an architect need to plan for that .05 percent.

Netflix is a company that streams videos to home television sets, and its
reliability is an important business asset. Netflix also hosts much of its operation
on Amazon EC2. On April 21, 2011, Amazon EC2 suffered a four-day sporadic
outage. Netflix customers, however, were unaware of any problem.

Some of the things that Netflix did to promote availability that served them
well during that period were reported in their tech blog. We discussed their Sim-
ian Army in Chapter 10. Some of the other things they did were applications of
availability tactics that we discussed in Chapter 5.

 ■ Stateless services. Netflix services are designed such that any service in-
stance can serve any request in a timely fashion, so if a server fails, requests
can be routed to another service instance. This is an application of the spare
tactic, because the other service instance acts as a spare.

 ■ Data stored across zones. Amazon provides what they call “availability
zones,” which are distinct data centers. Netflix ensured that there were mul-
tiple redundant hot copies of the data spread across zones. Failures were
retried in another zone, or a hot standby was invoked. This is an example of
the active redundancy tactic.

 ■ Graceful degradation. The general principles for dealing with failure are
applications of the degradation or the removal from service tactic:

 ■ Fail fast: Set aggressive timeouts such that failing components don’t
make the entire system crawl to a halt.

 ■ Fallbacks: Each feature is designed to degrade or fall back to a lower
quality representation.

 ■ Feature removal: If a feature is noncritical, then if it is slow it may be re-
moved from any given page.

The CAP Theorem

The CAP theorem—created by Eric Brewer at UC Berkeley—emerged
over a decade ago. Unlike most theories postulated by academics,
this one did not sink into obscurity but rather has grown in renown and
influence since then. The theory states that there are three important
properties of a distributed system managing shared data. These are the
following:

26.6 Architecting in a Cloud Environment 523

 ■ Consistency (C): the data will be consistent throughout the distributed
system.

 ■ Availability (A): the data will be highly available.
 ■ Partitioning (P): the system will tolerate network partitioning.

And the theory further states that no system can achieve all of these
properties simultaneously; the best we can hope for is to satisfy two out of
three while sacrificing (to some extent) the third property. Brewer explains
it thus:

The easiest way to understand CAP is to think of two nodes on opposite
sides of a partition. Allowing at least one node to update state will cause the
nodes to become inconsistent, thus forfeiting C. Likewise, if the choice is to
preserve consistency, one side of the partition must act as if it is unavailable,
thus forfeiting A. Only when nodes communicate is it possible to preserve both
consistency and availability, thereby forfeiting P.

In fact, there is really another important facet to the CAP theorem that
has come to dominate the engineering challenge: latency. It wasn’t part of
the original acronym (although CLAP is certainly catchy), but a concern for
latency now infuses much of the discussion of the tradeoffs in implement-
ing NoSQL databases.

Creators of large-scale distributed NoSQL databases are constantly
faced with tradeoffs. These days no one believes that you simply choose
two of the three properties of CAP; the decisions are far richer and more
subtle than that. For example, designers of these systems like to speak of
“eventual consistency”—partitions are allowed to become inconsistent on a
regular basis, but with bounds that are carefully engineered and monitored.
They might want to specify that no more than x percent of the data should
be stale at any given time, and it should not take more than y seconds to
restore consistency (on average, or in the worst case). Another common
tradeoff seen in practice is that availability and latency are typically favored
over consistency. That is, a Facebook user should get quick response from
the system, even if their newsfeed is slightly stale.

All of this adds complexity to the system. The designer has to choose
between faster/less consistent and slower/more consistent (as well as a
host of other quality issues). And the mechanisms for achieving eventual
consistency—caching, replication, message retries, timeouts, and so
forth—are themselves nontrivial. Consistency, partitioning, latency, and
availability are four qualities that can be traded off with NoSQL databases.
In addition, other quality attributes—interoperability, security, and so forth—
also add complexity, and so the tradeoffs involved can get more and more
complicated.

Alas, this is, increasingly, the world that we live in. Systems with global
reach and enormous bases of distributed data are not going away anytime
soon. So as architects we need to be prepared to deal with tradeoffs and
complexities for the foreseeable future.

—RK

524 Part five brave New World 26—Architecture in the Cloud

26.7 Summary

The cloud has become a viable alternative for the hosting of data centers primar-
ily for economic reasons. It provides an elastic set of resources through the use of
virtual machines, virtual networks, and virtual file systems.

The cloud can be used to provide infrastructure, platforms, or services. Each
of these has its own characteristics.

NoSQL database systems arose in reaction to the overhead introduced by
large relational database management systems. NoSQL database systems fre-
quently use a data model based on key-value or documents and do not provide
support for common database services such as transactions.

Architecting in the cloud means that the architect should pay attention to
specific aspects of quality attributes that are substantially different in cloud envi-
ronments, namely: performance, availability, and security.

26.8 for further reading

Dealers of Lightning: Xerox PARC and the Dawn of the Computer Age [Hiltzik
00] has a discussion of time-sharing and covers the technologies and the person-
alities involved in the development of the modern personal workstation.

The economics of the cloud are described in [Harms 10].
The Computer Measurement Group (CMG) is a not-for-profit worldwide

organization that provides measurement and forecasting of various quantitative
aspects of computer usage. Their measurements of the overhead due to virtualiza-
tion can be found at www.cmg.org/measureit/issues/mit39/m_39_1.html.

If you want to learn more about TCP/IP and NAT, you can find a discussion
at www.ipcortex.co.uk/wp/fw.rhtm.

The BigTable system is described in [Chang 06].
Netflix maintains a tech blog that is almost entirely focused on cloud issues.

It can be found at techblog.netflix.com.
The home page for MongoDB is www.mongodb.org/display/DOCS/Home

and for HBase is hbase.apache.org.
Michael Stonebraker is a database expert who has written extensively com-

paring NoSQL systems with RDBMSs. Some of his writings are [Stonebraker
09], [Stonebraker 10a], [Stonebraker 11], and [Stonebraker 10b].

Eric Brewer has provided a nice overview of the issues surrounding the CAP
theorem for today’s cloud-based systems: [Brewer 12].

http://www.cmg.org/measureit/issues/mit39/m_39_1.html
http://www.ipcortex.co.uk/wp/fw.rhtm
http://www.mongodb.org/display/DOCS/Home

26.9 Discussion Questions 525

26.9 discussion Questions

1. “Service-oriented or cloud-based systems cannot meet hard-real-time re-
quirements because it’s impossible to guarantee how long a service will
take to complete.” Do you think this statement is true or false? In either
case, identify the one or two categories of design decisions that are most
responsible for the correctness (or incorrectness) of the statement.

2. “Using the cloud assumes your application is service oriented.” Do you
think this is true or false? Find some examples that would support that
statement and, if it is not universally true, find some that would falsify it.

3. Netflix discussed their movement from Oracle to SimpleDB on their tech
blog. They also discussed moving from SimpleDB to Cassandra. Describe
their rationale for these two moves.

4. Netflix also describes their Simian Army in their tech blog. Which elements
of the Simian Army could be offered as a SaaS? What would the design of
such a SaaS look like?

5. Develop the “Hello World” application on an IaaS and on a PaaS.

This page intentionally left blank

527

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

27
Architectures for
the Edge
With Hong-Mei Chen

Human nature is not a machine to be built after a
model, and set to do exactly the work prescribed for

it, but a tree, which requires to grow and develop
itself on all sides, according to the tendency of
the inward forces which make it a living thing.

—John Stuart Mill

In this chapter we discuss the place of architecture in edge-dominant systems and
discuss how an architect should approach building such systems. An edge-dom-
inant system is one that depends crucially on the inputs of users for its success.

What would Wikipedia be without the encyclopedic entries contributed by
users? What would YouTube be without the contributed videos? What would
Facebook and Twitter be without their user communities? YouTube serves up ap-
proximately 1 billion videos a day. Twitter boasts that its users tweet 50 million
times per day. Facebook reports that it serves up about 30 billion pieces of con-
tent each month. Flickr recently announced that users had uploaded more than 6
billion photos. Strong, almost maniacal, user participation has elevated each of
these sites from fairly routine repositories to forces that shape society.

In each case, the value of these systems comes almost entirely from its us-
ers—who happily contribute their opinions and knowledge, their artistic content,
their software, and their innovations—and not from some centralized organiza-
tion. This phenomenon is a cornerstone of the so-called “Web 2.0” movement.
Darcy DiNucci, credited with coining the term, wrote in 1999, “The [new] Web
will be understood not as screenfuls of text and graphics but as a transport mech-
anism, the ether through which interactivity happens.” The “old” web was about

528 Part five brave New World 27—Architectures for the Edge

going to web pages for static information; the “new” web is about participating in
the information creation (“crowdsourcing”) and even becoming part of its organi-
zation (“folksonomy”).

Many have written about the social, political, and economic consequences
of this change, and some see it as nothing short of a revolution along the lines of
the industrial revolution. Yochai Benkler’s book The Wealth of Networks—a play
on the title of Adam Smith’s classic book The Wealth of Nations, which heralded
the start of the industrial revolution—argues that the “radical transformation” of
how we create our information environment is restructuring society, particularly
our models of production and consumption. Benkler calls this new economic
model commons-based peer production. And it’s big: crowdsourced websites that
are built on this model have become some of the dominant forces on the web and
in society in the past few years. Populist revolutions are catalyzed by Twitter and
Facebook. As of the time this book went to press, five of the top ten websites by
traffic are peer produced: Facebook, YouTube, Blogger, Wikipedia, and Twitter.
And the other five are portals or search engines that pore through the content cre-
ated by billions of worldwide users. Websites that actually sell something from a
centralized organization are rare in the world’s top sites; Amazon.com is the only
example, and it’s no accident that it’s the bookseller that derives much of its pop-
ularity from the value created by customers.

Along with this paradigm shift, much of the world’s software is now open
source. The two most popular web browsers in the world are open source (Mo-
zilla Firefox and Google Chrome). Apache is the most popular web server, cur-
rently powering almost two out of every three websites. Open source databases,
IDEs, content management systems, and operating systems are all heavy hitters
in their respective market spaces.

Why study this in a book about architecture? First, commons-based
peer-produced systems are an excellent example of the architecture influence
cycle. Second, the architecture of such systems has some important differences
from the architectures that you would build for traditional systems. We start by
examining how the forces of commons-based peer production change the very
nature of the system’s development life cycle.

27.1 the Ecosystem of Edge-dominant Systems

All successful edge-dominant systems, and the organizations that develop and
use these systems, share a common ecosystem structure, as shown in Figure 27.1.
This is called a “Metropolis” structure, by analogy with a city.

The Metropolis structure is not an architecture diagram: it is a representa-
tion of three communities of stakeholders:

27.1 The Ecosystem of Edge-Dominant Systems 529

Core

 Edge

Masses
Open
Source
Software

Open
Content
Systems

(P
rosum

ers)

(D
evelopers)

(E
nd U

sers)

(C
ustom

ers)
fIGurE 27.1 The Metropolis structure of an edge-dominant system

 ■ Customers and end users, who consume the value produced by the
Metropolis

 ■ Developers, who write software and key content for the Metropolis
 ■ Prosumers, who consume content but also produce it

The Metropolis structure also presents three realms of roles and
infrastructure:

 ■ In the outermost ring reside the masses of end users of such systems. They
contribute requirements but not content.

 ■ The middle ring contains developers and prosumers. These are the stake-
holders at the edge whose actions and whose value creation the organiza-
tion would like to facilitate.

 ■ All of this is held together by the core. The core is software; it provides its
services through a set of APIs upon which the periphery can build. Linux’s
kernel, Apache’s core, Wikipedia’s wiki, Facebook’s application platform,
or the application platforms of the iPhone or Android.

In the Metropolis structure, the realms have different “permeability,” which
the figure indicates by the dashed and solid lines.

In open source systems (such as Linux, MySQL, Apache, Eclipse, and Fire-
fox), it is possible to move from the role of an end user to a developer to a core
architect, by consistently contributing and moving up in the meritocracy. How-
ever, in open content systems (such as Wikipedia, Twitter, YouTube, Slashdot,

530 Part five brave New World 27—Architectures for the Edge

and Facebook), nobody will invite you to become a software developer for the
core, no matter how many cool movies or blog entries you contribute.

Thus, a key question for an organization wishing to foster edge-dominant
systems: How should we architect the core and what development principles
should we embrace for the periphery/edge?

27.2 changes to the Software development life cycle

All our familiar software development life cycles—waterfall, Agile, iterative, or
prototyping-based—are broken in an edge-dominant, crowdsourced world. These
models all assume that requirements can be known; software is developed, tested,
and released in planned increments; projects have dedicated finite resources; and
management can “manage” these resources. None of these conditions is true in
the Metropolis. Let us consider each aspect in turn:

 ■ Requirements can be known. In edge-dominant systems, requirements
emerge from its individuals, operating independently. Requirements are
never knowable in any global sense and they will inevitably conflict, just
as the requirements of a city’s inhabitants often conflict (some want better
highways, some want more park land).

 ■ Software is developed, tested, and released in planned increments. All ex-
isting software development models assume that systems evolve in an or-
derly way, through planned releases. An edge-dominant system, on the oth-
er hand, is constantly changing. It doesn’t make sense, for example, to talk
about the “latest release” of Wikipedia. Resources are noncentralized and
so such a system is never “stable.” One cannot conceive of its functionality
in terms of “releases” any more than a city has a release; parts are being
created, modified, and torn down at all times.

 ■ Projects have dedicated finite resources. Edge-dominant projects are
“staffed” by members who are not employed by the project. Such projects
are subject to the whims of the members who are not required and cannot
be compelled to contribute anything. However, successful projects tend to
attract large numbers of contributors. Unlike traditional projects, which
have finite resources, typically limited by budgetary constraints, there is no
natural limit to the resources available to an edge-dominant project. And
these large numbers tend to ameliorate the (unreliable) actions of any indi-
vidual contributor.

 ■ Management can “manage” these resources. In edge-dominant systems,
the developers are often volunteers. They participate in decentralized pro-
duction processes with no identifiable managers. Linus Torvalds, the creator
of the Linux operating system, has noted that he has no authority to order
anyone to do anything; he can only attempt to lead and persuade, in the

27.3 Implications for Architecture 531

hope that others will follow. Teams in this world are often diverse with dif-
fering, sometimes irreconcilable, views.

For edge-dominant systems, the old rules and tools of software development
won’t work. Such projects are, to varying degrees, community driven and de-
centralized with little overall control, as is the case with the major social net-
working communities (e.g., Twitter, Google+, Facebook), and open content sys-
tems (e.g., Wikipedia, YouTube), especially coupled with open source software
development.

27.3 Implications for architecture

The Metropolis structure presented in the previous section, while not an architec-
ture, has important implications for architecture. The key architectural choice for
an edge-dominant system is the distinction between core and edge. That is, the
architecture of successful edge-dominant systems is, without fail, bifurcated into

 ■ a core (or kernel) infrastructure and
 ■ a set of peripheral functions or services that are built on the core.

This constitutes an architectural pattern very reminiscent of layering. Linux,
Firefox, and Apache—to name just a few—are based upon this architectural pat-
tern. Linux applies this pattern twice: at the outermost level the core is the entire
Linux kernel, and individual applications, libraries, resources, and auxiliaries act
as extensions to the kernel’s functionality—the periphery. Digging into the Li-
nux kernel, we can once again discern a core/periphery pattern. Inside the Linux
kernel, modules are defined to enable parallel development of different subsys-
tems. The different functions that one expects to find in an operating system ker-
nel are all present, but they are designed to be separate modules. For instance,
there are modules for processor/cache control, memory management, resource
management, file system interfacing, networking stacks, device I/O, security, and
so forth. All of these modules interact, but they are clearly identifiable, separate
modules within the kernel.

We have said many times in this book that architectures come from business
goals, as interpreted through the lens of architecturally significant requirements.
But what are the business goals for an edge-dominant system? We said earlier
that you cannot “know” the requirements for such a system, in any complete
sense. Well, this was perhaps a bit hasty.

Requirements for such systems are typically bifurcated into core require-
ments and periphery requirements:

 ■ Core requirements deliver little or no end-user value and focus on quality
attributes and tradeoffs—defining the system’s performance, modularity,

532 Part five brave New World 27—Architectures for the Edge

security, and so forth. These requirements are generally slow to change as
they define the major capabilities and qualities of the system.

 ■ Periphery requirements, on the other hand, are unknowable because they
are contributed by the peer network. These requirements deliver the majori-
ty of the function and end-user value and change relatively rapidly.

Given this structure, the majority of implementation (the periphery) is
crowdsourced to the world using their own tools, to their own standards, at their
own pace. The implementers of the core, on the other hand, are generally close
knit and highly motivated.

This has at least three implications for the core, which the architect will
need to address:

 ■ The core needs to be highly modular, and it provides the foundation for the
achievement of quality attributes. The core in a successful core/periphery
pattern is designed by a small, coherent team. In open source projects, these
people are referred to as the “committers.” In Linux, for example, a strong
emphasis on modularity has been postulated to account for its enormous
growth. This allows for successful contributions of independent enhance-
ments by scores of distributed and unknown-to-each-other programmers.
The peripheral services are enabled by and constrained by the kernel, but
are otherwise unspecified.

 ■ The core must be highly reliable. Most cores are heavily tested, which
means that testability is important. Heavy testing for the core is tractable
because the core is typically small—often orders of magnitude smaller than
the periphery—highly controlled, and relatively slow to change. If the core
cannot be made small, then its components can be made to be as indepen-
dent of each other as possible, which eases the testing burden.

 ■ The core must be highly robust with respect to errors in its environment.
The reliability of the periphery software is entirely in the hands of the pe-
riphery community and the masses (end users and customers). The masses
are typically recruited as testers (Mozilla claims to have three million),
although this testing is often no more than clicking a button that signals a
user’s agreement to have bugs and quality information reported back to the
project. Given that the core will undoubtedly be supporting flawed periph-
ery components, robustness of the core is a key requirement; quite simply,
failures in the periphery must not cause failures of the core. This means that
a system employing the core/periphery pattern should create monitoring
mechanisms to determine the current state of the system, and control mech-
anisms so that bugs in the periphery cannot undermine the core.

The core (often called a platform) is usually implemented as a set of ser-
vices; complex platforms have hundreds. The Amazon EC2 cloud, for exam-
ple, has over 110 different APIs documented, and EC2 is only a portion of the

27.4 Implications of the Metropolis Model 533

Amazon platform. To make these services available to peripheral developers, a
number of conditions must hold:

 ■ Documentation must be available for each API, it must be well written,
it must be well organized, and it must be up to date. Because a peripheral
developer is frequently a volunteer, incomplete, out of date, or unclear doc-
umentation presents a barrier to entry. Even if there is a financial motivation
(such as from developing an iPhone or Android application), the documen-
tation still must not present a barrier.

 ■ There must be a discovery service. Having hundreds of services means
that some of them are going to be redundant and others are going to be
unavailable. A discovery service becomes a necessity to enable navigation
and flexibility in such a world. A discovery service, in turn, implies a regis-
tration service. Services must proactively register upon initialization and be
removed if they are no longer active.

 ■ Error detection becomes extremely complicated. If you as a peripheral de-
veloper encounter a bug in a service, it may be a bug in the service you are
invoking, it may be a bug in a service invoked by the service you are invok-
ing, or anywhere in the chain of services. Reporting a problem and getting
it resolved may end up being extremely time-consuming. Quality assurance
of services requires constant testing of their availability and correctness.
The Netflix Simian Army we discussed in Chapter 10 is an example of how
quality assurance on a platform might be structured.

 ■ All of the peer services might be potential denial-of-service attackers.
Throttling, monitoring, and quotas must be employed to ensure that service
requesters receive adequate responses to their requests.

Building a platform to be a core to support peripheral developers is a non-
trivial undertaking. Yet having such a core has paid dramatic dividends for com-
panies comprising the Who’s Who of today’s web.

27.4 Implications of the Metropolis Model

The Metropolis model, as we’ve seen, is paired with the core/periphery pattern
for architecture for edge-dominant systems. Adopting this duo brings with it
changes to the way that software is developed; in effect, it implies a software de-
velopment model, with its implications on tools, processes, activities, roles, and
expectations. Many such models have evolved over the years, each with its own
characteristics, strengths, and weaknesses. Clearly, no one model is best for all
projects. For instance, Agile methods are best in projects with rapidly evolving
requirements and short time-to-market constraints, whereas a waterfall model is

534 Part five brave New World 27—Architectures for the Edge

best for large projects with well-understood and stable requirements and complex
organizational structures.

The Metropolis model requires a new perspective on system development,
resulting in several important changes to how we must create systems:

1. Indifference to phases. The Metropolis model uses the metaphor of a bull’s
eye, as opposed to a waterfall, a spiral, a “V,” or other representations that
previous models have adopted. The contrast to these previous models is
salient: the “phases” of development disappear in the bull’s eye. Instead, we
must focus managerial attention on the explicit inclusion of customers (the
periphery and the masses) for system development.

