
Truong Ho-Quang

Architectural Principles

Truong Ho-Quang
truongh@chalmers.se

mailto:truongh@chalmers.se


Truong Ho-Quang

Schedule
Week Date Time Lecture Note
3 L1 Wed, 20 Jan 10:15 – 12:00 Introduction & Organization Truong Ho
3 L2 Thu, 21 Jan 13:15 – 15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15 – 12:00 Skip
4 S1 Wed, 27 Jan 10:15 – 12:00 << Supervision: Launch Assignment 1>> TAs
4 L3 Thu, 28 Jan 13:15 - 15:00 Roles/Responsibilities & Functional Decomposition Truong Ho
5 L4 Mon, 1 Feb 13:15 – 15:00 Architectural Styles P1 Truong Ho
5 S2 Wed, 3 Jan 10:15 – 12:00 << Supervision/Assignment>> TAs
5 L5 Thu, 4 Jan 13:15 – 15:00 Architectural Styles P2 Sam Jobara
6 L6 Mon, 8 Feb 13:15 – 15:00 Architectural Styles P3 Truong Ho
6 S3 Wed, 10 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
6 L7 Thu, 11 Feb 13:15 – 15:00 Design Principles (Maintainability, Modifiability) Truong Ho
7 L8 Mon, 15 Feb 13:15 – 15:00 Architectural Tactics & Analysis Truong Ho
7 S4 Wed, 17 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
7 L9 Thu, 18 Feb 13:15 – 15:00 Architecture Evaluation Truong Ho
8 L10 Mon, 22 Feb 13:15 – 15:00 Reverse Engineering & Correspondence Truong Ho
8 S5 Wed, 24 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
8 L11 Thu, 25 Feb 13:15 – 15:00 Guest Lecture 1 TBD
9 L12 Mon, 1 Mar 13:15 – 15:00 Guest Lecture 2: Architectural Changes in Volvo AB Anders M.
9 S6 Wed, 3 Mar 10:15 – 12:00 << Supervision/Assignment>> TAs
9 L13 Thu, 4 Mar 13:15 – 15:00 To be determined (exam practice?) Truong Ho
9 Fri, 5 Mar Whole day Group presentation of Assignment (TBD) Teachers
11 Exam

We are 
HERE!



Truong Ho-Quang

Schedule
Week Date Time Lecture Note
3 L1 Wed, 20 Jan 10:15 – 12:00 Introduction & Organization Truong Ho
3 L2 Thu, 21 Jan 13:15 – 15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15 – 12:00 Skip
4 S1 Wed, 27 Jan 10:15 – 12:00 << Supervision: Launch Assignment 1>> TAs
4 L3 Thu, 28 Jan 13:15 - 15:00 Roles/Responsibilities & Functional Decomposition Truong Ho
5 L4 Mon, 1 Feb 13:15 – 15:00 Architectural Styles P1 Truong Ho
5 S2 Wed, 3 Jan 10:15 – 12:00 << Supervision/Assignment>> TAs
5 L5 Thu, 4 Jan 13:15 – 15:00 Architectural Styles P2 Sam Jobara
6 L6 Mon, 8 Feb 13:15 – 15:00 Architectural Styles P3 Truong Ho
6 S3 Wed, 10 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
6 L7 Thu, 11 Feb 13:15 – 15:00 Design Principles (Maintainability, Modifiability) Truong Ho
7 L8 Mon, 15 Feb 13:15 – 15:00 Architectural Tactics & Analysis Truong Ho
7 S4 Wed, 17 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
7 L9 Thu, 18 Feb 13:15 – 15:00 Architecture Evaluation Truong Ho
8 L10 Mon, 22 Feb 13:15 – 15:00 Reverse Engineering & Correspondence Truong Ho
8 S5 Wed, 24 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
8 L11 Thu, 25 Feb 13:15 – 15:00 Guest Lecture 1 TBD
9 L12 Mon, 1 Mar 13:15 – 15:00 Guest Lecture 2: Architectural Changes in Volvo AB Anders M.
9 S6 Wed, 3 Mar 10:15 – 12:00 << Supervision/Assignment>> TAs
9 L13 Thu, 4 Mar 13:15 – 15:00 To be determined (exam practice?) Truong Ho
9 Fri, 5 Mar Whole day Group presentation of Assignment (TBD) Teachers
11 Exam



