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Preface

Financial derivatives, such as stock options for instance, are indispensable instruments in
modern financial markets. The introduction of (call) options markets in the early 70’s,
and the continuous appearance of new types of derivative contracts, gave impulse to the
birth of what is now known as options pricing theory. This theory is the main subject of
these notes, together with the required background on probability theory, stochastic calculus
and partial differential equations which are essential mathematical tools in modern options
pricing theory. The main part of this text dealing with applications to finance is Chapter
6, but several important financial concepts are scattered in the previous chapters as well.
It is strongly recommended to complement the reading of these notes with the book by
Shreve [26], which is by now a standard reference on the subject.

The solutions of some selected exercises can be found in Appendix B. Exercises marked with
the symbol (?) are left to the students as assignments (see the course homepage for the
submission deadline).
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4.2 The Itô integral of step processes . . . . . . . . . . . . . . . . . . . . . . . . 68
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Chapter 1

Probability spaces

1.1 σ-algebras and information

We begin with some notation and terminology. The symbol Ω denotes a generic non-empty
set; the power of Ω, denoted by 2Ω, is the set of all subsets of Ω. If the number of elements
in the set Ω is M ∈ N, we say that Ω is finite. If Ω contains an infinite number of elements
and there exists a bijection Ω↔ N, we say that Ω is countably infinite. If Ω is neither finite
nor countably infinite, we say that it is uncountable. An example of uncountable set is the
set R of real numbers. When Ω is finite we write Ω = {ω1, ω2, . . . , ωM}, or Ω = {ωk}k=1,...,M .
If Ω is countably infinite we write Ω = {ωk}k∈N. For a finite set Ω with M elements, the
power set contains 2M elements. For instance, if Ω = {♥, 1, $}, then

2Ω = {∅, {♥}, {1}, {$}, {♥, 1}, {♥, $}, {1, $}, {♥, 1, $} = Ω},

which contains 23 = 8 elements. Here ∅ denotes the empty set, which by definition is a
subset of all sets.

Within the applications in probability theory, the elements ω ∈ Ω are called sample points
and represent the possible outcomes of a given experiment (or trial), while the subsets of Ω
correspond to events which may occur in the experiment. For instance, if the experiment
consists in throwing a dice, then Ω = {1, 2, 3, 4, 5, 6} and A = {2, 4, 6} identifies the event
that the result of the experiment is an even number. Now let Ω = ΩN ,

ΩN = {(γ1, . . . , γN), γk ∈ {H,T}} = {H,T}N ,

where H stands for “head” and T stands for “tail”. Each element ω = (γ1, . . . , γN) ∈ ΩN

is called a N-toss and represents a possible outcome for the experiment “tossing a coin N
consecutive times”. Evidently, ΩN contains 2N elements and so 2ΩN contains 22N elements.
We show in Section 1.4 that Ω∞—the sample space for the experiment “tossing a coin
infinitely many times”—is uncountable.
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A collection of events, e.g., {A1, A2, . . . } ⊂ 2Ω, is also called information. The power set
of the sample space provides the total accessible information and represents the collection of
all the events that can be resolved (i.e., whose occurrence can be inferred) by knowing the
outcome of the experiment. For an uncountable sample space, the total accessible informa-
tion is huge and it is typically replaced by a subclass of events F ⊂ 2Ω, which is imposed to
form a σ-algebra.

Definition 1.1. A collection F ⊆ 2Ω of subsets of Ω is called a σ-algebra (or σ-field) on
Ω if

(i) ∅ ∈ F ;

(ii) A ∈ F ⇒ Ac := {ω ∈ Ω : ω /∈ A} ∈ F ;

(iii)
⋃∞
k=1 Ak ∈ F , for all {Ak}k∈N ⊆ F .

If G is another σ-algebra on Ω and G ⊂ F , we say that G is a sub-σ-algebra of F .

Exercise 1.1. Let F be a σ-algebra. Show that Ω ∈ F and that ∩k∈NAk ∈ F , for all
countable families {Ak}k∈N ⊂ F of events.

Exercise 1.2. Let Ω = {1, 2, 3, 4, 5, 6} be the sample space of a dice roll. Which of the
following sets of events are σ-algebras on Ω?

1. {∅, {1}, {2, 3, 4, 5, 6},Ω},

2. {∅, {1}, {2}, {1, 2}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {3, 4, 5, 6},Ω},

3. {∅, {1, 3, 4}, {5, 6}, {1, 3, 4, 5, 6},Ω}.

Exercise 1.3 (Sol. 1). Prove that the intersection of any number of σ-algebras (including
uncountably many) is a σ-algebra. Show with a counterexample that the union of two σ-
algebras is not necessarily a σ-algebra.

Remark 1.1 (Notation). The letter A is used to denote a generic event in the σ-algebra.
If we need to consider two such events, we denote them by A,B, while N generic events are
denoted A1, . . . , AN .

Let us comment on Definition 1.1. The empty set represents the “nothing happens” event,
while Ac represents the “A does not occur” event. Given a finite number A1, . . . , AN of
events, their union is the event that at least one of the events A1, . . . , AN occurs, while their
intersection is the event that all events A1, . . . , AN occur. The reason to include the countable
union/intersection of events in our analysis is to make it possible to “take limits” without
crossing the boundaries of the theory. Of course, unions and intersections of infinitely many
sets only matter when Ω is not finite.
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The smallest σ-algebra on Ω is F = {∅,Ω}, which is called the trivial σ-algebra. There
is no relevant information contained in the trivial σ-algebra. The largest possible σ-algebra
is F = 2Ω, which contains the full amount of accessible information. When Ω is countable,
it is common to pick 2Ω as σ-algebra of events. However, as already mentioned, when Ω
is uncountable this choice is unwise. A useful procedure to construct a σ-algebra of events
when Ω is uncountable is the following. First we select a collection of events (i.e., subsets of
Ω), which for some reason we regard as fundamental. Let O denote this collection of events.
Then we introduce the smallest σ-algebra containing O, which is formally defined as follows.

Definition 1.2. Let O ⊂ 2Ω. The σ-algebra generated by O is

FO =
⋂{
F : F ⊂ 2Ω is a σ-algebra and O ⊆ F

}
,

i.e., FO is the smallest σ-algebra on Ω containing O.

Recall that the intersection of any number of σ-algebras is still a σ-algebra, see Exercise 1.3,
hence FO is a well-defined σ-algebra. For example, let Ω = Rd and let O be the collection
of all open balls:

O = {Bx(R)}R>0,x∈Rd , where Bx(R) = {y ∈ Rd : |x− y| < R}.
The σ-algebra generated by O is called Borel σ-algebra and denoted B(Rd). The elements
of B(Rd) are called Borel sets.