2. Crowd management. Policies for crowd management must be aligned with
the organization’s strategic goals and must be established early. Crowds
are good for certain tasks, but not for all. This implies that business models
must be examined to consider policies and associated system development
tasks for crowd engagement, performance management monitoring, com-
munity protection, and so on. As crowdsourcing is rooted in the “gift” cul-
ture, for-profit organizations must carefully align tasks with the volunteers’
values and intentions.

3. Core versus periphery. The Metropolis model differentiates the core and
periphery communities, with different tools, processes, activities, roles, and
expectations for each. The core must be small and tightly controlled by a
group who focus on modularity, core services, and core quality attributes;
this enables the unbridled and uncoordinated growth at the periphery.

4. Requirements process. The requirements for a Metropolis system are pri-
marily asserted by the periphery, not elicited from the masses; they emerge
from the collective experiences of the community of the periphery, typically
through their emails, wikis, and discussion forums. So such forums must
be made available—typically provided by members of the core—and the
periphery should be encouraged to participate in discussions about the re-
quirements, in effect, to create a community. This changes the fundamental
nature of requirements engineering, which has traditionally focused on col-
lecting requirements, making them complete and consistent, and removing
redundancies wherever possible.

5. Focus on architecture. The core architecture is the fabric that holds to-
gether a Metropolis system. As such, it must be consciously designed to
accommodate the specific characteristics of open content and open source
systems. For this reason, the architecture cannot “emerge,” as it often does
in traditional life-cycle models, and in Agile models. It must be designed
up front, built by a small, experienced, motivated team who focus on (1)
modularity, to enable the parallel activities of the periphery, and (2) the
core quality attributes (security, performance, availability, and so on). There
should be a lead architect, or a small team of leads, who can manage proj-
ect coordination and who have the final say in matters affecting the core.

27.4 Implications of the Metropolis Model 535

Linus Torvalds, for example, still exerts “veto” rights on matters affecting
Linux’s kernel. Virtually every open source project distinguishes between
the roles of contributor (who can contribute patches) and committer (who
chooses which patches make it into any given release).

6. Distributed testing. The core/periphery distinction also provides guidance
for testing activities. The core must be heavily tested and validated, because
it is the fabric that holds the system together. Thus, when planning a Me-
tropolis project, it is important to focus on validation of the core and to put
tools, guidelines, and processes in place to facilitate this. For example, the
core should be kept small; the project should have frequent (perhaps night-
ly) builds and frequent releases; bug reporting should be built in to the sys-
tem and require little effort on the part of the periphery. The project must
explicitly take advantage of the “many eyes” provided by the periphery.

7. Automated delivery. Delivery mechanisms must be created that work in
a distributed, asynchronous manner. These mechanisms must be flexible
enough to accept incompleteness of the installed base as the norm. Thus,
any delivery mechanism must be tolerant of older versions, multiple coex-
isting versions, or even incomplete versions. A Metropolis system should
also, as far as possible, be tolerant of incompatibilities both within the
system and between systems. For example, modern web browsers will still
parse old versions of HTML or interact with old versions of web servers;
browser add-ons and plug-ins coexist at different version levels and no
combination of them will “break” the browser.

8. Management of the periphery. One important aspect of the core/periphery
model is that the core exercises very little control over the periphery. Yet
this does not mean that the periphery is totally unmanaged. If we examine
the extant platforms that are either crowdsourced or peripheral developer
sourced, we see that there is always a governance policy set by a managing
organization. The Internet and the World Wide Web have a collection of
governing boards, large open source projects and Wikipedia are managed
by foundations and meritocracies, and private companies such as Facebook
or Apple have their own management structures. The governance policies
created by the management organizations are enforced in either a proactive
or reactive fashion. Some policies are enforced by a combination of both:

 ■ Proactive enforcement. Proactive enforcement inhibits contributions by
the prosumers or the peripheral developers unless they meet certain cri-
teria. Within the Internet, for example, IP addresses are assigned. One
cannot make up one’s own IP address. Communication protocols and
web standards are defined by groups chartered by one of the Internet or
web governing organizations. Apple, as another example, screens appli-
cations before they are eligible for inclusion in the App Store. And every
platform has a collection of APIs that also constrain and govern how a
peripheral application interacts with it.

536 Part five brave New World 27—Architectures for the Edge

 ■ Reactive enforcement. Reactive enforcement dictates the response in case
there is a violation of the organization’s policy. Wikipedia has a collection
of editors who are responsible for ensuring the quality of contributions
after they have been made. Facebook, YouTube, Flickr and most other
crowdsourced sites have procedures to report violations. And if a periph-
eral developer does not adhere to a protocol or a set of APIs, then their
product is flawed in some fashion and the market will likely punish them.

The analogy of a city to explain some of the facets of the core/periphery
model can be extended. Zoning is a policy that describes permissible land use
for a city or other governmental organization. It specifies, for example, that cer-
tain pieces of land are for residential use and other pieces are for industrial use.
Zoning policies have both proactive and reactive enforcement. Figure 27.2 shows
some of the actors associated with a zoning board. The zoning board is the gov-
ernance organization; it produces a building code that prescribes legitimate uses
and restrictions on various buildings. The building inspector is a reactive enforcer
who is responsible for verifying that the buildings conform to permissible stan-
dards and usage. As with any analogy, the zoning board is not an exact descrip-
tion of the core/periphery, but it does identify many of the elements that go into
controlling contributions.

Building
inspector

Building code

Member

serves on Appointing authority

Developer

Citizen or
citizen
groups

produces

selects

Zoning Board

constrains
Requests

variance
or zoning

change

Enforces building code

Requests
variance or

zoning change

Government
agency

provides
funds

Approves
or rejects
change
request

Expert

advises

fIGurE 27.2 Zoning board stakeholders

27.5 Summary 537

Life-cycle models are never revolutionary; they arise in reaction to ambient
conditions in the software development world. The Waterfall model was created
to focus more attention on removing flaws early in a project’s life cycle, in reac-
tion to the delays, bugs, and failures of projects of ever-increasing complexity.
The spiral model and, later, the Rational Unified Process were created because
projects needed to produce working versions of software more quickly and to
mitigate risks earlier in the software development life cycle. Agile methods grew
out of the desire for less bureaucracy, more responsiveness to customer needs,
and shorter times to market.

Similarly, the Metropolis model is formally capturing a market response
that is already occurring: the rise of commons-based peer production and ser-
vice-dominant logic. Prior life-cycle models are simply inadequate—mostly
mute—on the concerns of edge-dominant systems: crowdsourcing, emergent re-
quirements, and change as a constant. This model offers new ways to think about
how a new breed of systems can be developed; its principles help management
shift to new project management styles and architecture models that take advan-
tage of the “wisdom of crowds.”

Metropolis model concepts are not appropriate for all forms of development.
Smaller systems with limited scope will continue to benefit from the conceptual
integrity that accompanies a small, cohesive team. High-security and safety-criti-
cal systems, and systems that are built around protected intellectual property, will
continue to be built in traditional ways for the foreseeable future. But more and
more crowdsourcing, mashups, open source, and other forms of edge-dominant
development are being harnessed for value cocreation, and the Metropolis model
does speak to this.

27.5 Summary

An edge-dominant system is one that depends crucially on the inputs of users for
its success. Users participate in information creation (“crowdsourcing”) and even
its organization (“folksonomy”). These systems, part of the “Web 2.0” move-
ment, are having profound social, political, and economic consequences.

All successful edge-dominant systems, and the organizations that develop
and use these systems, share a common ecosystem structure known as the “Me-
tropolis” structure. This structure shows how customers, end users, developers,
and “prosumers” are related.

Edge systems bring a new life-cycle model to the fore, in which require-
ments are not completely known, software developed in planned increments is re-
placed by software that is constantly changing, and projects are staffed by mem-
bers outside the purview of the central developing organization.

538 Part five brave New World 27—Architectures for the Edge

The dominant pattern for edge systems is the core/periphery pattern. This
pattern divides the world into a closely controlled core and a loosely controlled
periphery. To work, the core needs to be highly modular, highly reliable, and
highly robust with respect to external faults. Cores are often designed as a set
of services with well-documented APIs, discovery and registration, and sophisti-
cated error detection and reporting.

27.6 for further reading

An interesting interview of Linus Torvalds, showing his management style—
what he calls “shepherding”—appeared in BusinessWeek magazine several years
ago [Hamm 04].

Yochai Benkler’s intriguing book The Wealth of Networks [Benkler 07] puts
forth a powerful premise: that the networked information economy is transform-
ing society. It shows how the modern networked economy transforms methods of
production and consumption, and creates new forms of value that do not depend
on market strategies.

For more information and background on the Metropolis model, you can
read the original paper describing it [Kazman 09].

Much of the inspiration for the Metropolis model comes from the Ultra-
Large-Scale Systems report [Feiler 06].

MacCormack and colleagues have written extensively on the architecture
and properties of what they call “core/periphery” systems. See, for example,
[MacCormack 10].

27.7 discussion Questions

1. Draw the architecture influence cycle for Web 2.0 software systems in gen-
eral, and for one of its flagship examples (such as Twitter or Facebook).

2. Create a complete pattern description for the core/periphery pattern, mod-
eled on those in Chapter 13.

3. How might the role of architecture documentation be different for an
edge-dominant system?

4. Which architectural views would you expect to be the most important to
document for a system built under the Metropolis model?

27.7 Discussion Questions 539

5. How would you establish the architecturally significant requirements for
the core? Would you use a Quality Attribute Workshop, or would you use
something less structured and more open? Why?

6. Metropolis systems are frequently open source. Some organizations that
might want to contribute to or build on top of such a system may balk at
releasing all of their code to the public. What architectural means might
you employ to address this situation?

7. Choose your favorite crowdsourced system. Write a testability scenario for
this system, and choose a set of testability tactics that you would use for it.

8. Constructing and releasing an application on a platform such as the iPhone
or the Android requires the developer to adhere to certain specifications and
to pass through certain hoops. Redraw Figure 27.2 to reflect the Apple iP-
hone ecosystem and the Android ecosystem.

9. Find a study that discusses the motivation of Wikipedia contributors. Find
another study that discusses the motivation of open source developers.
Compare the results of these two studies.

This page intentionally left blank

541

3

1

The Architecture
Business Cycle

Simply stated, competitive success flows to the company
that manages to establish proprietary architectural control

over a broad, fast-moving, competitive space.

— C. Morris and C. Ferguson [Morris 93]

For decades, software designers have been taught to build systems based exclu-
sively on the technical requirements. Conceptually, the requirements document is
tossed over the wall into the designer’s cubicle, and the designer must come forth
with a satisfactory design. Requirements beget design, which begets system. Of
course, modern software development methods recognize the naïveté of this
model and provide all sorts of feedback loops from designer to analyst. But they
still make the implicit assumption that design is a product of the system’s techni-
cal requirements, period.

Architecture

 has emerged as a crucial part of the design process and is the
subject of this book.

Software architecture

 encompasses the structures of large
software systems. The architectural view of a system is abstract, distilling away
details of implementation, algorithm, and data representation and concentrating
on the behavior and interaction of “black box” elements. A software architecture
is developed as the first step toward designing a system that has a collection of
desired properties. We will discuss software architecture in detail in Chapter 2.
For now we provide, without comment, the following definition:

The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

Chapter 2 will provide our working definitions and distinguish between archi-
tecture and other forms of design. For reasons we will see throughout, architecture
serves as an important communication, reasoning, analysis, and growth tool for
systems. Until now, however, architectural design has been discussed in the

Bass.book Page 3 Thursday, March 20, 2003 7:21 PM

28
Epilogue

Don’t let it end like this. Tell them I said something.
—Pancho Villa

You’ve arrived at the end of the journey. Nice work.
We hope you can find some valuable takeaways from this book. We suggest

the list should include the following:

1. What architecture is, why it’s important, what influences it, and what it
influences.

2. The role that architecture plays in a business, technical, project, and profes-
sional context.

3. The critically important symbiosis between architecture and quality attri-
butes, how to specify quality attribute requirements, and the quick immer-
sion you’ve had into the dozen or so of the most important QAs.

4. How to capture the architecturally significant requirements for an
architecture.

5. How to design an architecture, document it, guide an implementation with
it, evaluate it to see if it’s a good one for your needs, reverse-engineer it,
and manage a project around it.

6. How to evaluate an architecture’s cost and benefit, what it means to be
architecturally competent, and how to use architecture as the basis for an
entire software product line.

7. Architectural concepts and patterns for systems on the current technological
frontier: edge applications and the cloud.

Fine. Now what?
It’s very tempting to end the book with a cheery imperative to go forth and

architect great systems. But the truth is, life isn’t that simple.
The authors of this book have, collectively, an embarrassingly large num-

ber of years of experience in teaching software architecture. We teach it through
books like this one, in the classroom to students, and in industrial short courses

542 Part five brave New World 28—Epilogue

to practicing software architects of all stripes, from “aspiring” to “old hand.”
And often, much too often, we know that after our students conscientiously learn
what we have to offer, they walk into an organization that is not as architecturally
savvy as the students now are, and our students have no practical way to put what
they have learned into practice.

Most of you will not be able to dictate an architecture-based philosophy to
the projects to which you’ll be assigned, if it’s not already present. You won’t
be able to say, “This Agile project needs a lead software architect!” and make it
stick if the team leaders think that Agile methods won’t permit any overarching
design. You won’t be able to say, “We’re going to include an explicit architecture
evaluation in our project schedule” and have everyone comply. You won’t be able
to say, “We’re going to use the Views and Beyond approach and templates for our
architecture documentation” and have your directive obeyed.

Lest you feel that all your time absorbing the material in this book was time
spent for a lost cause, we want to close the book with some advice for carrying
what you’ve learned into your professional setting:

1. Speak the right language. You know by now that architecture is the means
to an end, and not an end in itself. The decision makers in your organization
typically care about the ends, not the means. They care about products, not
the architectures of those products. They care about ensuring that the prod-
ucts are competitive in the marketplace. And they care about executing the
organization’s marketing and business strategy. They may not express their
concerns in architecturally significant terms, but rather in market terms that
you’ll have to translate.

2. Speak the right language, part 2. Project managers care about reduction
of technical risk, reliable and realistic scheduling and budgeting, and plan-
ning the production of those products. To the extent that you can justify
a focus on architecture in those terms, you’ll more likely be successful in
gaining the freedom to carry out some of the practices espoused in this
book. And you really can justify this focus: A sound architecture is an
unparalleled risk reduction strategy, a reliable work estimator, and a good
predictor of production methods.

3. Get involved. One of the best ways to insert architectural concerns into a
project is to show its value to stakeholders who don’t often get a chance to
see it. Requirements engineers are a case in point. Most often, they meet
with customers and users, capture their concerns, write them up, and toss
the requirements over the fence (usually a very tall fence) to the designers.
Challenge this segregation! Try to get involved in the requirements capture
activity. Invite yourself to meetings. Say that, as an architect, you want to
understand the problem by hearing the concerns straight from the horse’s
mouth. This will give you critical exposure to the very stakeholders you’ll
need to help with your design, evaluation, and documentation chores. Fur-
thermore it will give you a chance to add value to the requirements capture

Epilogue 543

process. Because you may have a design approach in mind, you may be
able to offer better quality attribute responses than the customer has in
mind, and that might make our marketers very happy. Or you may be able
to spot troublesome requirements early on, and help nudge the customer to
a perfectly adequate but more architecturally palatable QA response. Also,
you can take it upon yourself to contact your organization’s marketers.
They are often the ones who come up with product concepts. You would
do well to learn how they do that, and eventually you could help them by
pointing out useful variations on existing products that could use the same
architecture.

4. It’s the economy, stupid. Think in, and couch your arguments in, eco-
nomic terms. If you think an architectural trade study, or an architecture
document, or an architecture evaluation, or ensuring code compliance with
the architecture is a good idea for your project, make a business case for
it. Pointy-haired bosses in comic strips notwithstanding, managers are re-
ally—trust us here—rational people. But their goals are broad and almost
always have to do with economics. You should be able to argue, using
back-of-the-envelope arithmetic, that (for example) producing an updated
version of the architecture document is a worthwhile activity when the
system undergoes a major change. You should be able to argue that activi-
ties undertaken with the new architecture documentation will be much less
error-prone (and therefore less expensive) than those same activities under-
taken without a guiding architecture. And the effort to keep the documenta-
tion up to date is much less than the expected savings. You can plug some
numbers in a spreadsheet to make this argument. The numbers don’t have
to be accurate, just reasonable, and they’ll still make your case.

5. Start a guerrilla movement. Find like-minded people in your organiza-
tion and nurture their interest in architecture. Start a brown-bag lunchtime
reading and discussion group that covers books or book chapters or papers
or even blogs about architecture. For example, your group could read the
chapter in this book about architecture competence, and discuss what prac-
tices you’d like to see your organization adopt, and what it would take to
adopt them. Or the group could agree on a joint documentation template
for architecture, or come up with a set of quality attribute scenarios that
apply across your collective projects. Especially appealing is to come up
with a set of patterns that apply to the systems you’re building. Or bring a
vexing design problem from your individual project, and let the group work
on a written solution to it. Or have the group offer its services as a roving
architecture evaluation team to other projects. Your group should meet reg-
ularly and often, and adopt a specific set of tangible goals. The importance
of an enthusiastic and dedicated leader—you?—who is keen to mature the
organization’s architecture practices cannot be overstated. Advertise your

544 Part five brave New World 28—Epilogue

meetings, advertise your results, and keep asking more members to join
your group.

6. Relish small victories. You don’t have to change the world overnight. Ev-
ery improvement you make will put you and your organization in a better
place than it would have been otherwise.

Getting Architecture Reviews into an Organization through
the Back Door

If you search the web for “code review computer science,” you’ll turn up
millions of hits that describe code reviews and the steps that are taken to
perform them. If you search for “design review computer science,” you’ll
turn up little that is useful.

Other disciplines routinely practice and teach design critiques. Search
for “design critique” and you will find many hits together with instructions. A
design is a set of decisions of whatever type that attempts to solve a par-
ticular problem, whether an art problem, a user interface design problem,
or a software problem. Solutions to important design problems should be
subject to peer review, just as code should be subject to peer review.

There is a wealth of data that points out that the earlier in the life cycle a
problem is discovered and fixed, the less the cost of finding and fixing the
problem. Design precedes code and so having appropriate design reviews
seems both intuitively and empirically justified. In addition, the documents
around the review, both the original design document and also the cri-
tiques, are valuable learning tools for new developers. In many organiza-
tions developers switch systems frequently, and so they are constantly
learning.

This view is not universally shared. A software engineer working in a
major software house tells me that even though the organization aspires to
writing and reviewing design documents, it rarely happens. Senior develop-
ers tend to limit their review to a cursory glance. Code reviews, on the other
hand, are taken quite seriously by the senior developers.

 My software engineer friend offers two possible explanations for this
state of affairs:

1. The code review is the last opportunity to affect what is built:
“review this or live with it.” This explanation assumes that senior
developers do not believe that the output of design reviews are
actionable and thus wait to engage until later in the process.

2. The code is more concrete than the design, and is therefore
easier to assess. This explanation assumes that senior developers
are incapable of understanding designs.

I do not find either of these explanations compelling, but I am unable to
come up with a better one.

 545

What to do?
What this software engineer did is to look for a surrogate process where

a design review could be surreptitiously performed. This individual noticed
that when the organization did code reviews, questions such as “Why did
you do that?” were frequently asked. The result of such questions was a
discussion of rationale. So the individual would code up a solution to a
problem, submit it to a code review, and wait for the question that would
lead to the rationale discussion.

A design review is a review where design decisions are presented
together with their rationale. Frequently, design alternatives are explored.
Whether this is done under the name of code review or design review is not
nearly as important as getting it done.

Of course, my friend’s surreptitious approach has drawbacks. It is ineffi-
cient to code a solution that may have to be thrown away. Also, embedding
design reviews into code reviews means that the designs and reviews end
up being embedded in the code review tool, making it difficult to search this
tool for design and design rationale. But these inefficiencies are dwarfed by
the inefficiency of pursuing an incorrect solution to a particular problem.

—LB

The practice and discipline of architecture for software systems has come of
age. You can be proud of joining a profession that has always strived, and is still
striving, to be more disciplined, more reliable, more productive, and more effi-
cient, to produce systems that improve the lives of their stakeholders.

With that thought, now it’s time for the cheery book-ending imperative: Go
forth and architect great systems. Your predecessors have designed systems that
have changed the world. It’s your turn.

