
Architectural Tactics &
Analysis
Truong Ho-Quang

truongh@chalmers.se

mailto:truongh@chalmers.se

Truong Ho-Quang

Schedule
Week Date Time Lecture Note
3 L1 Wed, 20 Jan 10:15 – 12:00 Introduction & Organization Truong Ho
3 L2 Thu, 21 Jan 13:15 – 15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15 – 12:00 Skip
4 S1 Wed, 27 Jan 10:15 – 12:00 << Supervision: Launch Assignment 1>> TAs
4 L3 Thu, 28 Jan 13:15 - 15:00 Roles/Responsibilities & Functional Decomposition Truong Ho
5 L4 Mon, 1 Feb 13:15 – 15:00 Architectural Styles P1 Truong Ho
5 S2 Wed, 3 Jan 10:15 – 12:00 << Supervision/Assignment>> TAs
5 L5 Thu, 4 Jan 13:15 – 15:00 Architectural Styles P2 Sam Jobara
6 L6 Mon, 8 Feb 13:15 – 15:00 Architectural Styles P3 Truong Ho
6 S3 Wed, 10 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
6 L7 Thu, 11 Feb 13:15 – 15:00 Design Principles (Maintainability, Modifiability) Truong Ho
7 L8 Mon, 15 Feb 13:15 – 15:00 Architectural Tactics & Analysis Truong Ho
7 S4 Wed, 17 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
7 L9 Thu, 18 Feb 13:15 – 15:00 Architecture Evaluation Truong Ho
8 L10 Mon, 22 Feb 13:15 – 15:00 Reverse Engineering & Correspondence Truong Ho
8 S5 Wed, 24 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
8 L11 Thu, 25 Feb 13:15 – 15:00 Guest Lecture 1 TBD
9 L12 Mon, 1 Mar 13:15 – 15:00 Guest Lecture 2: Architectural Changes in Volvo AB Anders M.
9 S6 Wed, 3 Mar 10:15 – 12:00 << Supervision/Assignment>> TAs
9 L13 Thu, 4 Mar 13:15 – 15:00 To be determined (exam practice?) Truong Ho
9 Fri, 5 Mar Whole day Group presentation of Assignment (TBD) Teachers
11 Exam

We are
HERE!

Before Lecture

•Peer-Review of A1T1 has started
•Student representatives to be announced

today

3

Outline / Contents

•(Prerequisite) Quality Attribute Scenario
•Architectural Tactics
•Analysis
– Reliability
– Performance

4

Quality Attribute Scenario (QAS)*

QAS appears to solve the untestable and overlapping concerns.

The aim of a QAS is to capture the explicit and testable quality
requirements

It does it in the same way the use case scenarios do for
functional requirements by initiating a use case instant.

QAS consists of six parts.

* “Software Architecture for Business”, by Lina Khalid, ISBN 978-3-030-13631-4 © Springer Nature Switzerland AG 2020
5

We specify quality attribute requirements, we capture them formally as six parts of QAS:

1. Source of stimulus. (a human, or any other actuator) that generated the stimulus.

2. Stimulus. A condition that requires a response. For different quality it means something specific.

3. Environment. The system may be in an overload condition, test, or in normal operation.

4. Artifact. Some artifact is stimulated. This may be a collection or whole system, or pieces of it.

5. Response. The response is the activity undertaken as the result of the arrival of the stimulus.

6. Response measure. A response should be measurable so that the requirement can be tested.

Parts of a quality attribute scenario
(ex. web portal responsiveness).

QA Scenarios

6

Quality Attribute Workshop (QAW)
Quality Attribute Workshop is a facilitated method for a few-days workshop.
It connects stakeholders in the early part of the life cycle in order to find quality
attributes for the existing system.

The important thing to know about QAW is that:
• It is focused on the stakeholders.
• It is scenario based.
• It is used before the software architecture begins.
• It is focused on the system level concerns and on the role of software in the system.

