

Evaluation of Software Architecture

Truong Ho-Quang truongh@chalmers.se

Schedule

Week		Date	Time	Lecture	Note
3	L1	Wed, 20 Jan	10:15 – 12:00	Introduction & Organization	Truong Ho
3	L2	Thu, 21 Jan	13:15 – 15:00	Architecting Process & Views	Truong Ho
4		Tue, 26 Jan	10:15 – 12:00	<u>Skip</u>	
4	S1	Wed, 27 Jan	10:15 – 12:00	<< Supervision: Launch Assignment 1>>	TAs
4	L3	Thu, 28 Jan	13:15 - 15:00	Roles/Responsibilities & Functional Decomposition	Truona Ho
5	L4	Mon, 1 Feb	13:15 – 15:00	Architectural Styles P1	aro ^{Io}
5	S2	Wed, 3 Jan	10:15 – 12:00	< Supervision/Ass VVC	
5	L5	Thu, 4 Jan	13:15 – 15:00	Architectural Styles P2	
6	L6	Mon, 8 Feb	13:15 – 15:00	Architectural Styles P3	
6	S 3	Wed, 10 Feb	10:15 – 12:00	< Supervision/Assign	1/10
6	L7	Thu, 11 Feb	13:15 – 15:00	Design Principles (Maintainability, Modifiabili	Truong Ho
7	L8	Mon, 15 Feb	13:15 – 15:00	Architectural Tactics & Analysis	Truong Ho
7	<u>S4</u>	Wed 17 Feb	<u>10·15 – 12·00</u>	<< Supervision/Assignment>>	ΤΔς
7	L9	Thu, 18 Feb	13:15 – 15:00	Architecture Evaluation	Truong Ho
8	L10	Mon, 22 Feb	13:15 – 15:00	Reverse Engineering & Correspondence	Truong Ho
8	S5	Wed, 24 Feb	10:15 – 12:00	<< Supervision/Assignment>>	TAs
8	L11	Thu, 25 Feb	13:15 – 15:00	Guest Lecture 1	TBD
9	L12	Mon, 1 Mar	13:15 – 15:00	Guest Lecture 2: Architectural Changes in Volvo AB	Anders M.
9	S6	Wed, 3 Mar	10:15 – 12:00	<< Supervision/Assignment>>	TAs
9	L13	Thu, 4 Mar	13:15 – 15:00	To be determined (exam practice?)	Truong Ho
9		Fri, 5 Mar	Whole day	Group presentation of Assignment (TBD)	Teachers
11	Exam				

Outline of Topics for Today's Lecture

- Evaluation of Software Architecture
 - What is architecture evaluation!
 - Evaluation approaches!
 - Benefits and limits of architecture evaluation!
 - ATAM as evaluation method!
 - Architecture Tradeoff Analysis Method
 - Example Evaluation

What is Software Architecture Evaluation?

What is Architecture Evaluation?

Architecture Evaluation is the process of determining how well the current design or a portion of it satisfies the requirements derived during analysis.

- Key questions:
 - How can you be sure whether the architecture chosen for your software is a right one?
 - How can you be sure that it won't lead to calamity but instead will pave the way through a smooth development and successful product?

What to evaluate in Software Architecture?

What to Evaluate?

"fundamental concepts or properties of a system in its environment embodied in its elements, relationships, and in the principles of its design and evolution."

ISO/IEC/IEEE 42010

"The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them.."

Len Bass

What to Evaluate?

If architectural decisions determine a system's quality attributes, then it is possible to evaluate architectural respect to their impact on those attributesdecisions with. Architects pay more attention to qualities that arise from architecture choices.

Architectures allow or preclude nearly all of the system's quality attributes.

What to Evaluate?

"... the evaluator is able to conclude that a quality goal is sensitive to certain properties of the architecture. A goal of any architecture evaluation is to make this reasoning explicit and to record it for posterity." *

* Clements et al.

How to evaluate Software Architecture?

- Quality attributes can be evaluated through:
 - Scenario-based evaluation: for example change scenarios for assessing maintainability

ICT is unsustainable

Total number of views:

3,362,297,996

Total energy per view:

0.2 kWh

Slide by Ivano Malavolta

Total energy consumed: ~672 GWh in less than 7 years

x27,000 for 7 years!

https://www.youtube.com/watch?v=9bZkp7q19f0 http://shrinkthatfootprint.com/average-household-electricity-consumption

Where does this energy go?