Truong Ho-Quang

Assignment schedule
Week Date Lecture Assignment 1 –

Task 1 (A1T1)
Assignment 1 –
Task 2 (A1T2)

Assignment 2 
(A2)

3 L1 Wed, 20 Jan 10:15 – 12:00
3 L2 Thu, 21 Jan 13:15 – 15:00
4 Tue, 26 Jan 10:15 – 12:00
4 S1 Wed, 27 Jan 10:15 – 12:00 Launch A1T1
4 L3 Thu, 28 Jan 13:15 - 15:00
5 L4 Mon, 1 Feb 13:15 – 15:00
5 S2 Wed, 3 Jan 10:15 – 12:00 Work A1T1
5 L5 Thu, 4 Jan 13:15 – 15:00
6 L6 Mon, 8 Feb 13:15 – 15:00
6 S3 Wed, 10 Feb 10:15 – 12:00 Work A1T1
6 L7 Thu, 11 Feb 13:15 – 15:00 Hand-in A1T1

Peer Rev A1T1
A1T2 released

7 L8 Mon, 15 Feb 13:15 – 15:00
7 S4 Wed, 17 Feb 10:15 – 12:00 Hand-in PR 

A1T1
MQTT intro A2 released

7 L9 Thu, 18 Feb 13:15 – 15:00
8 L10 Mon, 22 Feb 13:15 – 15:00
8 S5 Wed, 24 Feb 10:15 – 12:00 Work A1T2
8 L11 Thu, 25 Feb 13:15 – 15:00
9 L12 Mon, 1 Mar 13:15 – 15:00
9 S6 Wed, 3 Mar 10:15 – 12:00 Work A1T2 Hand-in A2
9 L13 Thu, 4 Mar 13:15 – 15:00
9 Fri, 5 Mar Whole day Present A1T2
11 Exam

Hand-in 
deadline

today



Software Architecture

Outline
n Recap

¨ Architectural Styles
n Design Principles
n Tactics

5



Software Architecture

Learning Objectives
n Know/explain design principles
n Apply design principles
n Recognize violations of design principles

n Hint: try if you can think up a counter-
example for each design principle

6



MRV Chaudron

Advice on Design of Software
• Generic Design Principles
• Principles for Architectural Design
• Principles for Design of Components
• Principles for collaboration amongst Components

Design =  trade-offs = gray area     
è Principles are heuristics

Not today: User Interface design, protocol design

7



Software Architecture

General Software - Design Principles 1

8

Information Hiding:
All information about a module should be private to
the module unless required externally

Minimize Coupling
Every module should depend on as few 
others as possible

Coherence:
Keep things together that belong together
Keep behaviour together with related data
Keep information about one thing in one place



Software Architecture

General Software Design Principles 2

9

Divide and Conquer
Break a big problem into smaller ones

Separation of Concerns
Divide into different parts logic

that addresses different issues

Keep it Simple



Software Architecture

Motivation:
Increasing amount of software in systems

10

Nb: logarithmic scale
The amount of software 
increases 10 fold every 10 years

Code Size Evolution of High End TV Software

2
4

8
16

32
64

256
512

1024
2048

12000

3000
4096

32000

100000

64000

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Year of Market Introduction

Kb
yt

es



Software Architecture

Software Evolves ‘Organically’

11



Software Architecture

Increasing Complexity of Software

Bl
ow

, J
. "

G
am

e 
D

ev
el

op
m

en
t: 

H
ar

de
r T

ha
n 

Yo
u 

Th
in

k.
" A

C
M

 Q
ue

ue



Software Architecture

Complexity of Software 
Slide by prof. Jurgen Vinju

13



Software Architecture

The 5 Complexity Dimensions of Software

14

Complexity in this regard means complex for humans to understand and contribute to.

