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Abstract 

There are many incentives for a higher degree of automation for commercial vehicles to gain 

productivity, while at the same time facing very different demands on final transport 

applications. In addition, the environmental impact drives the need to reduce fossil fuel usage 

by introducing electrified torque generation, which could be distributed over several vehicle 

units in a vehicle combination. Electronics and especially software play a fundamental role for 

commercial vehicles in order to achieve energy/power balancing, assist a driver to manually 

operate vehicles effectively in combination with various degrees of automation and doing that 

dependable in different transport applications. Although the overall design thinking in the 

commercial vehicle industry is still very much oriented towards a geometric perspective and 

thus physical modules, which for software means binaries related to physical electronic boxes 

(ECUs) – classical ECU-oriented mindset. In this paper a supplementary perspective is added 

to the traditional geometry-oriented perspective – a functionality perspective, which facilitates 

reasoning about functionality and thus application software. The paper proposes a reference 

architecture that is based on four horizontal and two vertical layering of functionality. 

Introduction 

One of the cornerstones in the automotive industry has been and still is to achieve large scale 

reuse of manufactured entities in order to provide the market with mass-produced cost efficient 

vehicles. Thus the overall design thinking, at least within AB Volvo, is characterized by 

modularization of the products viewing them from a geometric perspective and thus geometric 

modules and how geometric modules are wired together are in the forefront. All these 

“modules“ are formed in a “platform“ which can be looked upon as a gigantic shopping bag full 

of pieces. At Volvo Group Trucks Technology (VGTT) this is known as the Vehicle Module 

Structure (VMS) and Common Architecture & Shared Technologies (CAST) highlighting 

generic (geometric) vehicle modules as in Fig. 1 and geometric interfaces. Transferring this 



perspective into the software landscape; this is similar to a physical view [1], which nowadays 

is commonly called deployment view.  

This physical thinking has 

been transferred into the 

area of electronics where 

Electric and Electronic 

Engineering has been focus 

and still is on where to place 

mechanic boxes enclosing 

some electronics and then 

wire these mechanic 

enclosures together. These mechanic enclosures are commonly known as Electronic Control 

Units (ECUs). In early days this wiring was about having dedicated wires going back and forth 

between ECUs. When these dedicated wires were replaced by communication technologies 

the focus has continued on wiring the ECUs together, now via Controller Area Network (CAN) 

and Local Interconnect Network (LIN) links. If you ask for the EE Architecture an automotive 

company most engineers would provide you with a PowerPoint showing how the ECUs are 

connected via physical data links as in Fig. 2, but few would present anything similar for the 

software.  

However, already long time before electronics were introduced, when monitoring and control 

logic was achieved through relays, there has been a structural element known as Electrical 

Distribution System (EDS). EDS had a focus on how these relays were wired together and the 

wires carries signals. What has been experienced during the years is that an EDS nor the 

network topologies fit properly anywhere in a geometric-centric modularization. They so to say 

give another kind of perspective! Furthermore, the geometric and ECU centric way of looking 

at the solution has led to that 

when we are talking about 

software the focus has been on 

the ECUs and the binaries that 

are flashed into their memory. 

Also, traditional focus on wires 

has led to that automotive 

electric system engineering as a 

discipline focus on wiring these 

binaries together via a Signal 

Cab Exterior

Living

Driving

Cab Body

Vehicle Front

Transport Adaptation

Chassis Structure

Pneumatic Structure

Rear Axle Installation

Wheel, Brake & Hub
Powertrain Inst.

Front Axle Inst. Engine Transmission Chassis Equipment

Cab Exterior

Living

Driving

Cab Body

Vehicle Front

Transport Adaptation

Chassis Structure

Pneumatic Structure
Rear Axle InstallationPowertrain Inst.

Front Axle Inst. Engine Transmission Chassis Equipment Wheel, Brake & Hub

Fig. 1 Main perspective and mindset is geometry-oriented. 

Fig. 2. Network topology is what most look upon as THE architecture in 

the automotive. 



