CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Software Architecture
DAT220/DIT544

Truong Ho-Quang
truongh@chalmers.se

Software Engineering Division
Chalmers | GU

s

mailto:truongh@chalmers.se

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Decomposition and (Design) Patterns

r~ - e ') -
e, ° & =
e SR &

Dong H6 painting
(Pong Ho folk woodcut painting)

* Materials: Diép paper
* Colors: Nature-made, 3-4 colors
* Woodblocks: to apply colors

Decomposition

e How? strategy: using colors

* Decompose
* Make patterns (woodblocks)

* Apply colors

https://en.wikipedia.org/wiki/%C4%90%C3%B4ng_H%E1%BB%93_painting

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Thu, 28 Jan

Mon, 1 Feb
Wed, 3 Jan

Thu, 4 Jan

Mon, 8 Feb

Wed, 10 Feb
Thu, 11 Feb
Mon, 15 Feb
Wed, 17 Feb
Thu, 18 Feb
Mon, 22 Feb

Wed, 24 Feb
Thu, 25 Feb
Mon, 1 Mar
Wed, 3 Mar
Thu, 4 Mar
Fri, 5 Mar

Schedule

(Week | [Date [Time |
Wed, 20 Jan 10:15-12:00
Thu, 21 Jan 13:15-15:00
Tue, 26 Jan 10:15-12:00
Wed, 27 Jan

10: 15—12 00

10:15 -12:00
10:15-12:00

13:15-15:00
10:15-12:00
13:15-15:00
13:15-15:00
10:15-12:00
13:15-15:00
10:15-12:00
13:15-15:00
13:15-15:00
10:15-12:00
13:15-15:00
10:15-12:00
13:15-15:00
Whole day

(8%) UNIVERSITY OF GOTHENBURG

Lecture
Introduction & Organization
Architecting Process & Views

Skip

<< Supervision: Launch Ass:
Roles/Responsibilities & Functional Decomposition

Architectural Styles P1

<< Supervision/Assignment>>
Architectural Styles P2
Architectural Styles P3

<< Supervision/Assignment>>
Design Principles (Maintainability, Modifiability)
Performance — Analysis & Tactics

<< Supervision/Assignment>>
Tactics: Reliability, Availability, Fault Tolerance
Guest Lecture 1

<< Supervision/Assignment>>
Guest Lecture 2
Reverse Engineering & Correspondence

<< Supervision/Assignment>>
To be determined (exam practice?)
Group presentation of Assignment (TBD)

CH
ween -

Truong Ho
Truong Ho

TAs

Truong Ho
Sam Jobara
TAs

Truong Ho
Truong Ho
TAs

TBD

TBD

TAs

TBD
Truong Ho
TAs
Truong Ho
Teachers

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Voluntary student representatives

- 5 students (Chalmers and GU)
- Randomly generated
- Will be contacted shortly

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Recap of previous lectures

- L1: What, Why, How? SW Architecture

.- L2: Architecting process, stakeholders,
Views

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Goals of this lecture

- Understand notion of Role, Responsibilities in
Software Architecture

- Understand functional decomposition and
common way of doing that (via examples)

- Understand the difference and transition
between analysis and design

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Part |:
Roles & Responsibilities

-

7N
(; extends (51)

4

Interfacer

77 (9.88%) controls

(9)

notifies

uses (109) uses (22) 137)

<<INTERFACER>>
P, extends MessageContainerView
)’(N uses (13) (22)
e ends| Coordinator & Controller /N
{12) | 79 (10.14%) 20 (2.57%)
pZTY) returns (23) y
uses uses
(73) <<COORDINATOR>>
delegates IS MessageWebView
(63) (78)
extends
Service Provider uses Information Holder (90)
.46% 289 231 (29.65% g
323 (ata6%) |_(289) o {) \ <<INFORMATION <<SERVICE
‘ HOLDER>> PROVIDER>>
Theme AttachmentResolver
extends)
(206) uses (10 Grganizes
(69)

Structurer
49 (6.29%)

uses (30)

~--/ (21)

CHALMERS |) UNIVERSITY OF GOTHENBURG

Theme/Objective
of this part

-Understand the importance of being aware of role
when designing software.