Remark 1.2 (Notation). The Borel σ-algebra B(R) plays an important role in these notes,
so we shall use a specific notation for its elements. A generic event in the σ-algebra B(R)
will be denoted U ; if we need to consider two such events we denote them by U, V , while N
generic Borel sets of R will be denoted U1, . . . UN . Recall that for general σ-algebras we use
the notation indicated in Remark 1.1.

The σ-algebra generated by O has a particular simple form when O is a partition of Ω.

Definition 1.3. Let I ⊆ N. A collection O = {Ak}k∈I of non-empty subsets of Ω is called
a partition of Ω if

(i) the events {Ak}k∈I are disjoint, i.e., Aj ∩ Ak = ∅, for j 6= k;

(ii)
⋃
k∈I Ak = Ω.

If I is a finite set we call O a finite partition of Ω.

For example any countable sample space Ω = {ωk}k∈N is partitioned by the atomic events
Ak = {ωk}, where {ωk} identifies the event that the result of the experiment is exactly ωk.

Exercise 1.4. Show that when O is a partition of Ω, the σ-algebra generated by O is given
by the set of all subsets of Ω which can be written as the union of sets in the partition O
(plus the empty set, of course).

Exercise 1.5. Find the partition of Ω = {1, 2, 3, 4, 5, 6} that generates the σ-algebra 2 in
Exercise 1.2.
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1.2 Probability measure

To any event A ∈ F we want to assign a probability that A occurred.

Definition 1.4. Let F be a σ-algebra on Ω. A probability measure is a function

P : F → [0, 1]

such that

(i) P(Ω) = 1;

(ii) for any countable collection of disjoint events {Ak}k∈N ⊆ F , we have

P

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

P(Ak).

A triple (Ω,F ,P) is called a probability space.

The quantity P(A) is called probability of the event A; if P(A) = 1 we say that the event
A occurs almost surely, which is sometimes shortened by a.s.; if P(A) = 0 we say that
A is a null set. In general, the elements of F with probability zero or one will be called
trivial events (as trivial is the information that they provide). For instance, P(Ω) = 1, i.e.,
the probability that “something happens” is one, and P(∅) = P(Ωc) = 1−P(Ω) = 0, i.e., the
probability the “nothing happens” is zero.

Exercise 1.6 (Sol. 2). Prove the following properties:

1. P(Ac) = 1− P(A);

2. P(A ∪B) = P(A) + P(B)− P(A ∩B);

3. If A ⊂ B, then P(A) < P(B).

Exercise 1.7 (Continuity of probability measures (?)). Let {Ak}k∈N ⊆ F such that Ak ⊆
Ak+1, for all k ∈ N. Let A = ∪kAk. Show that

lim
k→∞

P(Ak) = P(A).

Similarly, if now {Ak}k∈N ⊆ F such that Ak+1 ⊆ Ak, for all k ∈ N and A = ∩kAk, show
that

lim
k→∞

P(Ak) = P(A).

Let us see some examples of probability space.
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� There is only one probability measure defined on the trivial σ-algebra, namely P(∅) = 0
and P(Ω) = 1.

� In this example we describe the general procedure to construct a probability space on
a countable sample space Ω = {ωk}k∈N. We pick F = 2Ω and let 0 < pk < 1, k ∈ N,
be real numbers such that

∞∑
k=1

pk = 1.

We introduce a probability measure on F by first defining the probability of the atomic
events {ω1}, {ω2}, . . . as

P({ωk}) = pk, k ∈ N.
Since every (non-empty) subset of Ω can be written as the disjoint union of atomic
events, then the probability of any event can be inferred using the property (ii) in the
definition of probability measure, e.g.,

P({ω1, ω3, ω5}) = P({ω1} ∪ {ω3} ∪ {ω5})
= P({ω1}) + P({ω3}) + P({ω5}) = p1 + p3 + p5.

In general we have

P(A) =
∑

k:ωk∈A

pk, A ∈ 2Ω,

while P(∅) = 0. In countable sample spaces the empty set is the only event with zero
probability.

� As a special case of the previous example we now introduce a probability measure on
the sample space ΩN of the N -coin tosses experiment. Given 0 < p < 1 and ω ∈ ΩN ,
we define the probability of the atomic event {ω} as

P({ω}) = pNH(ω)(1− p)NT (ω), (1.1)

where NH(ω) is the number of H in ω and NT (ω) is the number of T in ω (NH(ω) +
NT (ω) = N). We say that the coin is fair if p = 1/2. The probability of a generic
event A ∈ F = 2ΩN is obtained by adding up the probabilities of the atomic events
whose disjoint union forms the event A. For instance, assume N = 3 and consider the
event

“The first and the second toss are equal”.

Denote by A ∈ F the set corresponding to this event. Since A is the (disjoint) union
of the atomic events

{(H,H,H)}, {(H,H, T )}, {(T, T, T )}, {(T, T,H)},
then

P(A) = P({(H,H,H)}) + P({(H,H, T )}) + P({(T, T, T )}) + P({(T, T,H)})
= p3 + p2(1− p) + (1− p)3 + (1− p)2p = 2p2 − 2p+ 1.
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In Section 1.4 it is shown how to extend the probability measure (1.1) to Ω∞ using
Caratheódory’s theorem.

� Let f : R→ [0,∞) be a measurable function1 such that∫
R
f(x) dx = 1.

Then

P(U) =

∫
U

f(x) dx, (1.2)

defines a probability measure on B(R).

Remark 1.3 (Riemann vs. Lebesgue integral). The integral in (1.2) must be understood
in the Lebesgue sense, since we are integrating a general measurable function over a general
Borel set. If f is sufficiently regular (say, continuous), and U = (a, b) ⊂ R is an interval, then
the integral in (1.2) can be understood in the Riemann sense. Although the latter case is
often sufficient in many applications (including in finance), all integrals in these notes should
be understood in the Lebesgue sense, unless otherwise stated. The knowledge of Lebesgue
integration theory is however not required for our purposes.

Exercise 1.8 (Sol. 3). Prove that
∑

ω∈ΩN
P({ω}) = 1, where P({ω}) is given by (1.1).

Equivalent probability measures

A probability space is a triple (Ω,F ,P) and if we change one element of this triple we get a
different probability space. The most interesting case is when a new probability measure is
introduced. Let us first show with an example (known as Bertrand’s paradox) that there
might not be just one “reasonable” definition of probability measure associated to a given
experiment. Suppose we perform an experiment whose result is a pair of points p, q on the
unit circle C (e.g., throw two balls in a roulette). The sample space for this experiment is
Ω = {(p, q) : p, q ∈ C}. Let T be the length of the chord joining p and q. Now let L be
the length of the side of a equilateral triangle inscribed in the circle C. Note that all such
triangles are obtained one from another by a rotation around the center of the circle and
all have the same sides length L. Consider the event A = {(p, q) ∈ Ω : T > L}. What
is a reasonable definition for P(A)? From one hand we can suppose that one vertex of the
triangle is p, and thus T will be greater than L if and only if the point q lies on the arch
of the circle between the two vertexes of the triangle different from p, see Figure 1.1(a).
Since the length of such arc is 1/3 the perimeter of the circle, then it is reasonable to define
P(A) = 1/3. On the other hand, it is simple to see that T > L whenever the midpoint m of
the chord lies within a circle of radius 1/2 concentric to C, see Figure 1.1(b). Since the area
of the interior circle is 1/4 the area of C, we are led to define P(A) = 1/4.

