
Truong Ho-Quang

Software Architecture
DAT220/DIT544

Truong Ho-Quang
truongh@chalmers.se

Software Engineering Division
Chalmers | GU

mailto:truongh@chalmers.se

Truong Ho-Quang

Decomposition and (Design) Patterns
• Đông Hồ painting

(Đông Hồ folk woodcut painting)

• Materials: Điệp paper
• Colors: Nature-made, 3-4 colors
• Woodblocks: to apply colors

• How?
• Decompose
• Make patterns (woodblocks)
• Apply colors

2

Decomposition
strategy: using colors

https://en.wikipedia.org/wiki/%C4%90%C3%B4ng_H%E1%BB%93_painting

Truong Ho-Quang

Schedule
Week Date Time Lecture Note
3 L1 Wed, 20 Jan 10:15 – 12:00 Introduction & Organization Truong Ho
3 L2 Thu, 21 Jan 13:15 – 15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15 – 12:00 Skip
4 S1 Wed, 27 Jan 10:15 – 12:00 << Supervision: Launch Assignment 1>> TAs
4 L3 Thu, 28 Jan 13:15 - 15:00 Roles/Responsibilities & Functional Decomposition Truong Ho
5 L4 Mon, 1 Feb 10:15 – 12:00 Architectural Styles P1 Truong Ho
5 S2 Wed, 3 Jan 10:15 – 12:00 << Supervision/Assignment>> TAs
5 L5 Thu, 4 Jan 13:15 – 15:00 Architectural Styles P2 Truong Ho
6 L6 Mon, 8 Feb 10:15 – 12:00 Architectural Styles P3 Sam Jobara
6 S3 Wed, 10 Feb 13:15 – 15:00 << Supervision/Assignment>> TAs
6 L7 Thu, 11 Feb 13:15 – 15:00 Design Principles (Maintainability, Modifiability) Truong Ho
7 L8 Mon, 15 Feb 10:15 – 12:00 Performance – Analysis & Tactics Truong Ho
7 S4 Wed, 17 Feb 13:15 – 15:00 << Supervision/Assignment>> TAs
7 L9 Thu, 18 Feb 10:15 – 12:00 Tactics: Reliability, Availability, Fault Tolerance TBD
8 L10 Mon, 22 Feb 13:15 – 15:00 Guest Lecture 1 TBD
8 S5 Wed, 24 Feb 13:15 – 15:00 << Supervision/Assignment>> TAs
8 L11 Thu, 25 Feb 10:15 – 12:00 Guest Lecture 2 TBD
9 L12 Mon, 1 Mar 13:15 – 15:00 Reverse Engineering & Correspondence Truong Ho
9 S6 Wed, 3 Mar 10:15 – 12:00 << Supervision/Assignment>> TAs
9 L13 Thu, 4 Mar 13:15 – 15:00 To be determined (exam practice?) Truong Ho
9 Fri, 5 Mar Whole day Group presentation of Assignment (TBD) Teachers
11 Exam 3

We are
HERE!

3

Truong Ho-Quang

Voluntary student representatives

- 5 students (Chalmers and GU)
- Randomly generated
- Will be contacted shortly

4

Recap of previous lectures
• L1: What, Why, How? SW Architecture
• L2: Architecting process, stakeholders,

views

5

Goals of this lecture
• Understand notion of Role, Responsibilities in

Software Architecture

• Understand functional decomposition and
common way of doing that (via examples)

• Understand the difference and transition
between analysis and design

6

Part I:
Roles & Responsibilities

<<INTERFACER>>
MessageContainerView

<<INFORMATION
HOLDER>>

Theme

<<SERVICE
PROVIDER>>

AttachmentResolver

<<IH>> <<SP>>

<<COORDINATOR>>
MessageWebView

Information Holder
231 (29.65%)

Service Provider
323 (41.46%)

Coordinator
79 (10.14%)

Controller
20 (2.57%)

Interfacer
77 (9.88%)

Structurer
49 (6.29%)

uses
(289)

uses (30)

uses (13)

extends (51)

uses
(73)

controls
(9)notifies

(37)

uses
(78)

extends
(22)

extends
(21)

extends
(206)

extends
(90)

extends
(12)

uses (109)

stores|organizes
(69)

uses (101)

uses (22)

returns (23)

delegates
(63)

uses
(144)

7

Theme/Objective
of this part

•Understand the importance of being aware of role
when designing software.

