
Going from an Electronic Unit Centric Development to

Application Software Centric Requires a Different

Architecture Mindset in Automotive

Anders Magnuson, Volvo Group Truck Technology, Gothenburg;

Abstract

There are many incentives for a higher degree of automation for commercial vehicles to gain

productivity, while at the same time facing very different demands on final transport

applications. In addition, the environmental impact drives the need to reduce fossil fuel usage

by introducing electrified torque generation, which could be distributed over several vehicle

units in a vehicle combination. Electronics and especially software play a fundamental role for

commercial vehicles in order to achieve energy/power balancing, assist a driver to manually

operate vehicles effectively in combination with various degrees of automation and doing that

dependable in different transport applications. Although the overall design thinking in the

commercial vehicle industry is still very much oriented towards a geometric perspective and

thus physical modules, which for software means binaries related to physical electronic boxes

(ECUs) – classical ECU-oriented mindset. In this paper a supplementary perspective is added

to the traditional geometry-oriented perspective – a functionality perspective, which facilitates

reasoning about functionality and thus application software. The paper proposes a reference

architecture that is based on four horizontal and two vertical layering of functionality.

Introduction

One of the cornerstones in the automotive industry has been and still is to achieve large scale

reuse of manufactured entities in order to provide the market with mass-produced cost efficient

vehicles. Thus the overall design thinking, at least within AB Volvo, is characterized by

modularization of the products viewing them from a geometric perspective and thus geometric

modules and how geometric modules are wired together are in the forefront. All these

“modules“ are formed in a “platform“ which can be looked upon as a gigantic shopping bag full

of pieces. At Volvo Group Trucks Technology (VGTT) this is known as the Vehicle Module

Structure (VMS) and Common Architecture & Shared Technologies (CAST) highlighting

generic (geometric) vehicle modules as in Fig. 1 and geometric interfaces. Transferring this

perspective into the software landscape; this is similar to a physical view [1], which nowadays

is commonly called deployment view.

This physical thinking has

been transferred into the

area of electronics where

Electric and Electronic

Engineering has been focus

and still is on where to place

mechanic boxes enclosing

some electronics and then

wire these mechanic

enclosures together. These mechanic enclosures are commonly known as Electronic Control

Units (ECUs). In early days this wiring was about having dedicated wires going back and forth

between ECUs. When these dedicated wires were replaced by communication technologies

the focus has continued on wiring the ECUs together, now via Controller Area Network (CAN)

and Local Interconnect Network (LIN) links. If you ask for the EE Architecture an automotive

company most engineers would provide you with a PowerPoint showing how the ECUs are

connected via physical data links as in Fig. 2, but few would present anything similar for the

software.

However, already long time before electronics were introduced, when monitoring and control

logic was achieved through relays, there has been a structural element known as Electrical

Distribution System (EDS). EDS had a focus on how these relays were wired together and the

wires carries signals. What has been experienced during the years is that an EDS nor the

network topologies fit properly anywhere in a geometric-centric modularization. They so to say

give another kind of perspective! Furthermore, the geometric and ECU centric way of looking

at the solution has led to that

when we are talking about

software the focus has been on

the ECUs and the binaries that

are flashed into their memory.

Also, traditional focus on wires

has led to that automotive

electric system engineering as a

discipline focus on wiring these

binaries together via a Signal

Cab Exterior

Living

Driving

Cab Body

Vehicle Front

Transport Adaptation

Chassis Structure

Pneumatic Structure

Rear Axle Installation

Wheel, Brake & Hub
Powertrain Inst.

Front Axle Inst. Engine Transmission Chassis Equipment

Cab Exterior

Living

Driving

Cab Body

Vehicle Front

Transport Adaptation

Chassis Structure

Pneumatic Structure
Rear Axle InstallationPowertrain Inst.

Front Axle Inst. Engine Transmission Chassis Equipment Wheel, Brake & Hub

Fig. 1 Main perspective and mindset is geometry-oriented.

Fig. 2. Network topology is what most look upon as THE architecture in

the automotive.

Data Base (SDB). The SDB and EDS are rather similar, where EDS focus on packaging hard

wires (signals) into harnesses and SDB focus on packaging soft wires (signals) into frames.