Data Base (SDB). The SDB and EDS are rather similar, where EDS focus on packaging hard 

wires (signals) into harnesses and SDB focus on packaging soft wires (signals) into frames. 

Also, the SDB is hard to find in a geometric-centric structure. The software elements that really 

does something, in Classic AUTOSAR - the Software Components [8], are not really visible 

and treated, but it is primarily the binaries that are installed in the assembly line that are 

counted and registered in our product data management tools. All other kind of “systems” are 

too a large invisible in our product life cycle management tool, e.g. a “system” as in Fig. 2 is 

not officially released, the description is, but the system with all ECUs is not released as a 

“system”. 

System complexity in automotive is increasing 

Complexity of a system is rather subjective and is impacted by many things. Already 1986 

Fredrik Brooks reasoned about essential and accidental complexity [2] and such as people 

skill, organization, tools and processes and the system itself are all contributing to the overall 

complexity. Essential system complexity is a result of “Complex behavior that arises from the 

inter-relationship, interaction, and interconnectivity of elements within a system and between 

a system and its environment” [3]. Looking at Fig. 2 the complexity looks quite moderate, but 

what is missing in this picture is the 

application software. So when the 

network topology is supplemented 

with application software structure, 

as in Fig. 3, the complexity 

increases. Thus the traditional view 

on EE Architecture Fig. 2 gives a 

rather false picture of the truth! 

System wide complexity has moved 

from electronics and wires into the 

software! What we have experienced is that we can no longer proceed with just the ECU-

thinking as system behavior is not clear from the properties of its individual parts. 

Continuous software increase to facilitate automation, electrification and connectivity 

Nowadays, it is when the application software comes into focus the complexity shows up. That 

brings us into the topic of where the changes will comes. For example, new legislations on NOx 

and CO2, zero emission zones and noise zones will be enabled through electrification of 

“powertrain devices“ but we must also monitor and control the operation these together with 

Fig. 3. The complexity increase that comes with interacting 

software elements. 



various other high power auxiliaries on trucks such as air fans and air compressors, which thus 

also needs to be electrified. Thus for example “brake blending” suddenly becomes an energy 

balancing topic rather than a plain braking topic reducing brake pad wear. From an overall 

energy management perspective, usage of different energy sources and buffers requires 

monitoring as well as prediction to minimize the energy consumption for a certain transport 

mission. This is related to the overall vehicle mission as a whole rather than to a particular 

“mechanic device” device and thus such functionality should not be part of the device. This 

overall coordination only be handled through application software! 

Software has become a major enabler for improving old features as well as providing new 

features in the automotive industry. Many of these features are not directly linked to the 

geometric modularization as in Fig. 1. Cars and trucks have continuously evolved with software 

enabled features in a relatively moderate pace over the last three decades. It is not only high 

end vehicles but also low end vehicles that have a quite impressive amount of software in order 

to manage things like a vehicle’s perimeter, seat adjustments, acceleration, braking, etc. It has 

been estimated that more than 80 percent of new vehicle innovations are enabled through 

software [4]. It is important to highlight that not even old software entities such as a Cruise 

Speed Controller or Cruise Distance Controller are linked to geometric modules as in Fig. 1 

like a combustion engine and its associated Engine Control Module (ECM) which today host 

the Cruise Speed Controller according to SAE J1939/71 [5], [6] (there is an implicit deployment 

built into this standard). The trend in the Volvo Group is that the pace of innovations through 

software is accelerating. Also, it will be hard for standards such as SAE J1939 to keep up with 

this acceleration as it restricts the solution space. 