- Build vocabulary for characterizing role/responsibility
-a set of six(6) common roles (role stereotypes)
- collaborations between role stereotypes

- Exploring impacts of role/stereotype in design quality
metrics in two realistic cases

g . UNIVERSITY OF GOTHENBURG

CHALMERS |

What is role & responsibility?

follow Marton

number
- hi?her conform i given
eople @
'*'Tr-.c"angf someone
Yy Ny W 9y programs Evelyn
standards

groups g edicine
behaviour regard

upo 7
conditions Gy

mteractlomst m
behavioural perso Nindividu3als
following f
‘;m
*at

education

place occupying
nderstandings:-
°o
- S

collaboration’

resesns-g.-.gsst\v

I life &
BEty
S a 773 c‘\".P

exempted
age Q \“0(
Genahc e* . g‘
rie
jce - sntuatlons

\
o
N
-O
assumes maet
personalo a
thl tes functionalist

normslnleldH‘?'mm

skills
ures Ty

;»
%

-practising C L.I
wnthout

behaviors
reprise editor r A-
requently
including
FEOVET complement
naturally
devoted

values

CHALMERS | UNIVERSITY OF GOTHENBURG
UNIVERSITY OF TECHNOLOGY G~

Where to find role/responsibility?

= N /

GOS0 0

® Study.com:

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Why defining role is so important?

"0 establish working scope
0 seek agreement

"o facilitate communication/collaboration
when performing tasks

- Less waste

11

UNIVERSITY OF GOTHENBURG

CHALMERS | (&%)

Role & Responsibility in Software Design

- Software is a set of components that

- carry different roles
- collaborate with different components

- Being aware of component’s role when
designing would help to:
- achieve better distribution of responsibility

- manhage complexity/communication
- avoid redundancy

- increase mainteability

12

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(&%) UNIVERSITY OF GOTHENBURG

Role Stereotypes

— Definition
— Relationships between role stereotypes

Stereotype
A conventional, formulaic, and oversimplified conception, opinion, or

image
(www.thefreedictionary.com)

13

CHALMERS | (&%) UNIVERSITY OF GOTHENBURG

Role Stereotypes

- The concept “role stereotype”

was introduced by Rebecca
Wirfs—-Brock.

- The concept indicates generic
roles that an software object
plays in the design.

Iulxu 1\\11[\ Iinxl\ ml Alan McKe. m

- It is recommended that each onis b . Jcobson and Job Vs

Object Des gn

Roles, Responsibilities, and Collaborations

object carries a single
Fo I e / res po ns | bl I |ty Rebecca Wirfs-Brock and él&l)’l?,McKean, Addison-Wesley,

« Service providers do things
Interfacers translate requests and convert from one level of abstraction to another
« Information holders know things
« Controllers direct activities
« Coordinators delegate work

« Structurers manage object relations or organize large numbers of similar objects

14

Role stereotypes

Service Provider (SP)

Information Holder (IH)

6-

Interfacer (IF)

Controller (CT)

. Coordinator (CO)

Structurer (ST)

-5|

fz

Information Holder (IH)

is a software element that

* keeps/knows information

L 04

* provides information to other elements

Example: An IH class might be characterized

by:

* The class may just contains attributes
 Methods, if any, could be

Getters and setter

Persistence methods, eg. saving to database or
implements Java’s Serializable interface

Methods that are only used within the class

© LocalKeyStore

oflString sKeyStoreLocation
OfFile mKeyStoreFile
OfKeyStore mKeyStore

ofint KEY STORE FILE VERSION ‘

@ void setKeyStoreLocation(String directory)
@ LocalKeyStore getinstance()

m LocalKeyStore()

o void setKeyStoreFile(File file)

@ voi crificate(String host, int port, X509Certificate certific:
m voidiwriteCertificateFile()
@ boo {Certificate certificate, String host, int |

m String getCertKey(String host, int port)

o void deleteCertificate(String oldHost, int oldPort)
m void upgradeKeyStoreFile()

m String getKeyStoreFilePath(int version)