This page intentionally left blank

547

References

[Abrahamsson 10] P. Abrahamsson, M.A. Babar, and P. Kruchten. “Agility and Ar-
chitecture: Can They Coexist?” IEEE Software, Vol. 27, No. 2, (March-April
2010), pp. 16-22.

[AdvBuilder 10] Java Adventure Builder Reference Application. https://java.net/
projects/adventurebuilder/pages/home

[Anastasopoulos 00] M. Anastasopoulos and C. Gacek. “Implementing Product Line
Variabilities” (IESE-Report No. 089.00/E, V1.0). Kaiserslautern, Germany:
Fraunhofer Institut Experimentelles Software Engineering, 2000.

[Anderson 08] Ross Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems, Second Edition. Wiley, 2008.

[Argote 07]. L. Argote and G. Todorova. International Review of Industrial and
Organizational Psychology. John Wiley & Sons, Ltd., 2007.

[Avižienis 04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. “Basic Concepts and Taxonomy of Dependable and Secure Comput-
ing,” IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 1
(January 2004), pp. 11-33.

[Bachmann 05] F. Bachmann and P. Clements. “Variability in Software Product
Lines,” CMU/SEI-2005-TR-012, 2005.

[Bachmann 07] Felix Bachmann, Len Bass, and Robert Nord. “Modifiability
Tactics,” CMU/SEI-2007-TR-002, September 2007.

[Bachmann 11] F. Bachmann. “Give the Stakeholders What They Want: Design Peer
Reviews the ATAM Style,” Crosstalk, November/December 2011, pp. 8-10,
http://www.crosstalkonline.org/storage/issue-
archives/2011/201111/201111-Bachmann.pdf

[Barbacci 03] M. Barbacci, R. Ellison, A. Lattanze, J. Stafford, C. Weinstock, and
W. Wood. “Quality Attribute Workshops (QAWs), Third Edition,” CMU/SEI-
2003-TR-016, http://www.sei.cmu.edu/reports/03tr016.pdf

[Bass 03] L. Bass and B.E. John. “Linking Usability to Software Architecture
Patterns through General Scenarios,” Journal of Systems and Software 66(3),
pp. 187-197.

[Bass 08] Len Bass, Paul Clements, Rick Kazman, and Mark Klein. “Models for
Evaluating and Improving Architecture Competence,” CMU/SEI-2008-TR-006,
March 2008, http://www.sei.cmu.edu/library/abstracts/reports/08tr006.cfm

http://www.crosstalkonline.org/storage/issue-archives/2011/201111/201111-Bachmann.pdf
http://www.crosstalkonline.org/storage/issue-archives/2011/201111/201111-Bachmann.pdf
http://www.sei.cmu.edu/reports/03tr016.pdf
http://www.sei.cmu.edu/library/abstracts/reports/08tr006.cfm
https://adventurebuilder.dev.java.net
https://adventurebuilder.dev.java.net

548 References

[Baudry 03] B. Baudry, Yves Le Traon, Gerson Sunyé, and Jean-Marc Jézéquel.
“Measuring and Improving Design Patterns Testability,” Proceedings of the
Ninth International Software Metrics Symposium (METRICS ’03), 2003.

[Baudry 05] B. Baudry and Y. Le Traon. “Measuring Design Testability of a UML
Class Diagram,” Information & Software Technology 47(13)(October 2005),
pp. 859-879.

[Beck 04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-
brace Change, Second Edition. Addison-Wesley, 2004.

[Beizer 90] B. Beizer. Software Testing Techniques, Second Edition. International
Thomson Computer Press, 1990.

[Bellcore 98] Bell Communications Research. GR-1230-CORE, SONET Bidirec-
tional Line-Switched Ring Equipment Generic Criteria. 1998.

[Bellcore 99] Bell Communications Research. GR-1400-CORE, SONET Dual-Fed
Unidirectional Path Switched Ring (UPSR) Equipment Generic Criteria. 1999.

[Benkler 07] Y. Benkler. The Wealth of Networks: How Social Production Trans-
forms Markets and Freedom. Yale University Press, 2007.

[Bertolino 96a] Antonia Bertolino and Lorenzo Strigini. “On the Use of Testability
Measures for Dependability Assessment,” IEEE Transactions on Software
Engineering, Vol. 22, No. 2 (February 1996), pp. 97-108.

[Bertolino 96b] A. Bertolino and P. Inverardi. “Architecture-Based Software Test-
ing,” in Proceedings of the Second International Software Architecture
Workshop (ISAW-2), L. Vidal, A. Finkelstain, G. Spanoudakis, and A.L. Wolf,
eds. Joint Proceedings of the SIGSOFT ’96 Workshops, San Francisco, October
1996, ACM Press.

[Biffl 10] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grunbacher, eds.
Value-Based Software Engineering. Springer, 2010.

[Binder 94] R.V. Binder. “Design for Testability in Object-Oriented Systems,”
CACM 37(9), pp. 87-101, 1994.

[Boehm 78] B.W. Boehm, J.R. Brown, J.R. Kaspar, M.L. Lipow, and G. MacCleod.
Characteristics of Software Quality. American Elsevier, 1978.

[Boehm 81] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.
[Boehm 91] Barry Boehm. “Software Risk Management: Principles and Practices,”

IEEE Software, Vol. 8, No. 1, pp. 32-41, January 1991.
[Boehm 04] B. Boehm and R. Turner. Balancing Agility and Discipline: A Guide

for the Perplexed. Addison-Wesley, 2004.
[Boehm 07] B. Boehm, R. Valerdi, and E. Honour. “The ROI of Systems Engineer-

ing: Some Quantitative Results for Software Intensive Systems,” Systems Engi-
neering, Vol. 11, No. 3, pp. 221-234.

[Boehm 10] B. Boehm, J. Lane, S. Koolmanojwong, and R. Turner. “Architected
Agile Solutions for Software-Reliant Systems,” Technical Report USC-
CSSE-2010-516, 2010.

[Booch 11] Grady Booch. “An Architectural Oxymoron,” podcast available at http://
www.computer.org/portal/web/computingnow/onarchitecture. Retrieved January
21, 2011.

http://www.computer.org/portal/web/computingnow/onarchitecture
http://www.computer.org/portal/web/computingnow/onarchitecture

References 549

[Bosch 00] J. Bosch. “Organizing for Software Product Lines,” Proceedings of the
3rd International Workshop on Software Architectures for Product Families
(IWSAPF-3), pp. 117-134. Las Palmas de Gran Canaria, Spain, March 15-17,
2000. Springer, 2000.

[Bouwers 10] E. Bouwers and A. van Deursen. “A Lightweight Sanity Check for Im-
plemented Architectures,” IEEE Software 27(4), July/August 2010, pp. 44-50.

[Bredemeyer 11] D. Bredemeyer and R. Malan. “Architect Competencies: What You
Know, What You Do and What You Are,” http://www.bredemeyer.com/
Architect/ArchitectSkillsLinks.htm

[Brewer 12] E. Brewer. “CAP Twelve Years Later: How the ‘Rules’ Have Changed,”
IEEE Computer, February 2012, pp. 23-29.

[Brown 10] N. Brown, R. Nord, and I. Ozkaya. “Enabling Agility Through Architec-
ture,” Crosstalk, November/December 2010, pp. 12-17.

[Brownsword 96] Lisa Brownsword and Paul Clements. “A Case Study in Successful
Product Line Development,” Technical Report CMU/SEI-96-TR-016, October
1996.

[Brownsword 04] Lisa Brownsword, David Carney, David Fisher, Grace Lewis,
Craig Meterys, Edwin Morris, Patrick Place, James Smith, and Lutz Wrage.
“Current Perspectives on Interoperability,” CMU/SEI-2004-TR-009, http://
www.sei.cmu.edu/reports/04tr009.pdf

[Bruntink 06] Magiel Bruntink and Arie van Deursen. “An Empirical Study into
Class Testability,” Journal of Systems and Software 79(9)(2006),
pp. 1219-1232.

[Buschmann 96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommer-
lad, and Michael Stal. Pattern-Oriented Software Architecture Volume 1: A
System of Patterns. Wiley, 1996.

[Cai 11] Yuanfang Cai, Daniel Iannuzzi, and Sunny Wong. “Leveraging Design
Structure Matrices in Software Design Education,” Conference on Software
Engineering Education and Training 2011, pp. 179-188.

[Cappelli 12] Dawn M. Cappelli, Andrew P. Moore, and Randall F. Trzeciak. The
CERT Guide to Insider Threats: How to Prevent, Detect, and Respond to
Information Technology Crimes (Theft, Sabotage, Fraud). Addison-Wesley,
2012.

[Carriere 10] J. Carriere, R. Kazman, and I. Ozkaya. “A Cost-Benefit Framework for
Making Architectural Decisions in a Business Context,” Proceedings of 32nd
International Conference on Software Engineering (ICSE 32), Capetown,
South Africa, May 2010.

[Cataldo 07] M. Cataldo, M. Bass, J. Herbsleb, and L. Bass. “On Coordination
Mechanisms in Global Software Development,” Proceedings Second IEEE
International Conference on Global Software Development, 2007.

[Chandran 10] S. Chandran, A. Dimov, and S. Punnekkat. “Modeling Uncertainties
in the Estimation of Software Reliability—A Pragmatic Approach,” Fourth
IEEE International Conference on Secure Software Integration and
Reliability Improvement, 2010.

http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm
http://www.bredemeyer.com/Architect/ArchitectSkillsLinks.htm
http://www.sei.cmu.edu/reports/04tr009.pdf
http://www.sei.cmu.edu/reports/04tr009.pdf

550 References

[Chang 06] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, et al. “Bigtable: A Distrib-
uted Storage System for Structured Data,” Proceedings Operating Systems
Design and Implementation, 2006, http://research.google.com/archive/
bigtable.html

[Chen 10] H.-M. Chen, R. Kazman, and O. Perry. “From Software Architecture
Analysis to Service Engineering: An Empirical Study of Enterprise SOA Imple-
mentation,” IEEE Transactions on Services Computing 3(2)(April-June 2010),
pp. 145-160.

[Chidamber 94] S. Chidamber and C. Kemerer. “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, Vol. 20, No. 6 (June
1994).

[Clements 01a] P. Clements and L. Northrop. Software Product Lines.
Addison-Wesley, 2001.

[Clements 01b] P. Clements, R. Kazman, and M. Klein. Evaluating Software
Architectures. Addison-Wesley, 2001.

[Clements 07] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P.
Verma. “The Duties, Skills, and Knowledge of Software Architects,” Proceed-
ings of the Working IEEE/IFIP Conference on Software Architecture, 2007.

[Clements 10a] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Document-
ing Software Architectures: Views and Beyond, Second Edition.
Addison-Wesley, 2010.

[Clements 10b] Paul Clements and Len Bass. “Relating Business Goals to Ar-
chitecturally Significant Requirements for Software Systems,” CMU/SEI-
2010-TN-018, May 2010.

[Clements 10c] P. Clements and L. Bass. “The Business Goals Viewpoint,” IEEE
Software 27(6)(November-December 2010), pp. 38-45.

[Cockburn 04] Alistair Cockburn. Crystal Clear: A Human-Powered Methodology
for Small Teams. Addison-Wesley, 2004.

[Conway 68] Melvin E. Conway. “How Do Committees Invent?” Datamation,
Vol. 14, No. 4 (1968), pp. 28-31.

[Coplein 10] J. Coplein and G. Bjornvig. Lean Architecture for Agile Software
Development. Wiley, 2010.

[Cunningham 92] W. Cunningham. “The Wycash Portfolio Management System,”
in Addendum to the Proceedings of Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 29-30, ACM Press, 1992.

[CWE 12] The Common Weakness Enumeration. http://cwe.mitre.org/
[Dean 04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data

Processing on Large Clusters,” Proceedings Operating System Design and
Implementation, 1994, http://research.google.com/archive/mapreduce.html

[Dijkstra 68] E.W. Dijkstra. “The Structure of the ‘THE’-Multiprogramming
System,” Communications of the ACM 11(5), pp. 341-346.

[Dix 04] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-
Computer Interaction, Third Edition. Prentice Hall, 2004.

http://research.google.com/archive/bigtable.html
http://research.google.com/archive/bigtable.html
http://cwe.mitre.org/
http://research.google.com/archive/mapreduce.html

References 551

[Douglass 99] Bruce Douglass. Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley, 1999.

[Dutton 84] J.M. Dutton and A. Thomas. “Treating Progress Functions as a
Managerial Opportunity,” Academy of Management Review 9 (1984),
pp. 235-247.

[Eickelman 96] N. Eickelman and D. Richardson. “What Makes One Software
Architecture More Testable Than Another?” in Proceedings of the Second
International Software Architecture Workshop (ISAW-2), L. Vidal, A.
Finkelstein, G. Spanoudakis, and A.L. Wolf, eds., Joint Proceedings of the
SIGSOFT ’96 Workshops, San Francisco, October 1996, ACM Press.

[EOSAN 07] “WP 8.1.4—Define Methodology for Validation within OATA:
Architecture Tactics Assessment Process,” http://www.eurocontrol.int/valfor/
gallery/content/public/OATA-P2-D8.1.4-01%20DMVO%20Architecture%20
Tactics%20Assessment%20Process.pdf

[FAA 00] “System Safety Handbook,” http://www.faa.gov/library/manuals/aviation/
risk_management/ss_handbook/

[Fairbanks 10] G. Fairbanks. Just Enough Software Architecture. Marshall &
Brainerd, 2010.

[Feiler 06] P. Feiler, R.P. Gabriel, J. Goodenough, R. Linger, T. Longstaff, R.
Kazman, M. Klein, L. Northrop, D. Schmidt, K. Sullivan, and K. Wallnau.
Ultra-Large-Scale Systems: The Software Challenge of the Future, http://
www.sei.cmu.edu/library/assets/ULS_Book20062.pdf

[Fiol 85] C.M. Fiol and M.A. Lyles. “Organizational Learning,” Academy of
Management Review 10(4)(1985), p. 803.

[Freeman 09] Steve Freeman and Nat Pryce. Growing Object-Oriented Software,
Guided by Tests. Addison-Wesley, 2009.

[Gacek 95] Cristina Gacek, Ahmed Abd-Allah, Bradford Clark, and Barry Boehm.
“On the Definition of Software System Architecture,” USC/CSE-95-TR-500,
April 1995.

[Gagliardi 09] M. Gagliardi, W. Wood, J. Klein, and J. Morley. “A Uniform
Approach for System of Systems Architecture Evaluation,” Crosstalk, Vol. 22,
No. 3 (March/April 2009), pp. 12-15.

[Gamma 94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[Garlan 93] D. Garlan and M. Shaw. “An Introduction to Software Architecture,” in
Ambriola and Tortola, eds., Advances in Software Engineering & Knowledge
Engineering, Vol. II. World Scientific Pub. Co., 1993, pp. 1-39.

[Garlan 95] David Garlan, Robert Allen, and John Ockerbloom. “Architectural
Mismatch or Why it’s hard to build systems out of existing parts,” ICSE 1995.
17th International Conference on Software Engineering, April 1995.

[Gilbert 07] T. Gilbert. Human Competence: Engineering Worthy Performance.
Pfeiffer, Tribute Edition, 2007.

[Gokhale 05] S. Gokhale, J. Crigler, W. Farr, and D. Wallace. “System Availability
Analysis Considering Hardware/Software Failure Severities,” Proceedings of
the 29th Annual IEEE/NASA Software Engineering Workshop (SEW ’05),
Greenbelt, MD, April 2005, IEEE 2005.

http://www.eurocontrol.int/valfor/gallery/content/public/OATA-P2-D8.1.4-01%20DMVO%20Architecture%20Tactics%20Assessment%20Process.pdf
http://www.eurocontrol.int/valfor/gallery/content/public/OATA-P2-D8.1.4-01%20DMVO%20Architecture%20Tactics%20Assessment%20Process.pdf
http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://www.sei.cmu.edu/library/assets/ULS_Book20062.pdf
http://www.eurocontrol.int/valfor/gallery/content/public/OATA-P2-D8.1.4-01%20DMVO%20Architecture%20Tactics%20Assessment%20Process.pdf

552 References

[Gorton 10] Ian Gorton. Essential Software Architecture, Second Edition.
Springer, 2010.

[Graham 07] T.C.N. Graham, R. Kazman, and C. Walmsley. “Agility and Experimen-
tation: Practical Techniques for Resolving Architectural Tradeoffs,” Proceed-
ings of the 29th International Conference on Software Engineering (ICSE
29), Minneapolis, MN, May 2007.

[Gray 93] Jim Gray and Andreas Reuter. Distributed Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1993.

[Grinter 99] Rebecca E. Grinter. “Systems Architecture: Product Designing and
Social Engineering,” in Proceedings of the International Joint Conference
on Work Activities Coordination and Collaboration (WACC ’99), Dimitrios
Georgakopoulos, Wolfgang Prinz, and Alexander L. Wolf, eds. ACM, 1999,
pp. 11-18.

[Hamm 04] “Linus Torvalds’ Benevolent Dictatorship,” BusinessWeek, Au-
gust 18, 2004, http://www.businessweek.com/technology/content/aug2004/
tc20040818_1593.htm

[Hamming 80] R.W. Hamming. Coding and Information Theory. Prentice Hall,
1980.

[Hanmer 07] Robert Hanmer. Patterns for Fault Tolerant Software, Wiley, 2007.
[Harms 10] R. Harms and M. Yamartino. “The Economics of the Cloud,” http://

economics.uchicago.edu/pdf/Harms_110111.pdf
[Hartman 10] Gregory Hartman. “Attentiveness: Reactivity at Scale,” CMU-

ISR-10-111, 2010.
[Hiltzik 00] M. Hiltzik. Dealers of Lightning: Xerox PARC and the Dawn of the

Computer Age. Harper Business, 2000.
[Hoffman 00] Daniel M. Hoffman and David M. Weiss. Software Fundamentals:

Collected Papers by David L. Parnas. Addison-Wesley, 2000.
[Hofmeister 00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Soft-

ware Architecture. Addison-Wesley, 2000.
[Hofmeister 07] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk

Obbink, Alexander Ran, and Pierre America. “A General Model of Software
Architecture Design Derived from Five Industrial Approaches,” Journal of Sys-
tems and Software, Vol. 80, No. 1 (January 2007), pp. 106-126.

[Howard 04] Michael Howard. “Mitigate Security Risks by Minimizing the Code
You Expose to Untrusted Users,” MSDN Magazine, http://msdn.microsoft.com/
en-us/magazine/cc163882.aspx

[IEEE 94] “IEEE Standard for Software Safety Plans,” STD-1228-1994, http://
standards.ieee.org/findstds/standard/1228-1994.html

[IEEE 11] “IEEE Guide—Adoption of the Project Management Institute (PMI)
Standard: A Guide to the Project Management Body of Knowledge (PMBOK
Guide), Fourth Edition,” http://www.projectsmart.co.uk/pmbok.html

[IETF 04] Internet Engineering Task Force. “RFC 3746, Forwarding and Control
Element Separation (ForCES) Framework,” 2004.

[IETF 05] Internet Engineering Task Force. “RFC 4090, Fast Reroute Extensions to
RSVP-TE for LSP Tunnels,” 2005.

http://www.businessweek.com/technology/content/aug2004/tc20040818_1593.htm
http://www.businessweek.com/technology/content/aug2004/tc20040818_1593.htm
http://economics.uchicago.edu/pdf/Harms_110111.pdf
http://economics.uchicago.edu/pdf/Harms_110111.pdf
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://msdn.microsoft.com/en-us/magazine/cc163882.aspx
http://standards.ieee.org/findstds/standard/1228-1994.html
http://standards.ieee.org/findstds/standard/1228-1994.html
http://www.projectsmart.co.uk/pmbok.html

References 553

[IETF 06a] Internet Engineering Task Force. “RFC 4443, Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,”
2006.

[IETF 06b] Internet Engineering Task Force. “RFC 4379, Detecting Multi-Protocol
Label Switched (MPLS) Data Plane Failures,” 2006.

[INCOSE 05] International Council on Systems Engineering. “System Engineering
Competency Framework 2010-0205,” http://www.incose.org/ProductsPubs/
products/competenciesframework.aspx

[ISO 11] International Organization for Standardization. “ISO/IEC 25010: 2011 Sys-
tems and software engineering—Systems and software Quality Requirements
and Evaluation (SQuaRE)—System and software quality models.”

[Jacobson 97] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,
Process, and Organization for Business Success. Addison-Wesley, 1997.

[Kanwal 10] F. Kanwal, K. Junaid, and M.A. Fahiem. “A Hybrid Software Archi-
tecture Evaluation Method for FDD—An Agile Process Mode,” 2010 Interna-
tional Conference on Computational Intelligence and Software Engineering
(CiSE), December 2010, pp. 1-5.

[Kaplan 92] R. Kaplan and D. Norton. “The Balanced Scorecard: Measures That
Drive Performance,” Harvard Business Review, January/February 1992,
pp. 71-79.