As in enterprises, software is a major contributor to automation – replacement of human 

performed activities. This of course also goes for various levels of vehicle automation, where 

vehicle automation is synonymously with a huge amount of application software. As 

commercial vehicles are used in B2B operations, the interest in automation is perhaps of higher 

incentive than for cars as it contributes to operational margins. Roughly 1/3 of operation cost 

is related to having a human behind a steering wheel. The automation will also go hand in 

hand with an increased level of connectivity in order to operate logistics of unmanned vehicles, 

maintenance and in some case remotely drive a malfunctioning vehicle to get it into the 

roadside. It will be the application software that drives the need for powerful electronics, i.e. 

flexible and reconfigurable computers! [7]  

The way of working with commercial vehicles is far from adapted to looking upon them as 

software intensive products or service providers, which vehicle automation, connectivity and 



also electro mobility is about. The traditional geometry and deployment perspective is not 

feasible any longer! 

Supplement the Deployment Centric Perspective with a Functionality Perspective 

To achieve strategic large scale software reuse it is a necessity to apply a product line 

engineering approach [9], which sometimes is referred to as “platform development“. As 

commercial vehicles operates in a diverse set of transportation applications there is a need to 

build in many and different kinds of variation points (variability) to enable vehicle feature 

tailoring, while at the same time aim for reusability and changeability in such a product line. 

One can think of it as a “one software code branch only“ [10] with built in variability. To manage 

the transition that software is mainly about mechanical component control, e.g. engine, 

transmission, braking, to actual vehicle feature control, it is a must to not just talk about the 

physical modules but rather more abstract entities – some kind of entities of functionality. 

Therefore we are adding an additional perspective on the vehicles – here defined as the 

functionality viewpoint, Fig. 4 [1], also identified by [11] as a link between overall customer 

demand and physical structure. This will make a shift to focus on reasoning about and reuse 

of modules of functionality rather than “physical” modules – in this sense a product line is a set 

of modules of functionality shared across multiple end-user products [12]. The intention is that 

we look upon structural entities showing up in this perspective as “products” in a similar way 

as structural entities in a geometric viewpoint are treated as “products”.  

With higher and higher demands on 

dependable vehicle operation, driven by 

more advanced features but also by the 

functional safety standard ISO 26262 [13], 

there is a necessity to more clearly 

structure and through that separate 

different concerns such as different levels 

of criticality of functionality from each other 

in order to guarantee that the lower 

criticality elements cannot interfere with the functioning of the higher criticality elements. 

Organizing the Functionality Perspective 

So, how to think when looking upon commercial vehicles from a functionality perspective? In 

principle one has to take a full vehicle perspective on this and also include functionality handled 

through mechanics, pneumatics, electronics and not just software. Based on the thinking of 

Operational (Usage) 
Perspective

Fig. 4. Multiple viewpoints to deal with separated and 

unrelated concerns. 



separation of concern the architecture approach made here is based on that functionality 

dealing with monitoring and control things is separated from functionality handled through 

electricity, diesel, mechanics, 

pneumatics, hydraulics, etc. as in 

Fig. 5. For example the 

combustion engine from a 

functionality perspective would 

then reside in the Torque Supply 

& Distribution System but when it 

is installed (deployed, packaged) 

it can be under the cab at the 

truck, in front of the cab in a 

conventional truck, in rear or at 

the center in a bus. So this thinking does not just support software. We thus at the highest level 

apply a layered approach. As can be seen in Fig. 5 there are dependencies from the Vehicle 

Monitoring & Control System (VMCS) to various “systems”, which will mainly be handled by 

the Device Abstraction Layer introduced in Fig. 7. Furthermore, as the nature of the 

functionality dealt with in the VMCS is very different, ranging from converting an analogue 

value to a digital value, 

forwarding this digital value from 

a converter circuit to an 

application software entity 

where it might become a 

temperature, leads to that this is 

structured into three major 

“system” entities as in Fig. 6, 

which is a kind of layered 

architecture style [21]. As these 

are separated from each other the reasoning and focus in these also varies a lot. Another thing 

worth to highlight is that VMCS focus on single vehicles. However, to gather statistics of wear 

or energy consumption trends of for example all Volvo, Renault and Mack trucks, there is a 

need to add another layer on top as in Fig. 5, here called Vehicle Fleet Monitoring & Control 

System (not in the scope of this paper). 