16

Service Provider (SP) |-.
N

is a software element that
* performs specific works

e offers services to other elements on demand

A SP class can be characterized by:

* having name ended with “-er” (eg. Provider) or “-or” (eg. Creator,
Detector)

* has methods and attributes are easily accessed by other classes (often
static and public, or protected, not private)
* could be realization of a Interface

e decision making in methods should be at basic level, only to support
specific work

17

Service Provider Class - Example

© MimePartStreamParser

@ MimeBodyPart parse(FileFactory fileFactory, InputStream inputStream)

BOoAdviIinpuostr NPDULST

eFactory fileFactory)

public MimeBodyPart processData(InputStream is) throws IOException {

try {
FileFactory fileFactory =
MimeConfig parserConfig = new MimeConfia(); : = :)3
parserConfig.setMaxHeaderLen(-1); N X) :
parserConfig.setMaxLineLen(-1); return MimePartStreamParser.parse(fileFactory, is);
parserConfig.setMaxHeaderCount(-1); } catch (Messaglng Xceprion el
parser = ser(parserConfig); Timber.e(e, "Something went wrong while parsihg the decrypted MIME part");
parser.setContentHandler(new PartBuilder(fileFactory, parsedRootPart)); //TODO: pass error to main thread and displa error message to user
parser.setRecurse();

return null;
try { }

throw new MessagingException("Failed to parse decrypted content", e);

}

return parsedRootPart;

calls service

18

Coordinator (CO)

is a software element that
 does not make decisions
* delegates work to other objects

 forwards info/requests

Signs of a CO class:
* Holding connection between working objects (SP, CT)
* Forwarding information and requests

* itisimportant to define which classes are requester and requestee
* information: method parameters; variables ...

 When a Service Provider becomes too big, it evolves into Coordinator
* Results of refactoring god classes

19

Coordinator Class - Example

| | | |
public static String createStoreUrifServerSettings server)l{

if (Type.IMAP == server.type)
return ImapStore.createlri(server);

} else if (Type.POP3 == server.type) {
return Pop3Store.createlri(server);

} else if (Type.WebDAV == server.type) {
return WebDavStore.createUri(server);

} else {
throw new IllegalArgumentException("Not a valid store URI");

}

O int SOCKET_CONNECT_TIMEOUT

O int SOCKET_READ_TIMEOUT

> StoreConfig mStoreConfig

> TrustedSocketFactory mTrustedSocketFactory
0 Map <String,Store> sStores

© RemoteStore(StoreConfig storeConfig, TrustedSocketFactory trustedSocketFactory)
o Store getinstance(Context context, StoreConfig storeConfig)

o void removelnstance(StoreConfig storeConfig)

@ ServerSettings decodeStoreUri(String uri)

@ String createStoreUri(ServerSettings server)

coordinates the works to
ImapStore, Pop3Store,
WebDavStore

20

Controller (CT)

is a software element that
* make decisions

e control complex tasks

A CT class might be characterized by:
* having class name ended with “Controller”, “Manager”

e Should have access to information holders, coordinators, or service
provider

* Its main responsibility is to make decision to control the flow of the
application
* Should contain condition statements (e.g. IF, IF ELSE, SWITCH CASE, x : ?)

* The decision should be at the higher level than decision made at SP/CO.

21

Controller Class - Example

recipientMvpView.recipientlolryPerformCompletion
recipientMvpView. rec1p1enthTryPerformCompletlon(),
recipientMvpView.recipientBccTryPerformCompletion();

if (recipientMvpView.recipientToHasUncompletedText()) {
recipientMvpView.showToUncompletedError();
return true;

}

if (recipientMvpView.recipientCcHasUncompletedText()) {
recipientMvpView.showCcUncompletedError();
return true;

}

if (recipientMvpView.recipientBccHasUncompletedText()) {
recipientMvpView.showBccUncompletedError();
return true;

}

rec1p1entMvpV1ew showNoRecipientsError();
return true;

}

return false;

Delegating the work

Controller

Update

User Action!