1See Section 2.1 for the definition of measurable function.
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Whenever two probabilities are defined for the same experiment, it is of particular interest
to determine whether they are equivalent, in the following sense.

Definition 1.5. Given two probability spaces (Ω,F ,P) and (Ω,F , P̃), the probability mea-

sures P and P̃ are said to be equivalent if P(A) = 0⇔ P̃(A) = 0.

Hence equivalent probability measures agree on which events are impossible. A complete
characterization of the probability measures P̃ equivalent to a given P will be given in The-
orem 3.3.

p

q

L

T

(a) P(A) = 1/3

p

q
L

1/2 m

(b) P(A) = 1/4

Figure 1.1: The Bertrand paradox. The length T of the cord pq is greater then L.

Conditional probability. Independent events

It might be that the occurrence of an event B makes the occurrence of another event A more
or less likely. For instance, the probability of the event A = {the first two tosses of a fair
coin are both head} is 1/4; however if know that the first toss is a tail, then P(A) = 0, while
P(A) = 1/2 if we know that the first toss is a head. This leads to the important definition
of conditional probability.

Definition 1.6. Given two events A,B such that P(B) > 0, the conditional probability
of A given B is defined as

P(A|B) =
P(A ∩B)

P(B)
.

To justify this definition, let FB = {A ∩B}A∈F , and set

PB(·) = P(·|B).
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Then (B,FB,PB) is a probability space in which the events that cannot occur simultaneously
with B are null events. Therefore it is natural to regard (B,FB,PB) as the restriction of the
probability space (Ω,F ,P) when B has occurred.

If P(A|B) = P(A), the two events are said to be independent. The interpretation is the
following: if two events A,B are independent, then the occurrence of the event B does not
change the probability that A occurred. By Definition 1.6 we obtain the following equivalent
characterization of independent events.

Definition 1.7. Two events A,B are said to be independent if P(A∩B) = P(A)P(B). In
general, the events A1, . . . , AN (N ≥ 2) are said to be independent if, for all 1 ≤ k1 < k2 <
· · · < km ≤ N , we have

P(Ak1 ∩ · · · ∩ Akm) =
m∏
j=1

P(Akj).

Two σ-algebras F ,G are said to be independent if A and B are independent, for all A ∈ G
and B ∈ F . In general the σ-algebras F1, . . . ,FN (N ≥ 2) are said to be independent if
A1, A2, . . . , AN are independent events, for all A1 ∈ F1, . . . , AN ∈ FN .

The independence property of events is connected to the probability measure, i.e., two events
may be independent in the probability P and not independent in the probability P̃, even if P
and P̃ are equivalent. Moreover if F ,G are two independent σ-algebras and A ∈ F ∩G, then
A is a trivial event. In fact, if A ∈ F ∩ G, then P(A) = P(A ∩ A) = P(A)2. Hence P(A) = 0
or 1. The interpretation of this simple remark is that independent σ-algebras carry separate
information.

Exercise 1.9 (Sol. 4). Given a fair coin and assuming N is odd, consider the following two
events A,B ∈ ΩN :

A = “the number of heads is greater than the number of tails”,

B = “The first toss is a head”.

Use your intuition to guess whether the two events are independent; then verify your answer
numerically (e.g., using Mathematica).

1.3 Filtered probability spaces

Consider again the N -coin tosses probability space. Let AH be the event that the first toss is
a head and AT the event that it is a tail. Clearly AT = AcH and the σ-algebra F1 generated
by the partition {AH , AT} is F1 = {AH , AT ,Ω, ∅}. Now let AHH be the event that the first 2
tosses are heads, and similarly define AHT , ATH , ATT . These four events form a partition of
ΩN and they generate a σ-algebra F2 as indicated in Exercise 1.4. Clearly, F1 ⊂ F2. Going
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on with three tosses, four tosses, and so on, until we complete the N -toss, we construct a
sequence

F1 ⊂ F2 ⊂ · · · ⊂ FN = 2ΩN

of σ-algebras. The σ-algebra Fk contains all the events of the experiment that depend on
(i.e., which are resolved by) the first k tosses. The family {Fk}k=1,...,N of σ-algebras is an
example of filtration.

Definition 1.8. A filtration is a one parameter family {F(t)}t≥0 of σ-algebras such that
F(t) ⊆ F for all t ≥ 0 and F(s) ⊆ F(t) for all s ≤ t. A quadruple (Ω,F , {F(t)}t≥0,P) is
called a filtered probability space.

In our applications t stands for the time variable and filtrations are associated to experiments
in which “information accumulates with time”. For instance, in the example given above,
the more times we toss the coin, the higher is the number of events which are resolved by
the experiment, i.e., the more information becomes accessible.

1.4 The “infinite-coin tosses” probability space

In this section we outline the construction of the probability space for the ∞-coin tosses
experiment using Caratheódory’s theorem. The sample space is

Ω∞ = {ω = (γn)n∈N, γn ∈ {H,T}}.

Let us show first that Ω is uncountable. We use the well-known Cantor diagonal argu-
ment. Suppose that Ω∞ is countable and write

Ω∞ = {ωk}k∈N. (1.3)

Each ωk ∈ Ω∞ is a sequence of infinite tosses, which we write as ωk = (γ
(k)
j )j∈N, where γ

(k)
j

is either H or T , for all j ∈ N and for each fixed k ∈ N. Note that (γ
(k)
j )j,k∈N is an “∞×∞”

matrix. Now consider the ∞-toss corresponding to the diagonal of this matrix, that is

ω̄ = (γ̄m)m∈N, γ̄m = γ(m)
m , for all m ∈ N.

Finally consider the∞-toss ω which is obtained by changing each single toss of ω̄, that is to
say

ω = (γm)m∈N, where γm = H if γ̄m = T , and γm = T if γ̄m = H, for all m ∈ N.

It is clear that the ∞-toss ω does not belong to the set (1.3). In fact, by construction, the
first toss of ω is different from the first toss of ω1, the second toss of ω is different from the
second toss of ω2, . . . , the nth toss of ω is different from the nth toss of ωn, and so on, so
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that each ∞-toss in (1.3) is different from ω. We conclude that the elements of Ω∞ cannot
be listed as they were comprising a countable set.