Computation & Signal Distribution System: the focus is on electronic functionality 

interfacing various actuators and sensors that are part of the device functionality such as 

Generation of, storage, 
distribution and fusing of 

12V, 24V and 48V 
electricity.

Fig. 5. Separate the things that are to be monitored and controlled 

from the one monitoring and controlling them 

Fig. 6. The Vehicle Monitoring and Control System is divided into three 

major blocks of functionality. 



interfacing a Fan Motor, an Inlet Air Pressure Sensor, and Brake Pad Wear Sensor etc. It also 

focuses on processing and memory capacity as well as network structures its performance. 

We can say that this system is the classical way of looking at an “EE system“ – the ECUs and 

their network connections as in Fig. 2. That is the diagram in Fig. 2 is a “document” that only 

describe the internal design of this system and that released when the system and all its 

content is released. 

Vehicle Application System: the focus is on managing entities that owns and deals with 

information about the vehicle and thus used to monitor and control the operation of the vehicle. 

These entities are relevant to talk about in the application domain such as the inlet air and its 

temperature, humidity and mass flow (speed) or a climate comfort service. It is this system that 

holds all application software functionality all the way down to source code modules. 

Basic Support Services/Utilities System: The world in-between these is some kind of 

middleware functionality that bridges these two worlds, where AUTOSAR Classic Platform [8] 

is just one such middleware framework, Linux another one. Graphic Engines, Voice Interprets 

also belongs to this system. 

Except for the nature of the functionality another really important reasoning for this separation 

is that cycle-time for developing functionality in the Computation & Signal Distribution is very 

different from the one in the Vehicle Application System. Furthermore, as the hype around 

agile/lean based development process frameworks like SAFe [14] also has reached the 

automotive domain with hope for more software-based features both faster and more 

continuously developed, integrated and distributed to customers, there is really a necessity to 

even more strongly make this separation happen at the top level. 

Vehicle Application System - layer application functionality 

By work and experiments conducted during 2009-2018 at Volvo GTT it has been concluded 

that there is a need for a 

slightly different layering 

than in [15], among other 

things the architecture 

presented herein has 

added clear separation of 

HMI and the ego vehicle’s 

environment and 

operational functionality 

has been divided into two 
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layers. The reference architecture presented in this paper proposes four horizontal layers as 

in Fig. 7 where two lower layers address “operational” functionality; one layer deals with tactic 

functionality; and one layer deals with strategic functionality, but also two vertical layers are 

added. Each horizontal layer raises the abstraction level from the “physical” functionality that 

is to be monitored and controlled. All with the perspective of a single vehicle, but the vehicle 

may at the vehicle utility layer be looked upon as two track model, as single track model in the 

task situation tactics layer and as a particle in the transportation strategies layer!  

The architecture approach defined here combines a strict hierarchical style [16] with a 

heterarchical style [17] where all modules communicate with each other – it becomes a layered 

style. The idea of a layered style is to deal with the disadvantage of a strict hierarchy as it 

introduces inflexibility and long response chains but also the problems associated with a strict 

heterarchical style as it introduces many problematic couplings all over and lowers the 

possibilities to reuse and by that achieve a variable product line. A similar layered architecture 

for platooning feature of commercial heavy vehicles has been presented in [18], which also 

contains strategic, tactical and operational layers and it can be seen that the focus has been 

solely on platooning. In the presented approach here, the platooning planning is managed in 

Transportation Situation Strategies and the actual joining and leaving is taken care of in Task 

Situation Tactics, e.g. the “adaptive cruise controller“ is becoming a “platoon cruise controller“. 

In [18] it is not revealed how full automation is going to be approached nor how transition of 

transport automation which can include manual and automated driving. 

Device Abstraction Layer: The overall thinking in this layer is that application software entities 

shall be representations, device abstractions (DA), of mechatronic devices such as a Fuel 

Tank, Wheel, Clutch, Wheel Brake, Windshield Wiper, etc. to localize the knowledge about the 

characteristics of a 

particular device as shown 

in Fig. 8.  