Model

View

22

Structurer (ST)

is a software element that
* maintains relationships between software components

* pools/collects/arranges a set of elements

A ST class might be characterized by:
e extends Java’s Collections framework
* contains a collection of objects (of other classes)

* has methods that maintaining relationships between objects in the
collection

* methods that manipulate the collection such as sort(), compare(), validate(),
remove(), updates(), add(), delete() ...

* methods that give access to the objects such as get(index), next(), hasNext() ...

23

Structurer - Example

holds a collection

accessing to the
collection

© IdentityAdapter

tinflater

Nl List<Object> mitems

@0verride
public int getItemViewType(int position) {

return (mItems.get(position) instanceof Account) ? @ : 1;
}

@0verride
public boolean isEnabled(int position) {

}

return (mItems.get(position) instanceof IdentityContainer);

@0verride
public Object getItem(int position) {
return mItems.get(position);

}

@0verride
public long getItemId(int position) {
return position;

}

o ldentityAdapter(Context context)

@ int getCount()

@ _int getViewTypeCount()

int getitemViewType(int position)
boolean isEnabled(int position)
Object getitem(int position)
long getitemld(int position)
@ boolean hasStablelds()

@ View getView(int position, View convertView, ViewGroup parent)
m String getldentityDescription(ldentity identity)

24

Interfacer

is a software element that

* transforms information or requests between distinct parts of the system

* User interfacer interacts with the users of the system, e.g. GUI components
* Internal interfacer exists between sub parts of the system, e.g. Data Management Tier

» External interfacer communicates with external systems, e.g. API, extension points of the
system

A ST class can be characterized by:

Contains Java Swing, AWT, and other Ul components
Manage user interface and handle user interaction

* In Android apps, this extends Activity classes
Encapsulates functions or objects in the system by
providing an Interface or an abstract class that can be
used outside of the system
If an interface is created but never implemented: may be

this serves as an extension point for the system
25

Role stereotypes

A

Service Provider (SP)
* performs specific work

» offers services

-er’, -or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
* knows/keeps information

* provides information

data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)

* transforms/converts
information and
requests btw SW layers

GUIl-related; storefront; API;
extension points

Controller (CT)
* makes decision
 control complex tasks

‘controller’, ’'manager’; logic
statements; knows IH, SP, CO

Z

Coordinator (CO)
* delegates works
- forwards info/requests

no/simple logic; knows
requester & requestee

> WD e

Structurer (ST)

» keeps/maintains
relationship

* pool, collects, arranges
objs
Collection; sort(); compare();

validate(); add(); remove(); ... 2©

Relationship between s
role stereotypes

uses
uses otifies Ran?y
I Vextends
-y \]
P4 uses [/
extelcds Coordinator]< Controller
V- returns
delegates uses
63 78
(63) (78) extends
\ 4 \ 4 PN
uses A
Service Provider Information Holder ,'
am v
stores
extends

Structurer

27

]
_’/extends

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Analysing Responsibility and
Collaborations of Objects
using CRC Card

28

} . E UNIVERSITY OF GOTHENBURG

CRC Cards

Candidate, Responsibilities, Collaborators
T |

wge@w/der
Bewtds » £ O SEECLONS Messane

Cresonts GUELTES to waer Pregsester I

CHALMERS |

Zontrols the petavg
- MesgageBuwlder
Purpose: The Megsageluwlder 18 & hub of

activity in t/e apolicetion It coordmates te
tnwng the presentstion oF guesses, tie I

—

83396 c.avxs‘fma‘m T costralives contro
ard ‘5 a core elemert of e control
areatecture

CHALMERS | UNIVERSITY OF GOTHENBURG
Candidate: :
: Message Builder
Name of the object 9
mponen . :
(component) Builds message from selection Message
—UPresents guesses to users Presenter
Responsibility J/
Controls the pacing \
\

/Message Builder
Purpose: The Message Builder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the
message construction. It centralizes control and
1s a core element of the control architecture

Corresponsing
collaborator

J

30

Example: ATM system

-

.