Battery charge efficiency: 90%

CPU: 500 - 2,000 mW GSM: 800 mW Display: 400 mW GPS: 176 mW Gyroscope: 130 mW Microphone: 101 mW Bluetooth: 100 mW Accelerometer: 21 mW

Ivano Malavolta

- Quality attributes can be evaluated through:
 - Simulation: for example *Prototyping* is a form of simulation where a part of the architecture is implemented and executed in the actual system context

E.g. Usability

- Quality attributes can be evaluated through:
 - Mathematical modeling: for example, checking for potential deadlocks

2	demo_ctrl_processing.adeledi 🛛 🕲 demo_ctrl_processing.aadl 😂
	DATA sensor_data END sensor_data;
	DATA command_data END command_data;
	THREAD control_out END control_out;
	THREAD IMPLEMENTATION control_out.output_processing_01 END control_out.output_processing_01;
	THREAD control_in END control_in;
	<pre>THREAD IMPLEMENTATION control_in.input_processing_01 END control_in.input_processing_01;</pre>
	<pre>PROCESS control_processing FEATURES input : IN DATA PORT demo_ctrl_processing::sensor_data; output : OUT DATA PORT demo_ctrl_processing::command_data; END control_processing:</pre>
	PROCESS IMPLEMENTATION control_processing.speed_control SUBCOMPONENTS control_output : IHREAD demo_ctrl_processing::control_in.input_proc control_output : IHREAD demo_ctrl_processing::control_out.output_pl END control_processing.speed_control;
	END demo ctrl processing;

Architecture Description Languages

Performance

e.g. Queueing Networks

Safety

e.g. Fault-Tree Analysis

- Quality attributes can be evaluated through:
 - Experience-based assessment:
 - this is based on *subjective factors* like intuition, experience and expertise of software engineers

Who should carry out architecture evaluation?

Who!

- Evaluation by the designer
 - Every time a key design decision or a design milestone is completed.

• Advantages:

- Familiarity with the system
- Minimal overhead

• Limitations:

- Personal bias
- Dominant architect perspective

Who!

Peer review

- Peer = experienced colleague on the project, but not the architect
- At any point of the design process where a candidate architecture exists.

• Advantages:

- Familiarity with the system
- Multiple perspectives

• Limitations:

- Organization bias
- Limited availability

Who!

- Analysis by outsiders
 - Architecture-specialists and experts.

• Advantages:

- Minimal bias
- Expert recommendations

• Limitations:

- Start-up time / getting up to speed
- High expenses
- Confidentiality issues

When?

• Early: Examine those architectural decisions already made and choose among architectural options that are pending.

When?

• Late: The implementation is complete (e.g. using a legacy system).

Open Source Software

When?

Continuous: Evaluation at each development iteration.

When commissioning/buying a system

Which of the offered systems fits best in my system ?

sellers

What are the **benefits** of architecture evaluation?

Results of Software Evaluation

- Is this architecture suitable for the system for which it was designed?
- Which among several competing architectures is the most suitable one for the system at hand?
 - System will meet its quality goals
 - System will provide the required behavioural function
 - System will be developed according to its design constraints
 - System can be built using the resources at hand

An architecture evaluation doesn't tell you "yes" or "no," "good" or "bad," or "6.75 out of 10." It tells you **where you are at risk**.

Benefits of Architecture Evaluation

- Puts stakeholders in the same room
- Forces an articulation of specific quality goals
- Results in the **prioritization** of conflicting goals
- Forces a clear explication of the architecture
- Improves the quality of architectural documentation
- Uncovers opportunities for cross-project reuse
- Results in improved architecture practices

What are the **limits** of architecture evaluation?

Evaluation Challenges

- What artefacts are available?
- What resources are available?
- Who sees the results?
- Who performs the evaluation?
- Which **stakeholders** will participate?
- What are the **business goals**?
- What tools are available?

Architecture Tradeoff Analysis Method - ATAM

- ATAM: Architecture Tradeoff Analysis Method
 - A scenario-based architecture method for assessing quality attributes such as: modifiability, availability, and security.
- Evaluators need not be familiar with the architecture or its business goals
- System need not yet be constructed
- A large number of stakeholders are involved

ATAM: Quality Attribute Scenario

- A Quality Attribute Scenario is a quality attribute specific requirement.
 - Source of stimulus (e.g., human, computer system, etc.)
 - Stimulus a condition that needs to be considered
 - Environment what are the conditions when the stimulus occurs?
 - Artifact what elements of the system are stimulated.
 - **Response** the activity undertaken after arrival of the stimulus.
 - **Response measure** when the response occurs it should be measurable so that the requirement can be tested.