DAs are carriers of 

information elements that 

represent various properties 

of a mechatronic element 

that is to be monitored or 

controlled. For example 

current tire pressure, 

current wheel speed, and 

current tire temperature, 

Functionality of mechatronic devices 
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and nominal tire dimension are organized into a software entity representing the Wheel. And 

data such as current wiper position, current wiper speed, wiper operation, etc. is data that 

together forms a 

software entity 

representing a 

windshield wiper. The 

important here is that 

Das are looked upon as 

service providers and 

does not necessarily run 

on its own ECU. We are 

not there yet, but having 

such entities looked 

upon as individual deployable entities would ease a continuous evolution of our product line 

as well as ease upgrades in the fields. Furthermore, this thinking is also related to that there 

might be different variants of these devices such as a Disc Brake and a Drum Brake and as 

these share many properties it is good if they are defined in a single point, Friction Brake, as 

in Fig. 9. Unfortunately many design tools popular together with AUTOSAR such as 

Matlab/Simulink and DaVinci Developer do not support this kind of design. Instead it would be 

beneficial to apply the object-oriented inheritance mechanism for this. 

«DeviceAbstraction»

FrictionBrake
- currentTemperature:C
- currentWear : %
- totalUtilizationTime : s
- currentTq
- tqSetpoint

«DeviceAbstraction»

DrumBrake
-

«DeviceAbstraction»

DiscBrake
-

«SensorAbstraction»

LiningThicknessMeasurement
-

0..1

For any of these software entities the 
principle taken here is to provide three 
differnt kinds of interfaces:
- Operation Control Interface

+ setTorque(setpoint : Nm)
Operation Status Interface

+ getSpeed (instSpeed : rpm)
+ getTirePressure(pressure:kPa)

Operation Capability Interface
+ getTorqueProfile(...)

«DeviceAbstraction»

FrictionBrake
- currentAppliedTq
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«DeviceAbstraction»

HeadLamp
- currentOperation
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«DeviceAbstraction»

FrictionBrake
- currentAppliedTq
- tqSetpoint
- currentTemperature
- currentWear
- totalUtilizationTime
- …

«VehcileUtility»

MovingUnitMotion
- currentAcceleration
- accelerationSetpoint
- currentTrajectory
- trajectorySetpoint
- …

«DeviceAbstraction»

Gearbox
- currentConvRatio
- convRatioSetpoint
- currentIncommingSpeed
- currentOutgoingSpeed
- currentTemperature
- currentOilLevel
- …

«DeviceAbstraction»

CombustionEngine
- currentOperation
- currentSpeed
- instantantConsumption
- currentTemperature
- …

«DeviceAbstraction»

Clutch
- currentPosition
- operationSetpoint
- currentTemperature
- currentWear
- …

+controller, client, monitor

«use»«use»«use»«use»

«VehcileUtility»

HeadwayIllumination
- …

«VehcileUtility»

ClimateComfort
- …

«VehcileUtility»

WindowCleaning
- …

«DeviceAbstraction»

HeadLamp
- currentOperation
- currentIntensity
- currentTemperature
- totalUtilizationTime
- …

«DeviceAbstraction»

ExtraLamp
- currentOperation
- currentIntensity
- currentTemperature
- totalUtilizationTime
- …

«use» «use»

Fig. 10. Example of Vehicle Utilities that are acting as controller, clients and encapsulate coordination between 

different device abstractions. 

Fig. 9. A DA with two variants and three different types of interfaces. 



Vehicle Utilities Layer: The purpose for this layer is first of all to raise the abstraction level 

from individual device abstractions into so something we call vehicle utilities (services). These 

shield away individual devices. A vehicle utility is defined as some kind of useful vehicle wide 

service that enables a client to perform one or many of its activities via an HMI in a manually 

operated truck or when automated by elements in the Task Situation Tactics Layer. Hence a 

Vehicle Utility represents a goal experienced by the consumer e.g. a Moving Unit Motion (for 

trucks there can be many units that form a vehicle combination), Power Situation, Headway 

Illumination, Window Cleaning, Climate Comfort etc. as in Fig. 10. When a Vehicle Utility is 

operational it is utilizing lower level DAs to achieve its desired goal and thus it will take on 

many different roles towards DAs such as controller, client, monitor, and coordinator and 

towards elements in the HMI or Task Situation Tactics layer Vehicle Utilities will works as 

servers. 

