
Basic financial concepts

for the course Financial derivative and PDE’s

Simone Calogero
Chalmers

The main topic of the course “Financial derivatives and PDE’s is the theoretical valuation of
financial derivatives based on the arbitrage-free principle and using methods from stochastic
calculus and partial differential equations. The purpose of this text is to introduce the basic
financial terminology used in the rest of the course. More advanced financial concepts (e.g.,
forwards, futures, swaps and coupon bonds) are discussed in the lecture notes of the course.
This text is an abridged version of Chapter 1 in [1].

Financial assets

The term asset may be used to identify any resource capable of producing value and which,
under specific legal terms, can be bought and sold (i.e., converted into cash). Assets may be
tangible (e.g., lands, buildings, commodities, etc.) or intangible (e.g., patents, copyrights,
stocks, etc.). Assets are also divided into real assets, i.e, assets whose value is derived by
an intrinsic property (e.g., tangible assets), and financial assets, such as stocks, options,
bonds, etc., whose value is instead derived from a contractual claim on the income generated
by another (possibly real) asset. For example, upon holding shares of the Volvo stock (a
financial asset), we can make a profit from the production and sale of cars even if we do not
own an auto plant (a real asset). As we consider only financial assets in this text, the terms
“asset” and “financial asset” will be henceforth used interchangeably.

Price

The price of a financial asset is the value, measured in some units of currency (e.g. dollars),
at which the buyer and the seller agree to exchange ownership of the asset. The price is
chosen by the two parties as a result of some kind of “negotiation”. More precisely, the ask
price is the minimum price at which the seller is willing to sell the asset, while the bid price
is the maximum price that the buyer is willing to pay for the asset. A transaction occurs
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when the bid price of a buyer matches the ask price of a seller, in which case the exchange
of the asset takes place at the corresponding price.

A generic financial asset will be denoted by U and its price at time t by ΠU(t). Prices are
generally positive, although some financial assets (e.g., forward contracts) have zero price.

The asset price refers to the price per share of the asset, where “share” stands for the
minimum amount of an asset that can be traded. All prices in this text are given in a fixed
currency, which is however left unspecified.

Markets

Financial assets can be traded in exchange markets or over the counter (OTC). In the
former case all trades are subject to a common regulation, while in the latter the trading
conditions are more flexible and, to a certain degree, can be agreed upon by the individual
traders. The same asset can often be traded both in an exchange market and OTC, usually
for a different price. The advantage of trading in regularized exchange markets is the higher
level of transparency and protection offered by standardized contracts.

Examples of official exchange markets, respectively of stocks and options, are the Nasdaq
market and the Chicago Board of Options Exchange (CBOE); currencies are example of
financial assets which are traded only OTC (Forex market).

A market maker is large investment company that continuously quotes both an ask price
and a bid price for immediate purchase/sell of an asset, thereby ensuring markets liquidity.
The difference between the bid and the ask price of an asset quoted by a market maker is
also called the bid-ask spread of the asset.

Any transaction in the market is subject to transaction costs (e.g., exchange fees) and
transaction delays (trading in real markets is not instantaneous).

Buyers and sellers of assets in a market will be called investors or agents.

Long and short position

An investor is said to short-sell N shares of an asset if the investor borrows the shares from
a third party and then sell them immediately on the market. The reason for short-selling
an asset is the expectation that the price of the asset will decrease in the future. In fact,
suppose that N shares of an asset U are short-sold at time t = 0 for the price ΠU(0) and let
T > 0. If ΠU(T ) < ΠU(0), then upon re-purchasing the N shares at time T , and returning
them to the lender, the short-seller will make the profit N(ΠU(0)− ΠU(T )).

An investor is said to have a long position on an asset if the investor owns the asset and
will therefore profit from an increase of its price. Conversely, the investor is said to have
a short position on the asset if the investor will profit from a decrease of its value, as it
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happens for instance when the investor is short-selling the asset.

Stocks and dividends

The capital stock of a company is the part of the company equity capital that is made
publicly available for trading. Stocks are most commonly traded in official exchange markets.
For instance, over 300 company stocks are traded in the Stockholm exchange market. The
price per share of a generic stock at time t will be denoted by S(t).

A stock may occasionally pay a dividend to its shareholders, usually in the form of a cash
deposit. The amount (per share) of the dividend and its payment date must be declared
in advance (announcement date). The ex-dividend date is the first day before the
payment date (usually a few days before it) at which buying the stock does not entitle to
the dividend. An investor who buys the stock prior to the ex-dividend day and holds it until
the ex-dividend day is entitled to the dividend, even if the investor does not own the stock
at the payment day. At the ex-dividend day, the price of the stock often (but not always)
drops of roughly the same amount paid by the dividend.

Market index and ETF’s

A market index is a weighted average of the value of a collection of assets traded in one
or more exchange markets. For example, S&P500 (Standard and Poor 500) measures the
average value of 500 stocks traded at the New York stock exchange (NYSE) and NASDAQ
markets. Market indexes can be regarded themselves as tradable assets. More precisely an
ETF (Exchange Traded Fund) on a market index is a financial asset whose value tracks
exactly the value of the market index (or a given fraction thereof). Hence one share of an
ETF on S&P500 will increase its value of 1% in one day if during that day S&P 500 has
gained 1%. An inverse ETF however will in the same example decrease its value of 1%.
Thus ETF’s give investors the possibility to speculate whether the market will gain or loose
value in the future.

