Embedded Systems

& |oT architecture

David Ngo
2021-02-25

About me

-

Working with embedded systems
since 2008, focus on embedded
software development

Mainly in medtech and industrial

Helping SKF to deliver Condition
Monitoring products and be the
market leader of rotating
equipment performance.

-'m'__

_~.

U
-

0

» -
R

-
. -

— L amm |
Pormemaseeemmnzl ||
4 Y S Y -

o
< P r
[SRR L SRR S & ’ - L

e "
- g

SKF Condition Monitoring products

SKF Industry presence

Power Generation
Steam Turbines

Power Generation Cruising Ships Wind Printing
Steam Turbines

What is loT
loT system infrastructure
loT devices and choice of Operating System

Agenda

Communication protocols

i & W N PR

loT products examples
@ ;Ma}

INTERNET OF THINGS

| I Q | |
= =
| ?] e ¥ J
E a:m == ad bl | “--
Any Device Anybody Anywhere Any Business Any Network Anytime

Source: https://ecsxtal.com

BILLIONS OF DEVICES

¥ -

30 -

THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY

34.8 BiLLION (L=

42. BILLION L=

L
o0

- -

' V L]
" m®

Source: NCTA

Data
Collection

loT Devices

loT Gateways

loT System
Infrastructure

Data Data

CIOUd & Blg Data Analysis Transmission
End-User Applications

Data Data
Visualization Processing

| L ml
Location ‘~ -
Temperature Weather Desktop Mobile

3 ﬂ &> GATEWAY CLOUD/SERVER @
-t?“

Web
Movement Environment

Source: sam-solutions.com

Embedded Systems

e SW & HW interconnected

* Constraints on HW
* Power
* Speed
* Size

* HW cost vs SW cost
* Volume

* Need to get smart about software because

that’s where the costs are.

Figure 1 - Generalized Layers of Software

Application Layer
(Applications & Tasks)

Middleware Libraries

Device Drivers

Operating Environment

Hardware

Processor

/O

Source: Locolabs

Architectural patterns

* Selecting the right architectural
pattern will play a crucial role to
the outcome of the project.

» Software architecture must be
chosen wisely because once
implemented it is not easy to
change.

* Main forces
e Cost
 Time to Market

e Quality

> | 2 o
L. il J | — —
A i i- wl- ¥ r p L . hJ
g i
. ¢l ?] 7 7 ?
L J "~. ¢ *1 ? 'L *‘ p h J
. '_r_ 7 - ? 7
' ? B r I] . | ¥
\T ?] :[7 ¢ L 4
¥ = - " 7 d ? ?
2 2 ? J’ Y > [4 I L
.-fn. -"l) I] —["I:l + L J
~
Yo— —— 4',—‘ — o 7
2 ? 2 ? 2 ? l J - . .
' ' L \
T h k ¢ k J
?

“Big ball of mud”

Open-source OS landscape

e Bare metal, no OS

 Embedded OS / RTOS
* FreeRTOS, Mbed OS, Zephyr, etc.

e Full-featured OS

* Linux, etc.

OS used in embedded development

| Most Used | World | Americas | EMEA | APAC

Embedded

0 0 0 o
LGl 351% 32% 31% 26%0

FreeRTOS 27% 25% 24% 37%

Android 149% 12% 10% 26%

Source: Embedded Markets Study, 2019

Bare Metal

e Architecture style: Layer

* Each layer is a group of modules
that offer cohesive set of services.

* Clear separation of concerns so that Application Code
modules can be independently
developed and maintained

ol e 1 ere middleware & libraries
(portability, modifiability, reuse) _E

* Layer n can use services of layer n-1
and not vice versa.

* Bridging layers
Microcontroller Hardware

Peripheral Drivers

Bare Metal

e Software Architecture
e Super loop
* Event driven
* State machine

* Typical task order
* Read inputs
* Process information (using state machine)
e QOutput results
* Delay until next loop execution

e Task examples

Function 1

Function 2

Function 3

void main(void) {
board_init();

Interrupt Service
Routine

« ADC samples - while (1) { Function 3 -

« Blink LED 5 i‘zzg 5 cont.

« Read/write data to flash Flash(): N _

* Serial communication ; | G ﬁ
) i ™

Quality
Attributes?