Display Screen

~

/

Cash Dispenser

Deposit Drawer

Special Normal Pad
Ke¥?ad
1(12]||3
1 [4][5][s
%::::% 7 8 9
Cancel 0
Key -
1 []
| Printer Bank Card
Reader

31

Example: ATM system

An automated teller machine (ATM) is a machine through
which bank customers can perform a number of financial
transactions. The machine consists of a display screen, a bank
card reader, input keys, a money dispenser slot, a deposit slot
and a receipt printer. The main menu contains a list of the
transactions that can be performed. These transactions
include:

e deposit funds to an account

* withdraw funds from an account

* transfer funds from one account to the other

e guery the balance of an account.

32

ATM class

The ATM class represents the teller machine. Its main

operations are to create and initiate transactions. This class
acts the following roles:

* a Controller role to both the Financial Subsystem and the
User Interface Subsystem.

ATM Class

Initiate Transaction User Interface

Execute Transaction User Interface

Financial Subsystem

* The Financial Subsystemimplements the financial
aspects of a customer's interaction with the ATM. Its main
operations are to execute the following financial
transactions; deposit (), withdraw (), transfer (),
and balance () on customer accounts. There is one
Financial Subsystem contractthat must execute all
the transactions. This subsystem acts as a Service Provider
which provides banking services for ATM Class.

Financial Subsystem

Deposit ATM Class
Withdraw ATM Class
Transfer ATM Class
Balance ATM Class

34

User Interface Subsystem

The User Interface Subsystemimplements the interface
between the ATM and the bank customer. The User Interface

Subsystem has three responsibilities 1)To get numeric values from
users. 2) Get users selection from menu. 3) To display messages and

wait for events.

This subsystem acts as an Interfacer role to receive and transform
requests from users to the system.

User Interface Subsystem

Get numeric values | ATM Class, Financial Subsystem

Get users selection | ATM Class, Financial Subsystem

Display messages ATM Class, Financial Subsystem

35

ATM collaboration graph

-
Financial
Subsystem

-

ATM

LT

User Interface
Subsystem

\

AVAWAWA

36

Does using role stereotype help
in improving design quality?

UNIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Boeing Brewery Case (1)

BOEING BOEING
Get vave id
Valve
Brewmaster Pipe
Get Scheduled, $
Y A— . = ‘,f ¢
‘. Are you 8 mixing vat
© exr Are you 8 botting vat
v""‘ t vat ref from vat id
GetIC Q’ -] Backr¥ Vave D
Temperature et Amptompy B o — -
Transfer Order -:g 3 Pump 81?':‘:"' ; =
e PO ~ Gt NeXt__ ury You Ciean? — .
Amppu & Awareness to Can't Determine
\ Empty Stog rer=] :mmv
Y Se i B merenas Koot
Fa Is Comploted Set Check Tmpiicios ’,46 w‘ﬂd Peater Tome & fwarsness Car Determie
Temperature Limit to‘ P W“VND ~ Set nUse
Set Open N
& Get next Container D
Valve ’ A t Don't Check Temperature Interconnect Container
g \A

Sat
Pump In /‘\ Uil Pumping ‘ Reset A / u
[Set Get container D
Pump Out ‘ Stop Get it ':" ht Areyou v e reset
A - .

Pump
FIGURE 6.3-10 TRANSFER A BATCH

FIGURE 7.3-10 TRANSFER A BATCH
System 1: Responsibility—-Focus System 2: Data-Focus

Case description: R. Sharble and S. Cohen “The Object-Oriented Brewery: A Comparison of
Two ObjectOriented Development Methods” Boeing Technical Report no. BC2-G4059, "

October, 1992.

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{88)) UNIVERSITY OF GOTHENBURG

System 2: Data-Focus

Container

Transfer

Order Scheduled

Transfer

Location of algorithm

Location of algorithm
O Location of data
Location of data

In the figure objects that were used by another have an arrow pointing at them. Objects enclosed in a rectangle
performed work, objects whose state was set or queried are encircled.