[Karat 94] Claire Marie Karat. “A Business Case Approach to Usability Cost Justi-
fication,” in Cost-Justifying Usability, R. Bias and D. Mayhew, eds. Academic
Press, 1994.

[Kazman 94] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. “SAAM:
A Method for Analyzing the Properties of Software Architectures,” in Proceed-
ings of the 16th International Conference on Software Engineering (ICSE
’94). Los Alamitos, CA. IEEE Computer Society Press, pp. 81-90.

[Kazman 99] R. Kazman and S.J. Carriere. “Playing Detective: Reconstructing Soft-
ware Architecture from Available Evidence,” Automated Software Engineering
6(2)(April 1999), pp. 107-138.

[Kazman 01] R. Kazman, J. Asundi, and M. Klein. “Quantifying the Costs and
Benefits of Architectural Decisions,” Proceedings of the 23rd International
Conference on Software Engineering (ICSE 23), Toronto, Canada, May 2001,
pp. 297-306.

[Kazman 02] R. Kazman, L. O’Brien, and C. Verhoef. “Architecture Reconstruc-
tion Guidelines, Third Edition,” CMU/SEI Technical Report, CMU/SEI-
2002-TR-034, 2002.

[Kazman 04] R. Kazman, P. Kruchten, R. Nord, and J. Tomayko. “Integrating Soft-
ware-Architecture-Centric Methods into the Rational Unified Process,” Techni-
cal Report CMU/SEI-2004-TR-011, July 2004, http://www.sei.cmu.edu/library/
abstracts/reports/04tr011.cfm

[Kazman 05] Rick Kazman and Len Bass. “Categorizing Business Goals for Soft-
ware Architectures,” CMU/SEI-2005-TR-021, December 2005.

[Kazman 09] R. Kazman and H.-M. Chen. “The Metropolis Model: A New Logic for
the Development of Crowdsourced Systems,” Communications of the ACM,
July 2009, pp. 76-84.

http://www.incose.org/ProductsPubs/products/competenciesframework.aspx
http://www.incose.org/ProductsPubs/products/competenciesframework.aspx
http://www.sei.cmu.edu/library/abstracts/reports/04tr011.cfm
http://www.sei.cmu.edu/library/abstracts/reports/04tr011.cfm

554 References

[Kircher 03] Michael Kircher and Prashant Jain. Pattern-Oriented Software Archi-
tecture Volume 3: Patterns for Resource Management. Wiley, 2003.

[Klein 10] J. Klein and M. Gagliardi. “A Workshop on Analysis and Evaluation of
Enterprise Architectures,” CMU/SEI-2010-TN-023, http://www.sei.cmu.edu/
reports/10tn023.pdf

[Klein 93] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Harbour. A
Practitioner’s Handbook for Real-Time Systems Analysis. Kluwer Academic,
1993.

[Koziolet 10] H. Koziolek. “Performance Evaluation of Component-Based Software
Systems: A Survey,” Performance Evaluation 67(8)(August 2010).

[Kruchten 95] P.B. Kruchten. “The 4+1 View Model of Architecture,” IEEE Soft-
ware, Vol. 12, No. 6 (November 1995), pp. 42-50.

[Kruchten 03] Philippe Kruchten. The Rational Unified Process: An Introduction,
Third Edition. Addison-Wesley, 2003.

[Kruchten 04] Philippe Kruchten. “An Ontology of Architectural Design Decisions,”
in Jan Bosch, ed., Proceedings of the 2nd Workshop on Software Variability
Management, Groningen, NL, Dec. 3-4, 2004.

[Kumar 10a] K. Kumar and TV Prabhakar. “Pattern-Oriented Knowledge Model for
Architecture Design,” in Pattern Languages of Programs Conference 2010,
October 15-18, 2010, Reno/Tahoe, Nevada.

[Kumar 10b] Kiran Kumar and TV Prabhakar. “Design Decision Topology Model
for Pattern Relationship Analysis,” Asian Conference on Pattern Languages of
Programs 2010, March 15-17, 2010, Tokyo, Japan.

[Ladas 09] Corey Ladas. Scrumban: Essays on Kanban Systems for Lean Soft-
ware Development. Modus Cooperandi Press, 2009.

[Lattanze 08] Tony Lattanze. Architecting Software Intensive Systems: A Practi-
tioner’s Guide. Auerbach Publications, 2008.

[Le Traon 97] Y. Le Traon and C. Robach. “Testability Measurements for Data Flow
Designs,” Proceedings of the 4th International Symposium on Software Met-
rics (METRICS ’97), pp. 91-98. November 1997, Washington, D.C.

[Leveson 04] Nancy G. Leveson. “The Role of Software in Spacecraft Accidents,”
Journal of Spacecraft and Rockets 41(4)(July 2004), pp. 564-575.

[Leveson 11] Nancy G. Leveson. Engineering a Safer World: Systems Thinking
Applied to Safety. MIT Press, 2011.

[Levitt 88] B. Levitt and J. March. “Organizational Learning,” Annual Review of
Sociology 14 (1988), pp. 319-340.

[Liu 00] Jane Liu. Real-Time Systems. Prentice Hall, 2000.
[Liu 09] Henry Liu. Software Performance and Scalability: A Quantitative

Approach. Wiley, 2009.
[Luftman 00] J. Luftman. “Assessing Business Alignment Maturity,” Communica-

tions of AIS, Vol. 4, No. 14, 2000.
[Lyons 62] R. E. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redun-

dancy to Improve Computer Reliability,” IBM J. Res. Dev. 6(2)(April 1962),
pp. 200-209.

http://www.sei.cmu.edu/reports/10tn023.pdf
http://www.sei.cmu.edu/reports/10tn023.pdf

References 555

[MacCormack 06] A. MacCormack, J. Rusnak, and C. Baldwin. “Exploring the
Structure of Complex Software Designs: An Empirical Study of Open Source
and Proprietary Code,” Management Science 52(7)(July 2006), pp. 1015-1030.

[MacCormack 10] A. MacCormack, C. Baldwin, and J. Rusnak. “The Architecture
of Complex Systems: Do Core-Periphery Structures Dominate?” MIT Sloan
Research Paper No. 4770-10, http://www.hbs.edu/research/pdf/10-059.pdf

[Malan 00] Ruth Malan and Dana Bredemeyer. “Creating an Architectural Vision:
Collecting Input,” http://www.bredemeyer.com/pdf_files/vision_input.pdf, July
25, 2000.

[Maranzano 05] Joseph F. Maranzano, Sandra A. Rozsypal, Gus H. Zimmerman,
Guy W. Warnken, Patricia E. Wirth, and David M. Weiss. “Architecture Re-
views: Practice and Experience,” IEEE Software, March/April 2005, pp. 34-43.

[Mavis 02] D.G. Mavis. “Soft Error Rate Mitigation Techniques for Modern Mi-
crocircuits,” 40th Annual Reliability Physics Symposium Proceedings, April
2002, Dallas, TX. IEEE, 2002.

[McCall 77] J.A. McCall, P.K. Richards, and G.F. Walters. Factors in Software
Quality. Griffiths Air Force Base, N.Y. : Rome Air Development Center Air
Force Systems Command.

[McGregor 11] John D. McGregor, J. Yates Monteith, and Jie Zhang. “Quantifying
Value in Software Product Line Design,” in Proceedings of the 15th Interna-
tional Software Product Line Conference, Volume 2 (SPLC ’11), Ina Schae-
fer, Isabel John, and Klaus Schmid, eds.

[Mettler 91] R. Mettler. “Frederick C. Lindvall,” in Memorial Tributes: National
Academy of Engineering, Volume 4, pp. 213-216. National Academy of Engi-
neering, 1991.

[Moore 03] M. Moore, R. Kazman, M. Klein, and J. Asundi. “Quantifying the Value
of Architecture Design Decisions: Lessons from the Field,” Proceedings of the
25th International Conference on Software Engineering (ICSE 25), Portland,
OR, May 2003, pp. 557-562.

[Morelos-Zaragoza 06] R.H. Morelos-Zaragoza. The Art of Error Correcting Cod-
ing, Second Edition. Wiley, 2006.

[Muccini 03] H. Muccini, A. Bertolino, and P. Inverardi. “Using Software Architec-
ture for Code Testing,” IEEE Transactions on Software Engineering 30(3),
pp. 160-171.

[Muccini 07] H. Muccini. “What Makes Software Architecture-Based Testing Distin-
guishable,” in Proc. Sixth Working IEEE/IFIP Conference on Software Archi-
tecture, WICSA 2007, Mumbai, India, January 2007.

[Murphy 01] G. Murphy, D. Notkin, and K. Sullivan. “Software Reflexion Models:
Bridging the Gap between Design and Implementation,” IEEE Transactions on
Software Engineering, Vol. 27, pp. 364-380, 2001.

[Nielsen 08] Jakob Nielsen. “Usability ROI Declining, But Still Strong,” http://www.
useit.com/alertbox/roi.html

[NIST 02] National Institute of Standards and Technology. “Security Requirements
For Cryptographic Modules,” FIPS Pub. 140-2, http://csrc.nist.gov/publications/
fips/fips140-2/fips1402.pdf

http://www.hbs.edu/research/pdf/10-059.pdf
http://www.bredemeyer.com/pdf_files/vision_input.pdf
http://www.useit.com/alertbox/roi.html
http://www.useit.com/alertbox/roi.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

556 References

[NIST 04] National Institute of Standards and Technology. “Standards for Security
Categorization of Federal Information Systems,” FIPS Pub. 199, http://csrc.nist.
gov/publications/fips/fips199/FIPS-PUB-199-final.pdf

[NIST 06] National Institute of Standards and Technology. “Minimum Security Re-
quirements for Federal Information and Information Systems,” FIPS Pub. 200,
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf

[NIST 09] National Institute of Standards and Technology. “800-53 v3 Recom-
mended Security Controls for Federal Information Systems and Organizations,”
August 2009, http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-
rev3-final.pdf

[Nord 04] R. Nord, J. Tomayko, and R. Wojcik. “Integrating Software Archi-
tecture-Centric Methods into Extreme Programming (XP),” CMU/SEI-
2004-TN-036. Software Engineering Institute, Carnegie Mellon University,
2004.

[Nygard 07] Michael T. Nygard. Release It!: Design and Deploy
Production-Ready Software. Pragmatic Programmers, 2007.

[Obbink 02] H. Obbink, P. Kruchten, W. Kozaczynski, H. Postema, A. Ran, L. Dom-
inic, R. Kazman, R. Hilliard, W. Tracz, and E. Kahane. “Software Architecture
Review and Assessment (SARA) Report, Version 1.0,” 2002, http://pkruchten.
wordpress.com/architecture/SARAv1.pdf/

[O’Brien 03] L. O’Brien and C. Stoermer. “Architecture Reconstruction Case Study,”
CMU/SEI Technical Note, CMU/SEI-2003-TN-008, 2003.

[ODUSD 08] Office of the Deputy Under Secretary of Defense for Acquisition and
Technology. “Systems Engineering Guide for Systems of Systems, Version 1.0,”
2008, http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf

[Palmer 02] Stephen Palmer and John Felsing. A Practical Guide to
Feature-Driven Development. Prentice Hall, 2002.

[Parnas 72] D.L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules,” Communications of the ACM 15(12)(December 1972).

[Parnas 74] D. Parnas. “On a ‘Buzzword’: Hierarchical Structure,” Proceedings
IFIP Congress 74, pp. 336-339. North Holland Publishing Company, 1974.

[Parnas 76] D.L. Parnas. “On the Design and Development of Program Families,”
IEEE Transactions on Software Engineering, SE-2, 1 (March 1976), pp. 1-9.

[Parnas 79] D. Parnas. “Designing Software for Ease of Extension and Contraction,”
IEEE Transactions on Software Engineering, SE-5, 2 (1979), pp. 128-137.

[Parnas 95] David Parnas and Jan Madey. “Functional Documents for Computer
Systems,” chapter in Science of Computer Programming. Elsevier, 1995.

[Paulish 02] Daniel J. Paulish. Architecture-Centric Software Project Manage-
ment: A Practical Guide. Addison-Wesley, 2002.

[Pena 87] William Pena. Problem Seeking: An Architectural Programming
Primer. AIA Press, 1987.

[Perry 92] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of
Software Architecture,” SIGSOFT Softw. Eng. Notes 17(4)(October 1992),
pp. 40-52.

[Pettichord 02] B. Pettichord. “Design for Testability,” Pacific Northwest Software
Quality Conference, Portland, Oregon, October 2002.

http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips200/FIPS-200-final-march.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-final.pdf
http://pkruchten.wordpress.com/architecture/SARAv1.pdf/
http://pkruchten.wordpress.com/architecture/SARAv1.pdf/
http://www.acq.osd.mil/se/docs/SE-Guide-for-SoS.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf

References 557

[Powel Douglass 99] B. Powel Douglass. Doing Hard Time: Developing Real-Time
Systems with UML, Objects, Frameworks, and Patterns. Addison-Wesley,
1999.

[Sangwan 08] Raghvinder Sangwan, Colin Neill, Matthew Bass, and Zakaria El
Houda. “Integrating a Software Architecture-Centric Method into Object-
Oriented Analysis and Design,” Journal of Systems and Software, Vol. 81, No.
5 (May 2008), pp. 727-746.

[Schmerl 06] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. “Discov-
ering Architectures from Running Systems,” IEEE Transactions on Software
Engineering 32(7)(July 2006), pp. 454-466.

[Schmidt 00] Douglas Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for Concurrent and Net-
worked Objects. Wiley, 2000.

[Schmidt 10] Klaus Schmidt. High Availability and Disaster Recovery: Concepts,
Design, Implementation. Springer, 2010.

[Schneier 96] B. Schneier. Applied Cryptography. Wiley, 1996.
[Schneier 08] Bruce Schneier. Schneier on Security. Wiley, 2008.
[Schwaber 04] Ken Schwaber. Agile Project Management with Scrum. Microsoft

Press, 2004.
[Scott 09] James Scott and Rick Kazman. “Realizing and Refining Architectural

Tactics: Availability,” Technical Report CMU/SEI-2009-TR-006, August 2009.
[Seacord 05] Robert Seacord. Secure Coding in C and C++. Addison-Wesley,

2005.
[SEI 12] Software Engineering Institute. “A Framework for Software Product Line

Practice, Version 5.0,” http://www.sei.cmu.edu/productlines/frame_report/
PL.essential.act.htm

[Shaw 94] Mary Shaw. “Procedure Calls Are the Assembly Language of Software
Interconnections: Connectors Deserve First-Class Status,” Carnegie Mellon
University Technical Report, 1994, http://repository.cmu.edu/cgi/viewcontent.
cgi?article=1234&context=sei

[Shaw 95] Mary Shaw. “Beyond Objects: A Software Design Paradigm Based on
Process Control,” ACM Software Engineering Notes, Vol. 20, No. 1 (January
1995), pp. 27-38.

[Smith 01] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software. Addison-Wesley,
2001.

[Soni 95] Dilip Soni, Robert L. Nord, and Christine Hofmeister. “Software Architec-
ture in Industrial Applications,” International Conference on Software Engi-
neering 1995, April 1995, pp. 196-207.

[Stonebraker 09] M. Stonebraker. “The ‘NoSQL’ Discussion
Has Nothing to Do with SQL,” http://cacm.acm.org/blogs/
blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext

[Stonebraker 10a] M. Stonebraker. “SQL Databases v. NoSQL Databases,” Commu-
nications of the ACM 53(4), p. 10.

http://www.sei.cmu.edu/productlines/frame_report/PL.essential.act.htm
http://www.sei.cmu.edu/productlines/frame_report/PL.essential.act.htm
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1234&context=sei
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1234&context=sei

558 References

[Stonebraker 10b] M. Stonebraker, D. Abadi, D.J. Dewitt, S. Madden, E. Paulson, A.
Pavlo, and A. Rasin. “MapReduce and Parallel DBMSs,” Communications of
the ACM 53, p. 6.

[Stonebraker 11] M. Stonebraker. “Stonebraker on NoSQL and Enterprises,” Com-
munications of the ACM 54(8), p. 10.

[Storey 97] M.-A. Storey, K. Wong, and H. Müller. “Rigi—A Visualization Envi-
ronment for Reverse Engineering (Research Demonstration Summary),” 19th
International Conference on Software Engineering (ICSE 97), May 1997,
pp. 606-607. IEEE Computer Society Press.

[Svahnberg 00] M. Svahnberg and J. Bosch. “Issues Concerning Variability in Soft-
ware Product Lines,” in Proceedings of the Third International Workshop on
Software Architectures for Product Families, Las Palmas de Gran Canaria,
Spain, March 15-17, 2000, pp. 50-60. Springer, 2000.

[Taylor 09] R. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009.

[Telcordia 00] Telcordia. “GR-253-CORE, Synchronous Optical Network (SONET)
Transport Systems: Common Generic Criteria.” 2000.

[Urdangarin 08] R. Urdangarin, P. Fernandes, A. Avritzer, and D. Paulish. “Experi-
ences with Agile Practices in the Global Studio Project,” Proceedings of the
IEEE International Conference on Global Software Engineering, 2008.

[Utas 05] G. Utas. Robust Communications Software: Extreme Availability, Reli-
ability, and Scalability for Carrier-Grade Systems. Wiley, 2005.

[van der Linden 07] F. van der Linden, K. Schmid, and E. Rommes. Software
Product Lines in Action. Springer, 2007.

[van Deursen 04] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C.
Riva. “Symphony: View-Driven Software Architecture Reconstruction,” Pro-
ceedings of the 4th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA 2004), June 2004, Oslo, Norway. IEEE Computer Society.

[van Vliet 05] H. van Vliet. “The GRIFFIN project, A GRId For inFormatIoN about
architectural knowledge,” http://griffin.cs.vu.nl/, Vrije Universiteit, Amsterdam,
April 16, 2005.

[Verizon 12] “Verizon 2012 Data Breach Investigations Re-
port,” http://www.verizonbusiness.com/resources/reports/
rp_data-breach-investigations-report-2012_en_xg.pdf

[Vesely 81] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. “Fault Tree
Handbook,” http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/
sr0492.pdf

[Vesely 02] William Vesely, Michael Stamatelatos, Joanne Dugan, Joseph Fragola,
Joseph Minarick III, and Jan Railsback. “Fault Tree Handbook with Aerospace
Applications,” http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

[Viega 01] John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison-Wesley, 2001.

[Voas 95] Jeffrey M. Voas and Keith W. Miller. “Software Testability: the New Verifi-
cation,” IEEE Software 12(3)(May 1995), pp. 17-28.

http://griffin.cs.vu.nl/
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

References 559

[Von Neumann 56] J. Von Neumann. “Probabilistic Logics and the Synthesis of Re-
liable Organisms from Unreliable Components,” Automata Studies, C.E. Shan-
non and J. McCarthy, eds. Princeton University Press, 1956.

[Wojcik 06] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and
W. Wood. “Attribute-Driven Design (ADD), Version 2.0,” Technical Report
CMU/SEI-2006-TR-023, November 2006, http://www.sei.cmu.edu/library/
abstracts/reports/06tr023.cfm

[Wood 07] W. Wood. “A Practical Example of Applying Attribute-Driven Design
(ADD), Version 2.0,” Technical Report CMU/SEI-2007-TR-005, February 2007,
http://www.sei.cmu.edu/library/abstracts/reports/07tr005.cfm

[Woods 11] E. Woods and N. Rozanski. Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives, Second Edition.
Addison-Wesley, 2011.

[Wozniak 07] J. Wozniak, V. Baggiolini, D. Garcia Quintas, and J. Wenninger.
“Software Interlocks System,” Proceedings ICALEPCS07, http://ics-web4.sns.
ornl.gov/icalepcs07/WPPB03/WPPB03.PDF

[Wu 06] W. Wu and T. Kelly. “Deriving Safety Requirements as Part of System Ar-
chitecture Definition,” in Proceedings of 24th International System
Safety Conference, published by the System Safety Society, August 2006,
Albuquerque, NM.

[Yacoub 02] S. Yacoub and H. Ammar. “A Methodology for Architecture-Level
Reliability Risk Analysis,” IEEE Transactions on Software Engineering, Vol.
28, No. 6 (June 2002).