QA Scenarios

7

Architectural Tactics

Tactics
A tactic is a construction pattern that influences
the achievement of a quality attribute response
• Different tactics for each quality attribute
• The same tactic could be relevant to many quality

attributes

• Could be seen as an ’add-on’/refinement of
architectural styles

• Tactics do not change the functionality of the system
hence they exist in the ’implementation-refinement’-
layers of describing a system. 9

Example Quality Attributes

10

Interoperability

Modifiability

Availability

Security

Performance

Availability

• Definition:
The ability of a system to mask or repair faults (such as the
cumulative service outage period does not exceed a
required value over a specified time interval).

11

Availability QA-Scenario

12

Concrete Availability Scenario

13

14

Availability
Tactics

C S

Client-Server Passive Redundancy

15

PR C S2S1PR

C PR S2S1

1..*1..*

C PR S2S1

S2 is updated in the
same way as S1

If S1 fails, then S2 is activated
to take over from S1

u u

u

C S

Client-Server Passive Redundancy

16

PR C S2S1PR

C PR S2S1

1..*1..*

C PR S2S1

S2 is updated only after every
X updates from S1

If S1 fails, then S2 is activated
to take over from S1

C S

Voting

V
C S2S1S0

C V S1S0

1..*1..*

V computes the majority vote from
the answers of S0, S1 and S2

V

S2

17

Example Availability Tactic

18
[https://www.digitalocean.com]

Interoperability
• Definition:

The degree to which two or more systems can usefully
exchange meaningful information via interfaces in a
particular context.

19

Interoperability Scenario

20

Concrete Interoperability Scenario

21

Interoperability Tactics

Locate a service
through searching
a known directory

service.

coordinate and manage
and sequence the
invocation of particular
services

adds or removes
capabilities to an interface
(e.g. to hide information
from untrusted users)

22

In which view(s) could we see
interoperability tactics?

23

Modifiability
• Definition:

Modifiability is about change, and our interest in it
centers on the cost and risk of making changes.

24

Modifiability General Scenario

25 25

Concrete Modifiability Scenario

26

time

Modifiability Tactics

27

If the responsibilities
A and B in a module
do not serve the
same purpose, they
should be placed in
different modules

Encapsulation = Define an
explicit interface to a module.
Intermediary = Break a
dependency
Restrict dependencies = control
‘visibility’ (layered architecture)
Refactor = reducing duplicate
code/responsibilities

Flexibility of the system
to changes made in
different stages of sw
development/deployment

Security
Definition:

Security is a measure of the system’s ability to protect
data and information from unauthorized access while still
providing access to people and systems that are
authorized.

28

Security
General
Scenario

29

Concrete Security Scenario

30

Security Tactics

31

Performance
• Definition:

Performance is about time and the software system’s
ability to meet timing requirements.

32

Performance QA-Scenario

33

Resource Demand

Reduce load
• Manage event rate

(e.g. drop requests,
queue requests)

• Control frequency of
sampling

• Prioritize events

Increase computational efficiency
• Reduce computational overhead
• Reduce computation

(e.g. scale quality of output)
• Bound execution times
• Bound queue sizes

‘load’
processing

resources CPU, memory,
disk, network

Increase Resources
• Replicate server (=CPU’s)

outputinput

34

Performance Tactics

35

C S

Client-Server with load balancer

36

C LB
LB

C S2

S1LB

S2S1

check load
status

check load
status

actual
request

1..*1..*

C S

Client-Server with load balancer

37

C LB
LB

C S2

S1LB

S2S1

check load
status

check load
status

actual
request

1..*1..*

Reliability Block Diagrams
Analysis and Tactics

No model is correct, but some are useful
– Albert Einstein

38

ISO standard on Software Product Quality

39

Reliability is defined as the probability that
an item will perform its intended function for
a specified interval under stated conditions.

Reliability is a property over time:
‘a probability that something will work when you
want it to.’

What is Reliability?