Portfolio position and portfolio process

Consider an agent that invests on N assets U1, . . . ,UN during the time interval [0, T ]. Assume
that the agent trades on a1 shares of the asset U1, a2 shares of the asset U2,. . . , aN shares of
the asset UN . Here ai ∈ Z = {0,±1,±2,±3, . . . }, where ai < 0 means that the investor has
a short position on the asset Ui, while ai > 0 means that the investor has a long position
on the asset Ui (the reason for this interpretation will become soon clear). The vector
A = (a1, a2, . . . , aN) ∈ ZN is called a portfolio position, or simply a portfolio. The value
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of the portfolio at time t is given by

VA(t) =
N∑
i=1

aiΠ
Ui(t), t ∈ [0, T ], (1)

where ΠUi(t) denotes the price of the asset Ui at time t. The value of the portfolio measures
the wealth of the investor: the higher is V (t), the “richer” is the investor at time t. It follows
that when the price of the asset Ui increases, the value of the portfolio increases if ai > 0 and
decreases if ai < 0, which explains why ai > 0 corresponds to a long position on the asset Ui
and ai < 0 to a short position. Portfolios can be added by using the linear structure on ZN ,
namely if A,B ∈ ZN , A = (a1, . . . , aN), B = (b1, . . . , bN) are two portfolios and α, β ∈ Z,
then C = αA+ βB is the portfolio C = (αa1 + βb1, . . . , αaN + βbN), whose value is given by
VC(t) = αVA(t) + βVB(t).

In the definition of portfolio position and portfolio value given above, the investor keeps the
same number of shares of each asset during the whole time interval [0, T ]. Suppose now that
the investor changes the position on the assets at some times t1, . . . , tM−1, where

0 = t0 < t1 < t2 < · · · < tM−1 < tM = T ;

for simplicity we assume that at each time t1, . . . , tM−1 the change in the portfolio position
occurs instantaneously. Let A0 denote the initial (at time t = t0 = 0) portfolio position of the
investor and Aj denote the portfolio position of the investor in the interval of time (tj−1, tj],
j = 1, . . . ,M . As positions hold for one instance of time only are clearly meaningless, we
may assume that A0 = A1, i.e., A1 is the portfolio position in the closed interval [0, t1]. The
vector (A1, . . . ,AM) is called a portfolio process. Denoting by aij the number of shares
of the asset i in the portfolio Aj, a portfolio process is equivalent to the N × M matrix
A = (aij), i = 1, . . . , N , j = 1, . . . ,M . The value V (t) of the portfolio process at time t is
given by the value of the corresponding portfolio position at time t as defined by (1), that is

V (t) =


VA1(t) =

∑N
i=1 ai1Π

Ui(t), for t ∈ [0, t1]

VA2(t) =
∑N

i=1 ai2Π
Ui(t), for t ∈ (t1, t2]

...
...

VAM
(t) =

∑N
i=1 aiMΠUi(t), for t ∈ (tM−1, tM ]

.

The initial value V (0) = VA0 = VA1(0) of the portfolio, when it is positive, is called the
initial wealth of the investor.

A portfolio process is said to be self-financing if the portfolio assets pay no dividends and
if no cash is ever withdrawn or infused in the portfolio. For example, let U1, U2, U3 be
non-dividend paying assets in the interval [0, T ]. Suppose that at time t0 = 0 the investor is
short 400 shares on the asset U1, long 200 shares on the asset U2 and long 100 shares on the
asset U3. This corresponds to the portfolio

A0 = (−400, 200, 100),
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whose value is
VA0 = −400 ΠU1(0) + 200 ΠU2(0) + 100 ΠU3(0).

If this value is positive, the investor needs an initial wealth to set up this portfolio position:
the income derived from short selling the asset U1 does not suffice to open the desired long
position on the other two assets. As mentioned before, we may assume that the investor
keeps the same position in the interval (0, t1], i.e., A1 = A0. The value of the portfolio
process at time t = t1 is

V (t1) = VA1(t1) = −400 ΠU1(t1) + 200 ΠU2(t1) + 100 ΠU3(t1).

Now suppose that at time t = t1 the investor buys 500 shares of U1, sells x shares of U2, and
sells all the shares of U3. Then in the interval (t1, t2] the investor has a new portfolio which
is given by

A2 = (100, 200− x, 0),

and so the value of the portfolio process for t ∈ (t1, t2] is given by

V (t) = 100 ΠU1(t) + (200− x) ΠU2(t), t ∈ (t1, t2].

The limit of this quantity as t→ t+1 corresponds to the value of the portfolio “immediately
after” the position has been changed at time t1. Denoting

V (t+1 ) = lim
t→t+1

V (t)

and assuming that the prices are continuous, we have

V (t+1 ) = 100 ΠU1(t1) + (200− x) ΠU2(t1).

The difference between the value of the two portfolios immediately after and immediately
before the transaction is then

V (t+1 )− V (t1) = 100 ΠU1(t1) + (200− x) ΠU2(t1)

− (−400 ΠU1(t1) + 200 ΠU2(t1) + 100 ΠU3(t1))

= 500 ΠU1(t1)− xΠU2(t1)− 100 ΠU3(t1).

If this difference is positive, then the new portfolio cannot be created from the old one
without infusing extra cash. Conversely, if this difference is negative, then the new portfolio
is less valuable than the old one, the difference being equivalent to cash withdrawn from the
portfolio. Hence for self-financing portfolio processes we must have V (t+1 )− V (t1) = 0, and
similarly V (t+j ) − V (tj) = 0, for all j = 1, . . . ,M − 1. This implies in particular that the
number x of shares of the asset U2 to be sold at time t1 in a self-financing portfolio must be

x =
500ΠU1(t1)− 100ΠU3(t1)

ΠU2(t1)
.
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Of course, x will be an integer only in exceptional cases, which means that perfect self-
financing strategies in real markets are almost impossible.