Also, the SDB is hard to find in a geometric-centric structure. The software elements that really

does something, in Classic AUTOSAR - the Software Components [8], are not really visible

and treated, but it is primarily the binaries that are installed in the assembly line that are

counted and registered in our product data management tools. All other kind of “systems” are

too a large invisible in our product life cycle management tool, e.g. a “system” as in Fig. 2 is

not officially released, the description is, but the system with all ECUs is not released as a

“system”.

System complexity in automotive is increasing

Complexity of a system is rather subjective and is impacted by many things. Already 1986

Fredrik Brooks reasoned about essential and accidental complexity [2] and such as people

skill, organization, tools and processes and the system itself are all contributing to the overall

complexity. Essential system complexity is a result of “Complex behavior that arises from the

inter-relationship, interaction, and interconnectivity of elements within a system and between

a system and its environment” [3]. Looking at Fig. 2 the complexity looks quite moderate, but

what is missing in this picture is the

application software. So when the

network topology is supplemented

with application software structure,

as in Fig. 3, the complexity

increases. Thus the traditional view

on EE Architecture Fig. 2 gives a

rather false picture of the truth!

System wide complexity has moved

from electronics and wires into the

software! What we have experienced is that we can no longer proceed with just the ECU-

thinking as system behavior is not clear from the properties of its individual parts.

Continuous software increase to facilitate automation, electrification and connectivity

Nowadays, it is when the application software comes into focus the complexity shows up. That

brings us into the topic of where the changes will comes. For example, new legislations on NOx

and CO2, zero emission zones and noise zones will be enabled through electrification of

“powertrain devices“ but we must also monitor and control the operation these together with

Fig. 3. The complexity increase that comes with interacting

software elements.

various other high power auxiliaries on trucks such as air fans and air compressors, which thus

also needs to be electrified. Thus for example “brake blending” suddenly becomes an energy

balancing topic rather than a plain braking topic reducing brake pad wear. From an overall

energy management perspective, usage of different energy sources and buffers requires

monitoring as well as prediction to minimize the energy consumption for a certain transport

mission. This is related to the overall vehicle mission as a whole rather than to a particular

“mechanic device” device and thus such functionality should not be part of the device. This

overall coordination only be handled through application software!

Software has become a major enabler for improving old features as well as providing new

features in the automotive industry. Many of these features are not directly linked to the

geometric modularization as in Fig. 1. Cars and trucks have continuously evolved with software

enabled features in a relatively moderate pace over the last three decades. It is not only high

end vehicles but also low end vehicles that have a quite impressive amount of software in order

to manage things like a vehicle’s perimeter, seat adjustments, acceleration, braking, etc. It has

been estimated that more than 80 percent of new vehicle innovations are enabled through

software [4]. It is important to highlight that not even old software entities such as a Cruise

Speed Controller or Cruise Distance Controller are linked to geometric modules as in Fig. 1

like a combustion engine and its associated Engine Control Module (ECM) which today host

the Cruise Speed Controller according to SAE J1939/71 [5], [6] (there is an implicit deployment

built into this standard). The trend in the Volvo Group is that the pace of innovations through

software is accelerating. Also, it will be hard for standards such as SAE J1939 to keep up with

this acceleration as it restricts the solution space.

As in enterprises, software is a major contributor to automation – replacement of human

performed activities. This of course also goes for various levels of vehicle automation, where

vehicle automation is synonymously with a huge amount of application software. As

commercial vehicles are used in B2B operations, the interest in automation is perhaps of higher

incentive than for cars as it contributes to operational margins. Roughly 1/3 of operation cost

is related to having a human behind a steering wheel. The automation will also go hand in

hand with an increased level of connectivity in order to operate logistics of unmanned vehicles,

maintenance and in some case remotely drive a malfunctioning vehicle to get it into the

roadside. It will be the application software that drives the need for powerful electronics, i.e.

flexible and reconfigurable computers! [7]

The way of working with commercial vehicles is far from adapted to looking upon them as

software intensive products or service providers, which vehicle automation, connectivity and

also electro mobility is about. The traditional geometry and deployment perspective is not

feasible any longer!