1. Scale. The larger the system, the more complex.
2. Diversity. The more frameworks, languages, integration techniques, tools, platforms, 

and design patterns used, the more complex.
3. Connectivity. The more connections, the more complex. This relates to coupling.
4. Dynamics. The more number of states or the larger state space, the more complex.
5. Refinement. Over time every living piece of software is refined, optimized, and polished. 

Corner cases are found and handled, and regression test suites grow. Refinement drives 
complexity.

From : John Wilander http://appsandsecurity.blogspot.com/2011/03/5-complexity-dimensions-of-software.html

http://en.wikipedia.org/wiki/Coupling_%28computer_programming%29


Software Architecture

15

n Decomposition
Break problem into independent smaller parts

Independent?

Generic Design Principles



Software Architecture

Single Responsibility
n What is a responsibility?

¨ Rebecca Wirfs-Brock role-stereotypes
¨ Depends on level of design
¨ Relates to Parnas’ principle of Information Hiding:

n The responsibility relates to the secret
¨ E.g. sorting
¨ Viewer: way of displaying information
¨ Model: storing & querying information

¨Alternative formulation (‘Uncle Bob’):
n A class should have only one reason to change

16



Software Architecture

Design Principle : Divide and conquer
n Trying to deal with something big all at once is 

harder than dealing with a set of smaller things
¨ Each individual component is smaller,

and therefore easier to understand

¨ Parts can be replaced or changed 
without having to replace or extensively 
change other parts.

¨ Separate people can work on separate parts

¨ An individual software engineer can specialize



Software Architecture

18

Ways of dividing a software system

A system can be divided up into 
• Layers & subsystems

• A subsystem can be divided 

up into one or more packages

• A package is divided up into classes

• A class is divided up into methods



Software Architecture

Subsystems vs Layering

Ste
erin

g 
Sy

ste
m

Brak
ing

Sy
ste

m

Comfort
Sy

ste
m

Driv
ing 

Assi
st 

Sy
ste

m

Layer 1

Layer 2

Layer 3

Abstraction/Implementation 
Dimension

Functional 
Dimension



Software Architecture

20

Layering

2
1
0

3Partitioning in non-overlapping units that 
- provide a cohesive set of services at an

abstraction level
(while abstracting from their implementation)

- layer n is allowed to use services of layer n-1
(and not vice versa)
alternative:

bridging layers: layer n may use layers <n
enhances efficiency but hampers portability

Goals: Separation of Concerns, Abstraction, Modularity, Portability



Software Architecture

23

A Component-based Reference 
Architecture for Computer Games 

(E. Folmer, 2007)

generic
specific



Software Architecture

24

Example

«layer»
Business Layer

«layer»
Common Elements

«layer»
Presentation and Dialogue Layer

«layer»
Persistence Layer

«subsystem»
P

«subsystem»
M

«subsystem»
F

«subsystem»
D

«subsystem»
C

«subsystem»
M

«subsystem»
P«subsystem»

M

«subsystem»
F

«subsystem»
D«subsystem»

C

«subsystem»
M

«subsystem»
P

«subsystem»
D

«subsystem»
M

«subsystem»
F

«subsystem»
C

«subsystem»
M

«subsystem»
Client / Browser

«subsystem»
E

«subsystem»
Apache 

«subsystem»
RC

«subsystem»
JR

«subsystem»
PL

«subsystem»
S

«subsystem»
Client Authentication

«subsystem»
Data Security



Software Architecture

25

What is a dependency?