[Yin 94] James Bieman and Hwei Yin. “Designing for Software Testability Using
Automated Oracles,” Proceedings International Test Conference, September
1992, pp. 900-907.

http://www.sei.cmu.edu/library/abstracts/reports/06tr023.cfm
http://www.sei.cmu.edu/library/abstracts/reports/06tr023.cfm
http://www.sei.cmu.edu/library/abstracts/reports/07tr005.cfm
http://ics-web4.sns.ornl.gov/icalepcs07/WPPB03/WPPB03.PDF
http://ics-web4.sns.ornl.gov/icalepcs07/WPPB03/WPPB03.PDF

This page intentionally left blank

561

About the Authors

Len Bass is a Senior Principal Researcher at National ICT Australia Ltd.
(NICTA). He joined NICTA in 2011 after 25 years at the Software Engineer-
ing Institute (SEI) at Carnegie Mellon University. He is the coauthor of two
award-winning books in software architecture, including Documenting Software
Architectures: Views and Beyond, Second Edition (Addison-Wesley, 2011), as
well as several other books and numerous papers in computer science and soft-
ware engineering on a wide range of topics. Len has almost 50 years’ experience
in software development and research in multiple domains, such as scientific
analysis systems, embedded systems, and information systems.

Paul Clements is the Vice President of Customer Success at BigLever Software,
Inc., where he works to spread the adoption of systems and software product
line engineering. Prior to this position, he was Senior Member of the Technical
Staff at the SEI, where for 17 years he was leader or co-leader of projects in
software product line engineering and software architecture documentation and
analysis. Other books Paul has coauthored include Documenting Software Archi-
tectures: Views and Beyond, Second Edition (Addison-Wesley, 2011), Evaluating
Software Architectures: Methods and Case Studies (Addison-Wesley, 2002), and
Software Product Lines: Practices and Patterns (Addison-Wesley, 2002). In ad-
dition, he has also published dozens of papers in software engineering reflecting
his long-standing interest in the design and specification of challenging software
systems. Paul was a founding member of the IFIP WG2.10 Working Group on
Software Architecture.

Rick Kazman is a Professor at the University of Hawaii and a Visiting Scientist
(and former Senior Member of the Technical Staff) at the SEI. He is a coauthor
of Evaluating Software Architectures: Methods and Case Studies (Addison-Wes-
ley, 2002) and author of more than 100 technical papers. Rick’s primary research
interests focus on software architecture, design and analysis, software visualiza-
tion, and software engineering economics. Rick has created several highly influ-
ential methods and tools for architecture analysis, including the SAAM (Soft-
ware Architecture Analysis Method), the ATAM (Architecture Tradeoff Analysis
Method), the CBAM (Cost-Benefit Analysis Method), and the Dali architecture
reverse-engineering tool.

This page intentionally left blank

563

Index
AADL (Architecture Analysis and Design

Language), 354
Abstract common services tactic, 124
Abstract data sources for testability, 165
Abstract Syntax Tree (AST) analyzers, 386
Abstraction, architecture as, 5–6
Acceptance testing, 372
Access

basis sets, 261
network, 504

access_read relationship, 384
access_write relationship, 384
ACID (atomic, consistent, isolated, and

durable) properties, 95
Acknowledged system of systems, 106
Active redundancy, 91, 256–259
ActiveMQ product, 224
Activities

competence, 468
test, 374–375

Activity diagrams for traces, 353
Actors tactic, 152–153
Adams, Douglas, 437
ADD method. See Attribute-Driven Design

(ADD) method
Add-ons, 491–492
ADLs (architecture description languages), 330
Adolphus, Gustavus, 42
Adoption strategies, 494–496
Adventure Builder system, 224, 226, 237
Aggregation for usability, 180
Agile projects, 533

architecture example, 283–285
architecture methods, 281–283
architecture overview, 277–281
description, 44–45
documenting, 356–357
guidelines, 286–287
introduction, 275–277
patterns, 238
requirements, 56
summary, 287–288

AIC (Architecture Influence Cycle)
description, 58
Vasa ship, 43

Air France flight 447, 192
Air traffic control systems, 366–367

Allen, Woody, 79
Allocated to relation

allocation views, 339–340
deployment structure, 14
multi-tier pattern, 237

Allocation of responsibilities category
ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73
security, 154
testability, 169
usability, 181

Allocation patterns
map-reduce, 232–235
miscellaneous, 238
multi-tier, 235–237

Allocation structures, 5, 11, 14
Allocation views, 339–340
Allowed-to-use relationship, 206–207
Alpha testing, 372
Alternatives, evaluating, 398
Amazon service-level agreements, 81, 522
Analysis

architecture, 47–48
ATAM, 408–409, 411
availability, 255–259
back-of-the-envelope, 262–264
conformance by, 389–392
economic. See Economic analysis
outsider, 399
performance, 252–255

Analysts, 54
Analytic model space, 259–260
Analytic perspective on up-front work vs.

agility, 279–281
Analytic redundancy tactic, 90
AND gate symbol, 84
Anonymizing test data, 171
Antimissile system, 104
Apache web server, 528, 531
Approaches

ATAM, 407–409, 411
CIA, 147–148
Lightweight Architecture Evaluation, 416

564 Index

Architects
background and experience, 51–52
cloud environments, 520–523
communication with, 29
competence, 459–467
description and interests, 54
duties, 460–464
knowledge, 466–467
responsibilities, 422–423
skills, 463, 465
test role, 375–376

Architectural structures
allocation, 14
component-and-connector, 13–14
documentation, 17–18
insight from, 11–12
kinds, 10–11
limiting, 17
module, 12–13
relating to each other, 14, 16–17
selecting, 17
table of, 15
views, 9–10

Architecturally significant requirements
(ASRs), 46–47, 291–292

ADD method, 320–321
from business goals, 296–304
designing to, 311–312
interviewing stakeholders, 294–296
from requirements documents, 292–293
utility trees for, 304–307

Architecture
Agile projects. See Agile projects
analyzing, 47–48
availability. See Availability
business context, 49–51
changes, 27–28
cloud. See Cloud environments
competence. See Competence
conceptual integrity of, 189
design. See Design and design strategy
documenting. See Documentation
drivers in PALM, 305
economics. See Economic analysis
evaluation. See Evaluation
implementation. See Implementation
influences, 56–58
in life cycle, 271–274
management. See Management and

governance
modifiability. See Modifiability
patterns. See Patterns
performance. See Performance

product lines. See Software product lines
product reuse, 483–484
QAW drivers, 295
QAW plan presentation, 295
quality attributes. See Quality attributes
reconstruction and conformance. See

Reconstruction and conformance
requirements. See Architecturally

significant requirements (ASRs);
Requirements

security. See Security
structures. See Architectural structures
tactics. See Tactics
testability. See Testability
usability. See Usability

Architecture Analysis and Design Language
(AADL), 354

Architecture-centric projects, 279
Architecture description languages (ADLs),

330
Architecture Influence Cycle (AIC)

description, 58
Vasa ship, 43

Architecture Tradeoff Analysis Method
(ATAM), 48, 283, 400

approaches, 407–409, 411
business drivers, 404–405
example exercise, 411–414
outputs, 402–403
participants, 400–401
phases, 403–404
presentation, 403–406
results, 411
scenarios, 408, 410
steps, 404–411

Ariane 5 explosion, 192
Aristotle, 185
Arrival pattern for events, 133
Artifacts

availability, 85–86
in evaluation, 399
interoperability, 107–108
modifiability, 119–120
performance, 134
product reuse, 484
quality attributes expressions, 69–70
security, 148, 150
testability, 162–163
usability, 176
variability, 489

ASP.NET framework, 215
Aspects

for testability, 167

Index 565

variation mechanism, 492
ASRs. See Architecturally significant

requirements (ASRs)
Assembly connectors in UML, 369
Assertions for system state, 166
Assessment goals, 469
Assessment of competence, 469–472,

474–475
Assign utility

CBAM, 446
NASA ECS project, 452

AST (Abstract Syntax Tree) analyzers, 386
Asymmetric flow in client-server pattern, 218
Asynchronous messaging, 223, 225
ATAM. See Architecture Tradeoff Analysis

Method (ATAM)
ATM (automatic teller machine) banking

system, 219
Atomic, consistent, isolated, and durable

(ACID) properties, 95
Attachment relation

broker pattern, 211
client-server pattern, 218
component-and-connector structures, 13
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
shared-data pattern, 231

Attachments in component-and-connector
views, 336–337

Attribute-Driven Design (ADD) method, 316
ASRs, 320–321
element choice, 318–319
element design solution, 321
inputs, 316
output, 317–318
repeating steps, 324
verify and refine requirements step,

321–323
Attributes. See Quality attributes
Audiences for documentation, 328–329
Auditor checklists, 260
Audits, 153
Authenticate actors tactic, 152
Authentication in CIA approach, 148
Authorization in CIA approach, 148
Authorize actors tactic, 152
Automated delivery in Metropolis model, 535
Automatic reallocation of IP addresses, 516
Automatic scaling, 516
Automatic teller machine (ATM) banking

system, 219
Automation for testability, 171–172
AUTOSAR framework, 364

Availability
analytic model space, 259
analyzing, 255–259
broker pattern, 240
calculations, 259
CAP theorem, 523
CIA approach, 147
cloud, 521
design checklist, 96–98
detect faults tactic, 87–91
general scenario, 85–86
introduction, 79–81
planning for failure, 82–85
prevent faults tactic, 94–95
recover-from-faults tactics, 91–94
summary, 98–99
tactics overview, 87

Availability of resources tactic, 136
Availability quality attribute, 307
Availability zones, 522
Avižienis, Algirdas, 79

Back door reviews, 544–545
Back-of-the-envelope analysis, 262–264
Background of architects, 51–52
Bank application, 391–392
Base mechanisms in cloud, 509–514
Basis sets for quality attributes, 261
BDUF (Big Design Up Front) process, 278
Behavior

documenting, 351–354
element, 347
in software architecture, 6–7

Benefit in economic analysis, 441–442
Benkler, Yochai, 528
Beta testing, 372
Big bang integration, 371
Big bang models, 495–496
Big Design Up Front (BDUF) process, 278
BigTable database system, 518
Binder, Robert, 167
Binding

late, 385, 388
modifiability, 124–125
user interface, 178

Binding time category
ASRs, 293
availability, 98
interoperability, 115
modifiability, 122, 127
performance, 144
quality design, 75–76
security, 156

566 Index

Binding time category, continued
testability, 170
usability, 182

BitTorrent networks, 221
Black-box testing, 372–373
“Blind Men and the Elephant” (Saxe), 379
Blocked time in performance, 136
Blogger website, 528
Boehm, Barry, 279, 281, 286, 288
Booch, Grady, 286
Boolean logic diagrams, 83
Bottom-up adoption, 495
Bottom-up analysis mode, 284
Bottom-up schedules, 420–421
Bound execution times tactic, 138
Bound queue sizes tactic, 139
Boundaries in ADD method, 317
Box-and-line drawings

as architectures, 6
component-and-connector views, 338

BPEL (Business Process Execution
Language), 108

Brainstorming
ATAM, 410
Lightweight Architecture Evaluation, 416
QAW, 295

Branson, Richard, 443
Breadth first ADD strategy, 319
Brewer, Eric, 522
Broadcast-based publish-subscribe pattern,

229
Broker pattern

availability, 255–259
description, 210–212
weaknesses, 240–242

Brooks, Fred, 47, 419
Buley, Taylor, 147
Bureaucracy in implementation, 427
Bush, Vannevar, 397
Business cases in project life-cycle context,

46
Business context

architecture influence on, 58
architectures and business goals, 49–50

Business drivers
ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305

Business goals
ASRs from, 296–304
assessment, 469
ATAM, 402
business context, 49–50

capturing, 304
categorization, 297–299
evaluation process, 400
expressing, 299–301
general scenario, 301–303
PALM method, 305
views for, 332

Business managers, 54
Business/mission presentation in QAW, 295
Business Process Execution Language

(BPEL), 108
Business process improvements as business

goal, 299
Business-related architect skills, 465

C&C structures. See Component-and-connector
(C&C) patterns and structures

Caching tactic, 139
Callbacks in Model-View-Controller pattern,

214
Calls relationship in view extraction, 384
Cancel command, 179
CAP theorem, 518, 522–523
Capture scenarios for quality attributes,

196–197
Capturing

ASRs in utility trees, 304–307
business goals, 304–307

Catastrophic failures, 82
Categorization of business goals, 297–299
CBAM. See Cost Benefit Analysis Method

(CBAM)
Change

documenting, 355–356
modifiability. See Modifiability
reasoning and managing, 27–28

Change control boards, 427
Change default settings tactic, 153
Chaos Monkey, 160–161
Chaucer, Geoffrey, 459
Check-in, syncing at, 368
Choice of technology category

ASRs, 293
availability, 98
interoperability, 115
modifiability, 127
performance, 144
security, 156
testability, 170
usability, 182

CIA (confidentiality, integrity, and availabil-
ity) approach, 147–148

City analogy in Metropolis model, 536

Index 567

class_contains_method relationship, 384
class_is_subclass_of_class relationship, 384
Class structure, 13
Classes in testability, 167
Clements, Paul, 66
Client-server patterns, 19, 217–219
Client-side proxies, 211
Clients

broker pattern, 211
simulators, 265

Clone-and-own practice, 482–483
Cloud environments

architecting in, 520–523
availability, 521
base mechanisms, 509–514
database systems, 517–520
definitions, 504–505
deployment models, 506
economic justification, 506–509
equipment utilization, 508–509
IaaS model, 515–517
introduction, 503–504
multi-tenancy applications, 509
PaaS model, 517
performance, 521
security, 520–521
service models, 505–506
summary, 524

Cluster managers, 515
CMG (Computer Measurement Group), 524
Co-located teams

Agile, 277
coordination, 427

Cockburn, Alistair, 287
COCOMO II (COnstructive COst MOdel II)

scale factor, 279
Code

architecture consistency, 366–368
design in, 364
KSLOC, 279–281
mapping to, 334
security, 157
templates, 365–367

Cohesion
in modifiability, 121–123
in testability, 167

Cold spares, 92, 256–259
Collaborative system of systems, 106
Collating scenarios

CBAM, 445
NASA ECS project, 451

COMBINATION gate symbol, 84
Combining views, 343–345

Commercial implementations of map-reduce
patterns, 234

Common Object Request Broker Architecture
(CORBA), 212

Communicates with relation, 237
Communication

Agile software development, 277
architect skills, 465
architecture, 47
documentation for, 329
global development, 425
stakeholder, 29–31

Communication diagrams for traces, 353
Communications views, 341
Community clouds, 506
Compatibility in component-and-connector

views, 336
Compatibility quality attribute, 193
Competence

activities, 468
architects, 459–467
assessment, 469–472, 474–475
assessment goals, 469
introduction, 459–460
models, 476
questions, 470, 472–474
software architecture organizations,

467–475
summary, 475

Competence center patterns, 19, 238
Competence set tactic, 95
Complexity

broker pattern, 211
quality attributes, 71
in testability, 167–168

Component-and-connector (C&C) patterns
and structures, 5, 10–11

broker, 210–212
client-server, 217–219
Model-View-Controller, 212–215
peer-to-peer, 220–222
pipe-and-filter, 215–217
publish-subscribe, 226–229
service-oriented architecture, 222–226
shared-data, 230–231
types, 13–14
views, 335–339, 344, 406

Components, 5
independently developed, 35–36
replacing for testability, 167
substituting in variation mechanism, 492

Comprehensive models for behavior docu-
mentation, 351, 353–354

568 Index

Computer Measurement Group (CMG), 524
Computer science knowledge of architects,

466
Concepts and terms, 368–369
Conceptual integrity of architecture, 189
Concrete quality attribute scenarios, 69
Concurrency

component-and-connector views, 13–14,
337

handling, 132–133
Condition monitoring tactic, 89
Confidence in usability, 175
Confidentiality, integrity, and availability

(CIA) approach, 147–148
Configurability quality attribute, 307
Configuration manager roles, 422
Configurators, 492
Conformance, 380–381

by analysis, 389–392
architectural, 48
by construction, 389

Conformance checkers, 54
Conformity Monkey, 161
Connectors

component-and-connector views,
335–339

multi-tier pattern, 236
peer-to-peer systems, 220
REST, 225
UML, 369

Consistency
CAP theorem, 523
code and architecture, 366–368
databases, 520

Consolidation in QAW, 295
Constraints

ADD method, 322–323
allocation views, 339
broker pattern, 211
client-server pattern, 218
component-and-connector views, 337
conformance, 390
defining, 32–33
layered pattern, 207
map-reduce patterns, 235
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 236–237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
requirements, 64–65
service-oriented architecture pattern, 225

shared-data pattern, 231
Construction, conformance by, 389
COnstructive COst MOdel II (COCOMO II)

scale factor, 279
Content-based publish-subscribe pattern, 229
Contention for resources tactic, 136
Context diagrams

ATAM presentations, 406
in documentation, 347

Contexts
architecture influence, 56–58
business, 49–51, 58
decision-making, 438–439
professional, 51–52
project life-cycle, 44–48
in relationships, 204–205
stakeholders, 52–55
summary, 59
technical, 40–43
thought experiments, 263
types, 39–40

Contextual factors in evaluation, 399–400
Continuity as business goal, 298
Control relation in map-reduce patterns, 235
Control resource demand tactic, 137–138
Control tactics for testability, 164–167
Controllers in Model-View-Controller

pattern, 213–214
Conway’s law, 38
Coordination model category

ASRs, 293
availability, 96
global development, 426
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 73–74
security, 155
testability, 169
usability, 181

CORBA (Common Object Request Broker
Architecture), 212

Core asset units, 497
Core requirements, 531–532
Core vs. periphery in Metropolis model, 534
Correlation logic for faults, 81
Cost Benefit Analysis Method (CBAM), 442

cost determination, 444
results, 456–457
steps, 445–447
utility curve determination, 442–443
variation points, 448–450
weighting determination, 444

Index 569

Costs
CBAM, 444
of change, 118
estimates, 34
global development, 423–424
independently developed components

for, 36
power, 507
resources, 244
thought experiments, 263
value for, 442

Costs to complete measure, 430
Coupling

in modifiability, 121–124
in testability, 167

Crashes and availability, 85
Credit cards, 147, 157, 260, 268
Crisis, syncing at, 368
Criteria for ASRs, 306
Crowd management in Metropolis model,

534
Crowdsourcing, 528
CRUD operations, 109
CruiseControl tool, 172
Crystal Clear method, 44, 287
Cummins, Inc., 480, 490
Cunningham, Ward, 286
Customers

communication with, 29
edge-dominant systems, 529

Customization of user interface, 180

Darwin, Charles, 275
Data Access Working Group (DAWG), 451
Data accessors in shared-data pattern,

230–231
Data latency, utility trees for, 306
Data model category, 13

ASRs, 293
availability, 96
interoperability, 114
modifiability, 126
performance, 143
quality design decisions, 74
security, 155
testability, 169
usability, 182

Data reading and writing in shared-data
pattern, 230–231

Data replication, 139
Data sets

map-reduce pattern, 232–233
for testability, 170–171

Data stores in shared-data pattern, 230–231
Data transformation systems, 215
Database administrators, 54
Database systems

cloud, 517–520
in reconstruction, 386–387

DataNodes, 512–514
DAWG (Data Access Working Group), 451
Deadline monotonic prioritization strategy,

140
Deadlines in processing, 134
Debugging brokers, 211
Decision makers on ATAM teams, 401
Decision-making context, 438–439
Decisions

evaluating, 398
mapping to quality requirements, 402–403
quality design, 72–76

Decomposition
description, 311–312
module, 5, 12, 16
views, 16, 343, 345

Dedicated finite resources, 530
Defects

analysis, 374
eliminating, 486
tracking, 430

Defer binding
modifiability, 124–125
user interface, 178

Degradation tactic, 93
Delegation connectors, 369
Demilitarized zones (DMZs), 152
Denial-of-service attacks, 79, 521, 533
Dependencies

basis set elements, 261
on computations, 136
intermediary tactic for, 123–124
user interface, 178

Dependent events in probability, 257
Depends-on relation

layered pattern, 207
modules, 332–333

Deploy on relation, 235
Deployability attribute, 129, 187
Deployers, 54
Deployment models for cloud, 506
Deployment structure, 14
Deployment views

ATAM presentations, 406
combining, 345
purpose, 332

Depth first ADD strategy, 319

570 Index

Design and design strategy, 311
ADD. See Attribute-Driven Design

(ADD) method
architecturally significant requirements,

311–312
in code, 364
decomposition, 311–312
early decisions, 31–32
generate and test process, 313–316
initial hypotheses, 314–315
next hypotheses, 315
quality attributes, 197
summary, 325
test choices, 315

Design checklists
availability, 96–98
design strategy hypotheses, 315
interoperability, 114–115
modifiability, 125–127
performance, 142–144
quality attributes, 199
security, 154–156
summary, 183
testability, 169–170
usability, 181–182

Designers
description and interests, 54
evaluation by, 397–398

Detect attacks tactics, 151
Detect faults tactic, 87–91
Detect intrusion tactic, 151
Detect message delay tactic, 151
Detect service denial tactic, 151
Deutsche Bank, 480
Developers

edge-dominant systems, 529
roles, 422

Development
business context, 50–51
global, 423–426
incremental, 428
project life-cycle context, 44–45
tests, 374

