
Reverse Architecting and
Design-Code Conformance

Truong Ho-Quang
truongh@chalmers.se

mailto:truongh@chalmers.se

Truong Ho-Quang

Week Date Time Lecture Note
3 L1 Wed, 20 Jan 10:15 – 12:00 Introduction & Organization Truong Ho
3 L2 Thu, 21 Jan 13:15 – 15:00 Architecting Process & Views Truong Ho
4 Tue, 26 Jan 10:15 – 12:00 Skip
4 S1 Wed, 27 Jan 10:15 – 12:00 << Supervision: Launch Assignment 1>> TAs
4 L3 Thu, 28 Jan 13:15 - 15:00 Roles/Responsibilities & Functional Decomposition Truong Ho
5 L4 Mon, 1 Feb 13:15 – 15:00 Architectural Styles P1 Truong Ho
5 S2 Wed, 3 Jan 10:15 – 12:00 << Supervision/Assignment>> TAs
5 L5 Thu, 4 Jan 13:15 – 15:00 Architectural Styles P2 Sam Jobara
6 L6 Mon, 8 Feb 13:15 – 15:00 Architectural Styles P3 Truong Ho
6 S3 Wed, 10 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
6 L7 Thu, 11 Feb 13:15 – 15:00 Design Principles (Maintainability, Modifiability) Truong Ho
7 L8 Mon, 15 Feb 13:15 – 15:00 Architectural Tactics & Analysis Truong Ho
7 S4 Wed, 17 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
7 L9 Thu, 18 Feb 13:15 – 15:00 Architecture Evaluation Truong Ho
8 L10 Mon, 22 Feb 13:15 – 15:00 Reverse Engineering & Correspondence Truong Ho
8 S5 Wed, 24 Feb 10:15 – 12:00 << Supervision/Assignment>> TAs
8 L11 Thu, 25 Feb 13:15 – 15:00 Guest Lecture 1 TBD
9 L12 Mon, 1 Mar 13:15 – 15:00 Guest Lecture 2: Architectural Changes in Volvo AB Anders M.
9 S6 Wed, 3 Mar 10:15 – 12:00 << Supervision/Assignment>> TAs
9 L13 Thu, 4 Mar 13:15 – 15:00 To be determined (exam practice?) Truong Ho
9 Fri, 5 Mar Whole day Group presentation of Assignment (TBD) Teachers
11 Exam Thu, 18 Mar AM

Schedule

We are
HERE!

Truong Ho-Quang

Asignment schedule

3

Week Date Lecture Assignment 1 –
Task 1 (A1T1)

Assignment 1 –
Task 2 (A1T2)

Assignment 2
(A2)

3 L1 Wed, 20 Jan 10:15 – 12:00
3 L2 Thu, 21 Jan 13:15 – 15:00
4 Tue, 26 Jan 10:15 – 12:00
4 S1 Wed, 27 Jan 10:15 – 12:00 Launch A1T1
4 L3 Thu, 28 Jan 13:15 - 15:00
5 L4 Mon, 1 Feb 10:15 – 12:00
5 S2 Wed, 3 Jan 10:15 – 12:00 Work A1T1
5 L5 Thu, 4 Jan 13:15 – 15:00
6 L6 Mon, 8 Feb 10:15 – 12:00
6 S3 Wed, 10 Feb 13:15 – 15:00 Work A1T1
6 L7 Thu, 11 Feb 13:15 – 15:00 Hand-in A1T1

Peer Rev A1T1
7 L8 Mon, 15 Feb 10:15 – 12:00
7 S4 Wed, 17 Feb 13:15 – 15:00 Hand-in PR

A1T1
A1T2 released

MQTT intro
A2 released

7 L9 Thu, 18 Feb 10:15 – 12:00
8 L10 Mon, 22 Feb 13:15 – 15:00
8 S5 Wed, 24 Feb 13:15 – 15:00 Work A1T2 A2 released
8 L11 Thu, 25 Feb 10:15 – 12:00
9 L12 Mon, 1 Mar 13:15 – 15:00
9 S6 Wed, 3 Mar 10:15 – 12:00 Work A1T2 Hand-in A2
9 L13 Thu, 4 Mar 13:15 – 15:00
9 Fri, 5 Mar Whole day Present A1T2
10 Hand-in A1T2 Hand-in A2
11 Exam Thu, 18 Mar

We are
HERE!

