CHALMERS | {8%) UNIVERSITY OF GOTHENBURG

Architectural Tactics &
Analysis

Truong Ho-Quang
truongh@chalmers.se

mailto:truongh@chalmers.se

CHALMERS | UNIVERSITY OF GOTHENBURG
|Week | |Date |Time flecture |Note
E L1 Wed, 20 Jan 10:15—12:00 Introduction & Organization Truong Ho
EB L2 Thuy,21Jan 13:15-15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15—12:00 Skip
B S1 Wed,27Jan 10:15 - 12:00 << Supervision: Launch Assignment 1>> TAs
_ L3 Thu,28Jan 13:15-15:00 Roles/Responsibilities & Functional De Ho
B 4 Mon 1Feb 13:15-15:00 Architectural Styles P1 We are He
_ S2 Wed,3Jan 10:15—12:00 << Supervision/A
B L5 Thu,4Jan 13:15-15:00 Architectural Styles P2 H E RE | ara
L6 Mon, 8Feb 13:15-15:00 Architectural Styles P3 0

S3 Wed, 10 Feb 10:15 — 12:00

Thu, 11 Feb
Mon, 15 Feb
S4 Wed, 17 Feb

7
T

Thu, 18 Feb
_ L10 Mon, 22 Feb
B S5 Wed, 24 Feb
EB L1 Thu, 25Feb
EB L2 Mon, 1 Mar
EB sS6 Wed, 3 Mar
EB L13 Thu, 4 Mar

Fri, 5 Mar

13:15 — 15:00

10:15-12:00
13:15-15:00
13:15-15:00
10:15-12:00
13:15-15:00
13:15-15:00
10:15-12:00
13:15-15:00
Whole day

13:15 — 15:00 Architectural Tactics & Analysis

Truong Ho
<< Supervision/Assignment>> TAs

Architecture Evaluation Truong Ho

Reverse Engineering & Correspondence Truong Ho

<< Supervision/Assignment>> TAs
Guest Lecture 1 TBD
Guest Lecture 2: Architectural Changes in Volvo AB Anders M.
<< Supervision/Assignment>> TAs
To be determined (exam practice?) Truong Ho
Group presentation of Assignment (TBD) Teachers

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

s

Before Lecture

- Peer-Review of A1T1 has started

- Student representatives to be announced
today

CHALMERS | UNIVERSITY OF GOTHENBURG

Outline / Contents

- (Prerequisite) Quality Attribute Scenario
- Architectural Tactics
- Analysis

- Reliability

- Performance

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

3

Quality Attribute Scenario (QAS)*

QAS appears to solve the untestable and overlapping concerns.

The aim of a QAS is to capture the explicit and testable quality
requirements

It does it in the same way the use case scenarios do for
functional requirements by initiating a use case instant.

QAS consists of six parts.

* “Software Architecture for Business”, by Lina Khalid, ISBN 978-3-030-13631-4 © Springer Nature Switzerland AG 2020

CHALMERS | {8}) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

We specify quality attribute requirements, we capture them formally as six parts of QAS:

1. Source of stimulus. (a human, or any other actuator) that generated the stimulus.

2. Stimulus. A condition that requires a response. For different quality it means something specific.
3. Environment. The system may be in an overload condition, test, or in normal operation.

4. Artifact. Some artifact is stimulated. This may be a collection or whole system, or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival of the stimulus.

6. Response measure. A response should be measurable so that the requirement can be tested.

\ Parts of a quality attribute scenario
Artifact | ———»|, |
" stimulus Response o @7 (ex. web portal responsiveness).
i
Source Environment Response
of Stimulus Measure

TGon)
STy
2

CHALMERS | ({8%)) UNIVERSITY OF GOTHENBURG

e
5oy

Quality Attribute Workshop (QAW)

Quality Attribute Workshop is a facilitated method for a few-days workshop.

It connects stakeholders in the early part of the life cycle in order to find quality
attributes for the existing system.

The important thing to know about QAW is that:
* |t is focused on the stakeholders.
* [t is scenario based.

* [t is used before the software architecture begins.
* |t is focused on the system level concerns and on the role of software in the system.

{89 UNIVERSITY OF GOTHENBURG

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Architectural Tactics

ST

CHALMERS | (8%)) UNIVERSITY OF GOTHENBURG

7Ty

Tactics

A tactic is a construction pattern that influences
the achievement of a quality attribute response

- Different tactics for each quality attribute

- The same tactic could be relevant to many quality
attributes

- Could be seen as an ’add-on’/refinement of
architectural styles

- Tactics do not change the functionality of the system
hence they exist in the 'implementation-refinement’-

layers of describing a system. 5

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Example Quality Attributes

e

Availability ?
~— Interoperability

Performance
Modlfuablluty

Security

10

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Availability

. Definition:

The ability of a system to mask or repair faults (such as the
cumulative service outage period does not exceed a
required value over a specified time interval).