What we have done is that this layer will in practice be replaced through a number of domain 

packages organizing a set of vehicle utilizes as seen in Fig. 11. We intend to look upon these 

as “products“ that are released, maintained, evolved, etc. and thus they enable us to point out 

“product manager/owners“, although its internal elements might be distributed and executed 

in a number of ECUs. Furthermore, it is these domains that facilitate our organization to talk 

about the application software as the network topology and its ECUs has supported automotive 

organizations in the past. As there can be quite many software elements in these, these are 
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further decomposed into some intermediate products which we denote areas as seen to upper 

left in Fig. 11. 

Task Situation Tactics Layer: When a human user performs a use case such as “transport 

payload from A to B” or “load/unload payload” is actually about the performance of a 

coordinated set of tasks in a given situation. In a situation where a physical user performs a 

task (a non-automated situation), the human user is acting as both a monitor and controller. 

The purpose of the task situation tactics layer is to enable introduction of more and more 

automation of these tasks and coordination of tasks traditionally performed by drivers and other 

local operators. In order to achieve this, it “consumes” services offered by various vehicle level 

utilities. So basic entities that show up inside this layer are entities that represent tasks a user 

performs (today but not tomorrow) and apply some tactics to perform these. For example, in 

the case of a driver in the control loop, the driver is actually acting as a driving controller, speed 

controller, a trajectory controller (steering), headway sight controller, forward sight controller, 

etc. and therefore such tasks shall also be represented as application software entities. Further 

breakdown of this layer into domains can be made such as Traffic Situation Tactics in Fig. 11. 

As seen in Fig. 11 and in [19] and [20] the Traffic Situation Tactics is broken down into smaller 

functionality areas (FA) such as Traffic Situation Observation (a local world model [16]), Traffic 

Situation Prediction., Traffic Situation Maneuver (plan, perform, and perform maneuver’s both 

L2 to L5 automation), Traffic situation (Driver) Coaching and Driver Situation Observation. 

Transport Situation Strategies Layer: This layer raises the abstraction one level further, and 

instead of reasoning about it as a “physical” truck or user activities, it instead focuses on what 

kind of different transportation (mission) that can be offered (still in the single vehicle 

perspective) such as: How many containers and sizes are expected to be transported and 

assigned by a vehicle or gravel transport assignments, soil transport assignments, sand 

transport assignment, or frozen food transport assignment. This is about dealing with strategic 

decisions such as “optimize” for operation cost or delivery speed among assignments. 

Ego vehicle's environment situation: Another kind of functionality that is different compared 

to the concerns addressed by the previously defined horizontal layers is the functionality that 

deals with creating a picture of an ego vehicle’s environment situation. In this architecture this 

is an orthogonal layer to the horizontal layers as seen in Fig. 7. For example a Weather 

Situation, Traffic Jam Situation, Environment Traffic Situation and a Road Characteristics 

Situation are software entities located herein and provides services to the horizontal layer. 

Thus they abstract away how that is gained from making of other more internal software 

entities, e.g. a Weather Situation entity can make use of detections in an image from a camera, 

clutter from a radar and/or detection from dedicated temperature sensors as well as 



communication with another vehicle to get a proper picture of the complete weather situation 

in the ego vehicle’s environment.  