Supplement the Deployment Centric Perspective with a Functionality Perspective

To achieve strategic large scale software reuse it is a necessity to apply a product line

engineering approach [9], which sometimes is referred to as “platform development“. As

commercial vehicles operates in a diverse set of transportation applications there is a need to

build in many and different kinds of variation points (variability) to enable vehicle feature

tailoring, while at the same time aim for reusability and changeability in such a product line.

One can think of it as a “one software code branch only“ [10] with built in variability. To manage

the transition that software is mainly about mechanical component control, e.g. engine,

transmission, braking, to actual vehicle feature control, it is a must to not just talk about the

physical modules but rather more abstract entities – some kind of entities of functionality.

Therefore we are adding an additional perspective on the vehicles – here defined as the

functionality viewpoint, Fig. 4 [1], also identified by [11] as a link between overall customer

demand and physical structure. This will make a shift to focus on reasoning about and reuse

of modules of functionality rather than “physical” modules – in this sense a product line is a set

of modules of functionality shared across multiple end-user products [12]. The intention is that

we look upon structural entities showing up in this perspective as “products” in a similar way

as structural entities in a geometric viewpoint are treated as “products”.

With higher and higher demands on

dependable vehicle operation, driven by

more advanced features but also by the

functional safety standard ISO 26262 [13],

there is a necessity to more clearly

structure and through that separate

different concerns such as different levels

of criticality of functionality from each other

in order to guarantee that the lower

criticality elements cannot interfere with the functioning of the higher criticality elements.

Organizing the Functionality Perspective

So, how to think when looking upon commercial vehicles from a functionality perspective? In

principle one has to take a full vehicle perspective on this and also include functionality handled

through mechanics, pneumatics, electronics and not just software. Based on the thinking of

Operational (Usage)
Perspective

Fig. 4. Multiple viewpoints to deal with separated and

unrelated concerns.

separation of concern the architecture approach made here is based on that functionality

dealing with monitoring and control things is separated from functionality handled through

electricity, diesel, mechanics,

pneumatics, hydraulics, etc. as in

Fig. 5. For example the

combustion engine from a

functionality perspective would

then reside in the Torque Supply

& Distribution System but when it

is installed (deployed, packaged)

it can be under the cab at the

truck, in front of the cab in a

conventional truck, in rear or at

the center in a bus. So this thinking does not just support software. We thus at the highest level

apply a layered approach. As can be seen in Fig. 5 there are dependencies from the Vehicle

Monitoring & Control System (VMCS) to various “systems”, which will mainly be handled by

the Device Abstraction Layer introduced in Fig. 7. Furthermore, as the nature of the

functionality dealt with in the VMCS is very different, ranging from converting an analogue

value to a digital value,

forwarding this digital value from

a converter circuit to an

application software entity

where it might become a

temperature, leads to that this is

structured into three major

“system” entities as in Fig. 6,

which is a kind of layered

architecture style [21]. As these

are separated from each other the reasoning and focus in these also varies a lot. Another thing

worth to highlight is that VMCS focus on single vehicles. However, to gather statistics of wear

or energy consumption trends of for example all Volvo, Renault and Mack trucks, there is a

need to add another layer on top as in Fig. 5, here called Vehicle Fleet Monitoring & Control

System (not in the scope of this paper).

Computation & Signal Distribution System: the focus is on electronic functionality

interfacing various actuators and sensors that are part of the device functionality such as

Generation of, storage,
distribution and fusing of

12V, 24V and 48V
electricity.

Fig. 5. Separate the things that are to be monitored and controlled

from the one monitoring and controlling them

Fig. 6. The Vehicle Monitoring and Control System is divided into three

major blocks of functionality.

interfacing a Fan Motor, an Inlet Air Pressure Sensor, and Brake Pad Wear Sensor etc. It also

focuses on processing and memory capacity as well as network structures its performance.

We can say that this system is the classical way of looking at an “EE system“ – the ECUs and

their network connections as in Fig. 2. That is the diagram in Fig. 2 is a “document” that only

describe the internal design of this system and that released when the system and all its

content is released.

Vehicle Application System: the focus is on managing entities that owns and deals with

information about the vehicle and thus used to monitor and control the operation of the vehicle.