)

Tactics

> to Control >
Fault Availability Fault Masked

or Repair Made
_ y

11

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Availability QA-Scenario

Portion of Possible Values

Scenario

Source Internal/external: people, hardware, software, physical infrastructure,
physical environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact Processors, communication channels, persistent storage, processes

Environment

Response

Response
Measure

Normal operation, startup, shutdown, repair mode, degraded operation,
overloaded operation

Prevent the fault from becoming a failure
Detect the fault:
= Log the fault
* Notify appropriate entities (people or systems)
Recover from the fault:
Disable source of events causing the fault
= Be temporarily unavailable while repair is being effected
= Fix or mask the fault/failure or contain the damage it causes
= Operate in a degraded mode while repair is being effected

Time or time interval when the system must be available
Availability percentage (e.g., 99.999%)

Time to detect the fault

Time to repair the fault

Time or time interval in which system can be in degraded mode

Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a certain 12
class of faults that the system prevents, or handles without failing

{8%)) UNIVERSITY OF GOTHENBURG

CHALMERS |

Concrete Availability Scenario

)
- Artifact:
E Process
Stimulus: Response:
Server _ / Inform
Unresponsive Envi . Operator
nvironment:
Source: Continue Response
Normal Measure:
Heartbeat , to Opefate *
Monitor Operation Downtime

13

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Availability
Tactics

Fault

) UNIVERSITY OF GOTHENBURG

-

o
Detect Faults

Y
Ping / Echo

Monitor
Heartbeat
Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Availability Tactics

-
—
bk

~——

Recover from Faults

Preparation
and Repair

\J
Active
Redundancy

Passive
Redundancy

Spare

Exception
Handling

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Reintroduction

Shadow

State
Resynchronization

Escalating
Restart

Non-Stop
Forwarding

T
Prevent Faults

v
Removal from
Service

Transactions

Predictive
Model

Exception
Prevention

Increase
Competence Set

14

Fault
Masked
or
Repair
Made

e

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Client-Server Passive Redundancy

1..% 1..%
c HerRH s C PR|| JI[s1 52
C PR S1 S2 C PR S1 S2
u u
o [—
N
=") I U
] i]
e e e e e e = e
E - ‘\5

S2 is updated in the If S1 fails, then S2 is activated
same way as S1 to take over from S1

CHALMERS | UNIVERSITY OF GOTHENBURG

Client-Server Passive Redundancy

1..* 1..*
C PR S C PR S1 S2
C PR S1 S2 C PR S1 S2
— | — \)k
_N
—————") I
\
e
i —————e___m
") I -——— ‘
N—

S2 is updated only after every If S1 fails, then S2 is activated
X updates from S1 to take over from S1

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

L

computes the majority vote from
the answers of SO, S1 and S2

‘rvre ¢ v so || JI| s1 52
C Vv) 51 <
TN
— "N il
e e I
PR DLl
e N
(j\
V

|

17

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Example Availability Tactic

Drimar
i J
nard Ralancor
LOaa balance
Ac [AN
AC e -
—>o c—oo
ApPp Serve

Passive LB\ £

18
[https://www.digitalocean.com]

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

Interoperability

. Definition:

The degree to which two or more systems can usefully

exchange meaningful information via interfaces in a
particular context.

Tactics w

—> B
Information to Control Request
Exchange Interoperability | Correctly
Request Handled

19

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Interoperability Scenario

Portion of Scenario

Possible Values

Source

Stimulus
Artifact
Environment

Response

Response Measure

A system initiates a request to interoperate with another
system.

A request to exchange information among system(s).
The systems that wish to interoperate.

System(s) wishing to interoperate are discovered at runtime or
known prior to runtime.

One or more of the following:

* The request is (appropriately) rejected and appropriate
entities (people or systems) are notified.

* The request is (appropriately) accepted and information is
exchanged successfully.

* The request is logged by one or more of the involved
systems.

One or more of the following:

* Percentage of information exchanges correctly processed
* Percentage of information exchanges correctly rejected

20

CHALMERS |

UNIVERSITY OF TECHNOLOGY

(8%) UNIVERSITY OF GOTHENBURG

Concrete Interoperability Scenario

~ ™ s

Artifact: m

p» | Traffic Monitoring >
Stimulus: System Response:

Current \ / Traffic Monitor

Location Combines Current
Source Sent Environment: Location with Other Response
of Stimulus: Systems known Information, Measure:
Our Vehicle prior to run-time Overlays on Google Our Information
Information Maps, and Included Correctly
System Broadcasts 99.9% of the Time

21

CHALMERS |

UNIVERSITY OF TECHNOLOGY

E UNIVERSITY OF GOTHENBURG

Interoperability Tactics

Information
.