Bare Metal

+ Low complexity
+ Everything is processed in the super loop
+ Easy to see the which functions being executed and when

+ Timing is fixed at every loop, except for short interrupts
(incoming events)

+ Functions do not execute at the same time, thus no race
condition

- No function can execute too long to ensure response time

- Difficult to add complex functionality

e e.g. pdf generation, TLS communication, Ul, complex time-
consuming algorithms

* Functions with long execution time could lead to heavy jitter and
latency of other user inputs

* Scheduling adjustment to fit new modules/libraries
* Requires implementation with constraint resource

Function 1

Function 2

Function 3

Function 3
cont.

Interrupt Service
Routine

Bare Metal

 When using bare metal?

» Simple/ low complexity application
Real-time deadline is not a requirement
An application that does not require task/thread preemption
Lack of hardware resources to fulfill the need of an OS.
Don’t want to use third-party libraries and drivers

Embedded OS

Layered
pattern

* Speed

e Built-in modules/libraries for

connectivity, security and updates Embedded User Application

* Integrated cloud services

* Broad support ECRTOE
« Complexity Kerme

e Support many hardware and tools

* Cost

* Free and open source with community
support

QTT
Agent

reengrass § Wi-Fi Mgmt. : Shadow OTA

azon FreeRTOS Internal Libraries

Hardware

Vendor Drivers

Source: FreeRTOS

Mbed OS 6 Conceptual Architectural

Componentized, Layered Architecture

User application

05 Core APIs

CMSIS-RTOS

Security APls

loT Connector pack

Pelion / AWS [Azure [Google

Connectivity APls

Man agement

APIs

Storage APls
i '

Storage

Block storage

LS

Mbed TLS

X.509

Crypto

Cloud connectivit
xwep |

A

TCR/IP Meshing

.,

Update

Update client
Bootloader

Developer Interface

Open implementation

Third-party

Pack

—,

| —

o

Mbed HAL sseresesssisnscaens

. -
o, A

LWIF WISLIN

Platform drivers ROM bootloader TRNG support

Board support pack

MSIS-Care Mbed Driver Model

Trusted-Firmware Cortex-M

PSA PSA

Attestation

PSA
Storage

TF-M HAL

4

Hardware

ARM Cortex-M CPU & Core Peripherals

Peripherals

ARM Cortex-M TrustZone/
Dual core v7-M PSA

Source: Mbed

Zephyr OS

Source: https://zephyrproject.org

Application Services

0S5 Services

kernel

E
g
[%]

T oo
33
m
=

Application

Smart Objects / High Level APIs / Data Models

LWM2ZM MQTT

DTLS

TCP/UDP

IPv6/IPv4

Kernel Services / Schedulers

Power Management

Platform

Embedded OS

* Concurrent tasks/threads handling with priority and scheduling

* Inter-process communication and synchronization

* Deterministic behavior and timely response to critical tasks.

* Modest range of middleware and loT libraries such as USB, TLS, IPv4, IPv6, WiFi, CAN, MQTT, etc).
* Tiny memory footprint, 100-200 KB

* Fast boot time, 50ms — 100ms

* Long term maintenance and development costs decreased

Embedded OS

e Each task has its own private

stack and priority.

e Each task is a loop itself.

* When a task to be executed
depends on each scheduling
mechanisms (round-robin,
preemptive-based scheduling)

* No need to break-down long
execution function to meet

time limitation

// bare metal
void main(void) {
board_init();
while (1) {
func1();
func2();
func3();

}

3
// funcl1() and

func2() cannot
execute too long

// Embedded 0S
Task1(){
while(1){
func1(); //can execute as
long as it needs.

3

3

Task2(){
while(1){

func2();//can execute as
long as it needs.

}
}

void main(void) {
createTask(&Task1,highPrio);
createTask(&Task2,medPrio);
createTask(&Task3, lowPrio);

startScheduler();//never returns

Embedded OS

Task 2 pre-empts Task 3 B‘

Task 1 pre-empts Task 2

Taskl (high, event)

Task?2 (med, periodic)m :
Task3 (low, event) —
Idle task [continuous) .