If V (t+j ) 6= V (tj), i.e., if the portfolio value is discontinuous at time tj, we say that the
portfolio process generates the cash flow

C(tj) = −(V (t+j )− V (tj))

at time tj. A positive cash flow corresponds to cash removed from the portfolio (causing a
decrease of its value), while a negative cash flow corresponds to cash added to the portfolio.
For instance if at time t1 the investor sells shares of U1 and the income is not used to buy
shares of another asset, i.e., if it is removed from the portfolio, then V (t+1 ) < V (t1) and thus
C(t1) > 0. The total cash flow generated by the portfolio process in the interval [0, T ] is
Ctot =

∑M−1
j=1 C(tj) and can be negative, positive or zero.

If an asset pays a dividend D at some time t∗ ∈ (0, T ), then the portfolio process generates
the positive cash flow D at time t∗ if the portfolio is long on the asset and the negative cash
flow −D if it is short on the asset (because the dividend is due to the original owner of the
asset). Constant portfolio positions are self-financing provided the assets pay no dividends.

Portfolios and assets return

Suppose that a portfolio process is opened at time t = 0 and closed at time t = T > 0, i.e., all
positions in the portfolio are liquidated at time T . If the portfolio process is self-financing,
then its return in the interval [0, T ] is given by

R(T ) = V (T )− V (0), (2)

where V (t) denotes the value of the portfolio at time t. If the return is positive, the investor
makes a profit in the interval [0, T ], if it is negative the investor incurs in a loss. When
V (0) > 0 we may also compute the rate of return of the portfolio, which is given by

Rrate(T ) =
V (T )− V (0)

V (0)
. (3)

The total cash flow C generated by a (non-self-financing) portfolio process must be included
in the computation of the return of the portfolio in the interval [0, T ] according to the formula

R(T ) = V (T )− V (0) + C. (4)

Portfolio returns are commonly “annualized” by dividing the return R(T ) by the time T
expressed in fraction of years (e.g., T = 6 months = 1/2 years).

Consider now a portfolio that consists of a long position on one share of the asset U in the
interval [t, t + h] and assume that the asset pays no dividend in this time interval. The
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annualized rate of return of this portfolio is given by

Rh(t) =
ΠU(t+ h)− ΠU(t)

hΠU(t)

and is also called simply compounded rate of return of U . In the limit h→ 0+ we obtain
the continuously compounded (or instantaneous) rate of return of the asset:

r(t) = lim
h→0+

Rh(t) =
1

ΠU(t)

dΠU(t)

dt
,

where we assume that the price of U is differentiable in time.

Asset returns are often computed using the logarithm of the price rather than the price itself.
For instance the quantity

R̂h(t) = log ΠU(t+ h)− log ΠU(t) = log

(
ΠU(t+ h)

ΠU(t)

)
is called simply compounded log-return of the asset U in the interval [t, t+ h]. The use
of the log-price is convenient in some computations because ΠU(t) > 0, while log ΠU(t) ∈ R,
i.e., the boundary at zero of the asset price is removed when the log-price is employed. Since
R̂h(t)/h and Rh(t) have the same limit when h→ 0+, namely

lim
h→0+

1

h
R̂h(t) = lim

h→0+

log ΠU(t+ h)− log ΠU(t)

h
=
d log ΠU(t)

dt
= r(t),

then r(t) is also called instantaneous log-return of the asset. Note carefully that in

general R̂h(t), Rh(t) and r(t) are not known at time t, because they depend on the future
value of the asset U ; an exception to this are money market assets discussed later.

Historical volatility

The historical volatility of an asset measures the amplitude of the time fluctuations of the
asset price, thereby giving information on its level of uncertainty. It is computed as the
standard deviation of the log-returns of the asset based on historical data. More precisely,
let [t0, t] be some interval of time in the past, with t denoting possibly the present time, and
let T = t − t0 > 0 be the length of this interval. Let us divide [t0, t] into n equally long
periods, say

t0 < t1 < t2 < · · · < tn = t, ti − ti−1 = h, for all i = 1, . . . , n.

The set of points {t0, t1, . . . , tn} is called a uniform partition of the interval [t0, t]. Assume
for instance that the asset is a stock. Denote the log-return of the stock price in the interval
[ti−1, ti] as

R̂i = logS(ti)− logS(ti−1) = log

(
S(ti)

S(ti−1)

)
, i = 1, . . . , n. (5)
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The average of the log-returns is

R̂(t) =
1

n

n∑
i=1

R̂i =
1

n
log

(
S(t)

S(t0)

)
. (6)

The T-historical mean of log-return of the stock is obtained by “annualizing” the average
of log-returns, i.e., by dividing R̂(t) by the length h of the interval in which the log returns
are computed:

αT (t) =
1

nh
log

(
S(t)

S(t0)

)
=

1

T
log

(
S(t)

S(t0)

)
(T -historical mean of log-return). (7)

The (corrected) sample variance of the log-returns is

∆(t) =
1

n− 1

n∑
i=1

(R̂i − R̂(t))2.

The T-historical variance of the stock is obtained by “annualizing” ∆(t), i.e.,

σ2
T (t) =

1

h

1

n− 1

n∑
i=1

(R̂i − R̂(t))2 (T -historical variance). (8)

The square root of the T−historical variance is the T-historical volatility of the stock:

σT (t) =
1√
h

√√√√ 1

n− 1

n∑
i=1

(R̂i − R̂(t))2 (T -historical volatility). (9)

Note carefully that the historical volatility of the stock depends on the partition being used
to compute it.