Exchange
Request

Locate a service
through searching
a known directory

Interoperability Tactics

Locate Manage Interface

|

|

coordinate and manage
and sequence the
invocation of particular
services

J

/

Request

I
Correctl
Discover Qrchestrate) Hand|edy

Tailor Interface

service. J

adds or removes

capabilities to an interface

(e.g. to hide information
from untrusted users)

\

22

CHALMERS | UNIVERSITY OF GOTHENBURG

In which view(s) could we see
interoperability tactics?

23

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Modifiability

. Definition:

Modifiability is about change, and our interest in it
centers on the cost and risk of making changes.

4)
Tactics
» to Control .
Change Modifiability | Change Made within
Arrives \ / Time and Budget

24

CHALMERS |

UNIVERSITY OF GOTHENBURG

Modifiability General Scenario

Portion of Scenario

Possible Values

Source

Stimulus
Artifacts

Environment
Response

Response Measure

End user, developer, system administrator

A directive to add/delete/modify functionality, or change a
quality attribute, capacity, or technology

Code, data, interfaces, components, resources, configurations,

Runtime, compile time, build time, initiation time, design time

One or more of the following:

= Make modification
* Test modification
* Deploy modification

Cost in terms of the following:

Number, size, complexity of affected artifacts

Effort

Calendar time

Money (direct outlay or opportunity cost)

Extent to which this modification affects other functions or
quality attributes

* New defects introduced

CHALMERS | &%) UNIVERSITY OF GOTHENBURG

Concrete Modifiability Scenario

¥,
SO

» | Artifact: >
Stimulus: Code Response: E
Wishes Change Made
to Change and Unit Tested

Environment:
Source: e Ul Desig?w » Response
Developer Time Me?sure.
time

26

(Flexibility of the system

to changes made in
different stages of sw

development/deployment

Change Made
T e
within Time
and Budget

CHALMERS | (8%)) UNIVERSITY OF GOTHENBURG
M d [fl b [I -t T tl
Modifiability Tactics
Reduce Size /Increase Defer
of a Module / Cohesion Binding
Change
habdacal* A '
Arrives Solit Moduld 'NcTease Encapsulate
plit Module :
Semantic /| Usean
Coheren Intermediary

If the responsibilities
A and B in a module
do not serve the
same purpose, they
should be placed in
different modules

Restrict
Dependenci

Refactor

Encapsulation = Define an
explicit interface to a module.
Intermediary = Break a
dependency

Restrict dependencies = control
‘visibility’ (layered architecture)
Refactor = reducing duplicate

Qode/responsibilities

J

Security

CHALMERS | () UNIVERSITY OF GOTHENBURG
Definition:

Security is @ measure of the system’s ability to protect
data and information from unauthorized access while still
providing access to people and systems that are

authorized.
Tactics
»| to Control
Attack Security

\ /

System Detects, Resists,
Reacts, or Recovers

>

28

CHALMERS |

UNIVERSITY OF TECHNOLOGY

Security
General
Scenario

Portion of
Scenario

(%) UNIVERSITY OF GOTHENBURG

Possible Values

Source

Stimulus

Artifact

Environment

Response

Response
Measure

Human or another system which may have been previously
identified (either correctly or incorrectly) or may be currently
unknown. A human attacker may be from outside the organization or
from inside the organization.

Unauthorized attempt is made to display data, change or delete
data, access system services, change the system’s behavior, or
reduce availability.

System services, data within the system, a component or resources
of the system, data produced or consumed by the system

The system is either online or offline; either connected to or
disconnected from a network; either behind a firewall or open to a
network; fully operational, partially operational, or not operational.

Transactions are carried out in a fashion such that

* Data or services are protected from unauthorized access.

* Data or services are not being manipulated without authorization.

* Parties to a transaction are identified with assurance.

* The parties to the transaction cannot repudiate their
involvements.

* The data, resources, and system services will be available for
legitimate use.
The system tracks activities within it by

* Recording access or modification

* Recording attempts to access data, resources, or services

* Notifying appropriate entities (people or systems) when an
apparent attack is occurring

One or more of the following:

* How much of a system is compromised when a particular
component or data value is compromised
How much time passed before an attack was detected
How many attacks were resisted
How long does it take to recover from a successful attack
How much data is vulnerable to a particular attack

CHALMERS |

UNIVERSITY OF TECHNOLOGY

T
Stimulus:
Attempts to
Modify Pay
Source: ate
Disgruntled

Employee from
Remote Location

Artifact:
Data within
the System

e o

Environment:
Normal
Operations

Response:

System
Maintains
Audit Trail

Response
Measure:

Correct Data Is
Restored within a
Day and Source
of Tampering
Identified

30

CHALMERS | UNIVERSITY OF GOTHENBURG
Security Tactics
a—
Detect Attacks Resist Attacks React to *Recover
| Attacks from Attacks
l |dentify ‘
Detect Actors 25:::? Maintain Restore
pr Intrustion Authenticate Audit Trail
——» Detect Service Actors Lock l
Derpal Authorize Computer See
I\:sg;yfith)/’lessage b Inform Availability
Limit Access Actors

Detect Message
Delay

Limit Exposure
Encrypt Data

Separate
Entities

Change Default
Settings

System Detects,

>

Resists, Reacts,
or Recovers

31

{8%)) UNIVERSITY OF GOTHENBURG

CHALMERS |

Performance

. Definition:

Performance is about time and the software system’s
ability to meet timing requirements.