Development distributability attribute, 186
Deviation

failure from, 80
measuring, 429

Devices in ADD method, 317
DiNucci, Darcy, 527
dir_contains_dir relationship, 384
dir_contains_file relationship, 384
Directed system of systems, 106
Directories in documentation, 349

DiscoTect system, 391
Discover service tactic, 111
Discovery in interoperability, 105
Discovery services, 533
Distributed computing, 221
Distributed development, 427
Distributed testing in Metropolis model, 535
DMZs (demilitarized zones), 152
DNS (domain name server), 514
Doctor Monkey, 161
Documentation

Agile development projects, 356–357
architect duties, 462
architectural structures, 17–18
architecture, 47, 347–349
behavior, 351–354
changing architectures, 355–356
distributed development, 427
global development, 426
introduction, 327–328
notations, 329–331
online, 350
packages, 345–351
patterns, 350–351
and quality attributes, 354–355
services, 533
summary, 359
uses and audiences for, 328–329
views. See Views
YAGNI, 282

Documentation maps, 347–349
Documents, control information, 347
Domain decomposition, 315
Domain knowledge of architects, 467
Domain name server (DNS), 514
Drivers

ATAM, 404–405
Lightweight Architecture Evaluation, 416
PALM method, 305
QAW, 295

DSK (Duties, Skills, and Knowledge) model
of competence, 476

Duke’s Bank application, 391–392
Duties

architects, 460–464
competence, 472
professional context, 51

Duties, Skills, and Knowledge (DSK) model
of competence, 476

Dynamic allocation views, 340
Dynamic analysis with fault trees, 83
Dynamic priority scheduling strategies,

140–141

Index 571

Dynamic structures, 5
Dynamic system information, 385–386

Earliest-deadline-first scheduling strategy, 141
Early design decisions, 31–32
Earth Observing System Data Information

System (EOSDIS) Core System
(ECS). See NASA ECS project

eBay, 234
EC2 cloud service, 81, 160, 522, 532
Eclipse platform, 228
Economic analysis

basis, 439–442
benefit and normalization, 441–442
case study, 451–457
CBAM. See Cost Benefit Analysis

Method (CBAM)
cost value, 442
decision-making context, 438–439
introduction, 437
scenario weighting, 441
side effects, 441
summary, 457
utility-response curves, 439–441

Economics
cloud, 506–509
issues, 543

Economies of scale in cloud, 507–508
Ecosystems, 528–530
ECS system. See NASA ECS project
Edge-dominant systems, 528–530
Edison, Thomas, 203
eDonkey networks, 221
Education, documentation as, 328–329
Effective resource utilization, 187
Effectiveness category for quality, 189
Efficiency category for quality, 189–190
Einstein, Albert, 175
EJB (Enterprise Java Beans), 212
Elasticity, rapid, 504–505
Elasticity property, 187
Electric grids, 106
Electricity, 191, 570
Electronic communication in global

development, 426
Elements

ADD method, 318–319
allocation views, 339–340
broker pattern, 211
catalogs, 346–347
client-server pattern, 218
component-and-connector views, 337
defined, 5

layered pattern, 207
map-reduce patterns, 235
mapping, 75
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
product reuse, 484
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Employees
as goal-object, 302
responsibilities to, 299

Enabling quality attributes, 26–27
Encapsulation tactic, 123
Encrypt data tactic, 152
End users in edge-dominant systems, 529
Enterprise architecture vs. system

architecture, 7–8
Enterprise Java Beans (EJB), 212
Enterprise resource planning (ERP) systems,

228
Enterprise service bus (ESB), 223, 225, 369
Environment

ADD method, 317
allocation views, 339–340
availability, 85–86
business goals, 300
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
technical context, 41–42
testability, 162–163
usability, 176
variability, 489

Environmental change as business goal, 299
ERP (enterprise resource planning) systems,

228
Errors, 80

core handling of, 532
detection by services, 533
error-handling views, 341
in usability, 175

ESB (enterprise service bus), 223, 225, 369
Escalating restart tactic, 94
Estimates, cost and schedule, 34
Evaluation

architect duties, 462–463
architecture, 47–48

572 Index

Evaluation, continued
ATAM. See Architecture Tradeoff

Analysis Method (ATAM)
contextual factors, 399–400
by designer, 397–398
Lightweight Architecture Evaluation,

415–417
outsider analysis, 399
peer review, 398–399
questions, 472
software product lines, 493–494
summary, 417

Evaluators, 54
Event bus in publish-subscribe pattern, 227
Events

Model-View-Controller pattern, 214
performance, 131, 133
probability, 257

Eventual consistency model, 168, 523
Evolutionary prototyping, 33–34
Evolving software product lines, 496–497
Exception detection tactic, 90
Exception handling tactic, 92
Exception prevention tactic, 95
Exception views, 341
Exchanging information via interfaces,

104–105
EXCLUSIVE OR gate symbol, 84
Executable assertions for system state, 166
Execution of tests, 374
Exemplar systems, 485
Exercise conclusion in PALM method, 305
Existing systems in design, 314
Expected quality attribute response levels, 453
Experience of architects, 51–52
Experiments in quality attribute modeling,

264–265
Expressing business goals, 299–301
Extensibility quality attribute, 307
Extensible programming environments, 228
Extension points for variation, 491
External sources for product lines, 496
External system representatives, 55
External systems in ADD method, 317
Externalizing change, 125
Extract-transform-load functions, 235
Extraction, raw view, 382–386
Extreme Programming development

methodology, 44

Facebook, 527–528
map-reduce patterns, 234
users, 518

Fail fast principle, 522
Failure Mode, Effects, and Criticality

Analysis (FMECA), 83–84
Failures, 80

availability. See Availability
planning for, 82–85
probabilities and effects, 84–85

Fairbanks, George, 279, 364
Fallbacks principle, 522
Fault tree analysis, 82–84
Faults, 80

correlation logic, 81
detection, 87–91
prevention, 94–95
recovery from, 91–94

Feature removal principle, 522
FIFO (first-in/first-out) queues, 140
File system managers, 516
Filters in pipe-and-filter pattern, 215–217
Financial objectives as business goal, 298
Finding violations, 389–392
Fire-and-forget information exchange, 223
Firefox, 531
First-in/first-out (FIFO) queues, 140
First principles from tactics, 72
Fixed-priority scheduling, 140
Flex software development kit, 215
Flexibility

defer binding tactic, 124
independently developed components

for, 36
Flickr service, 527, 536
Flight control software, 192–193
FMECA (Failure Mode, Effects, and

Criticality Analysis), 83–84
Focus on architecture in Metropolis model,

534–535
Follow-up phase in ATAM, 403–404
Folsonomy, 528
Ford, Henry, 479
Formal documentation notations, 330
Frameworks

design strategy hypotheses, 314–315
implementation, 364–365

Frankl, Viktor E., 63
Freedom from risk category for quality, 189
Functional redundancy tactic, 90
Functional requirements, 64, 66
Functional responsibility in ADD method,

322–323
Functional suitability quality attribute, 193
Functionality

component-and-connector views, 336

Index 573

description, 65
Fused views, 388–389

Gamma, E., 212
Gate symbols, 83–84
General Motors product line, 487
Generalization structure, 13
Generate and test process, 313–316
Generators of variation, 492
Get method for system state, 165
Global development, 423–426
Global metrics, 429–430
Gnutella networks, 221
Goal components in business goals, 300
Goals. See Business goals
Goldberg, Rube, 102
Good architecture, 19–21
Good enough vs. perfect, 398
Google

database system, 518
Google App Engine, 517
Google Maps, 105–107
greenhouse gas from, 190–191
map-reduce patterns, 234
power sources, 507

Governance, 430–431
Government, responsibilities to, 299
Graceful degradation, 522
Graphical user interfaces in publish-subscribe

pattern, 228
Gray-box testing, 373
Green computing, 190–191
Greenspan, Alan, 443
Growth and continuity as business goal, 298
Guerrilla movements, 543–544

Hadoop Distributed File System (HDFS), 512
Hardware costs for cloud, 507
Harel, David, 353
Harnesses for tests, 374
Hazard analysis, 82
Hazardous failures, 82
HBase database system, 518–519
HDFS (Hadoop Distributed File System),

512
Heartbeat tactic, 89, 256, 408
Helm, R., 212
Hewlett-Packard, 480
Hiatus stage in ATAM, 409
High availability. See Availability
Highway systems, 142
Horizontal scalability, 187
Hot spare tactic, 91

HTTP (HyperText Transfer Protocol),
219

Hudson tool, 172
Hufstedler, Shirley, 363
Human body structure, 9
Human Performance model of competence,

476
Human Performance Technology model,

469–473
Human resource management in global

development, 425
Hybertsson, Henrik, 42–43
Hybrid clouds, 506
Hydroelectric power station catastrophe, 188,

192
Hypertext for documentation, 350
HyperText Transfer Protocol (HTTP), 219
Hypervisors, 510–512
Hypotheses

conformance, 390
design strategy, 314–315
fused views, 388

IaaS (Infrastructure as a Service) model,
505–506, 515–517

Identify actors tactic, 152
Ignore faulty behavior tactic, 93
Implementation, 363–364, 427

architect duties, 463
code and architecture consistency, 366–368
code templates, 365–367
design in code, 364
frameworks, 364–365
incremental development, 428
modules, 333–334
structure, 14
summary, 376
testing, 370–376
tracking progress, 428–429
tradeoffs, 427

Implementors, 55
In-service software upgrade (ISSU), 92
Includes relationship, 384
Inclusion of elements for variation, 491
Increase cohesion tactic, 123
Increase competence set tactic, 95
Increase efficiency tactic, 142
Increase resource efficiency tactic, 138
Increase resources tactic, 138–139, 142
Increase semantic coherence tactic, 123, 239
Incremental Commitment Model, 286
Incremental development, 428
Incremental integration, 371

574 Index

Incremental models in adoption strategies,
495–496

Independent events in probability, 257
Independently developed components, 35–36
Inflexibility of methods, 277
Inform actors tactic, 153
Informal contacts in global development, 426
Informal notations for documentation, 330
Information handling skills, 465
Information sharing in cloud, 520
Infrastructure as a Service (IaaS) model,

505–506, 515–517
Infrastructure in map-reduce patterns, 235
Infrastructure labor costs in cloud, 507
Inheritance variation mechanism, 492
Inherits from relation, 13
INHIBIT gate symbol, 84
Inhibiting quality attributes, 26–27
Initial hypotheses in design strategy, 314–315
Inputs in ADD method, 316, 321–323
Instantiate relation, 235
Integration management in global

development, 424
Integration testing, 371–372
Integrators, 55
Integrity

architecture, 189
CIA approach, 147

Interchangeable parts, 35–36, 480
Interfaces

exchanging information via, 104–105
separating, 178

Intermediary tactic, 123
Intermediate states in failures, 80
Internal sources of product lines, 496–497
Internet Protocol (IP) addresses

automatic reallocation, 516
overview, 514

Interoperability
analytic model space, 259
design checklist, 114–115
general scenario, 107–110
introduction, 103–106
service-oriented architecture pattern, 224
and standards, 112–113
summary, 115
tactics, 110–113

Interpersonal skills, 465
Interpolation in CBAM, 446
Interviewing stakeholders, 294–296
Introduce concurrency tactic, 139
Invokes-services role, 335
Involvement, 542–543

Iowability, 195–196
IP (Internet Protocol) addresses

automatic reallocation, 516
overview, 514

Is a relation, 332–333
Is-a-submodule-of relation, 12
Is an instance of relation, 13
Is part of relation

modules, 332–333
multi-tier pattern, 237

ISO 25010 standard, 66, 193–195
ISSU (in-service software upgrade), 92
Iterative approach

description, 44
reconstruction, 382
requirements, 56

Janitor Monkey, 161
JavaScript Object Notation (JSON) form, 519
Jitter, 134
Jobs, Steve, 311
Johnson, R., 212
JSON (JavaScript Object Notation) form, 519
Just Enough Architecture (Fairbanks), 279,

364

Keys in map-reduce pattern, 232
Knowledge

architects, 460, 466–467
competence, 472–473
professional context, 51

Kroc, Ray, 291
Kruchten, Philippe, 327
KSLOC (thousands of source lines of code),

279–281
Kundra, Vivek, 503

Labor availability in global development, 423
Labor costs

cloud, 507
global development, 423

Language, 542
Larger data sets in map-reduce patterns, 234
Late binding, 385, 388
Latency

CAP theorem, 523
performance, 133, 255
queuing models for, 198–199
utility trees for, 306

Latency Monkey, 161
Lattix tool, 387
Lawrence Livermore National Laboratory, 71
Layer bridging, 206

Index 575

Layer structures, 13
Layer views in ATAM presentations, 406
Layered patterns, 19, 205–210
Layered views, 331–332
Leaders on ATAM teams, 401
Leadership skills, 464–465
Learning issues in usability, 175
Least-slack-first scheduling strategy, 141
LePatner, Barry, 3
Letterman, David, 443
Levels

failure, 258
restart, 94
testing, 370–372

Leveson, Nancy, 200
Lexical analyzers, 386
Life cycle

architecture in, 271–274
changes, 530–531
Metropolis model, 537
project. See Project life-cycle context
quality attribute analysis, 265–266

Life-cycle milestones, syncing at, 368
Lightweight Architecture Evaluation method,

415–417
Likelihood of change, 117
Limit access tactic, 152
Limit complexity tactic, 167
Limit event response tactic, 137
Limit exposure tactic, 152
Limit structural complexity tactic, 167–168
Linux, 531
List-based publish-subscribe pattern, 229
Load balancers, 139
Local changes, 27–28
Local knowledge of markets in global devel-

opment, 423
Localize state storage for testability, 165
Locate tactic, 111
Location independence, 504
Lock computer tactic, 153
Logical threads in concurrency, 13–14

Macros for testability, 167
Mailing lists in publish-subscribe pattern,

228
Maintain multiple copies tactic, 142
Maintain multiple copies of computations

tactic, 139
Maintain multiple copies of data tactic, 139
Maintain system model tactic, 180
Maintain task model tactic, 180
Maintain user model tactic, 180

Maintainability quality attribute, 195, 307
Maintainers, 55
Major failures, 82
Manage event rate tactic, 142
Manage resources tactic, 137–139
Manage sampling rate tactic

performance, 137
quality attributes, 72

Management and governance
architect skills, 464
governance, 430–431
implementing, 427–429
introduction, 419
measuring, 429–430
organizing, 422–426
planning, 420–421
summary, 432

Management information in modules, 334
Managers, communication with, 29
Managing interfaces tactic, 111
Manifesto for Agile software development,

276
Map architectural strategies in CBAM, 446
Map-reduce pattern, 232–235
Mapping

to requirements, 355, 402–403
to source code units, 334

Mapping among architectural elements
category

ASRs, 293
availability, 97
interoperability, 114
modifiability, 127
performance, 144
quality design decisions, 75
security, 155
testability, 169
usability, 182

Maps, documentation, 347–349
Market position as business goal, 299
Marketability category for quality, 190
Markov analysis, 83
Matrixed team members, 422
McGregor, John, 448
Mean time between failures (MTBF), 80,

255–259
Mean time to repair (MTTR), 80, 255–259
Measured services, 505
Measuring, 429–430
Meetings

global development, 426
progress tracking, 428

Methods in product reuse, 484

576 Index

Metrics, 429–430
Metropolis structure

edge-dominant systems, 528–530
implications, 533–537

Microsoft Azure, 517
Microsoft Office 365, 509
Migrates-to relation, 14
Mill, John Stuart, 527
Minimal cut sets, 83
Minor failures, 82
Missile defense system, 104
Missile warning system, 192
Mixed initiative in usability, 177
Mobility attribute, 187
Model driven development, 45
Model-View-Controller (MVC) pattern

overview, 212–215
performance analysis, 252–254
user interface, 178

Models
product reuse, 484
quality attributes, 197–198
transferable and reusable, 35

Modifiability
analytic model space, 259
component-and-connector views, 337
design checklist, 125–127
general scenario, 119–120
introduction, 117–119
managing, 27
ping/echo, 243
restrict dependencies tactic, 246
scheduling policy tactic, 244–245
summary, 128
tactics, 121–125
and time-to-market, 284
unit testing, 371
in usability, 179

Modularity of core, 532
Modules and module patterns, 10, 205–210

coupling, 121
decomposition structures, 5
description, 4–5
types, 12–13
views, 332–335, 406

MongoDB database, 519
Monitor relation in map-reduce patterns, 235
Monitor tactic, 88–89
Monitorability attribute, 188
MoSCoW style, 292
MSMQ product, 224
MTBF (mean time between failures), 80,

255–259

MTTR (mean time to repair), 80, 255–259
Multi-tenancy

cloud, 509, 520
description, 505

Multi-tier patterns, 19, 235–237
Multitasking, 132–133
Musket production, 35–36
MVC (Model-View-Controller) pattern

overview, 212–215
performance analysis, 252–254
user interface, 178

Mythical Man-Month (Brooks), 47

NameNode process, 512–513
Names for modules, 333
NASA ECS project, 451

architectural strategies, 452–456
assign utility, 452
collate scenarios, 451
expected quality attribute response level,

453
prioritizing scenarios, 452
refining scenarios, 451–452

Nation as goal-object, 302
National Reconnaissance Office, 481
.NET platform, 212
Netflix

cloud, 522
Simian Army, 160–161

Network administrators, 55
Networked services, 36
Networks, cloud, 514
Nightingale application, 306–307
No effect failures, 82
Node managers, 516
Nokia, 480
non-ASR requirements, 312–313
Non-stop forwarding (NSF) tactic, 94
Nondeterminism in testability, 168
Nonlocal changes, 27
Nonrepudiation in CIA approach, 148
Nonrisks in ATAM, 402
Normalization

databases, 520
economic analysis, 441–442

NoSQL database systems, 518–520, 523
NoSQL movement, 248
Notations

component-and-connector views, 338–339
documentation, 329–331

Notifications
failures, 80
Model-View-Controller pattern, 214

Index 577

NSF (non-stop forwarding) tactic, 94
Number of events not processed measure-

ment, 134

Object-oriented systems
in testability, 167
use cases, 46

Objects in sequence diagrams, 352
Observability of failures, 80
Observe system state tactics, 164–167
Off-the-shelf components, 36
Omissions

availability faults from, 85
for variation, 491

On-demand self-service, 504
1+1 redundancy tactic, 91
Online documentation, 350
Ontologies, 368–369
OPC (Order Processing Center) component,

224, 226
Open content systems, 529
Open Group

certification program, 477
governance responsibilities, 430–431

Open source software, 36, 238
Operation Desert Storm, 104
OR gate symbol, 84
Orchestrate tactic, 111
Orchestration servers, 223, 225
Order Processing Center (OPC) component,

224, 226
Organization

global development, 423–426
project manager and software architect

responsibilities, 422–423
software development teams, 422

Organizational Coordination model, 470,
473, 476

Organizational Learning model, 470, 474, 476
Organizations

activities for success, 468
architect skills, 464
architecture influence on, 33
as goal-object, 302
security processes, 157
structural strategies for products, 497

Outages. See Availability
Outputs

ADD method, 317–318
ATAM, 402–403

Outsider analysis, 399
Overlay views, 343
Overloading for variation, 491

Overview presentations in PALM method,
305

P2P (peer-to-peer) pattern, 220–222
PaaS (Platform as a Service) model, 505, 517
Page mappers, 510–512
PALM (Pedigreed Attribute eLicitation

Method), 304–305
Parameter fence tactic, 90
Parameter typing tactic, 90
Parameters for variation mechanism, 492
Parser tool, 386
Partitioning CAP theorem, 523
Partnership and preparation phase in ATAM,

403–404
Passive redundancy, 91–92, 256–259
Patterns, 18–19

allocation, 232–237
component-and-connector. See

Component-and-connector (C&C)
patterns and structures

documenting, 350–351
introduction, 203–204
module, 205–210
relationships, 204–205
summary, 247–248
and tactics, 238–247, 315

Paulish, Dan, 420
Pause/resume command, 179
Payment Card Industry (PCI), 260
PDF (probability density function), 255
PDM (platform-definition model), 45
Pedigree and value component of business

goals, 301
Pedigreed Attribute eLicitation Method

(PALM), 304–305
Peer nodes, 220
Peer review, 398–399
Peer-to-peer (P2P) pattern, 220–222
Penalties in Incremental Commitment Model,

286
People

managing, 464
in product reuse, 485

Perfect vs. good enough, 398
Performance

analytic model space, 259
analyzing, 252–255
broker pattern, 241
cloud, 521
component-and-connector views, 336
control resource demand tactics, 137–138
design checklist, 142–144