Suppose for example that t− t0 = T = 20 days, which is quite common in the applications,
and let t1, . . . , t20 be the market closing times at these days. Let h = 1 day = 1/365 years.
Then

σ20(t) =
√

365

√√√√ 1

19

n∑
i=1

(R̂i − R̂(t))2

is called the 20days-historical volatility. Two examples of the curve t→ σ20(t) are snown in
Figure 1.

Remark 1. The factor h = 1/252 is also commonly used in the calculation of market
parameters, since there are 252 trading days in one year (markets are closed in the week-
end).

Exercise 1 (Matlab). Write the code for a Matlab function that computes the 20days-
historical mean of log-return and volatility of a stock.
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Figure 1: 20-days volatility of the Apple stock and the S&P500 index from January 1st, 2019
until December 31st, 2019.

Assets correlation

Consider again a uniform partition {t0, . . . , tn = t} of the past interval [t0, t] with length

T = t− t0. Let S(1)(t), S(2)(t) be the prices of two stocks. Let R̂
(1)
i , R̂

(2)
i be the log-returns

of each stock in the interval [ti−1, ti] and R(1), R(2) be the averages of log-returns. The
T-historical correlation of log-returns is computed with the formula

ρT (t) =

∑n
i=1(R̂

(1)
i − R̂(1))(R̂

(2)
i − R̂(2))√∑n

i=1(R̂
(1)
i − R̂(1))2

∑n
i=1(R̂

(2)
i − R̂(2))2

. (10)

Denoting by a1, a2 the n-dimensional vectors aj = (R̂
(j)
1 − R̂(j), R̂

(j)
2 − R̂(j), . . . , R̂

(j)
n − R̂(j)),

j = 1, 2, we can rewrite ρT (t) as

ρT (t) =
a1 · a2
|a1||a2|

= cos θ,

where · denotes the inner product of vectors, |aj| is the norm of the vector aj and θ ∈ [0, π]
is the angle between a1 and a2. Hence ρT (t) ∈ [−1, 1] and the closer is ρT (t) to 1 (resp. −1)
the more the stock prices have tendency to move in the same (resp. opposite) direction.

Exercise 2 (?). Do you see any correlation between the volatility values in Figure 1? If so,
how would you interpret this behavior?

Exercise 3 (Matlab). Write the code for a Matlab function that computes the 20days-
historical correlation of two stocks.

Financial derivatives. Options

A financial derivative (or derivative security) is an asset whose value depends on the
performance of one (or more) other asset(s), which is called the underlying asset. There
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exist several types of financial derivatives, the most common being options, futures, forwards
and swaps. Derivatives are available on many different types of assets, including currencies,
market indexes, bonds, commodities, etc. In this section we discuss option derivatives on a
single asset, which could be for instance a stock.

A call option is a contract between two parties: the buyer, or owner, of the call and the
seller, or writer, of the call. The contract gives the owner the right, but not the obligation,
to buy the underlying asset for a given price, which is fixed at the time when the contract is
stipulated, and which is called strike price of the call. If the buyer can exercise this right
only at some given time T in the future then the call option is called European, while if
the option can be exercised at any time earlier than or equal to T , then the option is called
American. The time T is called maturity time, or expiration date of the call. The
writer of the call is obliged to sell the asset to the buyer if the latter decides to exercise the
option. If the option to buy in the definition of a call is replaced by the option to sell, then
the option is called a put option.

In exchange for the option, the buyer must pay a premium to the seller (options are not
free). Suppose that the option is a European option with strike price K and maturity T .
Assume that the underlying asset is a stock with price S(t) at time t ≤ T and let Π0 be the
premium paid by the buyer to the seller. In which case is it then convenient for the buyer
to exercise the option at maturity? Let us define the pay-off of the European call as

Ycall = (S(T )−K)+ := max(0, S(T )−K) =

{
0 if S(T ) ≤ K
S(T )−K if S(T ) > K

.

Similarly, the pay-off of the European put is defined by

Yput = (K − S(T ))+ =

{
0 if S(T ) ≥ K
K − S(T ) if S(T ) < K

.

Clearly, the buyer should exercise the call option at maturity if and only if Ycall > 0, as in
this case it is cheaper to buy the stock at the strike price rather than at the market price.
Similarly the owner of the put should exercise if and only if Yput > 0, as in this case the
income generated by selling the stock at the strike price is higher then the income generated
by selling it at the market price. Hence the call or put option must be exercised at maturity if
and only if the pay-off is positive, in which case the option is said to expire in the money.
The return for the owner of the option is given by N(Ycall−Π0) in the case of the call and by
N(Yput−Π0) in the case of the put, where N is the number of option contracts in the buyer
portfolio. Note carefully that the buyer makes a profit only if the pay-off is greater than the
premium. One of the main problems in options pricing theory is to define a reasonable fair
value for the price Π0 of options (and other derivatives).

Let us introduce some further terminology. The European call (resp. put) with strike K is
said to be in the money at time t if S(t) > K (resp. S(t) < K). The call (resp. put) is
said to be out of the money at time t if S(t) < K (resp. S(t) > K). If S(t) = K, the (call
or put) option is said to be at the money at time t. The meaning of this terminology is
self-explanatory, see Figure 2.
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Figure 2: The call option with strike K = 200 is in the money in the upper region and out
of the money in the lower region. The put option with the same strike is in the money in
the lower region and out of the money in the upper region.