These entities are relevant to talk about in the application domain such as the inlet air and its

temperature, humidity and mass flow (speed) or a climate comfort service. It is this system that

holds all application software functionality all the way down to source code modules.

Basic Support Services/Utilities System: The world in-between these is some kind of

middleware functionality that bridges these two worlds, where AUTOSAR Classic Platform [8]

is just one such middleware framework, Linux another one. Graphic Engines, Voice Interprets

also belongs to this system.

Except for the nature of the functionality another really important reasoning for this separation

is that cycle-time for developing functionality in the Computation & Signal Distribution is very

different from the one in the Vehicle Application System. Furthermore, as the hype around

agile/lean based development process frameworks like SAFe [14] also has reached the

automotive domain with hope for more software-based features both faster and more

continuously developed, integrated and distributed to customers, there is really a necessity to

even more strongly make this separation happen at the top level.

Vehicle Application System - layer application functionality

By work and experiments conducted during 2009-2018 at Volvo GTT it has been concluded

that there is a need for a

slightly different layering

than in [15], among other

things the architecture

presented herein has

added clear separation of

HMI and the ego vehicle’s

environment and

operational functionality

has been divided into two

Vehicle Application System

Device Abstraction

Vehicle Utilities

Task Situation Tactics

Transportation Situation Strategies

H
u
m

a
n
 M

a
c
h
in

e
 In

te
rfa

c
e

V
e
h
ic

le
 E

n
v
iro

n
m

e
n
t S

itu
a
tio

n

(P
e
rc

e
p
tio

n
)

Local Driver

Remote Driver

Real and Instant Environment
/ Surrounding Situations

in
te

ra
ct

io
n

in
te

ra
ct

io
n

Fig. 7. Basic layering of the application software inside Vehicle Application

System.

layers. The reference architecture presented in this paper proposes four horizontal layers as

in Fig. 7 where two lower layers address “operational” functionality; one layer deals with tactic

functionality; and one layer deals with strategic functionality, but also two vertical layers are

added. Each horizontal layer raises the abstraction level from the “physical” functionality that

is to be monitored and controlled. All with the perspective of a single vehicle, but the vehicle

may at the vehicle utility layer be looked upon as two track model, as single track model in the

task situation tactics layer and as a particle in the transportation strategies layer!

The architecture approach defined here combines a strict hierarchical style [16] with a

heterarchical style [17] where all modules communicate with each other – it becomes a layered

style. The idea of a layered style is to deal with the disadvantage of a strict hierarchy as it

introduces inflexibility and long response chains but also the problems associated with a strict

heterarchical style as it introduces many problematic couplings all over and lowers the

possibilities to reuse and by that achieve a variable product line. A similar layered architecture

for platooning feature of commercial heavy vehicles has been presented in [18], which also

contains strategic, tactical and operational layers and it can be seen that the focus has been

solely on platooning. In the presented approach here, the platooning planning is managed in

Transportation Situation Strategies and the actual joining and leaving is taken care of in Task

Situation Tactics, e.g. the “adaptive cruise controller“ is becoming a “platoon cruise controller“.

In [18] it is not revealed how full automation is going to be approached nor how transition of

transport automation which can include manual and automated driving.

Device Abstraction Layer: The overall thinking in this layer is that application software entities

shall be representations, device abstractions (DA), of mechatronic devices such as a Fuel

Tank, Wheel, Clutch, Wheel Brake, Windshield Wiper, etc. to localize the knowledge about the

characteristics of a

particular device as shown

in Fig. 8.

DAs are carriers of

information elements that

represent various properties

of a mechatronic element

that is to be monitored or

controlled. For example

current tire pressure,

current wheel speed, and

current tire temperature,

Functionality of mechatronic devices
that are monitored and controlled

Torque Supply & Distribution SystemEnergy Supply & Distribution System

Vehicle Application System

DA DADA

…

Fuel Tank

Fuel Tank Device
Abstraction

Drum Brake

Drum Brake
Device Abstraction

Wheel

Wheel Device
Abstraction

There will be a
dependency from DA

to a device

Rectifier

Battery

DA DA

Rectifier Device
Abstraction

Battery Device
Abstraction

Device
Abstraction

Layer

Fig. 8. Device abstractions are supposed to be representations of modules of

the functionality that is monitored and/or actuated.