Now, let N ∈ N and ΩN = {H,T}N be the sample space for the N -tosses experiment. For
each ω∗ = (γ∗1 , . . . , γ

∗
N) ∈ ΩN we define the event Aω∗ ⊂ Ω∞ by

Aω∗ = {ω = (γn)n∈N : γj = γ∗j , j = 1, . . . , N},
i.e., the event that the first N tosses in a ∞-toss be equal to (γ∗1 , . . . , γ

∗
N). Define the

probability of this event as the probability of the N -toss ω∗, that is

P0(Aω∗) = pNH(ω∗)(1− p)NT (ω∗),

where 0 < p < 1, NH(ω∗) is the number of heads in the N -toss ω∗ and NT (ω∗) = N−NH(ω∗)
is the number of tails in ω∗, see (1.1). Next consider the family of events

UN = {Aω∗}ω∗∈ΩN ⊂ 2Ω∞ .

Note that UN is, for each fixed N ∈ N, a partition of Ω∞. Hence the σ-algebra FN = FUN is
generated according to Exercise 1.4 and contains all events of Ω∞ that are resolved by the
first N tosses. Moreover FN ⊂ FN+1, that is to say, {FN}N∈N is a filtration. Since P0 is
defined for all Aω∗ ∈ UN , then it can be extended uniquely to the entire FN , because each
element A ∈ FN is the disjoint union of events of UN (see again Exercise 1.4) and therefore
the probability of A can be inferred by the property (ii) in the definition of probability
measure, see Definition 1.4. But then P0 extends uniquely to

F∞ =
⋃
N∈N

FN .

Hence we have constructed a triple (Ω∞,F∞,P0). Is this triple a probability space? The
answer is no, because F∞ is not a σ-algebra. To see this, let Ak be the event that the
kth toss in a infinite sequence of tosses is a head. Clearly Ak ∈ Fk for all k and therefore
{Ak}k∈N ⊂ F∞. Now assume that F∞ is a σ-algebra. Then the event A = ∪kAk would
belong to F∞ and therefore also Ac ∈ F∞. The latter holds if and only if there exists N ∈ N
such that Ac ∈ FN . But Ac is the event that all tosses are tails, which of course cannot be
resolved by the information FN accumulated after just N tosses. We conclude that F∞ is
not a σ-algebra. In particular, we have shown that F∞ is not in general closed with respect
to the countable union of its elements. However it is easy to show that F∞ is closed with
respect to the finite union of its elements, and in addition it satisfies the properties (i), (ii) in
Definition 1.4. This set of properties makes F∞ an algebra. To complete the construction
of the probability space for the∞-coin tosses experiment, we need the following deep result.

Theorem 1.1 (Caratheódory’s theorem). Let U be an algebra of subsets of Ω and P0 :
U → [0, 1] be a map satisfying P0(Ω) = 1 and P0(∪Ni=1Ai) =

∑N
i=1 P0(Ai), for every finite

collection {A1, . . . , AN} ⊂ U of disjoint sets2. Then there exists a unique probability measure
P on FU such that P(A) = P0(A), for all A ∈ U .

2P0 is called a pre-measure.
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Hence the map P0 : F∞ → [0, 1] defined above extends uniquely to a probability measure P
defined on F = FF∞ . The resulting triple (Ω∞,F ,P) defines the probability space for the
∞- coin tosses experiment.
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Chapter 2

Random variables and stochastic
processes

Throughout this chapter we assume that (Ω,F , {F(t)}t≥0,P) is a given filtered probability
space.

2.1 Random variables

In many applications of probability theory, and in financial mathematics in particular, one
is more interested in knowing the value attained by quantities that depend on the outcome
of the experiment, rather than knowing which specific events have occurred. Such quantities
are called random variables.

Definition 2.1. A map X : Ω → R is called a (real-valued) random variable if {X ∈
U} ∈ F , for all U ∈ B(R), where {X ∈ U} = {ω ∈ Ω : X(ω) ∈ U} is the pre-image of the
Borel set U . If there exists c ∈ R such that X(ω) = c almost surely, we say that X is a
deterministic constant.

Occasionally we shall also need to consider complex-valued random variables. These are
defined as the maps Z : Ω→ C of the form Z = X+ iY , where X, Y are real-valued random
variables and i is the imaginary unit (i2 = −1). Similarly a vector valued random variable
X = (X1, . . . , XN) : Ω → RN can be defined by simply requiring that each component
Xj : Ω→ R is a random variable in the sense of Definition 2.1.

Remark 2.1 (Notation). A generic real-valued random variable will be denoted by X. If we
need to consider two such random variables we will denote them by X, Y , while N real-valued
random variables will be denoted by X1, . . . , XN . Equivalently (X1, . . . , XN) : Ω→ RN is a
vector-valued random variable.

Remark 2.2. Equality among random variables is always understood to hold up to a null
set. That is to say, X = Y always means X = Y almost surely (a.s.).
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Random variables are also called measurable functions, but this terminology will be used
in this text only when Ω = R and F = B(R). Measurable functions will be denoted by small
Latin letters (e.g., f, g, . . . ). If X is a random variable and Y = f(X) for some measurable
function f , then Y is also a random variable. We denote P(X ∈ U) = P({X ∈ U})
the probability that X takes value in U ∈ B(R). Moreover, given two random variables
X, Y : Ω→ R and the Borel sets U, V , we denote

P(X ∈ U, Y ∈ V ) = P({X ∈ U} ∩ {Y ∈ V }),
which is the probability that the random variable X takes value in U and Y takes value in
V . The generalization to an arbitrary number of random variables is straightforward.

As the value attained by X depends on the result of the experiment, random variables carry
information, i.e., upon knowing the value attained by X we know something about the
outcome ω of the experiment. For instance, if X(ω) = (−1)ω, where ω is the result of tossing
a dice, and if we are told that X takes value 1, then we infer immediately that the dice roll
is even. The information carried by a random variable X forms the σ-algebra generated by
X, whose precise definition is the following.

Definition 2.2. Let X : Ω→ R be a random variable. The σ-algebra generated by X is
the collection σ(X) ⊆ F of events given by

σ(X) = {A ∈ F : A = {X ∈ U}, for some U ∈ B(R)}.
If G ⊆ F is another σ-algebra of subsets of Ω and σ(X) ⊆ G, we say that X is G-
measurable. If Y : Ω → R is another random variable and σ(Y ) ⊆ σ(X), we say that
Y is X-measurable

Exercise 2.1 (Sol. 5). Prove that σ(X) is indeed a σ-algebra, as claimed in Definition 2.2.

Thus σ(X) contains all the events that are resolved by knowing the value of X. The interpre-
tation of X being G-measurable is that the information contained in G suffices to determine
the value taken by X in the experiment. Clearly the σ-algebra generated by a deterministic
constant consists of trivial events only.

Definition 2.3. The σ-algebra σ(X, Y ) generated by two random variables X, Y : Ω → R
is the smallest σ-algebra containing σ(X) ∪ σ(Y ), that is to say1 σ(X, Y ) = FO, where
O = σ(X) ∪ σ(Y ), and similarly for any number of random variables.