578 Index

Performance, continued
general scenario, 132–134
introduction, 131–132
manage resources tactics, 138–139
map-reduce pattern, 232
ping/echo, 243
and quality, 191
quality attributes tactics, 72
queuing models for, 198–199
resource effects, 244, 246
summary, 145
tactics overview, 135–137
views, 341

Performance quality attribute, 307
Performance efficiency quality attribute, 193
Periodic events, 133
Periphery

Metropolis model, 535
requirements, 532

Persistent object managers, 515–516
Personal objectives as business goal, 298
Personnel availability in ADD method, 320
Petrov, Stanislav Yevgrafovich, 192
Phases

ATAM, 403–404
metrics, 430
Metropolis model, 534

Philips product lines, 480–481, 487
Physical security, 191
PIM (platform-independent model), 45
Ping/echo tactic, 87–88, 243
Pipe-and-filter pattern, 215–217
Planned increments, 530
Planning

for failure, 82–85
incremental development, 428
overview, 420–421
tests, 374

Platform as a Service (PaaS) model, 505, 517
Platform-definition model (PDM), 45
Platform-independent model (PIM), 45
Platforms

architect knowledge about, 467
frameworks in, 365
patterns, 19, 238
services for, 532–533

Plug-in architectures, 34
PMBOK (Project Management Body of

Knowledge), 423–425
Pointers, smart, 95
Policies, scheduling, 140
Pooling resources, 504
Portability quality attributes, 67, 186, 195

Portfolio as goal-object, 302
Ports in component-and-connector views,

335, 337–338
Potential alternatives, 398
Potential problems, peer review for, 399
Potential quality attributes, 305
Power station catastrophe, 188, 192
Predicting system qualities, 28
Predictive model tactic, 95
Preemptible processes, 141
Preparation-and-repair tactic, 91–93
Preprocessor macros, 167
Presentation

ATAM, 402–406
documentation, 346
Lightweight Architecture Evaluation, 416
PALM method, 305
QAW, 295

Prevent faults tactics, 94–95
Primary presentations in documentation, 346
Principles

Agile, 276–277
cloud failures, 522
design fragments from, 72
Incremental Commitment Model, 286

Prioritize events tactic, 137–138, 142
Prioritizing

ATAM scenarios, 410
CBAM scenarios, 445–446
CBAM weighting, 444
Lightweight Architecture Evaluation

scenarios, 416
NASA ECS project scenarios, 452
QAW, 295–296
risk, 429
schedules, 140–141
views, 343

PRIORITY AND gate symbol, 84
Private clouds, 506
Private IP addresses, 514
Proactive enforcement in Metropolis model,

535
Proactive product line models, 495
Probability density function (PDF), 255
Probability for availability, 256–259
Problem relationships in patterns, 204–205
Proceedings scribes, 401
Processes

development, 44–45
product reuse, 484
recommendations, 20
security, 157

Processing time in performance, 136

Index 579

Procurement management, 425
Product-line managers, 55
Product lines. See Software product lines
Product manager roles, 422
Productivity metrics, 429–430
Professional context, 51–52, 58
Profiler tools, 386
Programming knowledge of architects, 466
Project context, 57
Project life-cycle context

architecturally significant requirements,
46–47

architecture analysis and evaluation, 47–48
architecture documentation and

communication, 47
architecture selection, 47
business cases, 46
development processes, 44–45
implementation conformance, 48

Project Management Body of Knowledge
(PMBOK), 423–425

Project managers
description and interests, 55
responsibilities, 422–423

Project planning artifacts in product reuse, 484
Propagation costs of change, 288
Prosumers in edge-dominant systems, 529
Protection groups, 91
Prototypes

evolutionary, 33–34
quality attribute modeling and analysis,

264–265
for requirements, 47

Provides-services role, 335
Proxy servers, 146, 211
Public clouds, 506
Public IP addresses, 514
Publicly available apps, 36
Publish-subscribe connector, 336
Publish-subscribe pattern, 226–229
Publisher role, 336

QAW (Quality Attribute Workshop), 294–296
Qt framework, 215
Quality attribute modeling and analysis,

251–252
analytic model space, 259–260
availability analysis, 255–259
checklists, 260–262
experiments, simulations, and prototypes,

264–265
life cycle stages, 265–266
performance analysis, 252–255

summary, 266–267
thought experiments and back-of-the-

envelope analysis, 262–264
Quality Attribute Workshop (QAW), 294–296
Quality attributes, 185

ADD method, 322–323
ASRs, 294–296
ATAM, 407
capture scenarios, 196–197
categories, 189–190
checklists, 199, 260–262
considerations, 65–67
design approaches, 197
and documentation, 354–355
grand unified theory, 261
important, 185–188
inhibiting and enabling, 26–27
introduction, 63–64
Lightweight Architecture Evaluation, 416
models, 197–198
NASA ECS project, 453
peer review, 398
quality design decisions, 72–76
requirements, 64, 68–70
software and system, 190–193
standard lists, 193–196
summary, 76–77
tactics, 70–72, 198–199
technical context, 40–41
variability, 488–489
X-ability, 196–199

Quality design decisions, 72–73
allocation of responsibilities, 73
binding time, 75–76
coordination models, 73–74
data models, 74
element mapping, 75
resource management, 74–75
technology choices, 76

Quality management in global development,
424

Quality of products as business goal, 299
Quality requirements, mapping decisions to,

402–403
Quality views, 340–341
Questioners on ATAM teams, 401
Questions for organizational competence,

470, 472–474
Queue sizes tactic, 139
Queuing models for performance, 198–199,

252–255
Quick Test Pro tool, 172

580 Index

Race conditions, 133
Random access in equipment utilization, 508
Rapid elasticity, 504–505
Rate monotonic prioritization strategy, 140
Rational Unified Process, 44
Rationale in documentation, 347, 349
Raw view extraction in reconstruction,

382–386
RDBMSs (relational database management

systems), 518
React to attacks tactics, 153
Reactive enforcement in Metropolis model,

536
Reactive product line models, 495
Reader role in component-and-connector

views, 335
Reconfiguration tactic, 93
Reconstruction and conformance, 380–381

database construction, 386–387
finding violations, 389–392
guidelines, 392–393
process, 381–382
raw view extraction, 382–386
summary, 393–394
view fusion, 388–389

Record/playback method for system state,
165

Recover from attacks tactics, 153–154
Recover-from-faults tactics, 91–94
Reduce computational overhead tactic, 142
Reduce function in map-reduce pattern,

232–235
Reduce overhead tactic, 138
Redundancy tactics, 90, 256–259
Refactor tactic, 124
Refined scenarios

NASA ECS project, 451–452
QAW, 296

Reflection for variation, 491
Reflection pattern, 262
Registry of services, 225
Regression testing, 372
Reintroduction tactics, 91, 93–94
Rejuvenation tactic, 95
Relational database management systems

(RDBMSs), 518
Relations

allocation views, 339–340
architectural structures, 14, 16–17
broker pattern, 211
client-server pattern, 218
component-and-connector views, 337
conformance, 390

in documentation, 346
layered pattern, 207
map-reduce patterns, 235
Model-View-Controller pattern, 213
modular views, 333
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231
view extraction, 384

Release strategy for documentation, 350
Reliability

cloud, 507
component-and-connector views, 336
core, 532
independently developed components

for, 36
vs. safety, 188
SOAP, 109
views, 341

Reliability quality attribute, 195
Remote procedure call (RPC) model, 109
Removal from service tactic, 94–95
Replicated elements in variation, 491
Replication tactic, 90
Report method for system state, 165
Reporting tests, 374
Repository patterns, 19
Representation of architecture, 6
Representational State Transfer (REST),

108–110, 223–225
Reputation of products as business goal, 299
Request/reply connectors

client-server pattern, 218
peer-to-peer pattern, 222

Requirements
ASRs. See Architecturally significant

requirements (ASRs)
categories, 64–65
from goals, 49
mapping to, 355, 402–403
Metropolis model, 534
product reuse, 483
prototypes for, 47
quality attributes, 68–70
software development life cycle changes,

530
summary, 308–310
tying methods together, 308

Requirements documents
ASRs from, 292–293

Index 581

Waterfall model, 56
Reset method for system state, 165
Resisting attacks tactics, 152–153
RESL scale factor, 279
Resource management category

ASRs, 293
availability, 97
interoperability, 115
modifiability, 127
performance, 144
quality design decisions, 74–75
security, 155
software development life cycle changes,

530
testability, 170
usability, 182

Resources
component-and-connector views, 336
equipment utilization, 508
pooling, 504
sandboxing, 166
software development life cycle changes,

530
Response

availability, 85–86
interoperability, 105, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
testability, 162–163
usability, 176
variability, 489

Response measure
availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 149–150
testability, 162–163
usability, 176
variability, 489

Responsibilities
as business goal, 299
modules, 333
quality design decisions, 73

REST (Representational State Transfer),
108–110, 223–225

Restart tactic, 94
Restrict dependencies tactic, 124, 239,

246–247
Restrictions on vocabulary, 36

Results
ATAM, 411
CBAM, 447, 456–457
evaluation, 400
Lightweight Architecture Evaluation, 416

Retry tactic, 93
Reusable models, 35
Reuse of software architecture, 479, 483–486
Reviews

back door, 544–545
peer, 398–399

Revision history of modules, 334
Revoke access tactic, 153
Rework in agility, 279
Risk

ADD method, 320
ATAM, 402
global development, 425
progress tracking, 429

Risk-based testing, 373–374
Robustness of core, 532
Roles

component-and-connector views, 335
product line architecture, 488–490
software development teams, 422
testing, 375–376

Rollback tactic, 92
Round-robin scheduling strategy, 140–141
Rozanski, Nick, 170
RPC (remote procedure call) model, 109
Runtime conditionals, 492
Rutan, Burt, 159

SaaS (Software as a Service) model, 505
Safety

checklists, 260, 268
use cases, 46

Safety attribute, 188
Safety Integrity Level, 268
Salesforce.com, 509
Sample technologies in cloud, 514–520
Sampling rate tactic, 137
Sandbox tactic, 165–166
Sanity checking tactic, 89
Satisfaction in usability, 175
Saxe, John Godfrey, 379
Scalability

kinds, 187
peer-to-peer systems, 220
WebArrow web-conferencing system, 285

Scalability attribute, 187
Scaling, automatic, 516
Scenario scribes, 401

582 Index

Scenarios
ATAM, 408, 410
availability, 85–86
business goals, 301–303
CBAM, 445–446
interoperability, 107–110
Lightweight Architecture Evaluation, 416
modifiability, 119–120
NASA ECS project, 451–452
performance, 132–134
QAW, 295–296
quality attributes, 67–70, 196–197
security, 148–150
for structures, 12
testability, 162–163
usability, 176
weighting, 441, 444

Schedule resources tactic
performance, 139
quality attributes, 72

Scheduled downtimes, 81
Schedulers, hypervisor, 512
Schedules

deviation measurements, 429
estimates, 34
policies, 140–141
policy tactic, 244–245
top-down and bottom-up, 420–421

Schemas, database, 519
Scope, product line, 486–488
Scope and summary section in

documentation maps, 347
Scrum development methodology, 44
SDL (Specification and Description

Language), 354
Security

analytic model space, 259
broker pattern, 242
cloud, 507, 520–521
component-and-connector views, 336
design checklist, 154–156
general scenario, 148–150
introduction, 147–148
ping/echo, 243
quality attributes checklists, 260
summary, 156
tactics, 150–154
views, 341

Security Monkey, 161
Security quality attribute, 195, 307
SEI (Software Engineering Institute), 59
Selecting

architecture, 47

tools and technology, 463
Selenium tool, 172
Self-organization in Agile, 277
Self-test tactic, 91
Semantic coherence, 178
Semantic importance, 140
Semiformal documentation notations, 330
Sensitivity points in ATAM, 403
Separate entities tactic, 153
Separation of concerns in testability, 167
Sequence diagrams

thought experiments, 263
for traces, 351–352

Servers
client-server pattern, 217–219
proxy, 146, 211
SAO pattern, 223, 225

Service consumer components, 222, 225
Service discovery in SOAP, 108
Service impact of faults, 81
Service-level agreements (SLAs)

Amazon, 81, 522
availability in, 81
IaaS, 506
PaaS, 505
SOA, 222

Service-oriented architecture (SOA) pattern,
222–226

Service providers, 222–225
Service registry, 223
Service structure, 13
Services for platforms, 532–533
Set method for system state, 165
Shadow tactic, 93
Shared-data patterns, 19, 230–231
Shared documents in documentation, 350
Shareholders, responsibilities to, 299
Siberian hydroelectric plant catastrophe, 188,

192
Siddhartha, Gautama, 251
Side-channel attacks, 521
Side effects in economic analysis, 439, 441
Simian Army, 160–161
Simulations, 264–265
Size

modules, 121
queue, 139

Skeletal systems, 34
Skeletal view of human body, 9
Skills

architects, 460, 463, 465
global development, 423
professional context, 51

Index 583

SLAs. See Service-level agreements (SLAs)
Small victories, 544
Smart pointers, 95
SOA (service-oriented architecture) pattern,

222–226
SOAP

vs. REST, 108–110
SOA pattern, 223–225

Social networks in publish-subscribe pattern,
229

Socializing in Incremental Commitment
Model, 286

Society
as goal-object, 302
service to, 299

Software architecture importance, 25–26
change management, 27–28
constraints, 32–33
cost and schedule estimates, 34
design decisions, 31–32
evolutionary prototyping, 33–34
independently developed components,

35–36
organizational structure, 33
quality attributes, 26–27
stakeholder communication, 29–31
summary, 37
system qualities prediction, 28
training basis, 37
transferable, reusable models, 35
vocabulary restrictions, 36

Software architecture overview, 3–4. See also
Architecture

as abstraction, 5–6
behavior in, 6–7
competence, 467–475
contexts. See Contexts
definitions, 4
good and bad, 19–21
patterns, 18–19
selecting, 7
as set of software structures, 4–5
structures and views, 9–18
summary, 21–22
system architecture vs. enterprise, 7–8

Software as a Service (SaaS) model, 505
Software Engineering Body of Knowledge

(SWEBOK), 292
Software Engineering Institute (SEI), 59, 479
Software Product Line Conference (SPLC),

498
Software Product Line Hall of Fame, 498
Software product lines

adoption strategies, 494–496
evaluating, 493–494
evolving, 496–497
failures, 481–482
introduction, 479–481
key issues, 494–497
organizational structure, 497
quality attribute of variability, 488
reuse potential, 483–486
role of, 488–490
scope, 486–488
successful, 483–486
summary, 497–498
variability, 482–483
variation mechanisms, 490–493

Software quality attributes, 190–193
Software rejuvenation tactic, 95
Software upgrade tactic, 92–93
Solutions in relationships, 204–205
SonarJ tool, 387–391
Sorting in map-reduce pattern, 232
SoS (system of systems), 106
Source code

KSLOC, 279–281
mapping to, 334

Source in security scenario, 150
Source of stimulus

availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148
testability, 162–163
usability, 176
variability, 489

Spare tactics, 91–92, 256–259
Specialized interfaces tactic, 165
Specification and Description Language

(SDL), 354
Spikes in Agile, 284–285
SPLC (Software Product Line Conference), 498
Split module tactic, 123
Sporadic events, 133
Spring framework, 166
Staging views, 343
Stakeholders

on ATAM teams, 401
communication among, 29–31, 329
documentation for, 348–349
evaluation process, 400
interests, 52–55
interviewing, 294–296

584 Index

Stakeholders, continued
for methods, 272
utility tree reviews, 306
views, 342

Standard lists for quality attributes, 193–196
Standards and interoperability, 112–113
State, system, 164–167
State machine diagrams, 353
State resynchronization tactic, 93
Stateless services in cloud, 522
States, responsibilities to, 299
Static allocation views, 340
Static scheduling, 141
Status meetings, 428
Stein, Gertrude, 142
Steinberg, Saul, 39
Stimulus

availability, 85–86
interoperability, 107–108
modifiability, 119–120
performance, 134
quality attributes expressions, 68–70
security, 148, 150
source. See Source of stimulus
testability, 162–163
usability, 176
variability, 489

Stochastic events, 133
Stonebraker, Michael, 518
Storage

for testability, 165
virtualization, 512–513

Strategies in NASA ECS project, 452–456
Strictly layered patterns, 19
Structural complexity in testability, 167–168
Structure101 tool, 387
Stuxnet virus, 80
Subarchitecture in component-and-connector

views, 335
Submodules, 333
Subscriber role, 336
Subsystems, 9
Supernodes in peer-to-peer pattern, 220
Support and development software, 358–359
Support system initiative tactic, 180–181
Support user initiative tactic, 179–180
SWEBOK (Software Engineering Body of

Knowledge), 292
Swing classes, 215
Syncing code and architecture, 368
System analysis and construction,

documentation for, 329

System architecture vs. enterprise
architecture, 7–8

System as goal-object, 302
System availability requirements, 81
System efficiency in usability, 175
System engineers, 55
System exceptions tactic, 90
System Generation Module, 358
System initiative in usability, 177
System of systems (SoS), 106
System overview in documentation, 349
System qualities, predicting, 28
System quality attributes, 190–193
System test manager roles, 422
System testing, 371

Tactics
availability, 87–96
interactions, 242–247
interoperability, 110–113
modifiability, 121–125
patterns relationships with, 238–242
performance, 135–142
quality attributes, 70–72, 198–199
security, 150–154
testability, 164–168
usability, 177–181

Tailor interface tactic, 111
Team building skills, 463, 465
Team leader roles, 422
TeamCity tool, 172
Teams

ATAM, 400–401
organizing, 422

Technical contexts
architecture influence, 57
environment, 41–42
quality attributes, 40–41
Vasa ship, 42–43

Technical debt, 286
Technical processes in security, 157
Technology choices, 76
Technology knowledge of architects, 467
Templates

ATAM, 406
code, 365–367
scenarios. See Scenarios
variation mechanism, 492

10-18 Monkey, 161
Terminating generate and test process, 316
Terms and concepts, 368–369
Test harnesses, 160

Index 585

Testability
analytic model space, 259
automation, 171–172
broker pattern, 241
design checklist, 169–170
general scenario, 162–163
introduction, 159–162
summary, 172
tactics, 164–168
test data, 170–171

Testable requirements, 292
TestComplete tool, 172
Testers, 55
Tests and testing

activities, 374–375
architect role, 375–376, 463
black-box and white-box, 372–373
choices, 315
in incremental development, 428
levels, 370–372
modules, 334
product reuse, 484
risk-based, 373–374
summary, 376

Therac-25 fatal overdose, 192
Thought experiments, 262–264
Thousands of source lines of code (KSLOC),

279–281
Threads in concurrency, 132–133
Throughput of systems, 134
Tiers

component-and-connector views, 337
multi-tier pattern, 235–237

Time and time management
basis sets, 261
global development, 424
performance, 131

Time boxing, 264
Time of day factor in equipment utilization, 508
Time of year factor in equipment utilization,

508
Time-sharing, 503
Time stamp tactic, 89
Time to market

independently developed components
for, 36

and modifiability, 284
Timeout tactic, 91
Timing in availability, 85
TMR (triple modular redundancy), 89
Tools

for product reuse, 484
selecting, 463

Top-down adoption, 495
Top-down analysis mode, 284
Top-down schedules, 420–421
Topic-based publish-subscribe patterns, 229
Topological constraints, 236
Torvalds, Linus, 530, 535, 538
Total benefit in CBAM, 446
Traces for behavior documentation, 351–353
Tracking progress, 428–429
Tradeoffs

ATAM, 403
implementation, 427

Traffic systems, 142
Training, architecture for, 37
Transactions

availability, 95
databases, 519–520
SOAP, 108

Transferable models, 35
Transformation systems, 215
Transforming existing systems, 462
Transitions in state machine diagrams, 354
Triple modular redundancy (TMR), 89
Troeh, Eve, 190
Turner, R., 279, 281, 288
Twitter, 528
Two-phase commits, 95

Ubiquitous network access, 504
UDDI (Universal Description, Discovery and

Integration) language, 108
UML

activity diagrams, 353
communication diagrams, 353
component-and-connector views,

338–339
connectors, 369
sequence diagrams, 351–352
state machine diagrams, 353

Unambiguous requirements, 292
Uncertainty in equipment utilization,

508–509
Undo command, 179
Unified Process, 44
Unit testing, 370–371
Unity of purpose in modules, 121
Universal Description, Discovery and

Integration (UDDI) language, 108
Up-front planning vs. agility, 278–281
Usability

analytic model space, 259
design checklist, 181–182
general scenario, 176

586 Index

Usability, continued
introduction, 175
quality attributes checklists, 260
tactics, 177–181