•Build vocabulary for characterizing role/responsibility
•a set of six(6) common roles (role stereotypes)
•collaborations between role stereotypes

•Exploring impacts of role/stereotype in design quality
metrics in two realistic cases

8

What is role & responsibility?

9

Where to find role/responsibility?

10

• To establish working scope
• To seek agreement
• To facilitate communication/collaboration

when performing tasks
• Less waste

Why defining role is so important?

11

Role & Responsibility in Software Design

• Software is a set of components that
– carry different roles
– collaborate with different components

• Being aware of component’s role when
designing would help to:
– achieve better distribution of responsibility
– manage complexity/communication
– avoid redundancy
– increase mainteability

12

Role Stereotypes
- Definition
- Relationships between role stereotypes

Stereotype
A conventional, formulaic, and oversimplified conception, opinion, or

image
(www.thefreedictionary.com)

13

Role Stereotypes
• The concept “role stereotype”

was introduced by Rebecca
Wirfs-Brock.

• The concept indicates generic
roles that an software object
plays in the design.

• It is recommended that each
object carries a single
role/responsibility.

Object Design: Roles, Responsibilities and Collaborations,
Rebecca Wirfs-Brock and Alan McKean, Addison-Wesley,

2003

• Service providers do things
• Interfacers translate requests and convert from one level of abstraction to another
• Information holders know things
• Controllers direct activities
• Coordinators delegate work
• Structurers manage object relations or organize large numbers of similar objects

14

Role stereotypes
Service Provider (SP)
• performs specific work
• offers services
’-er’, ’-or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
• knows/keeps information
• provides information
data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)
• transforms/converts

information and
requests btw SW layers

GUI-related; storefront; API;
extension points

Controller (CT)
•makes decision
• control complex tasks
’controller’, ’manager’; logic
statements; knows IH, SP, CO

Coordinator (CO)
• delegates works
• forwards info/requests
no/simple logic; knows
requester & requestee

Structurer (ST)
• keeps/maintains

relationship
• pool, collects, arranges

objs
Collection; sort(); compare();
validate(); add(); remove(); …

? ?
? ?
? ?

15

Information Holder (IH)

is a software element that
• keeps/knows information
• provides information to other elements

Example: An IH class might be characterized
by:

• The class may just contains attributes
• Methods, if any, could be

• Getters and setter
• Persistence methods, eg. saving to database or

implements Java’s Serializable interface
• Methods that are only used within the class

16

Service Provider (SP)

is a software element that
• performs specific works
• offers services to other elements on demand

A SP class can be characterized by:
• having name ended with “-er” (eg. Provider) or “-or” (eg. Creator,
Detector)

• has methods and attributes are easily accessed by other classes (often
static and public, or protected, not private)

• could be realization of a Interface
• decision making in methods should be at basic level, only to support

specific work

17

Service Provider Class - Example

calls service

18

Coordinator (CO)

is a software element that
• does not make decisions
• delegates work to other objects
• forwards info/requests

Signs of a CO class:
• Holding connection between working objects (SP, CT)
• Forwarding information and requests

• it is important to define which classes are requester and requestee
• information: method parameters; variables …

• When a Service Provider becomes too big, it evolves into Coordinator
• Results of refactoring god classes

19

Coordinator Class - Example

coordinates the works to
ImapStore, Pop3Store,

WebDavStore

20

Controller (CT)

is a software element that
• make decisions
• control complex tasks

A CT class might be characterized by:
• having class name ended with “Controller”, “Manager”
• Should have access to information holders, coordinators, or service

provider
• Its main responsibility is to make decision to control the flow of the

application
• Should contain condition statements (e.g. IF, IF ELSE, SWITCH CASE, x : ?)

• The decision should be at the higher level than decision made at SP/CO.

21

Controller Class - Example

Delegating the work

22

Structurer (ST)

is a software element that
• maintains relationships between software components
• pools/collects/arranges a set of elements

A ST class might be characterized by:
• extends Java’s Collections framework
• contains a collection of objects (of other classes)
• has methods that maintaining relationships between objects in the

collection
• methods that manipulate the collection such as sort(), compare(), validate(),

remove(), updates(), add(), delete() …
• methods that give access to the objects such as get(index), next(), hasNext() ...