L tﬁ//ﬂ'm BB 17 tE// 9 11 13
g 112
S # i

Task 3 pre-empts the idle task. [_\1 the Idle task

delayed until higher

Task 2 I:Jre.ermgt,v;b1 Event processing is [j

priority tasks block

Task1(){

while(1){
func1();
}
}
Task2(){
while(1){
func2();
}
}

void main(void) {
createTask(&Task1,highPrio);
createTask(&Task2,medPrio);
createTask(&Task3, lowPrio);
startScheduler();//never returns

Suspended
vTaskSuspend()
vTaskSuspend() called
lled
e vTaskResume()
called
vTaskSuspend|()

called

Event

Blocked

Blocking API
function called

Task/module decomposition

Sensors

1. Identify major components oo
e LCD Temperature)
* Buttons
« Wifi Buttons
 Memory storage oT
« Sensors (Humidity, Temperature, Device

Air quality)

| Fan

Memory
storage

Task/module decomposition

2. Label inputs/outputs

sensor
value

Task/module decomposition

3. ldentify 1st level tasks

Sensors

(Humidity,
Temperature)

display
sensor

value

Process Display
input

loT Device Process
output
Network Mem
manager manager

Task/module decomposition

4. Determine dataflow
and dependencies

Sensors

(Humidity,
Temperature)

displa
sensor play

value

oe®

Input

Process
output
Network Mem
manager manager

data
Memory
storage

Task/module decomposition

5. Identify application
tasks

Sensors

(Humidity,
Temperature)

display

sensor
value

Process :
Displa

A
PP ha¥ Process
/ \ output
Mem
manager

Embedded OS

+ Concurrent programming paradigm. Splitting the software on tasks makes it modular, improve
program structure, maintainability and performance.

+ Performance: Guarantee responsiveness to external events in a timely manner
+ Scalability, easier to add complex functionality
+ Portability: Move over to another HW vendor easily due to similar API

+ Portability and reusabillity, support various platforms. Migration cost decreased dramatically if
moving to a different microprocessor.

+ Security: Some level of security through libraries

+ Modifiability: Easy to add new features, easy to modify without much affecting current system
- Requires precious resources on low-end embedded systems

- Overhead for handling OS features such as scheduling, context switching

Products Running Zephyr Today

g%

BrEEiGS GNARBOX 2.0 SSD

Scanning Gloves
e Rigado loTGateway

osba

Adero tracking devices

Ellcie-Healthy Smart
Connected Eyewear

IR

Reel Board

S
o

hereO
Smartwatch

Grush Gaming
Toothbrush

Vv & rerrasn
150 53 SR Satey

Source: The Linux Foundation

Full-featured OS

* Open source * HW Requirements

* 32-bit and 64-bit
processor architectures

* Free or Low cost « 8 MB RAM

* Rich feature set

* Hardware support « 4MB flash

Full-featured OS

 Bootloader

* Kernel
* Filesystem
QL
1 3 App 1l App 2 App 1 A App N
* Services £
b
. . ke
[]
Appllcatlon / Programs System Call Layer
File Network Device : Memory
S System 132 Stack Drivers 5o el Mgmt
&
=
£
Z Hardware Abstraction Layer (HAL)

Source: http://ccrs.hanyang.ac.kr/webpage_limdj/embedded/LinuxArchitecture.pdf

User space vs kernel space

Memory divided into two distinct areas:

* User space
* normal application software runs

e System calls .

e Examples: allocating memory (variables) or
opening a file. Memory and files often store
sensitive information owned by different users, so
access must be requested from the kernel through
system calls.

» open(), read(), write(), close(), ioctl(), fork(), exit(),
wait(), etc.

User Space

e Kernel space

where the code of the kernel is stored and
executes under.

Strictly reserved for running a privileged
operating system kernel, kernel extensions,
and most device drivers.

Kernel Space

Source: RedHat

Embedded Linux

e D-Bus: IPC mechanism

publish - subscribe

* a medium for local communication
between processes running on the
same host

request-response

Process B
Process A
Process C

\ D-Bus bus /

2015 Javier Cantero - this work is under the Creative Commons Attribution ShareAlike 4.0 license

Process B

Process A

Source: Wikipedia

Full-featured OS

+ Availability of file-systems, network connectivity, and Ul support.

+ Native security features, constantly scanned for vulnerability

+ Versatile, scalable and has support for practically every device driver and protocol.

+ Modifiability, easy to add functionalities in the future, plenty of open-source applications
available.

Needs significant CPU resources, typically in range of few MB for both RAM and ROM
footprint

Soft real-time

Booting time in several seconds

High HW cost. Not suitable for 8 or 16-bit MCUs and low power devices.
Steep learning curve, complex build systems, long compile time, etc.

