
Embedded Systems
& IoT architecture

David Ngo

2021-02-25

About me

Working with embedded systems
since 2008, focus on embedded
software development

Mainly in medtech and industrial

Helping SKF to deliver Condition
Monitoring products and be the
market leader of rotating
equipment performance.

SKF Condition Monitoring products

Railway vehicles Mining Power Generation
Steam Turbines

Power Generation
Steam Turbines

Paper Machines

Cruising Ships Wind Printing

SKF Industry presence

Agenda

1. What is IoT

2. IoT system infrastructure

3. IoT devices and choice of Operating System

4. Communication protocols

5. IoT products examples

Source: https://ecsxtal.com

Source: NIST

Source: NCTA

IoT System
Infrastructure

• IoT Devices

• IoT Gateways

• Cloud & Big Data

• End-User Applications

Source: sam-solutions.com

Data
Collection

Data
Transmission

Data
Processing

Data
Visualization

Data
Analysis

IoT Devices

Source: ARM

Embedded Systems

• SW & HW interconnected

• Constraints on HW
• Power

• Speed

• Size

• HW cost vs SW cost
• Volume

• Need to get smart about software because
that’s where the costs are.

Source: Locolabs

Architectural patterns

• Selecting the right architectural
pattern will play a crucial role to
the outcome of the project.

• Software architecture must be
chosen wisely because once
implemented it is not easy to
change.

• Main forces

• Cost

• Time to Market

• Quality

“Big ball of mud”

Open-source OS landscape

• Bare metal, no OS

• Embedded OS / RTOS
• FreeRTOS, Mbed OS, Zephyr, etc.

• Full-featured OS
• Linux, etc.

OS used in embedded development

Source: Embedded Markets Study, 2019

Bare Metal

• Architecture style: Layer
• Each layer is a group of modules

that offer cohesive set of services.

• Clear separation of concerns so that
modules can be independently
developed and maintained
(portability, modifiability, reuse)

• Layer n can use services of layer n-1
and not vice versa.

• Bridging layers

Application Code

middleware & libraries

Peripheral Drivers

Microcontroller Hardware

Bare Metal

• Software Architecture
• Super loop
• Event driven
• State machine

• Typical task order
• Read inputs
• Process information (using state machine)
• Output results
• Delay until next loop execution

• Task examples
• ADC samples
• Blink LED
• Read/write data to flash
• Serial communication

Function 1

Function 2

Function 3

Function 3
cont.

Function 4

Interrupt Service
Routine

void main(void) {
board_init();
while (1) {

adc();
led();
flash();
serial();

}
}

Wait
data

Idle

Proc
ess

data

Bare Metal

+ Low complexity

+ Everything is processed in the super loop

+ Easy to see the which functions being executed and when

+ Timing is fixed at every loop, except for short interrupts
(incoming events)

+ Functions do not execute at the same time, thus no race
condition

- No function can execute too long to ensure response time

- Difficult to add complex functionality
• e.g. pdf generation, TLS communication, UI, complex time-

consuming algorithms
• Functions with long execution time could lead to heavy jitter and

latency of other user inputs
• Scheduling adjustment to fit new modules/libraries
• Requires implementation with constraint resource

Function 1

Function 2

Function 3

Function 3
cont.

Function 4

Interrupt Service
Routine

Quality
Attributes?

Bare Metal

• When using bare metal?

• Simple/ low complexity application

• Real-time deadline is not a requirement

• An application that does not require task/thread preemption

• Lack of hardware resources to fulfill the need of an OS.

• Don’t want to use third-party libraries and drivers

Embedded OS

Source: FreeRTOS

• Speed
• Built-in modules/libraries for

connectivity, security and updates

• Integrated cloud services

• Broad support

• Complexity
• Support many hardware and tools

• Cost
• Free and open source with community

support

Layered
pattern

Source: Mbed

Zephyr OS

Source: https://zephyrproject.org

Embedded OS

• Concurrent tasks/threads handling with priority and scheduling

• Inter-process communication and synchronization

• Deterministic behavior and timely response to critical tasks.

• Modest range of middleware and IoT libraries such as USB, TLS, IPv4, IPv6, WiFi, CAN, MQTT, etc).

• Tiny memory footprint, 100-200 KB

• Fast boot time, 50ms – 100ms

• Long term maintenance and development costs decreased

Embedded OS

• Each task has its own private
stack and priority.

• Each task is a loop itself.