23

Structurer - Example

holds a collection

accessing to the
collection

24

Interfacer
is a software element that

• transforms information or requests between distinct parts of the system
• User interfacer interacts with the users of the system, e.g. GUI components
• Internal interfacer exists between sub parts of the system, e.g. Data Management Tier
• External interfacer communicates with external systems, e.g. API, extension points of the

system

A ST class can be characterized by:
• Contains Java Swing, AWT, and other UI components

• Manage user interface and handle user interaction

• In Android apps, this extends Activity classes

• Encapsulates functions or objects in the system by

providing an Interface or an abstract class that can be

used outside of the system

• If an interface is created but never implemented: may be

this serves as an extension point for the system
25

Role stereotypes
Service Provider (SP)
• performs specific work
• offers services
’-er’, ’-or’; public static
methods; might contains
some logics to do specific
tasks.

Information Holder (IH)
• knows/keeps information
• provides information
data encapsulation; get/set
methods; private/internal
methods

Interfacer (IF)
• transforms/converts

information and
requests btw SW layers

GUI-related; storefront; API;
extension points

Controller (CT)
•makes decision
• control complex tasks
’controller’, ’manager’; logic
statements; knows IH, SP, CO

Coordinator (CO)
• delegates works
• forwards info/requests
no/simple logic; knows
requester & requestee

Structurer (ST)
• keeps/maintains

relationship
• pool, collects, arranges

objs
Collection; sort(); compare();
validate(); add(); remove(); … 26

Information HolderService Provider

Coordinator Controller

Interfacer

Structurer

uses

uses

uses

extends

uses

controls

notifies

uses
(78)

extends

extends

extends

extends

extends

uses

stores|organizesuses

uses

returns

delegates
(63)

uses

Relationship between
role stereotypes

27

Analysing Responsibility and
Collaborations of Objects

using CRC Card

28

29 29

Truong Ho-Quang

CRC Card

Message Builder
Purpose: The Message Builder is a hub of
activity in the application. It coordinates the
timing, the presentation of guesses, the
message construction. It centralizes control and
is a core element of the control architecture

Message Builder

Builds message from selection Message

Presents guesses to users Presenter

Controls the pacing

Candidate:
Name of the object
(component)

Responsibility

Corresponsing
collaborator

30

Display Screen

Cash Dispenser Deposit Drawer

Special
Keypad

Cancel
Key

Normal Pad

Printer Bank Card
Reader

1 2 3

4 5 6

7 8 9

0 .

Example: ATM system

31

Example: ATM system

An automated teller machine (ATM) is a machine through
which bank customers can perform a number of financial
transactions. The machine consists of a display screen, a bank
card reader, input keys, a money dispenser slot, a deposit slot
and a receipt printer. The main menu contains a list of the
transactions that can be performed. These transactions
include:

• deposit funds to an account
• withdraw funds from an account
• transfer funds from one account to the other
• query the balance of an account.

32

ATM class

The ATM class represents the teller machine. Its main
operations are to create and initiate transactions. This class
acts the following roles:
• a Controller role to both the Financial Subsystem and the
User Interface Subsystem.

ATM Class

Initiate Transaction User Interface

Execute Transaction User Interface

33

Financial Subsystem
• The Financial Subsystem implements the financial

aspects of a customer's interaction with the ATM. Its main
operations are to execute the following financial
transactions; deposit(), withdraw(),transfer(),
and balance() on customer accounts. There is one
Financial Subsystem contract that must execute all
the transactions. This subsystem acts as a Service Provider
which provides banking services for ATM Class.

Financial Subsystem

Deposit ATM Class

Withdraw ATM Class

Transfer ATM Class

Balance ATM Class
34

User Interface Subsystem

The User Interface Subsystem implements the interface
between the ATM and the bank customer. The User Interface
Subsystem has three responsibilities 1)To get numeric values from
users. 2) Get users selection from menu. 3) To display messages and
wait for events.
This subsystem acts as an Interfacer role to receive and transform
requests from users to the system.

User Interface Subsystem

Get numeric values ATM Class, Financial Subsystem

Get users selection ATM Class, Financial Subsystem

Display messages ATM Class, Financial Subsystem

35

ATM collaboration graph

36

Does using role stereotype help
in improving design quality?