• Component A requires B for it to work
• Functional coupling

• A change in module B requires a change in 
module A
• Implementation coupling 
• Typically requires: re-testing A & B

Run-time

Development-time

A

B

A depends on B



Software Architecture

Dependency/Coupling
There is coupling between two classes A and B if:
• A calls a service of an object B
• A has a method which references B

(via return type or parameter)
• A has an attribute that refers to B
• A is of type (inherits from) B

• A is a subclass of (or implements) class B

26

This is not an exhaustive definition
A may depend on 

some assumption on 
another component B



Software Architecture

Architecture Design Principles

n Dependencies direct in the direction of stability

27

A

B

B should be 
less likely to change

than A



Software Architecture

Dependency: Coupling

28

Coupling is the degree of interdependence 
between modules

high coupling low coupling



M. R.V. Chaudron – May 2011

Cohesion

Cohesion is concerned with the 
relatedness within a module

Convert Q-length
to WaitTime

Count People
in Queue

Provide Ride Waiting Time

GPS



Software Architecture

Benefits of Low Coupling/Dependencies
1. Modules are easier to replace
2. fewer interconnections between modules reduce time 

needed for understanding the modules and interactions
3. fewer interconnections between modules reduce the 

chance that changes in one module cause problems in 
other modules, which enhances reusability

4. fewer interconnections between modules reduce the 
chance that a fault in one module will cause a failure in 
other modules, which enhances robustness

30

Page-Jones, M. 1980. The Practical Guide to Structured Systems Design. New York, Yourdon Press, 1980.



Software Architecture

What to avoid: many dependencies

32

Only 25 classes!



Software Architecture

Reducing Coupling: Information Hiding
n Information Hiding:

¨ Try to localize future change
¨ Hide system details likely to change independently
¨ Separate parts that are likely to have a different rate of change
¨ In interfaces expose only assumptions unlikely to change

n Why is information hiding a good idea?
¨ which types of coupling are prevented/reduced?

33



Software Architecture

Information Hiding
Information Hiding is a means of avoiding dependencies.

n Minimize the information interfaces disclose about 
the inner-workings of components
¨ Balance with genericity

n Information hiding aims at avoiding dependencies on
implementation details

n Corollary:
¨ Components typically encapsulate volatile technologies

34



Software Architecture

David Parnas
n We propose that one begins with a list of:

¨ difficult design decisions, or 
¨ design decisions which are likely to change

Each module is then designed to hide such a decision 
from the other modules.

35

n Goal: ISOLATE CHANGE
n Means: Information hiding, minimizing dependencies

I advise students to pay more attention to the 
fundamental ideas rather than the latest technology. 

The technology will be out-of-date before they 
graduate. Fundamental ideas never get out of date. 

David Parnas
1941-…



Software Architecture

Design Principle: Information Hiding

¨ what is inside, must stay inside. 

36



Software Architecture

WHAT versus HOW
n ‘WHAT’: think Responsibility, Declarative 
n Mechanisms are about ‘HOW’

37

WHAT: Build a house

HOW: stone, sticks, straw



Software Architecture

Example: Change implementation

38

Builder

Build_House()

Public Interface

straw

stone

Sorter

Sort()

Bubble
sort

Quick
sort

Database

Store()

CloudDB

Supports evolution and platform-independence



Software Architecture

Example 1
n IPrimeEncrypt(m,p)
n ICeasarEncrypt(m,s)
n IEncrypt(m)

Information hiding guides the design of the interface

The interface should aim to be:
n generic

¨ We can do this by stating ‘what’, but not ‘how’
¨ We can do this by avoiding unnecessary parameters in the calling 

of the component

39



Software Architecture

Example 2
n Steer a vehicle

n Interface
¨Option 1: Isteer = { TurnLeft, TurnRight }
¨Option 2: Isteer = { PressLeft, PressRight }
¨Option 3: Isteer = { Left, Right }

40



Software Architecture

Alternative Interfaces

n Traffic Light

41

What should the interface of the traffic light 
look like?