Tactics
»| to Control =,
Event Performance | Response
Arrives Generated
/ within Time
Constraints

32

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Performance QA-Scenario

IXWA
- -
Stimulus: Y Response:
Initiate Transactions
Transactions Envi . Are Processed
nvironment:
Source: o Response
Users orma’s Measure:
Operation Average
Latency
of Two
Seconds

33

&
CHALMERS \ "&

input | .
P | | > output
| .
|
CPU, memory,
resources disk, network
Reduce load Increase computational efficiency
Manage event rate - Reduce computational overhead
(e.g. drop requests, . Reduce computation
queue requests) (e.g. scale quality of output)
Control frequency of . Bound execution times
sampling

Bound queue sizes
Prioritize events

Increase Resources

Replicate server (=CPU’s) -

CHALMERS | UNIVERSITY OF GOTHENBURG
Performance Tactics
o
Control Resource Demand Manage Resources
Event Manage Sampling Rate Increase Resources Response
—e L. >
Arrives Limit Event Response Introduce Concurrency Generated within
Prioritize Events Maintain Multiple Time Constraints
' f Com ion
Reduce Overhead Eepen@iBRin izl
: : Maintain Multiple
Bound Execution Times Copies of Data
Inc.re.ase Resource Bound Queue Sizes
Efficiency
Schedule Resources

35

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Client-Server with load balancer

f check load
status

I

P check load]
- status
actual
request
C S2

LB S1

CHALMERS

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Client-Server with load balancer

LB S11||S2}|

______ check load

—— T status

N |

PR | check load J

— status
actual
request
C S2
LB S1

RN
Manage Resources
|

\j
Increase Resources V

Introduce Concurrency

Maintain Multiple
Copies of Computations

Maintain Multiple
Copies of Data

Bound Queue Sizes

Schedule Resources

37

CHALMERS | UNIVERSITY OF GOTHENBURG

Reliability Block Diagrams

Analysis and Tactics

No model is correct, but some are useful
— Albert Einstein

38

CHALMERS |

UNIVERSITY OF TECHNOLOGY

ISO standard on Software Product Quality

UNIVERSITY OF GOTHENBURG

Software
Product
Quality
| [1\ l | | | | |
Functional Performance Compatibi- || Maintain- || Transfera-
s Reliabilit ; Operabili Securit . @ s
Suitability ty efficiency P ty Y lity ability bility
Appropriateness Availability Time- Appropriate.n‘ess Confidentiall Replacebility Modularity Portability
Accuracy Fault Tolerance behavior recogisablig Integrity Co-existence Reusability Adaptability
Compliance Recoverability Resource- Learability Non- Interoperability || Analizabilty Installability
Compliance utilization Eaiefo{ s repudiation Compliance Changeabilty Compliance
Compliance A?te p: IS Accountability Modification
Trach"’_enle“ Authenticity stability
. mca Compliance Testability
accessibility el
\ / Compliance P

Figure 9 ISO 25010 Model (ISO/IEC CD 25010 2007)

39

CHALMERS | UNIVERSITY OF GOTHENBURG

What is Reliability?

Reliability is a measure of the continuous
delivery of correct service (Laprie)

Reliability is defined as the probability that
an item will perform its intended function for
a specified interval under stated conditions.

Reliability is a property over time:

want it to.’

‘a probability that something will work when you

4]

CHALMERS | (®}) UNIVERSITY OF GOTHENBURG

Expressing Reliability Quantitatively

MTBF - Mean Time Between Failures
is the expected Time between Failures

Typically used for: repairable systems

MTTF - Mean Time to Failure
is the expected Time to Failure

Typically used: non-repairable systems

Mars rover

MTTR - Mean Time to Repair
is the expected Time to Repair/Recover Failure

42

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

s

Examples of Reliability Measurement

Typically expressed in terms of
for repairable systems
Mean Time Between Failures (MTBF)
Number of hours that pass before a component fails
E.g. 2 failures per million hours:
MTBF =109/ 2 = 0,5 * 10° hr

For non-repairable systems

Mean Time To Failure (MTTF)
Mean time expectec until the first failure of a system
Is a statistical value over a long period of time

Mean Time To Repair (MTTR) Availability
43

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Reliability Block Diagrams (RBD)

A RBD is a graphical depiction of the system’s
components and connectors which can be used to
determine the overall system reliability

> 90%
—1 97% » 93% ——
> 80%

If any path through the system is successful, then
the system succeeds, otherwise it fails.