39
Comparison report: Report on Object Analysis and Design, Vol. 1, No. 4 by Rebecca Wirfs-Brock

http://www.wirfs-brock.com/PDFs/How%20Designs%20Differ.pdf

CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Boeing Brewery (3) - Design Quality Facts

C-K metrics

Weighted Methods per Class (WMC)
Depth of Inheritance (DIT)

Number of Children (NOC)

Coupling between Objects (CBO)
Response For a Class (RFC)

Lack of Cohesion in Methods (LCOM)

WAC :I
LCOM -

RFC i I

CBO @ Responsibility-Driven

o Data-Driven
NOC
DIT
WMC
(; 1(;0 200 300 400
Transfer Batch [P | | | L

Schedule Xfer
Record Reading
Monitor Match
Create Recip[e
Create Vat
Create Batch

Clean Containers :E
Bottle a Batch]

Add Inventory

m Responsibility Drive

- |

@ Data Driven

40

0 10 20 30 40

50 60 70

CHALME

UNIVERSITY OF TECHNOLOGY

RS |

K9-Mail Case (1)

§ UNIVERSITY OF GOTHENBURG

user-interface

e

(1.1.) user-interface-logic (1.2.)

content provider (2.1.)

provider.* | |

(Attachment,
DecryptedFile, Account) | |

intent provider (2.2.)

Presentation Layer (1.)

Service Layer (2.)

Business Fagade (3.1.)

controller.MessagingController

controller.MessagingControllerCommand

AlarmManager

API

1 Scheduling (3.2.1.)

service.*

m mailstore preferences
message.* account

Business Entity Components (3.4.)

mail.store
(imap, pop2, webdav)

mail_providers

Talk with mail-
providers (3.2.2.)

mail.helper

mail filter

MIME encoder |
decoder (3.2.3.)

mailstore.migrations

m mail.power § mail.message
mailstore.migrations mail.oauth

power
(IdleManager)
k9

Other (3.2.4.)

Business Workflow (3.2.)

Business Components (3.3.)

Business layer (3.)

mailstore.util mailstore

Data Access Layer (4.)

.
o
-
o
o

=
3
©

Cross-cutting

(5.)

SQLiteDB

41

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(%)) UNIVERSITY OF GOTHENBURG

Relationship between " extends (51)
role stereotypes mterfac‘er ‘-
K9—Mai| Case (2) 77 (9.88%) controls
notifies (9)
uses (109) uses (22) (37)
extends
e{{ends Coordinator Ses(Controller /) (22)
(12) 79 (10.14%) 20 (2.57%)
returns (23)
uses uses
144) (73)
delegates uses
(63) (78)
\ 4 extends
Service Provider uses Informatlon Holder L9_9)
323 (41.46%) 289 231 (29.65%) 2
extends .
(206) uses (10 storessOrganizes
(69)

Structurer
49 (6 29%)

uses (30)

|extends
s-/ (21)
Nurwidyantoro, A., Ho-Quang, T. and Chaudron, M.R., 2019. Automated classification of class role-stereotypes via 42

machine learning. In Proceedings of the Evaluation and Assessment on Software Engineering (pp. 79-88)
https://dl.acm.org/doi/abs/10.1145/3319008.3319016

https://dl.acm.org/doi/abs/10.1145/3319008.3319016

K9-Mail Case (3)
Collaboration Patterns between Role Stereotypes

<<INTERFACER>>
MessageContainerView

|

<<COORDINATOR>>

MessageWebView
<<INFORMATION <<SERVICE
HOLDER>> PROVIDER>>

Theme AttachmentResolver

K9-Mail Case (4)
Design Metrics of Role Stereotypes

Echo BEwmc

40
35
30
25

20

| ﬁi an a -l #‘ Ii

< < <
03‘0 oﬂ\e’e ao®® ’&‘e o o

Summary Part |

e Having a concrete view on role/responsibility is
vital to software design/quality.

* Role stereotypes can be used as a tool for:
e assigning roles to software elements (in design phase)

 comprehending work breakdown and collaboration
patterns in existing system

» Using CRC card when discussing/thinking of
responsibilities and collaborations of an object (can
be a component/subsystem/class)

45

Decomposition of Functionality

« Functional decomposition answer the
question: “What are the functions this
software must provide?”