and nominal tire dimension are organized into a software entity representing the Wheel. And

data such as current wiper position, current wiper speed, wiper operation, etc. is data that

together forms a

software entity

representing a

windshield wiper. The

important here is that

Das are looked upon as

service providers and

does not necessarily run

on its own ECU. We are

not there yet, but having

such entities looked

upon as individual deployable entities would ease a continuous evolution of our product line

as well as ease upgrades in the fields. Furthermore, this thinking is also related to that there

might be different variants of these devices such as a Disc Brake and a Drum Brake and as

these share many properties it is good if they are defined in a single point, Friction Brake, as

in Fig. 9. Unfortunately many design tools popular together with AUTOSAR such as

Matlab/Simulink and DaVinci Developer do not support this kind of design. Instead it would be

beneficial to apply the object-oriented inheritance mechanism for this.

«DeviceAbstraction»

FrictionBrake
- currentTemperature:C
- currentWear : %
- totalUtilizationTime : s
- currentTq
- tqSetpoint

«DeviceAbstraction»

DrumBrake
-

«DeviceAbstraction»

DiscBrake
-

«SensorAbstraction»

LiningThicknessMeasurement
-

0..1

For any of these software entities the
principle taken here is to provide three
differnt kinds of interfaces:
- Operation Control Interface

+ setTorque(setpoint : Nm)
Operation Status Interface

+ getSpeed (instSpeed : rpm)
+ getTirePressure(pressure:kPa)

Operation Capability Interface
+ getTorqueProfile(...)

«DeviceAbstraction»

FrictionBrake
- currentAppliedTq
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«DeviceAbstraction»

HeadLamp
- currentOperation
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«DeviceAbstraction»

FrictionBrake
- currentAppliedTq
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«VehcileUtility»

MovingUnitMotion
- currentAcceleration
- accelerationSetpoint
- currentTrajectory
- trajectorySetpoint
- …

«DeviceAbstraction»

Gearbox
- currentConvRatio
- convRatioSetpoint
- currentIncommingSpeed
- currentOutgoingSpeed
- currentTemperature
- currentOilLevel
- …

«DeviceAbstraction»

CombustionEngine
- currentOperation
- currentSpeed
- instantantConsumption
- currentTemperature
- …

«DeviceAbstraction»

Clutch
- currentPosition
- operationSetpoint
- currentTemperature
- currentWear
- …

+controller, client, monitor

«use»«use»«use»«use»

«VehcileUtility»

HeadwayIllumination
- …

«VehcileUtility»

ClimateComfort
- …

«VehcileUtility»

WindowCleaning
- …

«DeviceAbstraction»

HeadLamp
- currentOperation
- currentIntensity
- currentTemperature
- totalUtilizationTime
- …

«DeviceAbstraction»

ExtraLamp
- currentOperation
- currentIntensity
- currentTemperature
- totalUtilizationTime
- …

«use» «use»

Fig. 10. Example of Vehicle Utilities that are acting as controller, clients and encapsulate coordination between

different device abstractions.

Fig. 9. A DA with two variants and three different types of interfaces.

Vehicle Utilities Layer: The purpose for this layer is first of all to raise the abstraction level

from individual device abstractions into so something we call vehicle utilities (services). These

shield away individual devices. A vehicle utility is defined as some kind of useful vehicle wide

service that enables a client to perform one or many of its activities via an HMI in a manually

operated truck or when automated by elements in the Task Situation Tactics Layer. Hence a

Vehicle Utility represents a goal experienced by the consumer e.g. a Moving Unit Motion (for

trucks there can be many units that form a vehicle combination), Power Situation, Headway

Illumination, Window Cleaning, Climate Comfort etc. as in Fig. 10. When a Vehicle Utility is

operational it is utilizing lower level DAs to achieve its desired goal and thus it will take on

many different roles towards DAs such as controller, client, monitor, and coordinator and

towards elements in the HMI or Task Situation Tactics layer Vehicle Utilities will works as

servers.