45

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

RBD 2: Assumptions

- Lines have reliability 1
- Failures of blocks are statistically independent
- Blocks are bi-modal:

either their operate correctly or
they fail and do nothing

46

CHALMERS | UNIVERSITY OF GOTHENBURG

RBD 3: How to express reliability?

Assuming a homogeneous failure rate,

a failure rate of A (per unit of time t)

constitutes a reliability over a period 7 of
R — @ - AT/t

f a component has a failure rate of 10 failures
ner 1000 hours, then its reliability over a 24
nour period is (approx.). 79%.

49

CHALMERS | UNIVERSITY OF GOTHENBURG
A simple example

- A system has 4000 components with a failure rate of
0.02% per 1000 hours. Calculate A and MTBEF.

-A=1(0.02/100)*(1 /1000) *4000=8*10+*
failures/hour

-MTBF =1 /(8 *10%) = 1250 hours

51

CHALMERS | UNIVERSITY OF GOTHENBURG
Common RBD Patterns:
Chain of Components
R
n
> R >y R, —> — ——> R3 >R:IIRZ
=1

For example

R =0.95*0.99*%0.89
= 0.84

0.95 0.99 0.89 —

\ 4
\ 4
\ 2

‘AND’ ‘AND’ 52

CHALMERS | UNIVERSITY OF GOTHENBURG

Common RBD Patterns:
Alternative (Parallel) Components

{ R,

R

1 R,

‘OR’

Rzl—ﬁ(l—Ri)

‘OR,

R fails only if all component fail

Prob of fail = 1- success 53

CHALMERS |

oo
Iy
2R
JSASEN
HEEUI
g B
Nwily
2
i

UNIVERSITY OF GOTHENBURG

Example Parallel Components

n

[o Rzl—H(l—Ri)

=1
10.99 R=1—(1-0.95)*(1-0.99)*(1-0.89)
—1-0.05*%0.01*0.11
e —1-5.5%10S
- —0.99

Reliability of system is higher than
that of its parts!

54

CHALMERS |

UNIVERSITY OF TECHNOLOGY

1.0

0.9

0.8

SYSTEM
RELIABILITY
R(t) 0.7

0.6

05 -

\

1"
IS

"
w

"
N

|

> m
ELEMENTS

Y

R(t) =1-(1-p)"
S

) | ! |

0.4

0.6 0.7 0.8 0.9

ELEMENT RELIABILITY, p

1.0

55

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Example Reliability: Structural View

component-diagram typical flow of control
with uses-relations for procedure-call style
C C
S 'St
K][L]|[M KL MG

All components are needed

reliability block diagram ?

C S K

\ 4
—
\ 4
<

\ 4

56

CHALMERS | UNIVERSITY OF GOTHENBURG

Example Reliability: Structural View

component-diagram typical flow of control
with uses-relations for procedure-call style
C C
S i S,'}
K; K> K3 Kyl | Kz K3
components are alternatives
reliability block K,
diag ram ? JC NS < \ Don’t forget the
> > 2 > outgoing arrow

K3 57

£ STy,

CHALMERS | UNIVERSITY OF GOTHENBURG

7

7Ty

Example Reliability: Deployment View

component-diagram

typical flow of control
with uses-relations

for procedure-call style

\ 1
! I
! I
! :
! |
S IR
I \
lﬁ \‘\
- I\
~
J 4 /L\ N \
K L M L N L S Y\

deployment diagram

DB K| [DB L|[DB M| Server Client

58

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Example Reliability: Deployment View

processor X

Q

rocessor Y,

DB A|[DB B|[DB C|[Server L

Client

Assume Server, DB’s are in constant use and share CPU equally.

M= (ApgaTApgg T ApgctAg)/4

7‘“Q — }\'Client
ApiQ= ApT Aq

If number of clients grows to n, then Apy = Apt+ 7 ‘A
P+Q P Q

59

CHALMERS | UNIVERSITY OF GOTHENBURG

RBD Application Heuristics

- Not all systems can be reduced to series/parallel
graphs. Hence, you may need to simplify the
design.

For instance by
- consider only the critical paths through the system

- Consider fragment of time spent per component

- There are tools available that help you compute
reliability of RBD’s 60

CHALMERS | UNIVERSITY OF GOTHENBURG

Research Question

-How can we determine the reliability of
a piece of software?

— analytically?
— empirically?
— observe a system? Prototype?

-Not all defects threaten reliability

62

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

References Reliability & RBD

J.-C. Laprie. Dependable Computing and Fault Tolerance: Concepts and

Terminology. In Proceedings of the 15th International Symposium on Fault-
Tolerant Computing (FTCS-15), pages 2-11, 1985.