Online Written Exam

18th of March in the AM/Morning

4

Outline

- Reverse Architecting –
based on slides by prof. Arie van Deursen,
TU Delft, Netherlands

- Monitoring Implementation-Design
conformance

includes slides by Reinder Bril,
TU Eindhoven, Netherlands

5

Reverse Architecting: Motivation

• Architecture description lost or outdated
• Obtain advantages of explicit architecture:

– Shared representation of system
– Stakeholder communication
– Explicit design decisions

• Architecture conformance checking
• Quality attribute analysis

66

7

Program Understanding
• the task of building mental models of an

underlying software system
• at various abstraction levels, ranging from

– models of the code itself to
– ones of the underlying application domain,

• for software maintenance, evolution, and
reengineering purposes

~50% of
maintenance

effort!!

MRV Chaudron

8

9

MRV Chaudron

Architecture
Plan vs Reality (‘as-is’)

User interface

10

M. R.V. Chaudron – May 2011

Problems with
Engineering Documentation

Difficult to:
o find information

due to: - large size & complexity
- scattering of information

o Keep (check) ‘up-to-date’

o To cater for multiple audiences
tasks, experience, ….

www.webshop.com

How can a developer get the latest information he
needs for his current task? 12

Reverse Engineering

The process of analyzing a subject system with
two goals in mind:

– to identify the system's components and their
interrelationships; and,

– to create representations of the system in another
form or at a higher level of abstraction.

13

Reverse Engineering (analogy)

14

Re-engineering

• The examination and alteration of a subject
system

• to reconstitute it in a new form
• and the subsequent implementation of that

new form

Beyond analysis -- actually improve.

15

Reengineering

16

17

18

Reverse Engineering: Exploration

19

• Extract src models from system artifacts
• Query/manipulate to infer new knowledge
• Present different views on results

extract resultsrepository view

query

artifacts

Source Model Extraction

21

extract resultsrepository view

query

artifacts

22

Source Model Extraction
• Derive information from system artifacts

– variable usage, call graphs, file dependencies,
database access, …

• Challenges
– Accurate & complete results
– Flexible: easy to write and adapt
– Robust: deal with irregularities in input

23

Query and Manipulate

extract resultsrepository view

query

artifacts

24

Query and Manipulate
• Goals:

– infer (new) knowledge & abstractions
– filter information

• Example structures:
– Perform graph
– Call graph (OI, PVL)
– Screen flow
– Batch job
– Subsystem dbs

In search for
more abstraction

oi100cpg.pdf
oi400cg.pdf
pvl.pdf
next-mod.pdf
batch.pdf
dblift.pdf

26

Presentation of Results

extract resultsrepository view

query

artifacts

27

Presentation Desiderata
• Browsing and searching
• Multiple levels of abstraction

– Zoom in, zoom out

• Visual as well as textual information
– Graph visualization

• Show multiple structures
– E.g. Package hierarchy + control-flow

30

Reverse Engineering of a small system

Clearly different from forward designed UML designs
(o.a. in size, layout, detail, naming, ….) 31

MRV Chaudron

Recall: 4+1 Views
Representation of Systems

Structure View

Functionality (Decomposition)

Development View

Programmers
Configuration management

Process View
System Architect

Deployment View

System topology
Delivery, installation, maintenance

Performance, Scalability, Throughput

System engineering

Use Case View

Concurrency, Communication,
Synchronization

End-user System Architect

How is the system
structured?

How to build /
configure ?

Where to install ?
What hw\nw is used?

How does the
system behave?

How does the
system perform ?

What can/does
the system do ?

32

MRV Chaudron

Idea 1

A B

C D

A B C D A
B C D

source code

classes

views

33

MRV Chaudron

Interesting Structures of
Software System

• Module structure
• Modules & dependencies
• Layering
• Hierarchy

• Data model structure
• Type structure

34

MRV Chaudron

Behaviour is also Interesting!
• Call structure
• Process structure
• GUI flow
• ...