The pay-off of the American call exercised at time t is Y (t) = (S(t) − K)+, while for the
American put it is given by Y (t) = (K − S(t))+. The quantity Y (t) is also called intrinsic
value of the American option. In particular, the intrinsic value of an out-of-the-money
American option is zero.

Option markets

Option markets are relatively new compared to stock markets. The first one has been
established in Chicago in 1974 (the Chicago Board Options Exchange, CBOE). Market
options are available on different assets (stocks, debts, indexes, etc.) and with different
strikes and maturities. Most commonly, market options are of American style.

Clearly, the deeper in the money is the option, the higher will be its price in the market,
while the price of an option deeply out of the money is usually quite low (but never zero!).
It is also clear that the buyer of the option is the party holding the long position on the
option, since the buyer owns the option and thus hopes for an increase of its value, while
the writer is the holder of the short position.

One reason why investors buy call options is to protect a short position on the underlying
asset. Suppose for instance that an investor short-sells 100 shares of a stock at time t = 0
for the price S(0). A cautious investor will also buy 100 shares of the American call option
on the stock with strike K ≈ S(0) and maturity T > 0. If at some time t0 ∈ (0, T ) the
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price of the stock is no lower than S(0) the investor has the option to exercise the call and
thus obtain 100 shares of the stock for the price K ≈ S(0). In this way the investor will
be able to close the short position on the stock with minimal losses. At the same fashion,
investors buy put options to protect a long position on the underlying asset. A trading
position (particularly a short position) that is not covered by a suitable security is said to
be naked.

Of course, speculation is also an important factor in option markets. However the stan-
dard theory of options pricing is firmly based on the interpretation of options as derivative
securities and does not take speculation into account.

European, American and Asian derivatives

By far the majority of financial derivatives, including options other than simple calls and
puts, are traded OTC. Before discussing a few examples, it is convenient to introduce a
precise mathematical definition of European and American derivatives.

Given a function g : (0,∞) → R, the standard European derivative with pay-off Y =
g(S(T )) and maturity time T > 0 is the contract that pays to its owner the amount Y
at time T > 0. Here S(T ) is the price of the underlying stock at time T , while g is the
pay-off function of the derivative (e.g., g(x) = (x−K)+ for European call options, while
g(x) = (K − x)+ for European put options). Hence, the pay-off of standard European
derivatives depends only on the price of the stock at maturity and not on the earlier history
of the stock price. An important example of standard European derivative (other than call
and put options) is the digital option. Denote by H(x) the Heaviside function,

H(x) =

{
1, for x > 0
0, for x ≤ 0

, (11)

and let K,L > 0 be constants expressed in units of some currency (e.g., dollars). The
standard European derivative with pay-off function g(x) = LH(x − K) is called cash-
settled digital call option with strike price K and notional value L; this derivative
pays the amount L if S(T ) > K, and nothing otherwise. The physically-settled digital
call option has the pay-off function g(x) = xH(x−K), which means that at maturity the
buyer receives either the stock (when S(T ) > K), or nothing. Digital options are also called
binary options. Figure ?? shows the graph of the pay-off function for call, put and digital
call options with strike K = 10. Drawing the graph of the pay-off function of a derivative
helps to get a first insight onto its properties.

Exercise 4. Given K,∆ > 0, consider the standard European derivative with maturity T
and pay-off function g(x) = (x−K + ∆)+ − 2(x−K)+ + (x−K −∆)+. Draw the graph of
g and derive the range of S(T ) for which the derivative expires in the money.

If the pay-off depends on the history of the stock price during the interval [0, T ], and not
just on S(T ), the contract will be called non-standard European derivative. An example of
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non-standard European derivative is the so-called Asian call option, the pay-off of which
is given by Y = ( 1

T

∫ T
0
S(t) dt−K)+.

The value at time t of the European derivative with pay-off Y and maturity T will be denoted
by ΠY (t) (the expiration date is not included in the notation).

The term “European” signifies that the contract cannot be exercised before maturity T . For
a standard American derivative the buyer can exercise the contract at any time t ∈ (0, T ]
and so doing the buyer will receive the amount Y (t) = g(S(t)), where g is the pay-off function
of the American derivative. Non-standard American derivatives can be defined similarly to
the European ones, but with the further option of earlier exercise. The price at time t of the
American derivative with intrinsic value Y (t) and maturity T will be denoted Π̂Y (t).

Remark 2. The terminology “standard” and “non-standard” derivative is used in this text
for easy reference. It is not employed in the financial world.

Forward contracts

A forward contract with delivery price K and maturity (or delivery) time T on an asset
U is a European type financial derivative stipulated by two parties in which one agrees to
sell (and possibly deliver) to the other the asset U at time T in exchange for the cash K.
As opposed to options, forward contracts give the same right/obligation to the two parties,
as they are both obliged to fulfil their part of the agreement at maturity T (buy or sell
the asset for the price K). In particular, as there is no privileged position in a forward
contract, neither of the two parties has to pay a premium when the contract is stipulated,
that is to say, forward contracts are free; in fact, the terminology used for forward contracts
is “to enter a forward contract” and not “to buy/sell a forward contract”. The party who
must sell the asset at maturity is said to hold the short position on the forward, while the
party who must buy the asset is said to hold the long position, although strictly speaking
this terminology refers to the type of position on the underlying asset rather than on the
forward contract (which has zero value at all times). Hence the pay-off for a long position
in a forward contract on the asset U is

Ylong = (ΠU(T )−K),

while for the holder of the short position the pay-off is

Yshort = (K − ΠU(T )).