Human Machine Interface “layer“ - think Model-View-Controller: Although automation is a 

hot topic for commercial vehicles the transition will take time and a human will need to interact 

with various kinds of functionality and that human, acting as a driver, which can be either locally 

or remotely as in Fig. 7. This is especially important to consider in product line that intend to 

enable trucks within the range from manual to full automation. The approach taken here is to 

clearly separate Human Machine Interface (HMI) as in Fig. 7, where View and Controller 

according to MVC pattern [21] resides herein. As the Volvo Group is dealing with multiple 

brands in its product portfolio this separation enables HMIs to look very different between the 

brands while maintaining stable core knowledge. This also opens up for a possibility to localize 

what kind of control a user can do and when that can be done as well as addresses the issues 

of managing multiple users to control from multiple places simultaneously and not having that 

issue rippled down into the core knowledge, e.g. having direct access buttons mounted e.g. in 

a door panel and in a handheld device as well as via soft buttons visible in an thin GUI app 

running on a smart phone. In order to deal with this a generic architecture component known 

as a User Input Controller (UIC) has been defined which is responsible for WHAT control is 

offered to a human user and WHEN that control is possible. The architecture also has a similar 

User Output Controller that provides feedbacks valid for a human user.  

Think Object-/Component-/Service-Oriented instead of Function-Oriented 

It is important to understand that any kind of software system such as a gearbox control 

system, navigation system, telecom base station or an order management system all deal with 

a massive amount of information and most of the times in real-time. Having this said, ownership 

of information that represents various kinds of states such as a speed limit, max vehicle speed, 

current acceleration, current curvature, instantaneous fuel consumption, average power 

consumption, etc. is essential. Also, current vehicle acceleration is completely different than 

instantaneous fuel consumption per time unit which is an issue for a combustion engine device 

abstraction and instantaneous fuel consumption per travelling unit (km or m) is different and 

the scope of a vehicle utility. Therefore the layered architecture is supplemented with the 

mindset of an object/component-oriented architecture style, as highlighted in Fig. 9 and Fig. 

10, as the lowest level in software modularization within the layers. These objects are acting 

as service providers and service consumers. The intention is also that these will be individually 

deployable entities in a SOA-environment. This will in turn facilitate a scalable product line but 

also ease agile self-going development teams having smaller deployable entities than 



deploying a big binary monolith as of today. Achieving a directed dependency, e.g. as depicted 

in Fig. 10, requires a careful design of the interfaces at the end of the dependency arrow. That 

is, the dependency is realized by Operation Interfaces of one or more public Objects residing 

in these domains, areas, units, etc. (a successive hierarchic structure)  Thus we propose that 

software elements provide three different kinds of interfaces, as visualized in Fig. 10: Operation 

Control, Operation Capability (instantaneous capabilities), and Operation Status. This is very 

well supported by a component-based approach although current version of the component-

based AUTOSAR framework does not have ownership of information at its heart. This is a 

quite big difference from current design paradigms in automotive which often favor the function-

oriented paradigm focusing on algorithmic decomposition where data is flowing around among 

the functions as parameter passing or as global data. 

Conclusion 

It has been recognized that an architecture has major impact on the easiness to cooperate 

among teams. In 1997 it became clear that Microsoft divide development work in a way that 

mirrors the structure of its products, which helps teams, create products with logical and 

efficient design and with efficient groupings of people [22] and we conclude the same but all 

recognize that is really hard to establish such thinking a large global organization. But, it has 

also been recognized that the design of any system is significantly affected by the 

communications structure of the organization that develops it, i.e. any organization that 

designs a system will produce a design whose structure is a copy of the organization's 

communication structure [23] such internal line organization structure, structure of agile 

release trains, and various tiers of suppliers (Conway Law). Thus, going in this direction putting 

the application software in the forefront rather than the ECUs it will have large impact on many 

suppliers’ business models and their current intellectual property investments as intellectual 

property very often lies in the application software rather than in the electronics as well as our 

internal organization and such transitions are painful. Thus, there is no need to debate that 

development of software functionality for commercial vehicles would be vastly different.  

Furthermore, taking a functionality-oriented perspective is more or less a must to move towards 

more service-oriented solutions [24] and focusing in “logical structures” and “logical 

relationships”. Service-oriented solutions will also be an enabler for more self-going agile 

teams. How to take full advantage of that we also needs to move towards more IP-based 

solutions instead of CAN/LIN-oriented protocols. 
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