35

Combine Architecture with other
Development metrics: High Priority Bugs

36

Rigi tool

http://www.svgopen.org/2002/papers/kienle_weber_mueller__rigi_reverse_engineering/

37

SoftwareNaut

- Mircea Lungu, Michele Lanza, and Oscar Nierstrasz. Evolutionary and
Collaborative Software Architecture Recovery with Softwarenaut. In Science of
Computer Programming (SCP), 2012. DOI 38

http://scg.unibe.ch/archive/papers/Lung12b.pdf
http://dx.doi.org/10.1016/j.scico.2012.04.007

NDepend

39

NDepend

4040

41
41

4242

4343

4444

4
5

45

46

47

48

49

RoleViz (*)

(*) Ho-Quang, Truong, et al. "Interactive Role Stereotype-Based Visualization To Comprehend Software Architecture." 2020 Working
Conference on Software Visualization (VISSOFT). IEEE, 2020.
Demo video: https://www.youtube.com/watch?v=1JYQMPMF9do&t=278s 50

https://www.youtube.com/watch?v=1JYQMPMF9do&t=278s

Softagram (*)

(*) Demo video: https://www.youtube.com/watch?v=JNcHL5lnutc

51

https://www.youtube.com/watch?v=JNcHL5lnutc

52

More “visualization” tools
• ObjectAid UML Explorer (an Eclipse plugin)
• StarUML
• Enterprise Architect (Sparx)
• srcML + srcUML
• PlantUML

53

https://www.objectaid.com/
https://www.srcml.org/

MRV Chaudron

• Android open source
• 10 million downloads from Google Play Store
• 210 contributors

• https://github.com/k9mail/k-9

K-9 email

56

https://github.com/k9mail/k-9

MRV Chaudron

A Fragment of the 800 classes of K9

Automated layouting
requires better algorithms

57

All packages

mail.filter

mail.helper

mail.internet

mail.message

mail.oauth

mail.power

mail.ssl

mail.store
(imap, pop2,

webdav)

mail.store k9mail

account

activity

acitivity.compose

acitivity.loader

acitivity.misc

acitivity.setup

autocrypt

cache

controller

crypto

fragment

helper

mailstore

helper.jsoup

mailstore.migrations

mailstore.util

message

message.extractors

message.html

message.quote

message.signature

notification

power

preferences

provider

remotecontrol

search

service

setup

search

ui

ui.compose

ui.crypto

ui.dialog

ui.message

ui.messageview

view

widget.list

K9mail-library k9mail

58

Business layer (3.)

Presentation Layer (1.)

Data Access Layer (4.)

SQLiteDB

user-interface-logic (1.2.)

Service Layer (2.)

mail_providers

Cross-
cutting (5.)

intent provider (2.2.)

AlarmManager
API

content provider (2.1.)

activity.*

fragment.*user-interface
(1.1.)

layout (.xml
files, .kt)

Business Components (3.3.)

Business Entity Components (3.4.)

Business Workflow (3.2.)

MIME encoder |
decoder (3.2.3.)

mail.internet
mail.helper
mail.filter

Scheduling (3.2.1.)

mail

mail.powermail.ssl

mail.oauth

mailstore

mail.message

k9

account

Business Façade (3.1.)

controller.MessagingController controller.MessagingControllerCommanduses

cr
yp

to

he
lp

er

ui.* provider.*
(Attachment,

DecryptedFile, Account)

search

message.*

mailstore

mailstore.migrations

mailstore.util

view

au
to

cr
yp

t

ca
ch

e

notification

widget.list

preference
s

power
(IdleManager)

mailstore.migrations

Talk with mail-
providers (3.2.2.)

mail.store
(imap, pop2, webdav)

mail.transport

service.*

com.fsck.k9.intent.action.*

com.fsck.k9.intent.extra

Other (3.2.4.)

59

60

K9 from:

61

MRV Chaudron

Layer 1

Layer 2

Layer 3

Implementation
Dimension

Functional
Dimension

62

How about more abstraction?

• Clustering

63

Economy of Modeling

Size of the system%
 o

f s
ys

te
m

 c
ov

er
ed

 b
y

m
od

el

64

20%
30% 50%

Scaling Abstraction (*)

• Which criteria to use for abstraction?
• What is the relation between design and code?
• Different tasks require different parts/slices/views

(*) Osman, Mohd Hafeez, Michel RV Chaudron, and Peter Van Der Putten. "An analysis of machine learning algorithms for
condensing reverse engineered class diagrams." 2013 IEEE International Conference on Software Maintenance. IEEE, 2013.
Demo video: https://youtu.be/dHBB5wA2wDI 65

https://youtu.be/dHBB5wA2wDI

Class Diagram Simplification
This research aims at simplifying class diagrams

Hafeez Osman

Considering:- structural properties (coupling, size)
- semantic properties:

‘support’ vs ‘core functionality’
GUI / frameworks / gets&sets vs cruise control

- feature based 67

68

A change d can be an addition, modification, removal.