Example Quality Scenario for Security

Utility Tree

What are the activities involved in ATAM?

ATAM Activities

ATAM Output

ltem	Description
Sensitivity point	A property of one or more components (and/or component relationships) that is critical for achieving a particular quality attribute response
Tradeoff point	An architectural decision that affects more than one quality attribute (possibly in opposite ways)
Risk	Architectural decision that may lead to undesirable consequences
Non risk	Architectural decision that is deemed safe
Risk theme	A general concern of a group of interrelated risks in a design, assigned its own risk value

Sensitivity Point

Sensitivity point is a parameter of the architecture to which some quality attribute is highly related.

- A system requires
- high performance

Suppose throughput depends on one channel

Trade-off point

A **trade-off point** is a parameter of the architecture that affects multiple quality attributes in opposite directions.

ATAM Phases

Evaluation client

Evaluation team

Project decision makers

Stakeholders

ATAM Phases

Evaluation client

Evaluation team

Project decision makers

Phase 0 Partnership and preparation

Proceeds informally as required, perhaps over a few weeks

ATAM Phases

ATAM Phases

ATAM Phases

ATAM Example Analysis

Scenario #: A12		Scenario: Detect and recover from HW failure of main switch.			
Attribute(s) Availab		ility			
Environment	Normal operations				
Stimulus	One of	One of the CPUs fails			
Response	0.999999 availability of switch				
Architectural dec	cisions	Sensitivity	Tradeoff	Risk	Nonrisk
Backup CPU(s)		S2		R8	
No backup data	channel	S3	T3	R9	
Watchdog		S4			N12
Heartbeat		S5			N13
Failover routing		S6			N14
	state takes that long at worst Guaranteed to detect failure within 2 seconds based on rates of heartbeat and watchdog Watchdog is simple and has proved reliable Availability requirement might be at risk due to lack of backup data channel (see Bisk 9)				
Architecture diagram		Primar CPU (OS1)	k .		

Example

Automotive Software Architecture

Increasing amount of software in systems

XC90 2002 Topology overview

Example Quality Scenario for Safety

Example Quality Scenario for Safety

Utility Tree

Scenario 5	Capture video during the reverse driving (backing up) of the car from the rear- camera and show it on the main display.				
Attributes	Safety.				
Environment	Car in reverse driving.				
Stimulus	Camera feed to be shown on the display.				
Response	Process video data and show it on the display.				
Architectural decisions	Sensitivity	Trade-off	Risk		
Placing the processing of the video feed on the Main ECU	S1	T1	R1		
Placing the processing of		T2	R2		
the video feed on BBC					
Reasoning	The functioning of the main ECU is vital to the system (see sensitivity point S1)				
	Safety versus lowered cost (see trade-off point T1)				
	Safety requirement might be at risk due to heavy processing on Main ECU (see				
	risk R1)				
Architecture diagram	MainECU_I		cutionEnvironment»		

62

ATAM Conceptual Flow

64

Scenario 5	Capture video during the reverse driving (backing up) of the car from the rear-				
	camera and show it on the main	display.			
Attributes	Safety.				
Environment	Car in reverse driving.				
Stimulus	Camera feed to be shown on the display.				
Response	Process video data and show it on the display.				
Architectural decisions	Sensitivity	Trade-off	Risk		
Placing the processing of the video feed on the Main ECU	S1	Τ1	R1		
Placing the processing of the video feed on BBC		Т2	R2		
Reasoning	The functioning of the main ECU is vital to the system (see sensitivity point S1) Safety versus lowered cost (see trade-off point T1) Safety requirement might be at risk due to heavy processing on Main ECU (see risk R1)				
Architecture diagram	MarfCU1	CAN but	catoritarionnete-		

Summary

- We have learned:
 - What is software architecture evaluation!
 - **How to plan** software architecture assessment!
 - What are the results and benefits of architecture evaluation
 - **ATAM** Architecture Tradeoff Analysis Method

Summary

- ATAM:
 - is a scenario-based scenario-based architecture evaluation method that focuses on a system's quality goals
 - is a **qualitative** evaluation approach
 - is not an evaluation of requirements
 - is not a code evaluation
 - does not include actual system testing
 - is works with possible areas of risks