Reliability is a measure of the continuous
delivery of correct service (Laprie)

41

MTBF - Mean Time Between Failures
is the expected Time between Failures

Expressing Reliability Quantitatively

Typically used for: repairable systems

Typically used: non-repairable systems

MTTF - Mean Time to Failure
is the expected Time to Failure

Train control system

Mars rover

MTTR - Mean Time to Repair
is the expected Time to Repair/Recover Failure 42

Examples of Reliability Measurement
Typically expressed in terms of

• Mean Time Between Failures (MTBF)
• Number of hours that pass before a component fails
• E.g. 2 failures per million hours:

• MTBF = 106 / 2 = 0,5 * 106 hr

• Mean Time To Failure (MTTF)
• Mean time expectec until the first failure of a system
• Is a statistical value over a long period of time

• Mean Time To Repair (MTTR)

for repairable systems

For non-repairable systems

Availability
43

Reliability Block Diagrams (RBD)

45

93%

90%

80%

97%

A RBD is a graphical depiction of the system’s
components and connectors which can be used to
determine the overall system reliability

If any path through the system is successful, then
the system succeeds, otherwise it fails.

Numbers indicate
probability of

successfully passing
through the box

RBD 2: Assumptions
• Lines have reliability 1

• Failures of blocks are statistically independent

• Blocks are bi-modal:
either their operate correctly or
they fail and do nothing

46

RBD 3: How to express reliability?

Assuming a homogeneous failure rate,
a failure rate of l (per unit of time t)
constitutes a reliability over a period T of

R = e - l×T/t

If a component has a failure rate of 10 failures
per 1000 hours, then its reliability over a 24
hour period is (approx.). 79%.

49

51

A simple example

• A system has 4000 components with a failure rate of
0.02% per 1000 hours. Calculate λ and MTBF.

• λ = (0.02 / 100) * (1 / 1000) * 4000 = 8 * 10-4

failures/hour

• MTBF = 1 / (8 * 10-4) = 1250 hours

51

Common RBD Patterns:
Chain of Components

Õ
=

=
n

i
iRR

1

R1 R2 R3

R

0.95 0.99 0.89 R = 0.95*0.99*0.89
= 0.84

For example

‘AND’ ‘AND’ 52

Common RBD Patterns:
Alternative (Parallel) Components

)1(1
1
Õ
=

--=
n

i
iRR

R
R1

R2

Rn
‘OR’

‘OR’

R fails only if all component fail

Prob of fail = 1- success 53

Example Parallel Components

)1(1
1
Õ
=

--=
n

i
iRR

R = 1 – (1-0.95)*(1-0.99)*(1-0.89)
= 1 – 0.05*0.01*0.11
= 1 – 5.5*10-5

= 0.99

0.95

0.99

0.89

Reliability of system is higher than
that of its parts!

54

Parallel Reliability Configuration

s

55

Example Reliability: Structural View

C

S

K L M

component-diagram
with uses-relations

C

S

K L M

typical flow of control
for procedure-call style

C S K L M

reliability block diagram ?
All components are needed

56

Example Reliability: Structural View

C

S

K1 K2 K3

component-diagram
with uses-relations

C

S

K1 K2 K3

typical flow of control
for procedure-call style

reliability block
diagram ? C S

K3

K2

K1

components are alternatives

Don’t forget the
outgoing arrow

57

Example Reliability: Deployment View

C

S

K L M

C

S

K L M

typical flow of control
for procedure-call style

ServerDB K DB L DB M Client

deployment diagram

component-diagram
with uses-relations

58

Example Reliability: Deployment View

ServerDB A DB B DB C Client

Assume Server, DB’s are in constant use and share CPU equally.