learn design
abstraction: a

change d change d’ change d’’

so
ur

ce
 c

od
e

U
M

L
de

sig
n

m
od

el

update with
abstraction of change: a(d) a(d’) a(d’’)

time

Automated Updating of Class Models

69

70

Collaboration Pattern between Stereotypes

These patterns represent typical
collaborations between
responsibility-stereotypes

Through labelling of roles, we find
recurring patterns in the design

71

Common graph-patterns in Software Designs
Through labelling of roles, we find recurring patterns in the design

These patterns represent typical collaborations between role-
stereotypes.
These patterns can be used for e.g.
- checking designs (allowed dependencies; metric thresholds)
- synthesizing a design
- generating visualizations
- design summarization

Service
Provider

Coordinator

Service
Provider

Service
Provider

Interfacer

72

Role-stereotypes in software design

Information
Holder

Service
Provider

Coordinator

Controller

Interfacer

Structurer
73

Collaboration Patterns between Stereotypes

Information
Holder

Service
Provider

Coordinator

Controller

Interfacer

Structurer

This shows
expansion of
roles

74

Checking Design-Code Correspondence
using Relational Algebra

75

Managing Design – Code Correspondence

76

Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Application domain

SAS

SD

CPS

SOPHOCPC

POM

GOS

LOS

POMCL

“Intended” module architecture
(documentation + software architects)

77

Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Application domain

POMCLSAS

SD

CPC

POMCPS

GOS

SOPHO

LOS

“Actual” module architecture
(extracted from the implementation)

78

Conceptual Integrity

79

Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Conformance

Causes when “intended” and “extracted” differ:
1. “intended” is wrong (e.g. out-of-date): improve;

2. “extracted” is wrong: improve;

3. implementation is optimized for, e.g., speed Þ refinement.

Intended Extracted

S

H

A

D

I

S

H

A

D

I

80

Reinder J. Bril, r.j.bril@tue.nl
TU/e Informatica, System Architecture and Networking

Application domain
- Ensure conformance to an architecture !

- Keep the architecture up-to-date
- Approach using relation algebra (RPA):

- Represent the “intended” architecture in RPA.
- Extract the “derived” architecture from the

implementation, and represent in RPA.
- Express “conformance” in RPA.
- Ensure conformance by means of verification

(using RPA) and improvements (i.e. control).

81

B

A

S

A3A1

B2B1

A2 A1 A2 A3B1 B2

B A

S

System Representation

System S is balanced, and
the decomposition tree has 3 levels

8282

B

A

S

A3A1

B2B1

A2

Set of Entities E:

E = { S, A, A1, A2, A3, B, B1, B2}

Relation Algebra: Example

83

Part-of relation P:

P = { <B, S>, <A, S>,

, <B1, B>, <B2, B>

, <A1, A>, <A2, A>,

<A3, A> }
A1 A2 A3B1 B2

B A

S

A part-of relation:

• describes the decomposition tree;

• is both: functional and a-cyclic.

Relation Algebra: Example

84

Example: Overview of Operations on Relations
– A-1 = {<y,x> ½<x,y> Î A }
– A – B = {<x,y> ½<x,y> Î A and <x,y> Ï B }
– A È B = {<x,y> ½ <x,y> Î A or <x,y> Î B }
– A Ç B = {<x,y> ½<x,y> Î A and <x,y> Î B }
– A;B = {<x,z> ½ <x,y> Î A and <y,z> Î B }
– A+ = !n=1 Rn, where Rn = R;Rn-1 for n >=2
– A* = A+ È I
– A Æ B = {<x,y> ½ <x,v> Î A and <y,v> Î B }
– A B = B-1 ; A ; B (lifting)
– A ↓ B = B ; A ; B-1 (lowering)

Operators in Relational Algebra

Union I + E = {(a,b), (b,y)}
Intersection E ^ C = {(b,y)}
Difference C - E = {(r,a), (r,b), (a,v), (a,w), (a,x), (b,z)}
Inverse inv E = {(y,b)}
Composition I o E = {(a,y)}
Identity id = {(r,r), (a, a), (b,b), (w,w) … }
Transitive Cl. C+ = {(r,a), (r, b), (r,v), (r,w), (r,x), (r,y),

(r,z), (a,v), (a,w), (a,x), (b,y), (b,z)}
Reflex. T.C. C* = ID + C+

86

Example Typed Graph

r

a b
CC

v w x y z

C C C E C C

I

U U

v

w

x y

z
a b

r

U
U

I

E

C = { (r,a), (r,b), (a,v), (a,w) (a,x), (b,y), (b,z) }
I = { (a,b) }
E = { (b,y) }
U = { (v,w), (x,y) }