If Y is X-measurable then σ(X, Y ) = σ(X), i.e., the random variable Y does not add
any new information to the one already contained in X. Clearly, if Y = f(X) for some
measurable function f , then Y is X-measurable. It can be shown that the opposite is also
true: if σ(Y ) ⊆ σ(X), then there exists a measurable function f such that Y = f(X) (see
Prop. 3 in [23]). The other extreme is when X and Y carry distinct information, i.e., when
σ(X) ∩ σ(Y ) consists of trivial events only. This occurs in particular when the two random
variables are independent.

1See Definition 1.2.
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Definition 2.4. Let X : Ω → R be a random variable and G ⊂ F be a sub-σ-algebra. We
say that X is independent of G if σ(X) and G are independent in the sense of Definition 1.7.
Two random variables X, Y : Ω → R are said to be independent random variables
if the σ-algebras σ(X) and σ(Y ) are independent. More generally, the random variables
X1, . . . , XN are independent if σ(X1), . . . , σ(XN) are independent σ-algebras.

In the intermediate case, i.e., when Y is neither X-measurable nor independent of X, it is
expected that the knowledge on the value attained by X helps to derive information on the
values attainable by Y . We shall study this case in the next chapter.

Exercise 2.2 (Sol. 6). Show that when X, Y are independent random variables, then σ(X)∩
σ(Y ) consists of trivial events only (i.e., events with probability zero or one). Show that two
deterministic constants are always independent. Finally assume Y = g(X) and show that
in this case the two random variables are independent if and only if Y is a deterministic
constant.

Exercise 2.3. Which of the following pairs of random variables X, Y : ΩN → R are indepen-
dent? (Use only the intuitive interpretation of independence and not the formal definition.)

1. X(ω) = NT (ω); Y (ω) = 1 if the first toss is head, Y (ω) = 0 otherwise.

2. X(ω) = 1 if there exists at least a head in ω, X(ω) = 0 otherwise; Y (ω) = 1 if there
exists exactly a head in ω, Y (ω) = 0 otherwise.

3. X(ω) = number of times that a head is followed by a tail; Y (ω) = 1 if there exist two
consecutive tail in ω, Y (ω) = 0 otherwise.

The next theorem shows how to construct new independent random variables from a given
sequence of independent random variables.

Theorem 2.1. Let X1, . . . , XN be independent random variables. Let us divide the set
{X1, . . . , XN} into m separate groups of random variables, namely, let

{X1, . . . , XN} = {Xk1}k1∈I1 ∪ {Xk2}k2∈I2 ∪ · · · ∪ {Xkm}km∈Im ,
where {I1, I2, . . . Im} is a partition of {1, . . . , N}. Let ni be the number of elements in the
set Ii, so that n1 + n2 + · · · + nm = N . Let g1, . . . , gm be measurable functions such that
gi : Rni → R. Then the random variables

Y1 = g1((Xk1)k1∈I1), Y2 = g2((Xk2)k2∈I2), . . . , Ym = gm((Xkm)km∈Im)

are independent.

For instance, in the case of N = 2 independent random variables X1, X2, Theorem 2.1 asserts
that Y1 = g(X1) and Y2 = f(X2) are independent random variables, for all measurable
functions f, g : R→ R.

Exercise 2.4 (Sol. 7). Prove Theorem 2.1 for the case N = 2.

17



Simple and discrete random variables

A special role is played by simple random variables. The simplest possible one is the indica-
tor function of an event: Given A ∈ F , the indicator function of A is the random variable
that takes value 1 if ω ∈ A and 0 otherwise, i.e.,

IA(ω) =

{
1, ω ∈ A,
0, ω ∈ Ac.

Obviously, σ(IA) = {A,Ac, ∅,Ω}.
Definition 2.5. Let N ∈ N, {Ak}k=1,...,N ⊂ F be a (finite) partition of Ω and a1, . . . , aN be
distinct real numbers. The random variable

X =
N∑
k=1

akIAk

is called a simple random variable. If N ∈ N is replaced by N =∞ in this definition, we
call X a discrete random variable.

Thus a simple random variable X attains only a finite number of values, while a discrete
random variable X attains countably infinite many values2. In both cases we have

P(X = x) =

{
0, if x /∈ Image(X),
P(Ak), if x = ak,

where Image(X) = {x ∈ R : X(ω) = x, for some ω ∈ Ω} is the image of X. Moreover for
a simple, or discrete, random variable X, σ(X) is the σ-algebra generated by the partition
{A1, A2, . . . }, which is constructed as stated in Exercise 1.4. Let us consider two examples
of simple/discrete random variables that have applications in financial mathematics (and in
many other fields).

A simple random variable X is called a binomial random variable if

� Image(X) = {0, 1, . . . , N};

� There exists p ∈ (0, 1) such that P(X = k) =
(
N
k

)
pk(1− p)N−k, k = 0, . . . , N .

For instance, if we let X to be the number of heads in a N -toss, then X is binomial.

A discrete random variable X is called a Poisson variable if

� Image(X) = N ∪ {0};

� There exists µ > 0 such that P(X = k) =
µke−µ

k!
, k = 0, 1, 2, . . .

2Not all authors distinguish between simple and discrete random variables.
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We denote by P(µ) the set of all Poisson random variables with parameter µ > 0.

The following important theorem shows that all non-negative random variables can be ap-
proximated by a sequence of simple random variables.

Theorem 2.2. Let X : Ω → [0,∞) be a random variable and let n ∈ N be given. For
k = 0, 1, ..., n2n − 1, consider the sets

Ak,n :=
{
X ∈

[ k
2n
,
k + 1

2n

)}
and for k = n2n let

An2n,n = {X ≥ n}.
(Note that {Ak,n}k=0,...,n2n is a partition of Ω, for all fixed n ∈ N.) Define the simple random
variables

sXn (ω) =
n2n∑
k=0

k

2n
IAk,n(ω).

Then 0 ≤ sX1 (ω) ≤ sX2 (ω) ≤ · · · ≤ sXn (ω) ≤ sXn+1(ω) ≤ · · · ≤ X(ω), for all ω ∈ Ω and

lim
n→∞

sXn (ω) = X(ω), for all ω ∈ Ω.

(The limit exists because the sequence {sXn }n∈N is non-decreasing.)

Exercise 2.5. Prove Theorem 2.2.

2.2 Distribution and probability density functions

Definition 2.6. The (cumulative) distribution function of the random variable X :
Ω → R is the non-negative function FX : R → [0, 1] given by FX(x) = P(X ≤ x). Two
random variables X, Y are said to be identically distributed if FX = FY .

Exercise 2.6 (Sol. 8). Show that

P(a < X ≤ b) = FX(b)− FX(a).

Show also that FX is (1) right-continuous, (2) non-decreasing, (3) limx→+∞ FX(x) = 1 and
limx→−∞ FX(x) = 0.