« Decomposing is needed to define fine-
grain functions

« Functional requirements documents (FD) is
a textual representation of functional
decomposition. This can be used:

« as the first step of development
e as a base of contract with stakeholders

46

Subsystems vs Layering

Functional Dimension
(in the ‘problem domain’)

Layer 1

Layer 2

Layer 3

v

Decomposition in the
implementation /

technology stack 47

Subsystems vs Layering

Functional
Dimension

»

Layer 1

Layer 2

Layer 3

v

Decomposition in the
implementation /

technology stack 48

Example 1: Radio-Alarm Clock

49

Radio Alarm Clock (initial)

Identify from subsystems the radio-alarm clock can be built?
What should be the responsibility of each component?

radio C
—O
clock C
—O
timer O
—O

speaker

buttons

77 1T 11

display

50

Radio Alarm Clock

Naming: aim for generality

s o enderer

—O C speaker
O_
clock ! O—
O_
timer C
O_
O_

51

Radio Alarm Clock

radio
Internet- ,
music
stream C Speaker
O_
O_

tlmer
O_
52

Radio Alarm Clock

A ‘controller’ is an ‘integrator’ of all functionalities

music

clock

timer

bo by bl

N

T

controller

C speaker
O_
O— .

Input
O_
O output
O_

53

Radio Alarm Clock (with CRC
cards)

7

<<SP>> music

o
supply audio | controller —O
<<SP>> clock 0
indicate time | controller —O
<<SP>> timer 0
—F
set alarm controller —O

O <<SP>> speaker
O— | render audio controller
O <<SP>> input
O— | handle input controller
O <<SP>> output

¢
O— | handle output | controller

<<CT>> controller

controll things

All components

54

Radio Alarm Clock

Can your design easily accommodate extensions?

"

(wireless) atomic clock

temperature

Bat-alarm

Train strike/traffic delays

55

Which Design and Why?

Buy Ticket

~

[Payment }

(&

)

4 Book A
Hotel

[Payment]

- J

A

/ Buy Ticket \

1

[Payment]

—0)-

B

Book
Hotel

56

Factor out what is common

o =

Payment-functionality is

1) a common, generic service

2) aclear cohesive responsibility
3) a unit of change

57

Example 2: User-integrated semi-autonomous mowing system

User-integrated semi-autonomous mowing system

Monitor Navicate Montitor system Communicate
& health with user

Mow grass .
surroundings

Shows:
- Decomposition into main functions of the system

Does not show:

- How components are implemented
- IT does not show ‘power’ or ‘memory’!

AgriEngineering 2019, 1(3), 453-474; https://doi.org/10.3390/agriengineering1030033
Development of User-Integrated Semi-Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and Proposed Architecture 5y8
Albert E. Patterson,Yang Yuan and William R. Norris

Autonomous Grass Mower
Subsystem decomposition

Communicate Driver Surroundings
with User Monitor
Grass Mower Heallth
Monitor

User-integrated semi-autonomous mowing system

Mow grass

Control grass
height

Control cutting
speed

Evaluation of
cutting quality

Monitor
surroundings

Track instrument
signals

Monitor job
completion

Monitor weather

Locate obstacles

Monitor grass
quality and
conditions

Navigate

Localize

Plan path

Respond to
obstacles

Track yard
boundary

Montitor system
health

Track sensor
signals

Track power or
fuel level

Track vibration
and hardware
components

Communicate
with user

User interface

Shows:

- Sub-functions

AgriEngineering 2019, 1(3), 453-474; https://doi.org/10.3390/agriengineering1030033 0
Development of User-Integrated Semi-Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and Proposed Architecture%y
Albert E. Patterson,Yang Yuan and William R. Norris

Autonomous Grass Mower

Sub-subsystem decomposition

Communicate
with User

Driver

Localiser

Surroundings
Monitor

Planner

Grass Mower

Health
Monitor

61

Subsystems vs Layering

Functional Dimension

v

Communicate [~ Driver Surroundings
with User ' Monitor
Planner

l Health
Grass Mower Monitor

Layer 1

Layer 2

Layer 3

v

Decomposition in the
implementation / technology stack

Example Design Case 3: Web Shop

@ add item to
catalogue
add item to cart rerfove item

fram catalogue

customer
remove item from car
pay items in cart

package & ship

shop owner

63

Structure/Group Functionality

* Defines subsystems of functionality

* Purpose
* Define decomposition into subsystems
* Provide support for use-cases

* Think in terms of responsibilities

* Use Component diagram

64

Web Shop: Functional Areas (VO.1)