Boeing Brewery Case (1)

Case description: R. Sharble and S. Cohen “The Object-Oriented Brewery: A Comparison of
Two ObjectOriented Development Methods” Boeing Technical Report no. BC2-G4059,
October, 1992.

System 2: Data-FocusSystem 1: Responsibility-Focus

38

Boeing Brewery Case (2)

Comparison report: Report on Object Analysis and Design, Vol. 1, No. 4 by Rebecca Wirfs-Brock

System 2: Data-FocusSystem 1: Responsibility-Focus

In the figure objects that were used by another have an arrow pointing at them. Objects enclosed in a rectangle
performed work, objects whose state was set or queried are encircled.

39

http://www.wirfs-brock.com/PDFs/How%20Designs%20Differ.pdf

Boeing Brewery (3) – Design Quality Facts
C-K metrics
Weighted Methods per Class (WMC)
Depth of Inheritance (DIT)
Number of Children (NOC)
Coupling between Objects (CBO)
Response For a Class (RFC)
Lack of Cohesion in Methods (LCOM)

40

K9-Mail Case (1)

Business layer (3.)

Presentation Layer (1.)

Data Access Layer (4.)

SQLiteDB

user-interface-logic (1.2.)

Service Layer (2.)

mail_providers

Cross-cutting
(5.)

intent provider (2.2.)

AlarmManager
API

content provider (2.1.)

activity.*

fragment.*user-interface
(1.1.)

layout (.xml
files, .kt)

Business Components (3.3.)

Business Entity Components (3.4.)

Business Workflow (3.2.)

MIME encoder |
decoder (3.2.3.)

mail.internet
mail.helper
mail.filter

Scheduling (3.2.1.)

mail

mail.powermail.ssl

mail.oauth

mailstore

mail.message

k9

account

Business Façade (3.1.)

controller.MessagingController controller.MessagingControllerCommand
uses

cr
yp

to

he
lp

er

ui.* provider.*
(Attachment,

DecryptedFile, Account)

search

message.*

mailstore

mailstore.migrations

mailstore.util

view

au
to

cr
yp

t

ca
ch

e

notification

widget.list

preferences

power
(IdleManager)

mailstore.migrations

Talk with mail-
providers (3.2.2.)

mail.store
(imap, pop2, webdav)

mail.transport

service.*

com.fsck.k9.intent.action.*

com.fsck.k9.intent.extra

Other (3.2.4.)

41

Relationship between
role stereotypes
K9-Mail Case (2)

Information Holder
231 (29.65%)

Service Provider
323 (41.46%)

Coordinator
79 (10.14%)

Controller
20 (2.57%)

Interfacer
77 (9.88%)

Structurer
49 (6.29%)

uses
(289)

uses (30)

uses (13)

extends (51)

uses
(73)

controls
(9)notifies

(37)

uses
(78)

extends
(22)

extends
(21)

extends
(206)

extends
(90)

extends
(12)

uses (109)

stores|organizes
(69)

uses (101)

uses (22)

returns (23)

delegates
(63)

uses
(144)

Nurwidyantoro, A., Ho-Quang, T. and Chaudron, M.R., 2019. Automated classification of class role-stereotypes via
machine learning. In Proceedings of the Evaluation and Assessment on Software Engineering (pp. 79-88).
https://dl.acm.org/doi/abs/10.1145/3319008.3319016

42

https://dl.acm.org/doi/abs/10.1145/3319008.3319016

<<INTERFACER>>
MessageContainerView

<<INFORMATION
HOLDER>>

Theme

<<SERVICE
PROVIDER>>

AttachmentResolver

<<IH>>
<<SP>>

<<COORDINATOR>>
MessageWebView

K9-Mail Case (3)
Collaboration Patterns between Role Stereotypes

43

K9-Mail Case (4)
Design Metrics of Role Stereotypes

Coordinator

Service Provider

Information Holder

Structurer

Interfacer

Controller
0

5

10

15

20

25

30

35

40

cbo wmc

Quality
 Assu

rance

44

Summary Part I
• Having a concrete view on role/responsibility is

vital to software design/quality.
• Role stereotypes can be used as a tool for:
• assigning roles to software elements (in design phase)
• comprehending work breakdown and collaboration

patterns in existing system

• Using CRC card when discussing/thinking of
responsibilities and collaborations of an object (can
be a component/subsystem/class)