• When a task to be executed
depends on each scheduling
mechanisms (round-robin,
preemptive-based scheduling)

• No need to break-down long
execution function to meet
time limitation

// bare metal
void main(void) {

board_init();
while (1) {

func1();
func2();
func3();

}
}
// func1() and
func2() cannot
execute too long

// Embedded OS
Task1(){

while(1){
func1(); //can execute as

long as it needs.
}

}

Task2(){
while(1){

func2();//can execute as
long as it needs.

}
}

void main(void) {
createTask(&Task1,highPrio);
createTask(&Task2,medPrio);
createTask(&Task3,lowPrio);
startScheduler();//never returns

}

Embedded OS

Task1(){
while(1){

func1();
}

}

Task2(){
while(1){

func2();
}

}

void main(void) {
createTask(&Task1,highPrio);
createTask(&Task2,medPrio);
createTask(&Task3,lowPrio);
startScheduler();//never returns

}

Task/module decomposition

1. Identify major components
• LCD

• Buttons

• Wifi

• Memory storage

• Sensors (Humidity, Temperature,
Air quality)

• Fan

LCD

Wifi

Memory

storage

Buttons

Sensors

(Humidity,

Temperature)

Fan

IoT
Device

Task/module decomposition

2. Label inputs/outputs

LCD

Wifi

Memory

storage

Buttons

Sensors

(Humidity,

Temperature)

Fan

IoT
Device

data

sensor
value

display

IoT Device

Task/module decomposition

3. Identify 1st level tasks

LCD

Wifi
Memory

storage

Buttons

Sensors

(Humidity,

Temperature)

Fan

data

sensor
value

display

speed

Process
input

Network
manager

Display

Process
output

Mem
manager

Task/module decomposition

4. Determine dataflow
and dependencies

LCD

Wifi
Memory

storage

Buttons

Sensors

(Humidity,

Temperature)

Fan

data

sensor
value

display

speed

Process
input

Network
manager

Display

Process
output

Mem
manager

Task/module decomposition

5. Identify application
tasks

LCD

Wifi
Memory

storage

Buttons

Sensors

(Humidity,

Temperature)

Fan

data

sensor
value

display

speed

Process
input

Network
manager

Display

Process
output

Mem
manager

App

Embedded OS

+ Concurrent programming paradigm. Splitting the software on tasks makes it modular, improve
program structure, maintainability and performance.

+ Performance: Guarantee responsiveness to external events in a timely manner

+ Scalability, easier to add complex functionality

+ Portability: Move over to another HW vendor easily due to similar API

+ Portability and reusability, support various platforms. Migration cost decreased dramatically if
moving to a different microprocessor.

+ Security: Some level of security through libraries

+ Modifiability: Easy to add new features, easy to modify without much affecting current system

- Requires precious resources on low-end embedded systems

- Overhead for handling OS features such as scheduling, context switching

Source: The Linux Foundation

Full-featured OS

• Open source

• Rich feature set

• Free or Low cost

• Hardware support

• HW Requirements
• 32-bit and 64-bit

processor architectures

• 8 MB RAM

• 4MB flash

Full-featured OS

• Bootloader

• Kernel

• Filesystem

• Services

• Application / Programs

Source: http://ccrs.hanyang.ac.kr/webpage_limdj/embedded/LinuxArchitecture.pdf

User space vs kernel space

• User space
• normal application software runs

• System calls
• Examples: allocating memory (variables) or

opening a file. Memory and files often store
sensitive information owned by different users, so
access must be requested from the kernel through
system calls.

• open(), read(), write(), close(), ioctl(), fork(), exit(),
wait(), etc.

Memory divided into two distinct areas:

• Kernel space
• where the code of the kernel is stored and

executes under.
• Strictly reserved for running a privileged

operating system kernel, kernel extensions,
and most device drivers.

Source: RedHat

Embedded Linux

• D-Bus: IPC mechanism

• a medium for local communication
between processes running on the
same host

Source: Wikipedia

publish - subscribe

request-response

Full-featured OS

+ Availability of file-systems, network connectivity, and UI support.

+ Native security features, constantly scanned for vulnerability

+ Versatile, scalable and has support for practically every device driver and protocol.

+ Modifiability, easy to add functionalities in the future, plenty of open-source applications
available.

- Needs significant CPU resources, typically in range of few MB for both RAM and ROM
footprint

- Soft real-time

- Booting time in several seconds

- High HW cost. Not suitable for 8 or 16-bit MCUs and low power devices.

- Steep learning curve, complex build systems, long compile time, etc.

- Open-source licensing obligation

Choosing the right one

• What is the target HW? What is the available resources on MCU?

• What is the required functionality and performance?