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Payment

Stock Control

65

Check Use Cases Against Functional Areas

@ Customer Shop Owner
Registration Registration
_____ add item to
““““““““ S catalogue
e ____ | Product Catalogue

\ Maintenance remove item
from catalogue
pay items in cart Payment | Stock Control add to stock
package & ship

66

add item to cart

Web Shop: Functional Areas

0.2)

register

Customer

Shop Owner
Registration Registration

___ Product Catalogue
Maintenance

add item to

catalogue
remove item

from catalogue

pay items in cart

Payment

" stock Control

add item to cart >~

Excluded from example

~x| Customer Selection | ® Paymentadm

Management e Shop staff salary adm

- .

Web Shop: Responsabilities

Customer Registration

Shop Owner Registration

Product Catalog Maint.

Cust. Selection Mngmt.

Maintain customer accounts

Maintain staff accounts

Maintain product data

Maintain customer product selection

Payment Handle payment between customer, shop & bank

Stock Control

Maintain availability of products in stock

68

Example 4:
Automated Plagiarism Checking System

« University can have subscriptions
« University-faculty can make accounts

« Faculty can send in documents for checking
 Documents are turned into a standard internal format

The document is segmented (chapters, section, sentences, ...)

Document is compared on a sentence by sentence basis.

A plagiarism score is produced

A report is sent to the person that sent in the document

« The system keeps records of use for producing yearly
accounting reports

69

Decomposition into Subsystems

70

Where do these sub-subsystems

71

72

Subsystems vs Layering

Functional
Dimension

»

Layer 1

Layer 2

Layer 3

v

Abstraction/Implementation
Dimension

73

Analysis & Design

In this course

Analysis is for: understanding & describing the domain

describes what : main concept & their relations

Design is for: synthesis of executable solution

describes how a construction of a solution should work

74

From Analysis to Design

ﬁroblem SpacelDomam

Actors
Actions
Processes

Responsibilities

Data

K Tactics/Styles /

Use Case
Diagram

Sequence / Activity
Diagram

Component Diagram
Class Diagram

Deployment Diagram

These are elements of analysis:

What is there?

/5

From Analysis to Design

Kroblem SpacelDomai}

Actors —

Actions

Processes
Behaviour

Responsibilities

Data

Tactics/Styles

E—

Use Case
Diagram

Sequence / Activity
Diagram

Component Diag.

]

Class Diagram

Deployment Diagram —|

= /

@olution SpacelDomaiN

—*User Interface Design
— - Features
- Test cases

Business Processes /
Workflows

Classes (Components)
& their behaviour

Data Collections

*

Following our terminology,
these are MODELS!

What’s next

Systems
Development

\

L

These are elements of
construction!

Deployment plan

%

/76

From Analysis to Initial Design

The OO paradigm has been designed such that Analysis and Design models look ‘alike’:
Classes that appear in a domain model, can also appear in a design model

Descriptive Models Prescriptive Models
/Problem SpacelDomain\ /Solution SpacelDomain\
Component/Class Components/Classes

Diagram & their behaviour

- J _)
These are elements of analysis: These are elements of construction:
What is there? How will it work?

77

From Analysis to Design

Descriptive Models Prescriptive Models
4E N a S I
S " Class handles input

(e.g. Ul-layer)
P > P
Process

Class handles process

(e.g. ordering) (e.g. business layer)

D . [D
KData-coIIection / Qable in data-base /
These are elements of analysis: These are elements of construction:

What is there? How will it work?

Summary Part [l

- Functional Decomposition vs Implementation
Decomposition

- Functional Decomposition as the first step to
analyse the system from the problem spaces

- Transition from Analysis (Problem Domain/Space)
to Design (Solution Domain/Space)

79