45

Decomposition of Functionality

• Functional decomposition answer the
question: “What are the functions this
software must provide?”
• Decomposing is needed to define fine-

grain functions
• Functional requirements documents (FD) is

a textual representation of functional
decomposition. This can be used:
• as the first step of development
• as a base of contract with stakeholders

46

Subsystems vs Layering

Tic
ke

tin
g

Pay
ment

Gro
up

Interac
tio

n
Queue Le

ngth

Layer 1

Layer 2

Layer 3

Decomposition in the
implementation /
technology stack

Functional Dimension
(in the ‘problem domain’)

47

Subsystems vs Layering

Tic
ke

tin
g

Pay
ment

Gro
up

Interac
tio

n
Queue Le

ngth

Layer 1

Layer 2

Layer 3

Decomposition in the
implementation /
technology stack

UI

Functional
Dimension

DB

48

Example 1: Radio-Alarm Clock

49

Radio Alarm Clock (initial)

clock

radio

timer display

buttons

speaker

Identify from subsystems the radio-alarm clock can be built?
What should be the responsibility of each component?

50

Radio Alarm Clock

clock

music

timer

output

input

speaker

Naming: aim for generality

audio
supplier

time supplier

Alarm time supplier

audio renderer

input handler

output handler

51

Radio Alarm Clock

clock

music

timer

output

input

speaker

audio
supplier

time supplier

Alarm time supplier

audio renderer

input handler

output handler

radio
CD

Internet-
stream

52

53

Radio Alarm Clock

clock

music

timer output

input

controller

speaker

A ‘controller’ is an ‘integrator’ of all functionalities

53

Radio Alarm Clock (with CRC
cards)

<<SP>> music

supply audio controller

<<SP>> clock

indicate time controller

<<SP>> timer

set alarm controller

<<SP>> speaker

render audio controller

<<SP>> input

handle input controller

<<SP>> output

handle output controller

<<CT>> controller

controll things All components 54

Radio Alarm Clock
Can your design easily accommodate extensions?

lamp

temperature

Train strike/traffic delays

Bat-alarm

Alarm-time

(wireless) atomic clock
55

Buy Ticket

Which Design and Why?

Payment

Book
Hotel

Payment

Buy Ticket

Payment

Book
Hotel

A B
56

Factor out what is common
Buy Ticket Book

Hotel

Payment

Payment-functionality is
1) a common, generic service
2) a clear cohesive responsibility
3) a unit of change

57

AgriEngineering 2019, 1(3), 453-474; https://doi.org/10.3390/agriengineering1030033
Development of User-Integrated Semi-Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and Proposed Architecture by
Albert E. Patterson,Yang Yuan and William R. Norris

Shows:
- Decomposition into main functions of the system

Does not show:
- How components are implemented
- IT does not show ‘power’ or ‘memory’!

Alt: responsibilities / tasks

Not at this ‘perspective’/abstraction

Example 2: User-integrated semi-autonomous mowing system

58

Autonomous Grass Mower
Subsystem decomposition

Communicate
with User

Health
Monitor

Surroundings
Monitor

Grass Mower

Driver

59

AgriEngineering 2019, 1(3), 453-474; https://doi.org/10.3390/agriengineering1030033
Development of User-Integrated Semi-Autonomous Lawn Mowing Systems: A Systems Engineering Perspective and Proposed Architecture by
Albert E. Patterson,Yang Yuan and William R. Norris

Shows:
- Sub-functions

60

Autonomous Grass Mower
Sub-subsystem decomposition

Communicate
with User

Health
Monitor

Surroundings
Monitor

Grass Mower

Driver

Localiser
Planner

61

Subsystems vs Layering

Layer 1

Layer 2

Layer 3

Decomposition in the
implementation / technology stack

Functional Dimension
(in the ‘problem domain’)

Communicate
with User

Health
Monitor

Surroundings
Monitor

Grass Mower

Driver
Localiser
Planner

62

Example Design Case 3: Web Shop

customer shop owner

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

remove item
from catalogue

package & ship

add to stock

63

Structure/Group Functionality
• Defines subsystems of functionality
• Purpose
• Define decomposition into subsystems
• Provide support for use-cases

• Think in terms of responsibilities

• Use Component diagram

64

Web Shop: Functional Areas (V0.1)

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Payment Stock Control

65

Check Use Cases Against Functional Areas

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Payment

register

search

add item to cart remove item from cart

login

pay items in cart

add item to
catalogue

Stock Control

package & ship

add to stock

remove item
from catalogue

login

66

Web Shop: Functional Areas
(V0.2)

Customer
Registration

Shop Owner
Registration

Product Catalogue
Maintenance

Payment

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

Stock Control

package & ship

add to stock

remove item
from catalogue

login

Customer Selection
Management

Excluded from example
• Payment adm
• Shop staff salary adm
• ...