Open-source licensing obligation

Choosing the right one

* What is the target HW? What is the available resources on MCU?
* What is the required functionality and performance?

* Does it need real-time requirements?

* How much code do you need to develop? How much standard library it has?

* How complex are the algorithms involved?

* How hard will it be to maintain that code later on?

* Which one has been used in other products? Which one the team is familiar with?
* Languages - Does it support Java, Python, C, C++
* Do you need safety-certified embedded OS?

* Maturity of OS, good technical support available

- -
“Of course we can make fast decisions ...
once we have considered the 4872 factors.”

Future

Partitioned
Virtual Machine VM 1 VM 2 VM n
(VM) 0
Applications
Applications
Applications Guest OS

(Linux)

Guest OS

Applications Guest 0S (3 Party)
(RTOS)

Bare-metal
Separation kernel hypervisor

Interrupt mgmt. Interrupt mgmt. Interrupt mgmt. Interrupt mgmt.

Scheduler Scheduler Scheduler Scheduler

Core 0 Core 1 Core 2 Coren

Multi-core processor

Source: https://www.pertech.co.il/lynxsecure

I Communication protocols

\

ek Q =&
= ocation ‘-
Temperature Weather Desktop Mobile
ﬂ @ GATEWAY @ CLOUD/SERVER
w?“

Movement Environment

Web

Communication protocols

Main design constraints o Gl Cost: Low ® @ @ @ Hioh
A
* Power consumption 100 MBe Celular
* Cost
Licensed LPWAN
100 KBps EgEglM

NB-loT

1 KBps

Range

Tm 10m 100m 1km 10 km

Source https://industrytoday.com/best-uses-of-wireless-iot-communication-technology

Communication protocols

E i .
T Location ‘:
o -
Temperature Weather Desktop Mobile

?’ ﬂ GATEWAY CLOUD/SERVER @
~ ‘

Web . .
Movement Environment Source: https://www.fluidmesh.com/wireless-mesh-networks

N N

Point-to-point

Bluetooth Low Energy
LoRaWAN
Wifi
Many mesh network
o Zigbee
Z-Wave

o
o Bluetooth mesh
o Proprietary mesh

Communication protocols

a9
- Low power i s ! Q]

Temperature Weather Desktop Mobile
- NB-loT (SG) X &> GATEWAY CLOUD/SERVER @
- LTE-M (5G) R

- Plugged in e
- Wifi

- Ethernet
- 3G/4G/LTE Lv] g]

Temperature Weather Desktop Mobile
CLOUD/SERVER @
w?‘
Web

Movement Envnronment

Movement Environment

CoAP MQTT

Publish .
. Subscribe .
Client @ Client Client
Subscribe \ [/

N\ / /]\
Client Client Client & Publish p

N/ / T /I\
Server) < Client Client , / \ Subscribe
Cllent Subscribe Cllent
Publish

Client — Server architectural style Pub/Sub architectural style

Subscribe

Client

Constrained Application Protocol (CoAP), is a Message Queue Telemetry Transport (MQTT), is a
client-server protocol (one-to-one). publish-subscribe protocol that facilitates many-to-

- Designed for interoperability with the HTTP and many communication mediated by brokers.

RESTful web through proxy. - Designed for bandwidth-efficient and high latency

- Request / response model network

- Separation between producers and consumer of
data.

Source: pickdata.net

MQTT

Space decoupling: Publisher and subscriber
do not need to know each other (for
example, no exchange of IP address and
port).

Time decoupling: Publisher and subscriber
do not need to run at the same time.

Synchronization decoupling: Operations on
both components do not need to be
interrupted during publishing or receiving.

Scalability: Easy to scale up system in
number of publishers and subscribers.

< &

(/ x Location “ -
o’

Temperature Weather

] ¢ <

Movement Environment

Publisher:
Speed Meter

)

Subscribe to topic: speed

F 3

: @
Desktop Mobile

CLOUD/SERVER — @%

Web

Subscf\\oe

HIVEMQ

MQTT Broker

Source: HiveMQ

MQTT QoS

* How hard the broker/client will try to ensure
message is received.

* 0: Message delivered at most once, with no
confirmation (fire-and-forget)

* 1: Message delivered at least once, with
confirmation required.

e 2: Message delivered exactly once by using a 4-
step handshake.