Exercise 2.7 (Sol. 9). Let F : R→ [0, 1] be a measurable function satisfying the properties
(1)–(3) in Exercise 2.6. Show that there exists a probability space and a random variable X
such that F = FX .

Definition 2.7. A random variable X : Ω → R is said to admit the probability density
function (pdf) fX : R→ [0,∞) if fX is integrable on R and

FX(x) =

∫ x

−∞
fX(y) dy. (2.1)
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If fX is the pdf of a random variable, then necessarily∫
R
fX(x) dx = lim

x→∞
FX(x) = 1.

All probability density functions considered in these notes are almost everywhere continuous3,
and therefore the integral in (2.1) can be understood in the Riemann sense. Moreover in
this case FX is differentiable and we have

fX =
dFX
dx

.

If the integral in (2.1) is understood in the Lebesgue sense, then the density fX can be a
quite irregular function. In this case, the fundamental theorem of calculus for the Lebesgue
integral entails that the distribution FX(x) satisfying (2.1) is absolutely continuous, and so
in particular it is continuous. Conversely, if FX is absolutely continuous, then X admits a
density function.

We remark that, regardless of the notion of integral being used, a simple (or discrete) random
variable X cannot admit a density in the sense of Definition 2.7. Suppose in fact that
X =

∑N
k=1 akIAk is a simple random variable and assume a1 = max(a1, . . . , aN). Then

lim
x→a−1

FX(x) = P(A2) + · · ·+ P(AN) < 1,

while
lim
x→a+

1

FX(x) = 1 = FX(a1).

It follows that FX(x) is not continuous, and so in particular it cannot be written in the
form (2.1). To define the pdf of the simple random variable X =

∑N
k=1 akIAk , we observe

first that its distribution function is

FX(x) = P(X ≤ x) =
∑
ak≤x

P(X = ak). (2.2)

The probability density function fX(x) is defined as

fX(x) =

{
P(X = x), if x = ak for some k

0 otherwise
.

Thus with a slight abuse of notation we can rewrite (2.2) as

FX(x) =
∑
y≤x

fX(y), (2.3)

3I.e., continuous everywhere except possibly in a real set of zero Lebesgue measure.

20



which extends (2.1) to simple random variables4.

We shall see in the following chapters that when a random variable X admits a density, then
all the relevant statistical information on X can be deduced by fX . We also remark that often
one can prove the existence of the pdf fX without however being able to derive an explicit
formula for it. For instance, fX is often given as the solution of a partial differential equation,
or through its (inverse) Fourier transform, which is called the characteristic function of X,
see Section 3.1. Some examples of density functions, which have important applications in
financial mathematics, are the following.

Examples of probability density functions

� A random variable X : Ω → R is said to be a normal (or normally distributed)
random variable if it admits the density

fX(x) =
1√

2πσ2
e
−

(x−m)2

2σ2 ,

for some m ∈ R and σ > 0, which are called respectively the expectation (or mean)
and the deviation of the normal random variable X, while σ2 is called the variance
of X. The typical profile of a normal density function is shown in Figure 2.1(a). We
denote by N (m,σ2) the set of all normal random variables with expectation m and
variance σ2. If m = 0 and σ2 = 1, X ∈ N (0, 1) is said to be a standard normal random
variable. The density function of standard normal random variables is denoted by φ,
while their distribution is denoted by Φ, i.e.,

φ(x) =
1√
2π
e−

x2

2 , Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.

� A random variable X : Ω → R is said to be an exponential (or exponentially
distributed) random variable if it admits the density

fX(x) = λe−λxIx≥0,

for some λ > 0, which is called the intensity of the exponential random variable X. A
typical profile is shown in Figure 2.1(b) . We denote by E(λ) the set of all exponential
random variables with intensity λ > 0. The distribution function of an exponential
random variable X with intensity λ is given by

FX(x) =

∫ x

−∞
fX(y) dy = λ

∫ x

0

e−λy dy = 1− e−λx.
4It is possible to unify the definition of pdf for continuum and discrete random variables by writing the

sum (2.3) as an integral with respect to the Dirac measure, but we shall not do so.
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� A random variable X : Ω→ R is said to be chi-squared distributed if it admits the
density

fX(x) =
xδ/2−1e−x/2

2δ/2Γ(δ/2)
Ix>0,

for some δ > 0, which is called the degree of X. Here Γ(t) =
∫∞

0
zt−1e−zdz, t > 0, is

the Gamma-function. Recall the relation

Γ(n) = (n− 1)!

for n ∈ N. We denote by χ2(δ) the set of all chi-squared distributed random variables
with degree δ. Three typical profiles of this density are shown in Figure 2.2(a).

� A random variable X : Ω → R is said to be non-central chi-squared distributed
with degree δ > 0 and non-centrality parameter β > 0 if it admits the density

fX(x) =
1

2
e−

x+β
2

(
x

β

) δ
4
− 1

2

Iδ/2−1(
√
βx)Ix>0, (2.4)

where Iν(y) denotes the modified Bessel function of the first kind. We denote by χ2(δ, β)
the random variables with density (2.4). It can be shown that χ2(δ, 0) = χ2(δ). Three
typical profiles of the density (2.4) are shown in Figure 2.2(b).

� A random variable X : Ω → R is said to be Cauchy distributed if it admits the
density

fX(x) =
γ

π((x− x0)2 + γ2)

for x0 ∈ R and γ > 0 , called the location and the scale of X.

� A random variable X : Ω→ R is said to be Lévy distributed if it admits the density

fX(x) =

√
c

2π

e
− c

2(x−x0)

(x− x0)3/2
Ix>x0 ,

for x0 ∈ R and c > 0, called the location and the scale of X.

If a random variable X admits a density fX , then for all (possibly unbounded) intervals
I ⊆ R the result of Exercise 2.6 entails

P(X ∈ I) =

∫
I

fX(y) dy. (2.5)

It can be shown that (2.5) extends to

P(g(X) ∈ I) =

∫
x:g(x)∈I

fX(x) dx, (2.6)
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Figure 2.1: Densities of a normal random variable X and of an exponential random variable
Y .
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Figure 2.2: Densities of (non-central) chi-squared random variables with different degree.

for all measurable functions g : R→ R. For example, if X ∈ N (0, 1), then

P(X2 ≤ 1) = P(−1 ≤ X ≤ 1) =

∫ 1

−1

φ(x) dx ≈ 0.683,

which means that a standard normal random variable has about 68.3 % chances to take
value in the interval [−1, 1].

Exercise 2.8 (Sol. 10). Let X ∈ N (0, 1) and Y = X2. Show that Y ∈ χ2(1).

Exercise 2.9. Let X ∈ N (0, 1). Show that the random variable W defined by

W =

{
1/X2 for X 6= 0,

0 otherwise

is Lévy distributed.
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Exercise 2.10. Let X ∈ N (m,σ2) and Y = X2. Show that

fY (x) =
cosh(m

√
x/σ2)√

2πxσ2
exp

(
−x+m2

2σ2

)
Ix>0.