P Q

lP = (lDB A + lDB B + lDB C + lS) / 4

lQ = lClient

lP+Q = lP + lQ

If number of clients grows to n, then lP+Q = lP + n ·lQ

processor X processor Y

59

RBD Application Heuristics

•Not all systems can be reduced to series/parallel
graphs. Hence, you may need to simplify the
design.
For instance by
– consider only the critical paths through the system

•Consider fragment of time spent per component

•There are tools available that help you compute
reliability of RBD’s 60

Research Question
•How can we determine the reliability of

a piece of software?
- analytically?
- empirically?

- observe a system? Prototype?

•Not all defects threaten reliability

62

References Reliability & RBD
J.-C. Laprie. Dependable Computing and Fault Tolerance: Concepts and
Terminology. In Proceedings of the 15th International Symposium on Fault-
Tolerant Computing (FTCS-15), pages 2–11, 1985.
Abd-Allah, A., "Extending Reliability Block Diagrams to Software
Architectures," USC Technical Report USC-CSE-97-501, Center for Software
Engineering, University of Southern California, March 1997.

64

http://sunset.usc.edu/publications/TECHRPTS/1997/usccse97-501/usccse97-501.ps

Availability
Availability = the probability that a system is

operational at a given time

• i.e. the amount of time a device is actually operating
as the percentage of total time it should be operating.

• High-availability systems may report availability in
terms of minutes or hours of downtime per year.

Availability = uptime / (uptime + downtime)

/ (+)Availability = 66

Availability = MTBF / (MTBF + MTTR)

67

Software Performance
Engineering

Connie U. Smith &
Lloyd G. Williams

Performance Solutions:
A Practical Guide to
creating response,
scalable software,
Addison-Wesley, 2002

68

Extra Functional Properties

69

Performance

Reliability

Timeliness
Schedulability

Scalability

Efficiency
CPU, Memory Use

Maintainability

Essential system engineering problem:

• a plurality of contradictory goals

• a plurality of means (technology, process)
each of which provides a varying degree of help or
hindrance in achieving a given goal

System

Some more examples of *ilities
Accessibility, Understandability, Usability, Generality, Operability,
Simplicity, Mobility, Nomadicity, Portability, Accuracy, Efficiency,
Footprint, Responsiveness, Scalability, Schedulability, Timeliness, CPU
utilization, Latency, Throughput, Concurrency, Flexibility, Changeability,
Evolvability, Extensibility, Modifiability, Tailorability, Upgradeability,
Expandability, Consistency, Adaptability, Composability, Interoperability,
Openness, Integrability, Accountability, Completeness, Conciseness,
Correctness, Testability, Traceability, Coherence, Analyzability, Modularity,
Reusability, Configurability, Distributeability, Availability, Confidentiality,
Integrity, Maintainability, Reliability, Safety, Security, Affordability,
Serviceablility, …

70

Performance throughout lifecycle

71

Performance in Requirements
Engineering

It is difficult to understand requirements in
terms of application domain;
E.g. In digital video: good picture quality?

In airbag: should be safe?

we don’t know how to quantify?

Resource needs are often underestimated
when requirements are vague

Requirements are volatile:
the architecture should cater for changes 72

Performance Myths
• It is not possible to do anything about

performance until you have something to
measure

• Performance models are complex and
expensive to construct.

• Architecture determines performance
properties

• Simple models (‘back of the envelope’) can
identify performance problems. 73

Performance Analysis

• How well can this system handle the
anticipated demand?

• What will the average response time be?
• Given a max. accept. response time, what

is the highest load the system can
handle?

• Which component is the bottleneck?
74

Client

Server

Database

Client Client

Performance is the ability of a system to meet its
objectives for timeliness

Performance Engineering
Important performance characteristics:

• Response Time
– The time it takes the system to react to an

impulse/trigger

• Throughput
– The rate at which jobs are completed

• Capacity
– Typically: storage, processing, bandwidth

• Performance Engineering is also known as: Capacity Planning
75

• Scalability = the ability of a system to
continue to meet its performance objectives
under increasing demand

• Scalability is limited by available resources
– Thrashing is caused by contention for CPU,

disk, netw.