Abd-Allah, A., "Extending Reliability Block Diagrams to Software

Architectures,” USC Technical Report USC-CSE-97-501, Center for Software
Engineering, University of Southern California, March 1997.

64

http://sunset.usc.edu/publications/TECHRPTS/1997/usccse97-501/usccse97-501.ps

CHALMERS | UNIVERSITY OF GOTHENBURG
Availability
Availability = the probability that a system is

operational at a given time

- i.e. the amount of time a device is actually operating
as the percentage of total time it should be operating.

- High-availability systems may report availability in
terms of minutes or hours of downtime per year.

Availability = uptime / (uptime + downtime)

Availability = D/(D"‘I) 66

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Availability = MTBF / (MTBF + MTTR)

67

ST

CHALMERS | (8%)) UNIVERSITY OF GOTHENBURG

7Ty

Software Performance
Engineering

Connie U. Smith &

Lloyd G. Williams
i Prrroryance Sorumions

_ _ A PRACTICAL GUIDE TO CREATING
Performance Solutions: RESPONSIVE, SCALABLE SOFTWARE
A Practical Guide to
creating response, ONNIE V. SMITH Q)
scalable software, YD G. WILLIAMS L
Addison-Wesley, 2002 o '

T
1 Jacos

68

CHALMERS |

UNIVERSITY OF GOTHENBURG
Extra Functional Properties

Performance
scalability A r Reliability

Maintainability = €— System => Efficiency

4

CPU, Memory Use
\ y

\l, Timeliness
Schedulability

Essential system engineering problem:
a plurality of contradictory goals

- a plurality of means (technology, process)

each of which provides a varying degree of help or

hindrance in achieving a given goal 69

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Some more examples of *ilities

Accessibility, Understandability, Usability, Generality, Operability,
Simplicity, Mobility, Nomadicity, Portability, Accuracy, Efficiency,
Footprint, Responsiveness, Scalability, Schedulability, Timeliness, CPU
utilization, Latency, Throughput, Concurrency, Flexibility, Changeability,
Evolvability, Extensibility, Modifiability, Tailorability, Upgradeability,
Expandability, Consistency, Adaptability, Composability, Interoperability,
Openness, Integrability, Accountability, Completeness, Conciseness,
Correctness, Testability, Traceability, Coherence, Analyzability, Modularity,
Reusability, Configurability, Distributeability, Availability, Confidentiality,
Integrity, Maintainability, Reliability, Safety, Security, Affordability,
Serviceablility, ...

70

CHALMERS |

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Performance throughout lifecycle

Core 4 Performance)
Planning J
Requirements Functional Requirements
and Analysis Non Functional Requirements Performance Objectives
Technology Requirements
Performance Design Guidelines
Architecture Design Guidelines Performance Modeling
and Design Architecture and Design Review | Performance Architecture and Design
Review
Unit Tests - —
Development Code Review rmance e Review
- Daily Builds Measuring
. Integration Testing Performance Testing
Testing System Testing Performance Tuning
BI320028000000000000000080808800008000280000082080000028200008200002080000000220020221820002222212022022222022022020020000202 4
Performance Deployment
Deployment Deployment Review Review J
B e i |

Maintenance \ ; | 71

CHALMERS | UNIVERSITY OF GOTHENBURG

Performance in Requirements
Engineering

It is difficult to understand requirements in

terms of application domain;

E.g. In digital video: good picture quality?
In airbag: should be safe?

we don’t know how to quantify?

Resource needs are often underestimated
when requirements are vague

Requirements are volatile:
the architecture should cater for changes

/2

CHALMERS | (®}) UNIVERSITY OF GOTHENBURG

Performance Myths

- |t is.nat_nossible to do_anvthing about
perfernrarice until you-rave-something to
measure

= uem I = WMV 4

. PerformaiceTiiOUels die-compieseand
expensive to construct.

. Architecture determines performance
properties
- Simple models (‘back of the envelope’) can

identify performance problems. 23

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

s

Performance Analysis

Performance is the ability of a system to meet its

objectives for timeliness

- How well can this system handle the
anticipated demand?

- What will the average response time be?

- Given a max. accept. response time, what

is the highest load the system can
handle?

- Which component is the bottleneck?

lCIient JJ

|

Server

Database

/4

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

Performance Engineering
Important performance characteristics:

- Response Time

- The time it takes the system to react to an
impulse/trigger

- Throughput
- The rate at which jobs are completed

- Capacity
- Typically: storage, processing, bandwidth

. .. : _ /5
Performance Engineering is also known as: Capacity Planning

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

Scalability (definition)

- Scalability = the ability of a system to
continue to meet its performance objectives
under increasing demand

- Scalability is limited by available resources :
- Thrashing is caused by contention for CPU,

disk, netw. system
saturation
Mroughput \ response time \
1 system 1
saturation
~
thrashing

K Igad / K Ioad> /

CHALMERS | UNIVERSITY OF GOTHENBURG

Zen of Performance: Balance

rce

demand worlklload capdcity

Architect’s goal: to establish the (minimum)
amount of hardware that will allow the
system to meet its performance goals.