What we have done is that this layer will in practice be replaced through a number of domain

packages organizing a set of vehicle utilizes as seen in Fig. 11. We intend to look upon these

as “products“ that are released, maintained, evolved, etc. and thus they enable us to point out

“product manager/owners“, although its internal elements might be distributed and executed

in a number of ECUs. Furthermore, it is these domains that facilitate our organization to talk

about the application software as the network topology and its ECUs has supported automotive

organizations in the past. As there can be quite many software elements in these, these are

...

«FD»

.Traffic Situation Tactics ...

...

… … … … … … … …

«FD»

Vehicle

Motion &

Power

Utilities

«FD»

Visibility &

Conspicuity

Utilities

«FD»

Compart-

ment

Convenience

Utilities

«FD»

Body

Work

Utilities

«FD»

Vehicle

Perimeter

Utitlites

«FD»

Vehicle

User

Utilities

«FD»

User

Communi-

cation

Utilities

«FD»

Entertain-

ment

Utilities

«FD»

Human

Body

Protection

Utilities

...

...

«FA»

Vehicle Motion

Mgmt. Utilities

«FA»

Power Situation

Mgmt. Utilities

«FA»

Payload Situation

Mgmt. Utilities

«FA»

Torque Supply

Mgmt. Utilities

«FA»

Suspension

Mgmt. Utilities

«FA»

Vehicle Structure

Mgmt. Utilities

«FA»

Traffic

Situation

Manouvers

«FA»

Traffic Situation

Prediction

«FA»

Traffic Situation

Observation

«FA»

Traffic Sitution

(Driver) Coaching

«FA»

DriverSituation

Observation

Fig. 11. In practice, a layer will be a set of application domains looked upon as “products”.

further decomposed into some intermediate products which we denote areas as seen to upper

left in Fig. 11.

Task Situation Tactics Layer: When a human user performs a use case such as “transport

payload from A to B” or “load/unload payload” is actually about the performance of a

coordinated set of tasks in a given situation. In a situation where a physical user performs a

task (a non-automated situation), the human user is acting as both a monitor and controller.

The purpose of the task situation tactics layer is to enable introduction of more and more

automation of these tasks and coordination of tasks traditionally performed by drivers and other

local operators. In order to achieve this, it “consumes” services offered by various vehicle level

utilities. So basic entities that show up inside this layer are entities that represent tasks a user

performs (today but not tomorrow) and apply some tactics to perform these. For example, in

the case of a driver in the control loop, the driver is actually acting as a driving controller, speed

controller, a trajectory controller (steering), headway sight controller, forward sight controller,

etc. and therefore such tasks shall also be represented as application software entities. Further

breakdown of this layer into domains can be made such as Traffic Situation Tactics in Fig. 11.

As seen in Fig. 11 and in [19] and [20] the Traffic Situation Tactics is broken down into smaller

functionality areas (FA) such as Traffic Situation Observation (a local world model [16]), Traffic

Situation Prediction., Traffic Situation Maneuver (plan, perform, and perform maneuver’s both

L2 to L5 automation), Traffic situation (Driver) Coaching and Driver Situation Observation.

Transport Situation Strategies Layer: This layer raises the abstraction one level further, and

instead of reasoning about it as a “physical” truck or user activities, it instead focuses on what

kind of different transportation (mission) that can be offered (still in the single vehicle

perspective) such as: How many containers and sizes are expected to be transported and

assigned by a vehicle or gravel transport assignments, soil transport assignments, sand

transport assignment, or frozen food transport assignment. This is about dealing with strategic

decisions such as “optimize” for operation cost or delivery speed among assignments.

Ego vehicle's environment situation: Another kind of functionality that is different compared

to the concerns addressed by the previously defined horizontal layers is the functionality that

deals with creating a picture of an ego vehicle’s environment situation. In this architecture this

is an orthogonal layer to the horizontal layers as seen in Fig. 7. For example a Weather

Situation, Traffic Jam Situation, Environment Traffic Situation and a Road Characteristics

Situation are software entities located herein and provides services to the horizontal layer.

Thus they abstract away how that is gained from making of other more internal software

entities, e.g. a Weather Situation entity can make use of detections in an image from a camera,

clutter from a radar and/or detection from dedicated temperature sensors as well as

communication with another vehicle to get a proper picture of the complete weather situation

in the ego vehicle’s environment.