Scalability (definition)

76load

system
saturation

throughput

thrashing

load

response time

system
saturation

resource

Zen of Performance: Balance

Architect’s goal: to establish the (minimum)
amount of hardware that will allow the
system to meet its performance goals.

Architect’s aim: to understand the trade-off
between resources and performance

78

workload
resource
capacitydemand

Software Performance Engineering Process
performance objectives

assess performance risk

identify critical use cases

performance scenarios

Quantitative objectives the
system has to meet

Threats for realizing performance

Critical actions important to
responsiveness as seen by the user

Which scenarios are executed?
And how often?

resource requirements
How much resources does
each scenario require?

design hardware
infrastructure

workload model

capacity model
performance model evaluate

ok
manage

implementation

not ok

adapt
architecture

79

Determining workload - Exercise
• How many requests does the university library

system receive per hour (during office hours)?

• How many requests does a bank receive per hour for
processing transactions / ATM withdrawal requests?

• How many requests does an airline booking system
receive for checking availability of seats on flights?

• How many telephone calls go through a base station
per hour?

80

Determine Performance Objectives
Deduce performance objectives from business
objectives
• What makes the system

- Acceptable (minimum)
- Attractive
- Future-proof

- What is the cost of missing deadlines?

1

Hard-RT Soft-RT

82

Guidelines performance risk scenario’s

Top-down (by requirements)
• Assumptions on environment/load
• Boundary cases: Peak load
• Combinations of events
• Mode-changes

Bottom-up (from solution / technology)
• High utilization
• Interrupts, caching
• Dynamic allocation
• Complex interactions

– (unexpected) interactions between subsystems
e.g. between CPU and memory-management
or between different layers (e.g. software and hardware)

2

83

Identify Critical Use Cases

customer shop owner

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

remove item
from catalogue

package & ship

add to stock

3

84

Identify Critical Use Cases

customer shop owner

register

search

add item to cart

remove item from cart

login

pay items in cart

add item to
catalogue

remove item
from catalogue

package & ship

add to stock

3

register

Identify Performance Scenario’s

customer

1: register

2:search

3:pay items
in cart

4

Worst case Scenario: 1000*(2:search) || 100*(3: pay) / sec 86

Discuss this with:
•the software engineer that did the implementation
•the project’s performance expert

Determine Software Resource Requirements

• Understand the types of software resource
requirements – at the level of the run-time
architecture
– Method Calls
– Database queries
– Data Loading:

• How many files/tables? What is their size?
– Caching

87

5

Derive Load from Sequence
Diagrams

BA
Method(arg)

Return(arg)

Network load

Processing load:
- DB / cache / processor

MB’s / sec

transactions / sec

88

89

Software Resource Requirements5

customer

1: register

2:search

3:pay items
in cart

Σ

Σ

UI
S

D
B

Compute / simulate, or use a performance-analysis tool!

References on Queueing
Networks

90

• E.D. Lazowska et.al., Quantitative System performance: computer system
analysis using queueing networks, Prentice Hall, 1984
• C.H. Sauer and K.M. Chandy, Computer systems performance modeling,
Prentice Hall, 1981
• Quantitative System Performance: Computer System Analysis Using
Queueing Network Models, Edward D. Lazowska, John Zahorjan, G. Scott
Graham, Kenneth C. Sevcik, available at:
http://www.cs.washington.edu/homes/lazowska/qsp/

http://www.cs.washington.edu/homes/lazowska/qsp/

Classic paper
Architecture-based performance analysis,
1998
Spitznagel, Bridget, and David Garlan
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1702&cont
ext=compsci

91

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1702&context=compsci

Queuing Networks
• A queuing network processes jobs
• The elements of the network are service centers,

each of which has a queue
• Jobs require service from a set of service centers

and wait in a queue when a desired service center
is busy.

• Each job exists in only one device or queue at a
time

92

In this Sw. Arch. class:
be able to apply the formulas.