Forward contracts are traded OTC and most commonly on commodities or market indexes,
such as currency exchange rates, interest rates and volatilities. In the case that the underlying
asset is an index, forward contracts are also called swaps (e.g., currency swaps, interest rate
swaps, volatility swaps, etc.).

One purpose of forward contracts is to share risks. Irrespective of the movement of the
underlying asset in the market, its price at time T for the holders of the forward contract
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will be K. The delivery price agreed by the two parties in a forward contract is also called
the forward price of the asset. More precisely, the T -forward price ForU(t, T ) of an asset
U at time t < T is the delivery price of a forward contract on U stipulated at time t and
with maturity T , while the current, actual price ΠU(t) of the asset is called the spot price.

Futures contracts

Futures are standardized forward contracts listed in official exchange markets, called fu-
tures market, which include for instance the Chicago Mercantile Exchange (CME), the
New York Mercantile Exchange (NYMEX), the Chicago Board of Trade (CBOT) and the
International Exchange Group (ICE). Unlike forward contracts, all futures contracts in a
futures market are subject to the same regulation.

The T-future price FutU(t, T ) of the asset U at time t ≤ T is defined as the delivery price
at time t ≤ T in the futures contract with maturity T on the asset U . Holding a position in
a futures contract in the futures market consists in the agreement to receive as a cash flow
the change in the future price of the underlying asset during the time in which the position is
held. The cash flow may be positive or negative. In a long position the cash flow is positive
when the future price goes up and it is negative when the future price goes down. The cash
flow is distributed in time through the so called margin account. For example, assume
that at t = 0 an investor opens a long position in a futures contract expiring at time T . At
the same time, the investor needs to open a margin account which contains a certain amount
of cash (usually, 10 % of the current value of the T -future price for each contract opened).
At t = 1 day, the amount FutU(1, T )− Fut(0, T ) will be added to the account, if it positive,
or withdrawn, if it is negative. The position can be closed at any time t < T (multiple of
days), in which case the total amount of cash flown in the margin account is

(FutU(t, T )− FutU(t− 1, T )) + (FutU(t− 1, T )− FutU(t− 2, T ))+

· · ·+ (FutU(1, T )− FutU(0, T )) = (FutU(t, T )− FutU(0, T )).

If the long position is held up to the time of maturity, then the investor should buy the
underlying asset. However futures contracts are often cash settled and not physically
settled, which means that the delivery of the underlying asset does not occur, and the
equivalent value in cash is paid instead.

An option on futures with maturity T > 0 and strike K is a contract that gives to the
owner the right to enter at time T in a futures contract (expiring at time S > T ) at the
future price K. In the case of a call (resp. put) option, the owner has the right to take a long
(resp. short) position on the futures contract and thus the pay-off will be (FutU(T, S)−K)+
(resp. (K − FutU(T, S))+). If the option on futures expires in the money, the owner can
decide to keep open the position on the futures contract or to close it immediately, thereby
cashing the pay-off of the option. Options on futures are example of second derivatives,
i.e., financial derivatives whose underlying asset is another derivative.
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Bonds

The zero-coupon bond (ZCB) with face (or nominal) value K and maturity T > 0
is the contract that promises to pay to its owner the amount K at time T in the future.
Without loss of generality it will be assumed from now on that K = 1, as owning one
share of the ZCB with face value K is clearly equivalent to own K shares of the ZCB with
face value 1. ZCB’s (and the related coupon bonds described below) are first issued in the
so-called primary market by national governments and private companies as a way to
borrow money and fund their activities; starting from the following market day, the ZCB’s
become tradable assets in the secondary market and thus their price changes in time. Let
B(t, T ) denote the value at time t of the ZCB with face value 1 and expiring at time T .
If the issuer of the ZCB announces at time t0 < T that it is unable to comply with the
payment of the face value at maturity, then the ZCB becomes worthless, i.e., B(t, T ) ≡ 0
for t ∈ [t0, T ] and the issuer of the ZCB is said to be in default. Suppose that the issuer
of the ZCB bears no risk of default in the interval [t, T ]. The investors who own shares of
the ZCB at maturity T will then receive at time T the promised face value, multiplied by
the number of shares owned, from the original issuer of the ZCB. The return per share of
this investment is R(t) = 1− B(t, T ), where t is the time at which the investor bought the
ZCB. Under normal market conditions, B(t, T ) < 1, for t < T , i.e., the investor pays less
than 1 today to receive 1 in the future, and thus R(t) > 0. However exceptions are possible;
for instance national bonds in Sweden with maturity shorter than 10 years yield currently
(2020) a negative return.

Bonds with long maturity typically pay coupons in addition to the face value. Let 0 < t1 <
t2 < · · · < tM = T be a partition of the interval [0, T ]. A coupon bond with maturity T ,
face value 1 and coupons c1, c2, . . . , cM ∈ (0, 1) is a contract that promises to pay the amount
ck at time tk and the amount 1 + cM at maturity T = tM . Most commonly the coupons are
all equal, i.e., c1 = c2 = · · · = cM , and paid annually (or semi-annually). The maturity of
coupon bonds can reach up to 30 or more years.

Money market

The money market is a component of the debt market consisting of short term loans,
i.e., loan contracts with maturity between one day and one year. Examples of money market
assets are treasury bills, i.e., ZCB’s with short maturity (less than 1 year), commercial
papers, certificates of deposit, saving accounts and repurchase agreements (repo). In con-
trast to stock and option markets, money markets are typically accessible only by financial
institutions and not by private investors.