Human Machine Interface “layer“ - think Model-View-Controller: Although automation is a

hot topic for commercial vehicles the transition will take time and a human will need to interact

with various kinds of functionality and that human, acting as a driver, which can be either locally

or remotely as in Fig. 7. This is especially important to consider in product line that intend to

enable trucks within the range from manual to full automation. The approach taken here is to

clearly separate Human Machine Interface (HMI) as in Fig. 7, where View and Controller

according to MVC pattern [21] resides herein. As the Volvo Group is dealing with multiple

brands in its product portfolio this separation enables HMIs to look very different between the

brands while maintaining stable core knowledge. This also opens up for a possibility to localize

what kind of control a user can do and when that can be done as well as addresses the issues

of managing multiple users to control from multiple places simultaneously and not having that

issue rippled down into the core knowledge, e.g. having direct access buttons mounted e.g. in

a door panel and in a handheld device as well as via soft buttons visible in an thin GUI app

running on a smart phone. In order to deal with this a generic architecture component known

as a User Input Controller (UIC) has been defined which is responsible for WHAT control is

offered to a human user and WHEN that control is possible. The architecture also has a similar

User Output Controller that provides feedbacks valid for a human user.

Think Object-/Component-/Service-Oriented instead of Function-Oriented

It is important to understand that any kind of software system such as a gearbox control

system, navigation system, telecom base station or an order management system all deal with

a massive amount of information and most of the times in real-time. Having this said, ownership

of information that represents various kinds of states such as a speed limit, max vehicle speed,

current acceleration, current curvature, instantaneous fuel consumption, average power

consumption, etc. is essential. Also, current vehicle acceleration is completely different than

instantaneous fuel consumption per time unit which is an issue for a combustion engine device

abstraction and instantaneous fuel consumption per travelling unit (km or m) is different and

the scope of a vehicle utility. Therefore the layered architecture is supplemented with the

mindset of an object/component-oriented architecture style, as highlighted in Fig. 9 and Fig.

10, as the lowest level in software modularization within the layers. These objects are acting

as service providers and service consumers. The intention is also that these will be individually

deployable entities in a SOA-environment. This will in turn facilitate a scalable product line but

also ease agile self-going development teams having smaller deployable entities than

deploying a big binary monolith as of today. Achieving a directed dependency, e.g. as depicted

in Fig. 10, requires a careful design of the interfaces at the end of the dependency arrow. That

is, the dependency is realized by Operation Interfaces of one or more public Objects residing

in these domains, areas, units, etc. (a successive hierarchic structure) Thus we propose that

software elements provide three different kinds of interfaces, as visualized in Fig. 10: Operation

Control, Operation Capability (instantaneous capabilities), and Operation Status. This is very

well supported by a component-based approach although current version of the component-

based AUTOSAR framework does not have ownership of information at its heart. This is a

quite big difference from current design paradigms in automotive which often favor the function-

oriented paradigm focusing on algorithmic decomposition where data is flowing around among

the functions as parameter passing or as global data.

Conclusion

It has been recognized that an architecture has major impact on the easiness to cooperate

among teams. In 1997 it became clear that Microsoft divide development work in a way that

mirrors the structure of its products, which helps teams, create products with logical and

efficient design and with efficient groupings of people [22] and we conclude the same but all

recognize that is really hard to establish such thinking a large global organization. But, it has

also been recognized that the design of any system is significantly affected by the

communications structure of the organization that develops it, i.e. any organization that

designs a system will produce a design whose structure is a copy of the organization's

communication structure [23] such internal line organization structure, structure of agile

release trains, and various tiers of suppliers (Conway Law). Thus, going in this direction putting

the application software in the forefront rather than the ECUs it will have large impact on many

suppliers’ business models and their current intellectual property investments as intellectual

property very often lies in the application software rather than in the electronics as well as our

internal organization and such transitions are painful. Thus, there is no need to debate that

development of software functionality for commercial vehicles would be vastly different.

Furthermore, taking a functionality-oriented perspective is more or less a must to move towards

more service-oriented solutions [24] and focusing in “logical structures” and “logical

relationships”. Service-oriented solutions will also be an enabler for more self-going agile

teams. How to take full advantage of that we also needs to move towards more IP-based

solutions instead of CAN/LIN-oriented protocols.