87

Reinder J. Bril, TU/e Informatica, System
Architecture and Networking

B

A

S

A3A1

B2B1

A2

B
S

A3A1

B2B1

A2

A

Lifting (2)

®

88

Reinder J. Bril, TU/e System Architecture and Networking

B

A

S

A3A1

B2B1

A2

B
S

A

Hiding

Hiding the decomposition structure of
both A and B

®

89

Example: “Class diagram – MSC”

GameManager

Player

HumanPlayer ComputerPlayer

Display

Board GameManager :
Manager

HumanPlayer :
Player1

ComputerPlayer :
Player2

Display :
display

There is no dependency between
HumanPlayer and Display in the class
diagram

90

Example: “Class diagram - MSC”
Class Diagram in RPA:

- CLASS = {GameManager, Board, Player,
HumanPlayer, ComputerPlayer, Display}

- METHOD = {GameManager.play, GameManager.stop,
Player.setToken, HumanPlayer.getNextMove,
HumanPlayer.setToken,
ComputerPlayer.getNextMove,
ComputerPlayer.setToken, Display.printLn,
Display.printBoard}

- IMPLEMENTS = {<GameManager.play,GameManager>,
…. }

- INHERITANCE = {<HumanPlayer,Player>,<ComputerPlayer,Player>}
- DEPENDENCY = {<GameManager,Player>,

<GameManager,Display>}
- AGGREGATION = {<GameManager,Board>}

91

Example: “Class diagram - MSC”
- MSC in RPA:

- OBJECT = {Manager, Player1, Player2, display}
- TYPE = {<Manager, GameManager>,

<Player1,HumanPlayer>,
<Player2,ComputerPlayer>,<display,Display>}

- CALL = {c1,c2,c3,c4c5}
- NEXT = {<c1,c2>,<c2,c3>,<c3,c4>,<c4,c5>}
- CALLER = {<Manager,c1>,<Player1,c2>,<Manager,c3>,

<Manager,c4>,<Manager,c5>}
- CALLEE = {<Player1,c1>,<display,c2>,<display,c3>

<Player2,c4>,<display,c5>}
- MESSAGE = {<HumanPlayer.getNextMove,c1>,

<Display.printLn,c2>,
<Display.printBoard,c3>,
<ComputerPlayer.getNextMove,c4>,
<Display.printBoard,c5>}

92

Example: “Class diagram - MSC”

- Rule
- (CALLER ® CALLEE) " TYPE µ (DEPENDENCY ↓ INHERITANCE*)

GameManager

Player

HumanPlayer ComputerPlayer

Display

Board GameManager :
Manager

HumanPlayer :
Player1

ComputerPlayer :
Player2

Display :
display

!

93

Slide by R. Holt

Uses of Relational Languages
1. Enforce architecture rules. Holt 96, Feijs 98, Knodel 08

2. Lift dependency edges. Holt 98, Feijs 1998

3. Find design pattern instances. Consens 98, Beyer 02

4. Find violations of patterns. Guo 99

5. Find anti-patterns. vanEmden 02, Feijs 98

6. Change impact analysis. Feijs 98

7. Specify extraction from syntax. Lin 08

8. Find source of dependency. Fahmy 01, Feijs 98

9. Locate uses of protocols. Wu 01

10.Type inference using transitive closure.
vanDeursen 99

94

Time for Reflection

- What are the strengths and weaknesses of
the Relational Algebra Approach towards
checking conformance between Architecture
and Implementation?

95

M.Sc. Thesis Dennis van Opzeeland TU Eindhoven

Design

Im
pl

em
en

ta
tio

n

Checking Correspondence through metrics

- Horizontal axis:
metric from design

- Vertical axis:
metric from code

- Dots:
(metric(class in design),
metric(class in code))

- Here: Number of Methods
Inherited

96

Tool for Correspondence Checking

Outlier

n X-Axis
¨ Metrics of

Design
n Y-Axis

¨ Metrics of
Implementation

n Points represent
Classes

n Points off the
diagonal indicate
(critical) outliers

97

The scatter plotter (screenshot)

98

Akerman & Tyree

• Architecture decisions are the primary
representation of architecture

• Architecture results from effective decision making,
not from architectural view construction*

• Architecting is primarily concerned with:
- architecture assets
- the business-driven decisions that transform these assets
- the roadmap that implements these decisions

*J. Tyree and A. Akerman, "Architecture Decisions: Demystifying Architecture," IEEE Software, vol. 22, pp. 19-27, March. 2005

99

Akerman & Tyree:
Problems with current architecture development & descriptions methods

• Lack of Focus on What’s Important
• Lack of Precision and Clarity
• Lack of Repository Support
• Lack of Support for Impact Analysis

(Decisions to Concerns, Decisions to Decisions, and
Decisions to Architecture Assets)

• Difficulty in Linking with the Views
• Lack of Support for Temporal Mapping

100

Akerman & Tyree: Solution

• Architecture meta-model
• Focus on “information about architecture

that an organization cares about” instead of
diagrams and views. Architecture is captured
as an ontology.