Usability quality attribute, 193, 307
Usage

allocation views, 339
component-and-connector views, 337
modular views, 333

Use an intermediary tactic, 245
modifiability, 123
quality attributes, 72

Use cases
ATAM presentations, 406
thought experiments, 263
for traces, 351

“User beware” proviso, 372
User initiative in usability, 177
User interface

exchanging information via, 104–105
separating, 178

User needs in usability, 175
User stories in Agile, 278
Users

communication with, 29
description and interests, 55

Uses
for documentation, 328–329
views for, 332

Uses relation in layered patterns, 19
Uses structure in decomposition, 12
Utility

assigning, 452
CBAM, 448

Utility-response curves, 439–443
Utility trees

ASRs, 304–307
ATAM, 407, 410
Lightweight Architecture Evaluation, 416

Utilization of equipment in cloud, 508–509

Value component
business goals, 301
utility trees, 306

Value for cost (VFC), 438, 442
Variability

product line, 482–483
quality attributes, 488–489

Variability attribute, 186
Variability guides, 347, 493
Variation

binding time, 75
software product lines, 490–493

Variation points
CBAM, 448–450
identifying, 490

Vasa ship, 42–43
Vascular view of human body, 9
Vehicle cruise control systems, 353
Verify and refine requirements in ADD,

321–323
Verify message integrity tactic, 151
Vertical scalability, 187
VFC (value for cost), 438, 442
Views, 331–332

allocation, 339–340
architectural structures, 9–10
choosing, 341–343
combining, 343–345
component-and-connector, 335–339, 344,

406
documenting, 345–347
fused, 388–389
Model-View-Controller pattern, 213–214
module, 332–335, 406
quality, 340–341

Views and Beyond approach, 282, 356–357
Villa, Pancho, 541
Violations, finding, 389–392
Virtual resource managers, 515
Virtual system of systems, 106
Virtualization and virtual machines

cloud, 509–514, 520–521
layers as, 13
in sandboxing, 166

Visibility of interfaces, 333
Vitruvius, 459
Vlissides, J., 212
Vocabulary

quality attributes, 67
restrictions, 36

Voting tactic, 89
Vulnerabilities in security views, 341

Walking skeleton method, 287
War ship example, 42–43
Warm spare tactic, 91–92
Watchdogs, 89
Waterfall model

description, 44
requirements documents, 56

Weaknesses
broker pattern, 211, 240–242
client-server pattern, 218
layered pattern, 207
map-reduce patterns, 235

Index 587

Model-View-Controller pattern, 213
multi-tier pattern, 237
peer-to-peer pattern, 222
pipe-and-filter pattern, 216
publish-subscribe pattern, 227
service-oriented architecture pattern, 225
shared-data pattern, 231

Wealth of Networks (Benkler), 528
Web 2.0 movement, 527
Web-based system events, 131
Web-conferencing systems

Agile example, 283–285
considerations, 265

Web Services Description Language
(WSDL), 110

WebArrow web-conferencing system,
284–285

WebSphere MQ product, 224
Weighting scenarios, 441, 444
Wells, H. G., 117
West, Mae, 131
“What if” questions in performance

analysis, 255
White-box testing, 372–373
Whitney, Eli, 35–36, 480

Wikipedia, 528
Wikis for documentation, 350
Wisdom of crowds, 537
Woods, Eoin, 25, 170
Work assignment structures, 14
Work-breakdown structures, 33
Work skills of architect, 465
World Wide Web as client-server pattern, 219
Wrappers, 129
Writer role in component-and-connector

views, 335
WS*, 108–110
WSDL (Web Services Description

Language), 110

X-ability, 196–199
X-ray view of human body, 9

YAGNI principle, 282
Yahoo! map-reduce patterns, 234
Young, Toby, 39
YouTube, 528

Zoning policies analogy in Metropolis
model, 536

588

Special permission to reproduce portions of the following works copyright by
Carnegie Mellon University is granted by the Software Engineering Institute:

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith A. Stafford. “Software Architecture Documentation
in Practice: Documenting Architectural Layers,” CMU/SEI-2000-SR-004, March
2000.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith A. Stafford. “Documenting Software Architectures:
Organization of Documentation Package,” CMU/SEI-2001-TN-010, August
2001.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith A. Stafford. “Documenting Software Architecture:
Documenting Behavior,” CMU/SEI-2002-TN-001, January 2002.

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord, and Judith A. Stafford. “Documenting Software Architecture:
Documenting Interfaces,” CMU/SEI-2002-TN-015, June 2002.

Felix Bachmann and Paul Clements. “Variability in Product Lines,” CMU/SEI-
2005-TR-012, September 2005.

Felix Bachmann, Len Bass, and Robert Nord. “Modifiability Tactics,” CMU/SEI-
2007-TR-002, September 2007.

Mario R. Barbacci, Robert Ellison, Anthony J. Lattanze, Judith A. Stafford,
Charles B. Weinstock, and William G. Wood. “Quality Attribute Workshops
(QAWs), Third Edition,” CMU/SEI-2003-TR-016, August 2003.

Len Bass, Paul Clements, Rick Kazman, and Mark Klein. “Models for Evaluat-
ing and Improving Architecture Competence,” CMU/SEI-2008-TR-006, March
2008.

Len Bass, Paul Clements, Rick Kazman, John Klein, Mark Klein, and Jeannine
Siviy. “A Workshop on Architecture Competence,” CMU/SEI-2009-TN-005,
April 2009.

Lisa Brownsword, David Carney, David Fisher, Grace Lewis, Craig Meyers, Ed-
win Morris, Patrick Place, James Smith, and Lutz Wrage. “Current Perspectives
on Interoperability,” CMU/SEI-2004-TR-009, March 2004.

Paul Clements and Len Bass. “Relating Business Goals to Architecturally Signif-
icant Requirements for Software Systems,” CMU/SEI-2010-TN-018, May 2010.

Rick Kazman and Jeromy Carriere, “Playing Detective: Reconstructing Software
Architecture from Available Evidence,” CMU/SEI-97-TR-010, October 1997.

589

Rick Kazman, Mark Klein, and Paul Clements. “ATAM: Method for Architecture
Evaluation,” CMU/SEI-2000-TR-004, August 2000.

Rick Kazman, Jai Asundi, and Mark Klein, “Making Architecture Design Deci-
sions, An Economic Approach,” CMU/SEI-2002-TR-035, September 2002.

Rick Kazman, Liam O’Brien, and Chris Verhoef, “Architecture Reconstruction
Guidelines, Third Edition,” CMU/SEI-2002-TR-034, November 2003.

Robert L. Nord, Paul C. Clements, David Emery, and Rich Hilliard. “A Structured
Approach for Reviewing Architecture Documentation,” CMU/SEI-2009-TN-030,
December 2009.

James Scott and Rick Kazman. “Realizing and Refining Architectural Tactics:
Availability,” CMU/SEI-2009-TR-006 and ESC-TR-2009-006, August 2009.

This page intentionally left blank

Build Your Credentials with the SEI Software
Architecture Professional Certificate

As a software architect, you know
that complexity is rampant and always
increasing. It simply takes more
skills now to deliver the richly featured,
high-performing products that
customers demand.

The SEI Software Architecture
Professional Certificate helps you
keep pace. From this four-course
sequence, you’ll gain the ability to
• apply architecture-centric
 practices throughout the life cycle
• produce and understand documen-

tation for software architecture
• understand the relationships among
 system qualities such as security
 and performance, architecture, and
 your organization’s business goals

Take the first step in building credentials
by registering for the SEI Software
Architecture: Principles and Practices
course. Visit www.sei.cmu.edu/go/
sapptraining/ for details.

The SEI also offers an Architecture
Tradeoff Analysis Method® (ATAM®)
Evaluator Certificate and an ATAM
Leader Certification.

For more information on the Software
Architecture Professional Certificate
and other SEI software architecture
credentials, visit www.sei.cmu.edu/go/
architecture-credentials/.

Architecture Tradeoff Analysis Method and ATAM
are registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_6.25x9.25.indd 1 3/19/09 2:30 PM

http://www.sei.cmu.edu/go/sapptraining/
http://www.sei.cmu.edu/go/sapptraining/
http://www.sei.cmu.edu/go/architecture-credentials/
http://www.sei.cmu.edu/go/architecture-credentials/

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_6.25x9.25.indd 1 3/19/09 2:30 PM

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

Sample concrete interoperability scenario

Stimulus: Response:

Environment:
Systems known
prior to run-time

Artifact:

Response
Measure:

Source
of Stimulus:

3
2

1

4

Our Vehicle
Information
System

Current
Location
Sent

Traffic Monitor
Combines Current
Location with Other
Information,
Overlays on Google
Maps, and
Broadcasts

Our Information
Included Correctly
99.9% of the Time

Traffic Monitoring
System

Sample concrete availability scenario

Stimulus:
Server
Unresponsive

Response:
Inform
Operator
Continue
to Operate

Response
Measure:
No Downtime

Source:
Heartbeat
Monitor

Artifact:
Process

Environment:
Normal
Operation

3
2

1

4

Sample concrete modifiability scenario

Stimulus:
Wishes
to Change
the UI

Response:
Change Made
and Unit Tested

Source:
Developer

Artifact:
Code

Environment:
Design
Time

Response
Measure:
In Three
Hours

3
2

1

4

Sample concrete security scenario

Stimulus: Response:

Response
Measure:Source: Environment:

Normal
Operations

3
2

1

4

Disgruntled
Employee from
Remote Location

Attempts to
Modify Pay
Rate

System
Maintains
Audit Trail

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

Artifact:
Data within
the System

Sample performance scenario

Stimulus:
Initiate
Transactions

Response:
Transactions
Are Processed

Response
Measure:
Average
Latency
of Two

Source:
Users

Artifact:
System

Environment:
Normal
Operation

3
2

1

4

Seconds

Sample concrete testability scenario

Stimulus: Response:

Response
Measure:Source: Environment:

Development

3
2

1

4

Unit Tester

Code Unit
Completed

Results Captured

85% Path Coverage
in Three Hours

Artifact:
Code Unit

Sample concrete usability scenario

Stimulus: Response:

Response
Measure:Source: Environment:

Runtime

3
2

1

4

User

Downloads
a New
Application

User Uses
Application
Productively

Within Two
Minutes of
Experimentation

Artifact:
System

Interoperability Tactics

Locate Manage Interfaces

Discover
Service

Orchestrate

Tailor Interface

Information
Exchange
Request

Request
Correctly
Handled

Availability Tactics

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

Modifiability Tactics

Increase
Cohesion

Reduce
Coupling

Split Module
Encapsulate

Use an
Intermediary

Change
Arrives

Change Made
within Time
and Budget

Reduce Size
of a Module

Increase
Semantic
Coherence

Restrict
Dependencies

Refactor

Abstract Common
Services

Defer
Binding

Performance Tactics

Control Resource Demand Manage Resources

Manage Sampling Rate

Limit Event Response

Prioritize Events

Reduce Overhead

Bound Execution Times

Increase Resource
Efficiency

Event
Arrives

Response
Generated within
Time Constraints

Increase Resources

Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

Usability Tactics

Support User
Initiative

Support System
Initiative

Cancel

Maintain User
Model

Maintain System

User
Request

User Given
Appropriate

Feedback and
Assistance

Undo

Pause/Resume

Aggregate

Maintain Task
Model

Testability Tactics

Control and Observe
System State

Limit Complexity

Specialized
Interfaces

Limit Structural
Complexity

Limit
Nondeterminism

Tests
Executed

Faults
Detected

Record/
Playback

Localize State
Storage

Sandbox

Executable
Assertions

Abstract Data
Sources

Security Tactics

Resist Attacks

Encrypt Data

Attack System Detects,
Resists, Reacts,
or Recovers

Detect Attacks

Maintain
Audit Trail

Limit Exposure

Recover
from Attacks

React to
Attacks

Revoke
Access

Lock
Computer

Detect
Intrustion

Detect Service
Denial
Verify Message
Integrity

Detect Message
Delay

Change Default
Settings

Separate
Entities

Restore

See
Availability

Identify
Actors

Authenticate
Actors

Authorize
Actors

Limit Access

Inform
Actors

	Cover
	Copyright
	Contents
	Preface
	Reader's Guide
	Acknowledgments
	PART ONE: INTRODUCTION
	1 What Is Software Architecture?
	1.1 What Software Architecture Is and What It Isn't
	1.2 Architectural Structures and Views
	1.3 Architectural Patterns
	1.4 What Makes a "Good" Architecture?
	1.5 Summary
	1.6 For Further Reading
	1.7 Discussion Questions

	2 Why Is Software Architecture Important?
	2.1 Inhibiting or Enabling a System's Quality Attributes
	2.2 Reasoning About and Managing Change
	2.3 Predicting System Qualities
	2.4 Enhancing Communication among Stakeholders
	2.5 Carrying Early Design Decisions
	2.6 Defining Constraints on an Implementation
	2.7 Influencing the Organizational Structure
	2.8 Enabling Evolutionary Prototyping
	2.9 Improving Cost and Schedule Estimates
	2.10 Supplying a Transferable, Reusable Model
	2.11 Allowing Incorporation of Independently Developed Components
	2.12 Restricting the Vocabulary of Design Alternatives
	2.13 Providing a Basis for Training
	2.14 Summary
	2.15 For Further Reading
	2.16 Discussion Questions

	3 The Many Contexts of Software Architecture
	3.1 Architecture in a Technical Context
	3.2 Architecture in a Project Life-Cycle Context
	3.3 Architecture in a Business Context
	3.4 Architecture in a Professional Context
	3.5 Stakeholders
	3.6 How Is Architecture Influenced?
	3.7 What Do Architectures Influence?
	3.8 Summary
	3.9 For Further Reading
	3.10 Discussion Questions

	PART TWO: QUALITY ATTRIBUTES
	4 Understanding Quality Attributes
	4.1 Architecture and Requirements
	4.2 Functionality
	4.3 Quality Attribute Considerations
	4.4 Specifying Quality Attribute Requirements
	4.5 Achieving Quality Attributes through Tactics
	4.6 Guiding Quality Design Decisions
	4.7 Summary
	4.8 For Further Reading
	4.9 Discussion Questions

	5 Availability
	5.1 Availability General Scenario
	5.2 Tactics for Availability
	5.3 A Design Checklist for Availability
	5.4 Summary
	5.5 For Further Reading
	5.6 Discussion Questions

	6 Interoperability
	6.1 Interoperability General Scenario
	6.2 Tactics for Interoperability
	6.3 A Design Checklist for Interoperability
	6.4 Summary
	6.5 For Further Reading
	6.6 Discussion Questions

	7 Modifiability
	7.1 Modifiability General Scenario
	7.2 Tactics for Modifiability
	7.3 A Design Checklist for Modifiability
	7.4 Summary
	7.5 For Further Reading
	7.6 Discussion Questions

	8 Performance
	8.1 Performance General Scenario
	8.2 Tactics for Performance
	8.3 A Design Checklist for Performance
	8.4 Summary
	8.5 For Further Reading
	8.6 Discussion Questions

	9 Security
	9.1 Security General Scenario
	9.2 Tactics for Security
	9.3 A Design Checklist for Security
	9.4 Summary
	9.5 For Further Reading
	9.6 Discussion Questions

	10 Testability
	10.1 Testability General Scenario
	10.2 Tactics for Testability
	10.3 A Design Checklist for Testability
	10.4 Summary
	10.5 For Further Reading
	10.6 Discussion Questions

	11 Usability
	11.1 Usability General Scenario
	11.2 Tactics for Usability
	11.3 A Design Checklist for Usability
	11.4 Summary
	11.5 For Further Reading
	11.6 Discussion Questions

	12 Other Quality attributes
	12.1 Other Important Quality Attributes
	12.2 Other Categories of Quality Attributes
	12.3 Software Quality Attributes and System Quality Attributes
	12.4 Using Standard Lists of Quality Attributes— or Not
	12.5 Dealing with "X-ability": Bringing a New Quality Attribute into the Fold
	12.6 For Further Reading
	12.7 Discussion Questions

	13 Architectural Tactics and Patterns
	13.1 Architectural Patterns
	13.2 Overview of the Patterns Catalog
	13.3 Relationships between Tactics and Patterns
	13.4 Using Tactics Together
	13.5 Summary
	13.6 For Further Reading
	13.7 Discussion Questions

	14 Quality Attribute Modeling and Analysis
	14.1 Modeling Architectures to Enable Quality Attribute Analysis
	14.2 Quality Attribute Checklists
	14.3 Thought Experiments and Back-of-the-Envelope Analysis
	14.4 Experiments, Simulations, and Prototypes
	14.5 Analysis at Different Stages of the Life Cycle
	14.6 Summary
	14.7 For Further Reading
	14.8 Discussion Questions

	PART THREE: ARCHITECTURE IN THE LIFE CYCLE
	15 Architecture in Agile Projects
	15.1 How Much Architecture?
	15.2 Agility and Architecture Methods
	15.3 A Brief Example of Agile Architecting
	15.4 Guidelines for the Agile Architect
	15.5 Summary
	15.6 For Further Reading
	15.7 Discussion Questions

	16 Architecture and Requirements
	16.1 Gathering ASRs from Requirements Documents
	16.2 Gathering ASRs by Interviewing Stakeholders
	16.3 Gathering ASRs by Understanding the Business Goals
	16.4 Capturing ASRs in a Utility Tree
	16.5 Tying the Methods Together
	16.6 Summary
	16.7 For Further Reading
	16.8 Discussion Questions

	17 Designing an Architecture
	17.1 Design Strategy
	17.2 The Attribute-Driven Design Method
	17.3 The Steps of ADD
	17.4 Summary
	17.5 For Further Reading
	17.6 Discussion Questions

	18 Documenting Software Architectures
	18.1 Uses and Audiences for Architecture Documentation
	18.2 Notations for Architecture Documentation
	18.3 Views
	18.4 Choosing the Views
	18.5 Combining Views
	18.6 Building the Documentation Package
	18.7 Documenting Behavior
	18.8 Architecture Documentation and Quality Attributes
	18.9 Documenting Architectures That Change Faster Than You Can Document Them
	18.10 Documenting Architecture in an Agile Development Project
	18.11 Summary
	18.12 For Further Reading
	18.13 Discussion Questions

	19 Architecture, Implementation, and Testing
	19.1 Architecture and Implementation
	19.2 Architecture and Testing
	19.3 Summary
	19.4 For Further Reading
	19.5 Discussion Questions

	20 Architecture Reconstruction and conformance
	20.1 Architecture Reconstruction Process
	20.2 Raw View Extraction
	20.3 Database Construction
	20.4 View Fusion
	20.5 Architecture Analysis: Finding Violations
	20.6 Guidelines
	20.7 Summary
	20.8 For Further Reading
	20.9 Discussion Questions

	21 Architecture Evaluation
	21.1 Evaluation Factors
	21.2 The Architecture Tradeoff Analysis Method
	21.3 Lightweight Architecture Evaluation
	21.4 Summary
	21.5 For Further Reading
	21.6 Discussion Questions

	22 Management and Governance
	22.1 Planning
	22.2 Organizing
	22.3 Implementing
	22.4 Measuring
	22.5 Governance
	22.6 Summary
	22.7 For Further Reading
	22.8 Discussion Questions

	PART FOUR: ARCHITECTURE AND BUSINESS
	23 Economic Analysis of Architectures
	23.1 Decision-Making Context
	23.2 The Basis for the Economic Analyses
	23.3 Putting Theory into Practice: The CBAM
	23.4 Case Study: The NASA ECS Project
	23.5 Summary
	23.6 For Further Reading
	23.7 Discussion Questions

	24 Architecture Competence
	24.1 Competence of Individuals: Duties, Skills, and Knowledge of Architects
	24.2 Competence of a Software Architecture Organization
	24.3 Summary
	24.4 For Further Reading
	24.5 Discussion Questions

	25 Architecture and Software Product Lines
	25.1 An Example of Product Line Variability
	25.2 What Makes a Software Product Line Work?
	25.3 Product Line Scope
	25.4 The Quality Attribute of Variability
	25.5 The Role of a Product Line Architecture
	25.6 Variation Mechanisms
	25.7 Evaluating a Product Line Architecture
	25.8 Key Software Product Line Issues
	25.9 Summary
	25.10 For Further Reading
	25.11 Discussion Questions

	PART FIVE: THE BRAVE NEW WORLD
	26 Architecture in the Cloud
	26.1 Basic Cloud Definitions
	26.2 Service Models and Deployment Options
	26.3 Economic Justification
	26.4 Base Mechanisms
	26.5 Sample Technologies
	26.6 Architecting in a Cloud Environment
	26.7 Summary
	26.8 For Further Reading
	26.9 Discussion Questions

	27 Architectures for the Edge
	27.1 The Ecosystem of Edge-Dominant Systems
	27.2 Changes to the Software Development Life Cycle
	27.3 Implications for Architecture
	27.4 Implications of the Metropolis Model
	27.5 Summary
	27.6 For Further Reading
	27.7 Discussion Questions

	28 Epilogue

	References
	About the Authors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