Reliability

Latency / bandwidth

MQTT useful features

Persistent session
* Avoid having to re-subscribing every time the connection is interrupted

Retained message, ‘last known good’

 If a topicis only updated infrequently, then without a retained message, a newly subscribed
client may have to wait a long time to receive an update.

Last Will and Testament
» ‘Last Will’ message that will be delivered to other clients when a client disconnects unexpectedly.

Keepalive
* Ensure the connection between client and broker is still open

loT architecture

vy

o00

.

kA

Cloud & backend

Gateway : .t]* - ‘:W} || - 8

Cloud Control
gateway applications Models

L ' T

Sensors, actuators @
and smart devices ﬁ' .n_

NS -
— N —

| , \
L

Streaming | - Machine
data processor learning
R Gateway -
.o | N ITITL]
™ » I3 3 11
et B, Iy
2*"g® " » I
[I I R X T
L— Data lake ———+ ssnsee
Sensors, actuators . . Bia dat:
and smart devices P e 12 d
L warehouse
P

</> @
Web [i Data
application analytics

User business

logic
< = 9
Mobile
application
Device e User Security
administration @ administration monitoring

Source: scnsoft.com

Intelligent lighting

il ~~
Cloud & backend =

e people's movements

Sensors

Manual
- command

. to switch on
Automatné <W> s lis
comman
Raw data to switch on Control Mobile
(according to applications application
previously
stated rules)

P

Models Machme
Pd rnmg
‘ 4
e Extracted info v
8° e % o (smart home 4411 The way users apply
Data lake dwellers’ beh re0eses smart lighting, >
= S in various (Il their schedules,
L 0% s the wee&’s it and other info
_S2H2, energy costs, etc.) Big data gathered with sensors Data
warehouse analytics

Source: scnsoft.com

AWS |loT Architecture

Cloud

Storage & Compute
loT data

Things
Secure device Fleet onboarding, Fleet
management and audit and analytics and
protection intelligence
[

(A Sense & Act
SW updates

E Secure local
triggers, actions, connectivity
and messaging
Se
& —
* =
@,
\./ p .s

and data sync
Eﬁi‘!ﬁ

e 0 o

Endpoints
@‘ A\ Gateway
S

<
adWS
vj

%_
5

‘é\

Intelligence
Insights & Logic — Action

Examples of loT product

Case 1: selection of HW/SW

* What is sample rate and duration
* Small, wearable embedded required for measurement? How often?

device that perform —
measurement

* Collected data to be sendto =——>
cloud for processing and storage

Which wireless network infrastructure
can be used? Wifi? Bluetooth? Lora? 5G?

How much data to be transferred?

* Coin cell battery powered, —=———>
minimum 1 year

Which MCU has low power mode? Which
—) COMMunication method use low power?

* Can we use single MCU for both
measurement and wireless
communication?

* Low cost

Technology

Case 1: selection of HW/SW

)
= BLE Ethernet

BLE

NB-loT / LTE CatM

2614615
i

W

0

Case 2: selection of HW/SW

. , * What is sample rate and duration
* Industrial embedded device required for measurement? How often?

that perform measurement =—p
e Data send to cloud for

ﬁ . . .
. * Which wireless network infrastructure
processing and storage can be used? Wifi? Bluetooth? Lora? 5G?
e ~100 devices per location e How much data to be transferred?

* Small battery powered, 3 year_> * Which MCU has low power mode? Which
communication method use low power?

* Low cost ——p * Can we use single MCU for both
, measurement and wireless
 Hash environment communication?

Technology

(1) IMx-1 sensor

-
-
|

(3) SKF Enlight Collect Gateway

Cloud-based Big data

_~ (4) SKF @ptitude Observer

Source: LumenRadio

Case 3: selection of HW/SW

: : * What is sample rate and duration
* Industrial embedded device that required for Fr)neasurement? How

perform measurements on ——p oOften?

running vehicles

. > ° Which wireless network infrastructure
Collected data to be send to can be used? Wifi? Bluetooth? Lora?

cloud for processing and storage 5G?
e Battery powered — 5 * How much data to be transferred?
* Wireless _
. . = ¢ Which MCU has low power mode?
* Easy installation Which communication method use
low power?

Technology

3G/4G
Ethernet
Wifi