Which secrets to hide?
which abstraction to expose via the interface?

Take 3 minutes to design your own interface



Software Architecture

Traffic Light - Alternative Interfaces

42

Traffic Light1
• Reset()

– Postcondition: RED
• Run()

– RedàGreenà
Orangeà Red

• SetIntervalDuration(t)

Traffic Light2
• SetRed(On/Off):Exc
• SetOrange(On/Off):Exc
• SetGreen(On/Off):Exc
• Blink/Disco()
• GetState(…)

Traffic Light3
• Halt()
• Warn()
• Drive()

‘Secrets’
– Actual colours
– Initial state
– Order of lights

(easy to change)
– ‘On’ is Mutual 

exclusive 

‘Secrets’
– Initial state
– Order of states

‘Secrets’
– Actual colours
– Initial state
– Order of states

More Generic 
(lights not exclusive)

Higher Level of
abstractionSynchronization/Timing?



Software Architecture

Chest of drawers by Droog Design

Build from ‘modules’

But no stable architecture

Many dependencies from all 
drawers on all other drawers



Software Architecture

Simplicity

Simplicity is a great virtue but it requires hard work to 
achieve it and education to appreciate it.
And to make matters worse: 
Complexity sells better. 

Source: Edsger W. Dijkstra
EWD896 - On the nature of Computing Science

51

Turing Award (1972)

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD896.html


Software Architecture

Edsger Wybe Dijkstra

n 1930-2002
n Ph.D. in Physics 

Leiden University, Netherlands
n Contributions to:

Algorithms,  Concurrency,  Distributed Systems, 
Program Correctness, Discipline of Design:
Structured Programming (Go To considered Harmful)
Separation of Concerns

n Turing Award (1972)

52

O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured Programming, Academic Press, London, 1972



Software Architecture

53

n Decomposition / Divide and Conquer

n Issues that are not related should be handled in separate parts

n Single responsibility:
¨ Assign  a single responsibility to a single component/class

Typical responsibilities: to know something, to do something
E.g. to know an algorithm (worker)

to coordinate workers (coordination)
to manage student-records (information holder)

Generic Design Principle: Separation of Concerns 
Edsger W.
Dijkstra



Software Architecture

54

Example Separation of Concern Principle

Telecom Domain:

Telecom protocol:
n decode1 ; handle1 ; decode2 ; 

handle2 ; decode3

handle

encode/
decode

handle &
encode/
decode

Separate the encoding/decoding of a 
message from the handling of a message:

decode1 ; decode2 ; decode3 ; 
handle1 ; handle2



Software Architecture

Separation of Concerns in Interface Design

n Separate What from How

n The interface of a component exposes what it do, but 
not how it does this.

n The ‘how’ is the information-hiding ‘secret’

55

- Details of the data representation
- Details of the algorithm



Software Architecture

Design Principles

n Keep things that belong together at a single 
place

e.g. in OO: data and 
the operations on that data

n Don’t replicate
functionality, storage of data

57



Software Architecture

Summary
n Design Principles

n Design Structure Matrix
¨ can you read it? make it?

67

Information Hiding

Minimize Coupling

Divide and Conquer

Separation of Concerns

Keep it Simple

Know them, Apply them

Recognize violations



Software Architecture

Questions?

68



Software Architecture

n Explain how layering relates to separation of 
concerns?

69



Software Architecture

70

n Understand the drivers for the project
n Get stakeholder involvement early and often
n Understand the requirements incl. quality properties

¨ SMART & prioritized

n Develop iteratively and incrementally
n Describe architecture using multiple views

¨ abstract, but precise, design decisions & rationale

n Design for change (modularity, low coupling, inform. hiding)

n Analyze in an early stage (use maths! and scenarios)

n Simplify, simplify, simplify
n Regularly update planning and risk analysis
n Monitor that architecture is implemented
n Get good people, make them happy set them loose

Summary of key architecting practices