Architect’s aim: to understand the trade-off
between resources and performance

/78

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Software Performance Engineering Process

’ Quantitative objectives the
performance objectives system has to meet

[assess performance risk Threats for realizing performance

g

(identify criti‘cal e cases Critical actions important to
: responsiveness as seen by the user

[erformanc"e scenarios Which scenarios are executed?
P And how often?

—

v How much resources does adapt
[resource requirements each scenario require? architecture

workload model

\ 4

(&

not ok
performance model b€

Vs

A 4

capacity model

-

design hardware manage
infrastructure implementation 79

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

Determining workload - Exercise

- How many requests does the university library
system receive per hour (during office hours)?

- How many requests does a bank receive per hour for
processing transactions / ATM withdrawal requests?

- How many requests does an airline booking system
receive for checking availability of seats on flights?

- How many telephone calls go through a base station
per hour?

80

CHALMERS |

@etermine Performance Objectives

{8%)) UNIVERSITY OF GOTHENBURG

Deduce performance objectives from business
objectives

« What makes the system

— Acceptable (minimum)
— Attractive
— Future-proof

— What is the cost of missing deadlines?

4 A

Valid b

Hard-RT QO&—RT
Invalid - - S8 Invalid Deai - 8 2

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

@ Guidelines performance risk scenario’s

Top-down (by requirements)
Assumptions on environment/load
Boundary cases: Peak load
Combinations of events
Mode-changes

Bottom-up (from solution / technology)
High utilization
Interrupts, caching
Dynamic allocation

Complex interactions

- (unexpected) interactions between subsystems
e.g. between CPU and memory-management
or between different layers (e.g. software and hardware)

83

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

(3) ldentify Critical Use Cases

@ add item to
catalogue
add item to cart F

om catalogue

custome)

shop owner

package & shj

84

CHALMERS

3)

custome

{8%)) UNIVERSITY OF GOTHENBURG

ldentify Critical Use Cases

@ add item to
catalogue
add item to cart F

om catalogue

remove item fromsart
pay items in card

(

package & shj

shop owner

CHALMERS | (®}) UNIVERSITY OF GOTHENBURG

(2) ldentify Performance Scenario’s

Product i
Shop UI Customer Selection| | _
Catalogue Management Cart-data
Enter s h
Matches of h

1
Product
h Customer Selection
2:search i Catalogue | | Management Cart-data
.
Enter s h
Matches of h

custome

Shop U Cart-data
3:pay Items Enter s h
in cart Matches of seqch
jSeI ct item
Updat lectio
Store se lection

. pay) / sec

86

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

(6 Determine Software Resource Requirements

- Understand the types of software resource
requirements - at the level of the run-time
architecture
- Method Calls
- Database queries

- Data Loading:
- How many files/tables:

- Caching

hat is their size?

87

CHALMERS | UNIVERSITY OF GOTHENBURG

Derive Load from Sequence
Diagrams

- \

A
SMethod(arg) :
Processing load:
@I] - DB / cache / processor

\ transactions / sec

Network load
MB’s / sec

CHALMERS |

(8%) UNIVERSITY OF GOTHENBURG

® Software Resource Requirements

custome

3:pa_y items

Compute / simulate, or use a performance-analysis tool!
89

ST

CHALMERS | (8%)) UNIVERSITY OF GOTHENBURG

7Ty

References on Queueing
Networks

- E.D. Lazowska et.al., Quantitative System performance: computer system
analysis using queueing networks, Prentice Hall, 1984

- C.H. Sauer and K.M. Chandy, Computer systems performance modeling,
Prentice Hall, 1981

- Quantitative System Performance: Computer System Analysis Using
Queueing Network Models, Edward D. Lazowska, John Zahorjan, G. Scott
Graham, Kenneth C. Sevcik, available at:
http://www.cs.washington.edu/homes/lazowska/gsp/

90

http://www.cs.washington.edu/homes/lazowska/qsp/

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Classic paper

Architecture-based performance analysis,
1998

Spitznagel, Bridget, and David Garlan

http://repository.cmu.edu/cgi/viewcontent.cqgi?article=1702&cont
ext=compsci

91

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1702&context=compsci

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

Queuing Networks

each of which has a queue

IS busy.

time

In this Sw. Arch. class:
be able to apply the formulas.