• Tool support to enable effective decision
making and “on-demand” view creation

101

Beyond structure views
How about a views for?
- security
- safety
- performance?

102102

Beyond Views

• How about recovery of
– Design principles
– Design rationale

103

Architecture Meta-Model (Details)
• Concerns
• Decisions
• Roadmap
• Assets

Change Case

Concern Relationship Type

Risk Quality Capability Business Need

Zone

Location

borders

0..n
+consists of

0..n

Node

composed of

+located at
Data

1..n

+deployed on

1..n

Architecture
Pattern

Component

composed of

+deployed on
uses

0..n

+participates

0..n

Mission

Environment

Subsystem

contains

1..n1..n

aggregates

Roadmap

System

+fulfills

+inhabits

+influences

1..*

1

1..*

1

consists of

Alternative Element Relationship Type

Stakeholder

1..n
+has

1..n

Decision Relationship Type

Initiative

1..n

+organized by

1..n

Concern1..n1..n

+has

1..n

+is important to

1..n

contains

Implication

Project

1..n1..n

Alternative1..n

1..n

1..n

+addresses as soft goals

1..n

1..n1..n

has

Architecture Asset

Architecture Decision
1

+implemented by

1

1

1..n

1

+has

1..n

transforms
0..n0..n

is related to

Business Control

Business Process

validates

Interface (alias Service)

1..n
+offers

1..n

0..n
+uses

0..n

composed of

104

Summary Reverse Architecting

- Rev. Arch. is a labour intensive activity
- Manual (re)discovery of abstractions
- Have a purpose in mind

- Rev. Arch. is a step in managing:
- conformance of the implem. to the architecture
- conceptual integrity

- Need a method for focussing on what is important

105

1-slide Summary of Best Architecting Practices
• Get stakeholder involvement & feedback early and frequently
• Understand the drivers for the project (business, politics)
• Understand the requirements incl. quality properties

• SMART & prioritized
• Develop iteratively and incrementally
• Describe architecture using multiple views

• abstract, but precise, design decisions & rationale

• Design for change (modularity, low coupling, information hiding,
separation of concerns)

• Monitor that architecture is implemented
• Simplify, simplify, simplify
• Analyze in an early stage (use maths! and scenarios)

• Regularly update planning and risk analysis
• Get good people, make them happy, set them loose 106

Questions

107

M. R.V. Chaudron – May 2011

Example:
Automated Plagiarism Checking System

• University can have subscriptions
• University-faculty can make accounts
• Faculty can send in documents for checking

• Documents are turned into a standard internal format
• The document is segmented (chapters, section, sentences, …)
• Document is compared on a sentence by sentence basis.
• A plagiarism score is produced
• A report is sent to the person that sent in the document

• The system keeps records of use for producing yearly accounting
reports

108

M. R.V. Chaudron – May 2011

File
Upload

API

Account
Registration

External
Paper Loader

Paper
Repository

Submission
Loader

File Converter

File Segmenter

Comparator

Comparator

Scorer
Compiler

Report Generator

University
Accounting

Paper
Reporter

Registration
API

109

M. R.V. Chaudron – May 2011

Subsystems vs Layering

Layer 1

Layer 2

Layer 3

Implementation
Dimension

Functional
Dimension

Account
Registration

Ext. Paper Loader Paper Repo’

Submission Loader

File Converter
File Segmenter

Comparator

Comparator

Score-Compilr
Report Generator

Accounting

Paper Reporter

110

111 111

Reverse Engineered Design Forward Class Design

False Negative

False Positive

Comparing Reverse and Forward UML

112

How is Level of Detail distributed in a diagram?
Case 1 Case 2

Robin van den Broek B.Sc. Thesis in CS, 2009, Leiden University

Low detail Low detail

High detail High detail

114

What do developers look at anyway?

115

MRV Chaudron

Example 4+1 Views model

A B

C D

A B C D
A
B

C D

116