References

[1] P B Kruchten. The 4+1 View Model of Architecture. IEEE Software November 1995

[2] Fredrick P. Brooks Jr, No Silver Buller – Essence and Accidents in Software

Engineering, TBD

[3] Mitleton KE, Land F (2012) Complexity & Information Systems. Blackwell

Encyclopaedia of Management.

[4] Manfred Broy, Ingolf H. Krüger, Alexander Pretchner, and Christina Salzman.

Engineering Automotive Software. Proceedings of the IEEE. Vol. 95. Issue. 2. Feb.

2007.

[5] SAE J1939/71 Vehicle Application Layer (The data parameters (SPNs), messages

(PGNs) and reference figures and information previously published within this

document are now published in SAE J1939DA, Published October 25

[6] SAE J1939 Digital Annex (has been broken out from the SAE J1939/71), Published

April 22, 2019

[7] EEA for the CONNECTED AUTONOMOUS FUTURE. January 2017

[8] Virtual Functional Bus, AUTOSAR Classic platform, Release 4.3.1

[9] Frank van der Linden. Software Product Families in Europe: The Esaps & Café

Projects. IEEE Software July/August 2002

[10] Hans Aerts and Han Schaminée, How Software Is Changing the Automotive

Landscape, IEEE Software November/December 2017

[11] Kevin Baughey. Functional and Logical Structure: A System engineering Approach,

SAE International 2011-01-0517

[12] Agus Sudjianto and Kevin Otto. Modularization to support multiple brand platforms.

Proceedings of the DETC: ASME Design Engineering Technical Conference

September 2001. DECT2001/DTM-21695

[13] Road Vehicles – Functional Safety. ISO 26262

http://www.iso.org/iso/catalogue_detail?csnumber=43464

[14] Scaled Agile Framework (SAFe). http://www.scaledagileframework.com/

[15] Sagar Behre and Martin Törngren. A Functional Reference Architecture for

Autonomous Driving, Information and Software Technology, Vol 73. May, 2016 p136-

p150

[16] 4D/RCS: A Reference Model Architecture For Unmanned Vehicle Systems. Version

2.0. The Army Research Laboratory Demo III Program. Aug. 2002, National Institute of

Standards and Technology, Gaithersburg, Maryland 20899

[17] Kimon P. Valavanis, Denis Gracanin, Maja Matijasevic, Ramesh Kolluru, and Georgios

A. Demetriou. Control Architecture for Autonomous Undererwater Vehicles. IEEE

Control System. Vol. 17, Issue: 6, 1997, p48-p64

[18] Magnus Adolfson, ON-BOARD SYSTEM FOR TRUCK PLATOONS - Cooperative

mobility solutions for supervised platooning (Companion), Final project conference,

Applus IDIADA Technical Centre, Sep. 2016.

[19] Peter Nilsson, Leo Laine, Bengt Jacobson, and Niels van Duijkeren. Driver Model

Based Automated Driving of Long Vehicle Combinations in Emulated Highway Traffic,

Proceedings of the IEEE 18th International Conference on Intelligent Transportation

Systems, Spain, 2015.

[20] Sachin Janardhanan, Mansour Keshavarz Bahaghighat, and Leo Laine. Introduction of

Traffic Situation Management for a rigid truck, tests conducted on object avoidance by

steering within ego lane. Proceedings of IEEE 18th International Conference on

Intelligent Transportation Systems. Spain. 2015.

[21] Frank Buschmann, Regine Meuiner, Hans Rohnert, Peter Sommerlad, and Michael

Stal, Pattern-Oriented Software Architecture (POSA) - A Systems of Patterns, ISBN 0-

471-95869-7

[22] Michael A. Cusmano. How Microsoft Makes Large Team Work Like Small Teams.

Sloan Management Review. 1997 Fall. p9-p20

[23] Melvin Conway. How Do Committees Invent. Datamation Magazine. 1968 April

[24] Phil Bianco, Rick Kotermanski and Paulo Merson, Evaluating a Service-Oriented

Architecture, TECHNICAL REPORT, CMU/SEI-2007-TR-015