Random variables with boundary values

Random variables in mathematical finance do not always admit a density in the classical
sense described above (or in any other sense), and the purpose of this section is to present
an example when one has to consider a generalized notion of density function. Suppose
that X takes value on the semi-open interval [0,∞). Then clearly FX(x) = 0 for x < 0,
FX(0) = P(X = 0), while for x > 0 we can write

FX(x) = P(X ≤ x) = P(0 ≤ X ≤ x) = P(X = 0) + P(0 < X ≤ x).

Now assume that FX is differentiable on the open set x ∈ (0,∞). Then there exists a
function f+

X (x), x > 0, such that FX(x)− FX(0) =
∫ x

0
f+
X (t) dt. Hence, for all x ∈ R we find

FX(x) = p0H(x) +

∫ x

−∞
f+
X (t)It>0 dt,

where p0 = P(X = 0) and H(x) is the Heaviside function, i.e., H(x) = 1 if x ≥ 0, H(x) = 0
if x < 0. By introducing the delta-distribution through the formal identity

H ′(x) = δ(x) (2.7)

then we obtain, again formally, the following expression for the density function

fX(x) =
dFX(x)

dx
= p0δ(x) + f+

X (x). (2.8)

The formal identities (2.7)-(2.8) become rigorous mathematical expressions when they are
understood in the sense of distributions. We shall refer to the term p0δ(x) as the discrete
part of the density and to the function f+

X as the continuum part (sometimes also called
defective density). Note that ∫ ∞

0

f+
X (x) dx = 1− p0.

Hence f+ is the actual pdf of X if and only if p0 = 0.

The typical example of financial random variable whose pdf may have a discrete part is the
stock price S(t) at time t. For simple models (such us the geometric Browniam motion (2.14)
defined in Section 2.4 below), the stock price is strictly positive a.s. at all finite times and
the density has no discrete part. However for more sophisticated models the stock price
can reach zero with positive probability at any finite time and so the pdf of the stock price
admits a discrete part P(S(t) = 0)δ(x), which is the probability of default of the stock. We
shall see an example in Section 6.6.
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Joint distribution

Definition 2.8. The joint (cumulative) distribution FX,Y : R2 → [0, 1] of two random
variables X, Y : Ω→ R is defined as

FX,Y (x, y) = P(X ≤ x, Y ≤ y).

It can be shown that two random variables are independent if and only if FX,Y (x, y) =
FX(x)FY (y). In Theorem 2.3 below we prove a special case of this result assuming that the
two random variables admit a joint pdf, defined as follows.

Definition 2.9. The random variables X, Y are said to admit the joint (probability)
density function fX,Y : R2 → [0,∞) if fX,Y is integrable in R2 and

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (η, ξ) dη dξ.

The joint density and distribution satisfy the formal identities

fX,Y =
∂2FX,Y
∂x ∂y

,

∫
R2

fX,Y (x, y) dx dy = 1.

Moreover, if two random variables X, Y admit a joint density fX,Y , then each of them admits
a density (called marginal density in this context) which is given by

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx.

To see this we write

P(X ≤ x) = P(X ≤ x, Y ∈ R) =

∫ x

−∞

∫
R
fX,Y (η, ξ) dη dξ =

∫ x

−∞
fX(η) dη

and similarly for the random variable Y . If W = g(X, Y ), for some measurable function g,
and I ⊆ R is an interval, the analogue of (2.6) in 2 dimensions holds, namely:

P(g(X, Y ) ∈ I) =

∫
x,y:g(x,y)∈I

fX,Y (x, y) dx dy.

Example. Let m = (m1 m2) be a two dimensional row vector and C = (Cij)i,j=1,2 be a 2×2
positive definite, symmetric matrix. Two random variables X1, X2 : Ω → R are said to be
jointly normally distributed with mean m and covariance matrix C if they admit the
joint density

fX1,X2(x) =
1√

(2π)2 detC
exp

[
−1

2
(x−m)C−1(x−m)T

]
, (2.9)

where x = (x1 x2), C−1 is the inverse matrix of C and vT is the transpose of the vector v. We
denote by N (m,C) the set of jointly normally distributed random variables X = (X1, X2)
with mean m ∈ R2 and covariance matrix C.
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Exercise 2.11 (Sol. 11). Show that two random variables X1, X2 are jointly normally dis-
tributed if and only if

fX1,X2(x) =
1

2πσ1σ2

√
1− ρ2

×

× exp

(
− 1

2(1− ρ2)

[(x1 −m1)2

σ2
1

− 2ρ(x1 −m1)(x2 −m2)

σ1σ2

+
(x2 −m2)2

σ2
2

])
, (2.10)

where

σ2
1 = C11, σ2

2 = C22, ρ =
C12

σ1σ2

.

Moreover show that (X1, X2) ∈ N (m,C) implies X1 ∈ N (m1, σ
2
1), X2 ∈ N (m2, σ

2
2).

By the previous exercise, when σ1 = σ2 = 1 and m = (0 0), each random variable X1, X2 is a
standard normal random variable. We denote by φ(x1, x2; ρ) the joint normal density in this
case and call it the (2-dimensional) standard joint normal density with correlation
coefficient ρ:

φ(x1, x2; ρ) =
1

2π
√

1− ρ2
exp

(
−x

2
1 − 2ρx1x2 + x2

2

2(1− ρ2)

)
. (2.11)

The corresponding cumulative distribution is given by

Φ(x1, x2; ρ) =

∫ x1

−∞

∫ x2

−∞
φ(y1, y2; ρ) dy1 dy2. (2.12)

In the next theorem we establish a simple condition for the independence of two random
variables which admit a joint density.

Theorem 2.3. The following holds.

(i) If two random variables X, Y admit the densities fX , fY and are independent, then
they admit the joint density

fX,Y (x, y) = fX(x)fY (y).

(ii) If two random variables X, Y admit a joint density fX,Y of the form

fX,Y (x, y) = u(x)v(y),

for some functions u, v : R→ [0,∞), then X, Y are independent and admit the densi-
ties fX , fY given by

fX(x) = cu(x), fY (y) =
1

c
v(y),

where

c =

∫
R
v(x) dx =

(∫
R
u(y) dy

)−1

.
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Proof. As to (i) we have

FX,Y (x, y) = P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y)

=

∫ x

−∞
fX(η) dη

∫ y

−∞
fY (ξ) dξ

=

∫ x

−∞

∫ y

−∞
fX(η)fY (ξ) dη dξ.

To prove (ii), we first write

{X ≤ x} = {X ≤ x} ∩ Ω = {X ≤ x} ∩ {Y ≤ R} = {X ≤ x, Y ≤ R}.