Service Centers
• For example: bank teller, post office, database,

…
• Service Center characteristics:

– service time: average time needed for processing a
job

– arrival rate: average rate at which jobs arrive

• Usually service time and arrival rate are
assumed to have an exponential distribution:
– for an expected value of 1/l,

F(t) = l· e - l · t

93

example

Architectural Styles and QN
• Assumptions of QN seem to fit well with the

following architectural styles:
– pipe and filter
– client/server

• We assume messages are processed in FIFO
order

94

QN Example
• A job enters the system at the Client and is

then serviced by the Client, the Server and
the Database. After that it leaves the system.

• Assume
– An arrival rate of R jobs/second (at the Client)
– Service times SC , SS and SD respectively

Server

Database

Client

• Utilization of component i: ui = R · Si

• Avg. component queue length: qi = ui2 / (1 – ui)
• Avg. component response time: Si / (1 – ui)
• Avg. component population: pi = ui / (1 – ui)
• System population: P = S pi

• System response time: S = P/R
95

QN Example
For example if

– arrival rate
R = 9.5 jobs/second

– service times
SC = 65 ms,
SS = 20 ms, and
SD = 103 ms

Server

Database

Client

Then component utilization will be
DB uDB = 9.5 * 0.103 = 98%
Server uS = 9.5 * 0.020 = 19%
Client uC = 9.5 * 0.065 = 62% 96

QN Example
• Utilization (ui = R · Si)

Client uC = 9.5 * 0.065 = 62%
Server uS = 9.5 * 0.020 = 19%
DB uDB = 9.5 * 0.103 = 98%

• Avg. component response time (Si / (1 – ui)):
Client tC = 0.065/(1-0.62) = 0.17 s
Server tS = 0.020/(1-0.19) = 0.025 s
DB tDB = 0.103/(1-0.98) = 5.15 s

• Avg. component population (pi = ui / (1 – ui)):
Client pC = 0.62/0.38 = 1.6
Server pS = 0.19/0.81 = 0.23
DB pDB = 0.98/0.02 = 49

• System population: P = S pi = 50.8
• System response time: S = P/R = 50.8/9.5 = 5.4 s

close to overload

bottleneck in
response time

97

QN Example
• Avg. component queue length: qi = ui2 / (1 – ui)

Client qC = 0.38/0.38 = 1.0
Server qS = 0.19/0.81 = 0.044
DB qDB = 0.98/0.02 = 48 long queue length

If arrival rate or service time estimates are a little bit off,
we’re in big trouble.

Options: increase DB performance
replicate DB
reduce demand (arrival rate)

Which option to take?

It depends on other non-functional goals,
such as cost, scalability, reliability, ..

98

Automated Software
Performance Analysis

From Catania Trubiani, Ph.D. thesis, 2011

analysis

99

1-slide Summary of Best Architecting Practices
• Get stakeholder involvement & feedback early and

frequently
• Understand the drivers for the project (business, politics)
• Understand the requirements incl. quality properties

– SMART & prioritized
• Develop iteratively and incrementally
• Describe architecture using multiple views

– abstract, but precise, design decisions & rationale
• Monitor that architecture is implemented
• Design for change (modularity, low coupling, inform. hiding)
• Simplify, simplify, simplify
• Analyze in an early stage (use maths! and scenarios)
• Regularly update planning and risk analysis
• Get good people, make them happy, set them loose 10010

0

Summary

• Use analytical methods to support
architectural decision making
– Performance à Queuing networks

• Many analyses are of ‘back of the envelope’
size.
àlittle effort, lots of value
à even if your model is not perfect (which they never

are)

If you haven’t analyzed it, don’t build it.

10
1

Conclusion

• Be able to model tactics with UML views

• Reliability Block Diagrams
– Be able to make simple analyses for small-

sized system

• Performance Analysis
– Goals and steps to perform performance

analysis & engineering
– (Nice to have) Queuing Network

102