• Does it need real-time requirements?

• How much code do you need to develop? How much standard library it has?

• How complex are the algorithms involved?

• How hard will it be to maintain that code later on?

• Which one has been used in other products? Which one the team is familiar with?

• Languages - Does it support Java, Python, C, C++

• Do you need safety-certified embedded OS?

• Maturity of OS, good technical support available

Future

Source: https://www.pertech.co.il/lynxsecure

Communication protocols

Communication protocols

Source https://industrytoday.com/best-uses-of-wireless-iot-communication-technology

Main design constraints

• Power consumption

• Range

• Cost

Communication protocols

• Bluetooth Low Energy

• LoRaWAN

• Wifi

• Many mesh network
o Zigbee
o Z-Wave
o Bluetooth mesh
o Proprietary mesh

Source: https://www.fluidmesh.com/wireless-mesh-networks

Communication protocols

- Low power
- NB-IoT (5G)
- LTE-M (5G)

- Plugged in
- Wifi
- Ethernet
- 3G/4G/LTE

HTTPS

TCP/IP

???

TCP/IP

Client – Server architectural style Pub/Sub architectural style

Constrained Application Protocol (CoAP), is a
client-server protocol (one-to-one).

- Designed for interoperability with the HTTP and
RESTful web through proxy.

- Request / response model

Message Queue Telemetry Transport (MQTT), is a
publish-subscribe protocol that facilitates many-to-
many communication mediated by brokers.

- Designed for bandwidth-efficient and high latency
network

- Separation between producers and consumer of
data.

Source: pickdata.net

MQTT

Source: HiveMQ

Space decoupling: Publisher and subscriber
do not need to know each other (for
example, no exchange of IP address and
port).

Time decoupling: Publisher and subscriber
do not need to run at the same time.

Synchronization decoupling: Operations on
both components do not need to be
interrupted during publishing or receiving.

Scalability: Easy to scale up system in
number of publishers and subscribers.

MQTT QoS

• How hard the broker/client will try to ensure
message is received.

• 0: Message delivered at most once, with no
confirmation (fire-and-forget)

• 1: Message delivered at least once, with
confirmation required.

• 2: Message delivered exactly once by using a 4-
step handshake.

R
el

ia
b

ili
ty

La
te

n
cy

 /
 b

an
d

w
id

th

MQTT useful features

• Persistent session

• Avoid having to re-subscribing every time the connection is interrupted

• Retained message, ‘last known good’

• If a topic is only updated infrequently, then without a retained message, a newly subscribed
client may have to wait a long time to receive an update.

• Last Will and Testament

• ‘Last Will’ message that will be delivered to other clients when a client disconnects unexpectedly.

• Keepalive

• Ensure the connection between client and broker is still open

Cloud & backend

Source: scnsoft.com

Cloud & backend

Source: scnsoft.com

Examples of IoT product

?

Robot vacuum cleaner

Case 1: selection of HW/SW

• Small, wearable embedded
device that perform
measurement

• Collected data to be send to
cloud for processing and storage

• Coin cell battery powered,
minimum 1 year

• Low cost

• What is sample rate and duration
required for measurement? How often?

• Which wireless network infrastructure
can be used? Wifi? Bluetooth? Lora? 5G?

• How much data to be transferred?

• Which MCU has low power mode? Which
communication method use low power?

• Can we use single MCU for both
measurement and wireless
communication?

Technology HW SW

Case 1: selection of HW/SW

BLE

BLE

Ethernet

NB-IoT / LTE CatM

Case 2: selection of HW/SW

• Industrial embedded device
that perform measurement

• Data send to cloud for
processing and storage

• ~100 devices per location

• Small battery powered, 3 year

• Low cost

• Hash environment

• What is sample rate and duration
required for measurement? How often?

• Which wireless network infrastructure
can be used? Wifi? Bluetooth? Lora? 5G?

• How much data to be transferred?

• Which MCU has low power mode? Which
communication method use low power?

• Can we use single MCU for both
measurement and wireless
communication?

Technology HW SW

Source: LumenRadio

Case 3: selection of HW/SW

• Industrial embedded device that
perform measurements on
running vehicles

• Collected data to be send to
cloud for processing and storage

• Battery powered

• Wireless

• Easy installation

• What is sample rate and duration
required for measurement? How
often?

• Which wireless network infrastructure
can be used? Wifi? Bluetooth? Lora?
5G?

• How much data to be transferred?

• Which MCU has low power mode?
Which communication method use
low power?

Technology HW SW

3G/4G

Ethernet
Wifi

Thank you