The value at time t of a generic asset in the money market will be denoted by B(t). The
difference B(t2) − B(t1), t1 < t2, determines the interest rate of the asset in the interval
[t1, t2]. In particular, let {t0 = 0, t1, . . . , tN = t} be a uniform partition of the interval [0, t]
with size h = ti − ti−1. The money market asset is said to have simply compounded
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interest rate Rh(s) in the time period [s, s+ h], where s ∈ {t0, . . . , tN−1}, if the value of the
asset satisfies

B(s+ h) = B(s)(1 +Rh(s)h), s ∈ {t0, . . . , tN−1}. (12)

Inverting (12) we have

Rh(s) =
B(s+ h)−B(s)

hB(s)
, (13)

i.e., Rh(s) is the annualized rate of return of the asset in the interval [s, s+h]. Note carefully
that Rh(s) is known at time s (as opposed for instance to the return of stocks in the interval
[s, s + h], which is not known at time s). Iterating (12) the value at time t = tN of the
risk-free asset can be expressed in terms of the value at time t = 0 by the formula

B(t) = B(tN−1)(1 +Rh(tN−1)h) = B(tN−2)(1 +Rh(tN−2)h)(1 +Rh(tN−1)h)

= · · · = B(0)
N−1∏
i=0

(1 +Rh(ti)h). (14)

Example. Suppose that at time t0 = 0 an investor is borrowing the quantity B(0) =
1000000 Kr for one year with 3-months compounded interest rate, i.e., h = 1/4. Suppose
R1/4(t0) = 0.03 in the first quarter, R1/4(t1) = 0.02 in the second quarter, R1/4(t2) = 0.01 in
the third quarter and R1/4(t3) = 0.04 in the last quarter. Here t0 = 0, t1 = 1/4, t2 = 1/2,
t3 = 3/4. The debt of the investor at time t4 = 1 year is

B(t4) = B(t0)(1 +
1

4
R1/4(t0))(1 +

1

4
R1/4(t1))(1 +

1

4
R1/4(t2))(1 +

1

4
R1/4(t3)) ≈ 1025220 Kr.

If the investor borrows instead at the yearly compounded rate R1(t0) = 0.03 (i.e., h = 1), the
debt after 1 year is B(t4) = B(t0)(1 +R1(t0)) = 1030000 Kr. Notice that at time t = t0 the
investor knows R1/4(t0) and R1(t0) but does not know the values of R1/4(t1), R1/4(t2), R1/4(t3)
and thus cannot anticipate whether it is more convenient to borrow at variable or constant
interest rate. Investors may use financial instruments such as interest rate swaps or
interest rate caps/floors to hedge against the risk derived from the fluctuations of interest
rates in the market.

Letting h → 0 in (13) we obtain the continuously compounded interest rate (or short
rate) r(t) of the money market asset, namely

Rh(s)→ r(s) =
B′(s)

B(s)
=

d

ds
logB(s), as h→ 0. (15)

Thus r(t) is the interest rate to borrow at time t for an “infinitesimal” interval of time, which
in the real world corresponds to overnight loans. Integrating (15) on [t, t+ h] we find

B(t+ h) = B(t)e
∫ t+h
t r(s) ds, (16)

which is the continuum analog of (12). Integrating (15) in the time interval [0, t] we obtain
the continuum analog of (14), namely

B(t) = B(0) exp

(∫ t

0

r(s) ds

)
. (17)
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Frictionless markets

Market models in financial mathematics are based on a number of simplifying assumptions
which deviate, sometime substantially, from the behavior of real markets. Among these
simplifying assumptions we impose that

1. There is no bid/ask spread

2. There are no transaction costs and trades occur instantaneously

3. An investor can trade any fraction of shares

4. When a stock pays a dividend, the ex-dividend date and the payment date are the
same and the stock price at this date drops by the exact same amount paid by the
dividend

As seen in the previous sections real markets do not satisfy exactly these assumptions,
although in some case they do it with reasonable approximation. For instance, if the investor
is a professional agent managing large portfolios then the above assumptions reflect reality
quite well. However they work very badly for private investors and for small portfolios. The
validity of these assumptions is summarized by saying that the market has no friction.
The idea is that, when the above assumptions hold, trading proceeds “smoothly without
resistance”.

In a frictionless market the portfolio process of an agent who is investing on N assets during
the time interval [0, T ] may be defined as a function

A : [0, T ]→ RN , A(t) = (a1(t), . . . , aN(t)),

i.e., by assumptions 2 and 3, the number of shares ai(t) of each single asset at time t is
now allowed to be any real number and to change at any arbitrary time in the interval
[0, T ]; of course, in real market applications a1(t), . . . , aN(t) must be rounded to integer
numbers. Portfolio processes can be added using the linear structure in RN , namely if
B = (b1(t), . . . , bN(t)), and α, β ∈ R, then αA+ βB is the portfolio process

αA+ βB = (αa1(t) + βb1(t), . . . , αaN(t) + βbN(t)).

The value at time t of the portfolio process A is

VA(t) =
N∑
i=1

ai(t)Π
Ui(t),

and clearly
VαA(t) + VβB(t) = VαA+βB(t).

Moreover, thanks to assumption 3, perfect self-financing portfolio processes in frictionless
markets always exist.
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By assumption 1, any offer to buy/sell an asset is matched by an offer to sell/buy the asset.
Of course this assumption is only reasonable when the price of the asset is fair. What exactly
means that asset prices are fair is explained at the end of this text.