67

Web Shop: Responsabilities

Customer Registration

Shop Owner Registration

Product Catalog Maint.

Payment

Stock Control

Maintain customer accounts

Maintain staff accounts

Maintain product data

Handle payment between customer, shop & bank

Maintain availability of products in stock

Cust. Selection Mngmt. Maintain customer product selection

68

Example 4:
Automated Plagiarism Checking System

• University can have subscriptions

• University-faculty can make accounts

• Faculty can send in documents for checking
• Documents are turned into a standard internal format
• The document is segmented (chapters, section, sentences, …)
• Document is compared on a sentence by sentence basis.
• A plagiarism score is produced
• A report is sent to the person that sent in the document

• The system keeps records of use for producing yearly
accounting reports

69

Decomposition into Subsystems
Account

Registration

External
Paper Loader

Paper
Repository

Submission
Loader

ComparatorReport
Generator

70

Where do these sub-subsystems
go?

Account
Registration

External
Paper Loader

Paper
Repository

Submission
Loader

File Converter

File Segmenter

Comparator

Comparator

Compute Score

Report
Generator

University
Reporting

Paper Reporter

71

Account
Registration

External
Paper Loader

Paper
Repository

Submission
Loader

File Converter

File Segmenter

Comparator

Comparator

Compute
Score

Report
Generator

University
Reporting

Paper
Reporter

72

Subsystems vs Layering

Layer 1

Layer 2

Layer 3

Abstraction/Implementation
Dimension

Functional
Dimension

Account
Registration

External
Paper Loader

Paper
Repository

Submission Loader
File Converter

File Segmenter

Comparator
Comparator

Comp.ScoreReport Generator
Univ. Reprting

Ppr Reporter

73

Analysis is for: understanding & describing the domain

describes what : main concept & their relations

Design is for: synthesis of executable solution

describes how a construction of a solution should work

Analysis & Design
In this course

74

From Analysis to Design

Problem Space/Domain

Actors

Actions

Data

Processes

Use Case
Diagram

Sequence / Activity
Diagram

Responsibilities Component Diagram
Class Diagram

These are elements of analysis:
What is there?

Tactics/Styles Deployment Diagram

75

From Analysis to Design

Problem Space/Domain

Actors

Actions

Data

Processes
Behaviour

Use Case
Diagram

Sequence / Activity
Diagram

Responsibilities
Component Diag.

Class Diagram

Following our terminology,
these are MODELS!

Solution Space/Domain

- User Interface Design
- Features
- Test cases

Business Processes /
Workflows

Classes (Components)
& their behaviour

Data Collections

These are elements of
construction!

Tactics/Styles Deployment Diagram
Deployment plan

What’s next

Systems
Development

76

From Analysis to Initial Design

Problem Space/Domain

Component/Class
Diagram

The OO paradigm has been designed such that Analysis and Design models look ‘alike’:
Classes that appear in a domain model, can also appear in a design model

Solution Space/Domain

Components/Classes
& their behaviour

These are elements of construction:
How will it work?

Descriptive Models Prescriptive Models

These are elements of analysis:
What is there?

77

From Analysis to Design

These are elements of construction:
How will it work?

Descriptive Models Prescriptive Models

These are elements of analysis:
What is there?

Sensor

S S
Class handles input
(e.g. UI-layer)

Data-collection

D

Table in data-base

D

Process
(e.g. ordering)

P P
Class handles process
(e.g. business layer)

78

Summary Part II
- Functional Decomposition vs Implementation

Decomposition

- Functional Decomposition as the first step to
analyse the system from the problem spaces

- Transition from Analysis (Problem Domain/Space)
to Design (Solution Domain/Space)

79