D

Enter

"

A gqueuing network processes jobs
The elements of the network are service centers,

Jobs require service from a set of service centers
and wait in a queue when a desired service center

Each job exists in only one device or queue at a

Network 7

N
__/
CPU \T/

/,

S

>

Exit

92

CHALMERS | UNIVERSITY OF GOTHENBURG

Service Centers

- For example: bank teller, post office, database,

- Service Center characteristics:
- service time: average time needed for processing a
job
- arrival rate: average rate at which jobs arrive

- Usually service time and arrival
f(x)
assumed to have an exponentia

- for an expected value of 1/A,
Ft)=h-e-*t T

Figure 6. Exponential pdf

ate _alvre example
istribution:

93

CHALMERS | UNIVERSITY OF GOTHENBURG

Architectural Styles and QN

. Assumptions of QN seem to fit well with the
following architectural styles:

- pipe and filter
- client/server

- We assume messages are processed in FIFO
order

94

CHALMERS |

{8%)) UNIVERSITY OF GOTHENBURG

QN Example

- A job enters the system at the Client and is
then serviced by the Client, the Server and
the Database. After that it leaves the system.

- Assume

Client

\ 4

- An arrival rate of R jobs/second (at the Client)

Server

Y

- Service times S¢, Ss and Sp respectively

Database

Utilization of component i: u; =R - S,
Avg. component queue length: g, =u?/(1—-u;)

Avg. component response time: S, /(1 —u;)

Avg. component population: p,=u;/(1—u;)
System population: P=2p,
System response time: S =P/R

95

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

QN Example

For example if

Client - arrival rate
1 R = 9.5 jobs/second
Server - service times
1 Sc = 65 ms,
Database S¢ = 20 ms, and
Sy = 103 ms

Then component utilization will be
DB upg = 9.5* 0.103 =98%
Server ug =9.5* 0.020 =19%
Client u- =9.5%* 0.065=62%

96

{8%)) UNIVERSITY OF GOTHENBURG

QN Example

CHALMERS |

Utilization (v, = R - S;)
=9.5* 0.065 = 62%

Client w,
Server us =9.57* 0.020 = 19%
DB Upg =9.5*% 0.103 = 98% close to overload

Avg. component response time (S; / (1 - u;))
Client ¢ =0.065/(1-0.62) =0.17 s

Server t; =0.020/(1-0.19) = 0.025 s

bottleneck in
response time

Avg. component population (p, =u; /(1 - u;)):
Client p- =0.62/0.38=1.6

Server ps =0.19/0.81 = 0.23
DB pps =0.98/0.02 = 49

System population: P=3% p,=50.8
System response time: S =P/R =50.8/9.5 =545
97

CHALMERS | UNIVERSITY OF GOTHENBURG

QN Example

Avg. component queue length: qgj=u;2 / (1 -uj)

Client qc = 0.38/0.38=1.0
Server qg = 0.19/0.81 = 0.044
DB dpg = 0.98/0.02 = 48 long queue length

If arrival rate or service time estimates are a little bit off,
we’re in big trouble.

Options: increase DB performance

replicate DB
reduce demand (arrival rate)

Which option to take?

It depends on other non-functional goals,

such as cost, scalability, reliability, ..
98

CHALMERS | UNIVERSITY OF GOTHENBURG
Automated Software
Performance Analysis
Modeling Performance Analysis Refactoring

(Annotated) Software

Architectural Model 1
\ o\ Model2Model > 2 | Performance
\ Transformation Model

\
‘ll '1.
o
‘l I|
6\ \ 3
O\ 3
o\
L\
‘l \
L\
L\

@Iodel analysis 4_, Performance
—— Results

~ ",/ Results Interpretation
' V(Qedback Generation

Figure 1.1: Automated software performance process.

From Catania Trubiani, Ph.D. thesis, 2011 99

CHALMERS | '? UNIVERSITY OF GOTHENBURG

1-slide Summary of Best Architecting Practices

- Get stakeholder involvement & feedback early and
frequently

Understand the drivers for the project (business, politics)

Understand the requirements incl. quality properties
- SMART & prioritized

Develop iteratively and incrementally
Describe architecture using multiple views
- abstract, but precise, design decisions & rationale
Monitor that architecture is implemented
Design for change (modularity, low coupling, infor
- Simplify, simplify, simplify
- Analyze in an early stage (use maths! and scenaric
Regularly update planning and risk analysis X \
- Get good people, make them happy, set them | I

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

Summary

If you haven’t analyzed it, don’t build it.

- Use analytical methods to support
architectural decision making

- Performance - Queuing networks

- Many analyses are of ‘back of the envelope’
Size.
- little effort, lots of value

- even if your model is not perfect (which they never

10
are)

1

TGon)
ST

CHALMERS | UNIVERSITY OF GOTHENBURG

7Ty

Conclusion

- Be able to model tactics with UML views

- Reliability Block Diagrams

- Be able to make simple analyses for small-
sized system

- Performance Analysis

- Goals and steps to perform performance
analysis & engineering

- (Nice to have) Queuing Network

102