Rational investor principle

The purpose of this and the following two sectios is to introduce a number of basic fundamen-
tal principles in financial mathematics. The following notation will be used. S(t) denotes
the price at time t > 0 of a given stock, C(t, S(t), K, T ) denotes the price at time t ∈ [0, T ]
of the European call option on the stock with strike K > 0 and maturity T > 0. The price
of the European put option with the same parameters will be denoted by P (t, S(t), K, T );

finally Ĉ(t, S(t), K, T ) and P̂ (t, S(t), K, T ) denote the values of the corresponding American
call and put option.

Probably the most self-evident of all financial principles is the rational investor principle:

Investors prefer more to less and do not undertake
trading strategies which result in a sure loss.

This principle has a number of straightforward consequences. For example, an investor will
never exercise an option which is out of the money, while an option that expires in the money
is always exercised. Moreover the price of stocks and options is always non-negative1. The
following is a short list of simple properties of financial derivatives implied by the rational
investor principle, and whose justification is left to the reader:

(i) The price of a financial derivative tends to its pay-off as maturity is approached. In
particular, for European call/put options,

C(t, S(t), K, T )→ (S(T )−K)+, P (t, S(t), K, T )→ (K − S(T ))+,

as t→ T− and similarly for American options, while for the ZCB with maturity T and
face value 1 there holds

lim
t→T−

B(t, T ) = 1.

(ii) An American derivative is at least as valuable as its European counterpart. In partic-
ular, for call/put options,

Ĉ(t, S(t), K, T ) ≥ C(t, S(t), K, T ), P̂ (t, S(t), K, T ) ≥ P (t, S(t), K, T ).

(iii) The price of an American derivative is always larger or equal to its intrinsic value. In
particular, for American call/put options,

Ĉ(t, S(t), K, T ) ≥ (S(t)−K)+, P̂ (t, S(t), K, T ) ≥ (K − S(t))+.
1The limiting case S(t) = 0 (zero stock price) models the default of the stock.
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(iv) The price of European and American call options at time t is no larger than the price
of the underlying asset at time t, i.e.,

C(t, S(t), K, T ) ≤ S(t) and Ĉ(t, S(t), K, T ) ≤ S(t).

Any reasonable mathematical model for the price of options must be consistent with the
properties (i)-(iv) in the previous exercise.

By (i) and integrating (15) in the time interval [t, T ], the value at time t of the ZCB can be
written as

B(t, T ) = e−
∫ T
t r(s) ds. (18)

Existence of risk-free assets

An asset U is said to be risk-free in the interval [t, T ] if the value of U at time T is known
at time t. For instance, a ZCB with face value 1 and maturity T > 0 issued at time t = 0
satisfies B(T, T ) = 1 and thus it is risk-free in any interval [t, T ], 0 ≤ t < T . Similarly,
the rate of return of money market assets in a sufficiently short period of time [t, t + h] is
known at time t and so these assets are risk-free in the interval [t, t+ h]. Note however that
ZCB’s and money market assets can be considered risk-free only if the borrower party bears
no risk of default. In the real world it is impossible to exclude with certainty the default
of a financial institution, but this event can be sometimes considered very unlikely within
a reasonable short time in the future. For instance, while there is no general consensus on
this, many investors believe that the US treasure bills are actual risk-free assets. In this text
we make the following assumption.

There exist risk-free assets in the money market.

In a frictionless market the interest rate of all risk-free assets in the money market must
necessarily be the same, otherwise one would generate a profit by borrowing at the lower rate
and lending at the higher rate (this is an example of arbitrage opportunity, see Definition 1
below). The (hypothetical) common short rate of all risk-free assets in the money market
will be referred to as the risk-free rate. Which market parameter represents a realistic
estimate for the value of the risk-free rate is an important and constantly debated issue in
finance. A popular choice is the yield of domestic treasure bills. Another frequent choice is to
identify the risk-free rate with an interbank offered rate, such as LIBOR, or EURIBOR,
etc., i.e., the average interest rate at which banks in a given geographical zone lend money
to one another. An alternative approach is to interpret the risk-free rate as an implied
parameter, i.e., a parameter whose value is determined by calibrating a mathematical
model for the market dynamics.
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Arbitrage-free principle

The next principle is based on the fundamental concept of arbitrage portfolio process, which
is defined as follows.

Definition 1. Let t be the present time and T > t. A portfolio process A is called an
arbitrage in the interval [t, T ] if

(a) VA(t) = 0;

(b) It is known at time t that the return of A is positive in the interval [t, T ].

Hence an arbitrage portfolio is an investment strategy that requires no initial wealth and
which ensures a positive profit without taking any risk. For example, suppose that at time
t = 0 an investor sells one share the American call option with strike K and maturity T1
and buys one share of the American call on the same stock with the same strike but with
maturity T2 > T1. Suppose that the price of the latter option is lower than the price of
the former, i.e., Ĉ2 := Ĉ(0, S(0), K, T2) < Ĉ(0, S(0), K, T1) := Ĉ1. The investor will then

have the cash Ĉ1− Ĉ2 available to buy shares of a risk-free asset in the money market. This
(constant) portfolio is clearly an arbitrage in any interval [0, T ] ⊆ [0, T1]. In fact it has zero
initial value and if the owner of the option with maturity T1 decides to exercise at some
time T ≤ T1, the investor can pay-off the buyer by exercising the option in the portfolio; the
remaining value in the portfolio at time T would equal the (positive) value of the risk-free
asset.

Despite appearing “too good to be true”, arbitrage opportunities do actually exist in real
markets, but last only for a very short time, as they are quickly exploited and “traded away”
by investors2. In this text arbitrage opportunities are neglected altogether by imposing the
arbitrage-free principle:

Asset prices are such that no arbitrage can
be found in the market.

Asset prices in an arbitrage-free market are also said to be fair (or arbitrage-free).
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