Hence,

P(X ≤ x) =

∫ x

−∞

∫ ∞
−∞

fX,Y (η, y) dy dη =

∫ x

−∞
u(η) dη

∫
R
v(y) dy =

∫ x

−∞
cu(η) dη,

where c =
∫
R v(y) dy. Thus X admits the density fX(x) = c u(x). At the same fashion one

proves that Y admits the density fY (y) = c′v(y), where c′ =
∫
R u(x)dx. Since

1 =

∫
R

∫
R
fX,Y (x, y) dx dy =

∫
R
u(x) dx

∫
R
v(y) dy = c′c,

then c′ = 1/c. It remains to prove that X, Y are independent. This follows by

P(X ∈ U, Y ∈ V ) =

∫
U

∫
V

fX,Y (x, y) dx dy =

∫
U

u(x) dx

∫
V

v(y) dy

=

∫
U

cu(x) dx

∫
V

1

c
v(y) dy =

∫
U

fX(x) dx

∫
V

fY (y) dy

= P(X ∈ U)P(Y ∈ V ), for all U, V ∈ B(R).

Remark 2.3. By Theorem 2.3 and the result of Exercise 2.11, we have that two jointly nor-
mally distributed random variables are independent if and only if ρ = 0 in the formula (2.10).

Exercise 2.12 (Sol. 12). Let X ∈ N (0, 1) and Y ∈ E(1) be independent. Compute P(X ≤
Y ).

Exercise 2.13. Let X ∈ E(2), Y ∈ χ2(3) be independent. Compute numerically (e.g., using
Mathematica) the following probability

P(log(1 +XY ) < 2).

Result:≈ 0.893.

In Exercise 3.23 we give another criterion to establish whether two random variables are
independent, which applies also when the random variables do not admit a density.
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2.3 Stochastic processes

A stochastic process is a one-parameter family of random variables, which we denote by
{X(t)}t≥0, or by {X(t)}t∈[0,T ] if the parameter t is restricted to the interval [0, T ], T > 0.
Hence, for each t ≥ 0, X(t) : Ω → R is a random variable. We denote by X(t, ω) the value
of X(t) on the sample point ω ∈ Ω, i.e., X(t, ω) = X(t)(ω). For each ω ∈ Ω fixed, the curve
γωX : R→ R, γωX(t) = X(t, ω) is called the ω-path of the stochastic process and is assumed
to be a measurable function. If the paths of a stochastic process are all almost surely equal,
we say that the stochastic process is a deterministic function of time.

The parameter t will be referred to as time parameter, since this is what it represents
in the applications in financial mathematics. Examples of stochastic processes in financial
mathematics are given in the next section.

Definition 2.10. Two stochastic processes {X(t)}t≥0, {Y (t)}t≥0 are said to be independent
if for all m,n ∈ N and 0 ≤ t1 < t2 < · · · < tn, 0 ≤ s1 < s2 < · · · < sm, the σ-algebras
σ(X(t1), . . . , X(tn)), σ(Y (s1), . . . , Y (sm)) are independent.

Hence two stochastic processes {X(t)}t≥0, {Y (t)}t≥0 are independent if the information ob-
tained by “looking” at the process {X(t)}t≥0 up to time T is independent of the information
obtained by “looking” at the process {Y (t)}t≥0 up to time S, for all S, T > 0. Similarly one
defines the notion of several independent stochastic processes.

Remark 2.4 (Notation). If t runs over a countable set, i.e., t ∈ {tk}k∈N, then a stochastic
process is equivalent to a sequence of random variables X1, X2, . . . , where Xk = X(tk). In
this case we say that the stochastic process is discrete and we denote it by {Xk}k∈N. An
example of discrete stochastic process is the random walk defined below.

A special role is played by step processes: given 0 = t0 < t1 < t2 < . . . , a step process is a
stochastic process {∆(t)}t≥0 of the form

∆(t, ω) =
∞∑
k=0

Xk(ω)I[tk,tk+1).

A typical path of a step process is depicted in Figure 2.3. Note that the paths of a step
process are right-continuous, but in general they are not left-continuous. Moreover, since
Xk(ω) = ∆(tk, ω), we can rewrite ∆(t) as

∆(t) =
∞∑
k

∆(tk)I[tk,tk+1).

It will be shown in Theorem 4.2 that any sufficiently regular stochastic process can be
approximated, in a suitable sense, by a sequence of step processes.

In the same way as a random variable generates a σ-algebra, a stochastic process generates
a filtration. Informally, the filtration generated by the stochastic process {X(t)}t≥0 contains
the information accumulated by looking at the process for longer and longer periods of time.
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t0 = 0 t1 t2 t3 t4

∆(t, ω∗)

X1(ω∗)

X2(ω∗)

X3(ω∗)

X4(ω∗)

Figure 2.3: The path ω = ω∗ of a step process.

Definition 2.11. The filtration generated by the stochastic process {X(t)}t≥0 is given by
{FX(t)}t≥0, where

FX(t) = FO(t), O(t) = ∪0≤s≤tσ(X(s)).

Hence FX(t) is the smallest σ-algebra containing σ(X(s)), for all 0 ≤ s ≤ t, see Defini-
tion 1.2. Similarly one defines the filtration {FX,Y (t)}t≥0 generated by two stochastic pro-
cesses {X(t)}t≥0, {Y (t)}t≥0, as well as the filtration generated by any number of stochastic
processes.

Definition 2.12. If {F(t)}t≥0 is a filtration and FX(t) ⊆ F(t), for all t ≥ 0, we say that
the stochastic process {X(t)}t≥0 is adapted to the filtration {F(t)}t≥0.

The property of {X(t)}t≥0 being adapted to {F(t)}t≥0 means that the information contained
in F(t) suffices to determine the value attained by the random variable X(s), for all s ∈
[0, t]. Clearly, {X(t)}t≥0 is adapted to its own generated filtration {FX(t)}t≥0. Moreover
if {X(t)}t≥0 is adapted to {F(t)}t≥0 and Y (t) = f(X(t)), for some measurable function f ,
then {Y (t)}t≥0 is also adapted to {F(t)}t≥0.

Next we give an example of (discrete) stochastic process. Let {Xt}t∈N be a sequence of
independent and identically distributed (i.i.d) random variables satisfying

Xt = 1 with probability p, Xt = −1 with probability 1− p,

for all t ∈ N and some p ∈ (0, 1). For a concrete realization of these random variables, we
may think of Xt as being defined on the sample space Ω∞ of the ∞-coin tosses experiment
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(see Section 1.4). In fact, letting ω = (γj)j∈N ∈ Ω∞, we may set

Xt(ω) =

{
−1, if γt = H,
1, if γt = T .

Hence Xt : Ω→ {−1, 1} is the simple random variable Xt(ω) = IAt − IAct , where At = {ω ∈
Ω∞ : γt = H}. Clearly, FX(t) is the collection of all the events that are resolved by the first
t-tosses, which is given as indicated at the beginning of Section 1.3.

Definition 2.13. The stochastic process {Mt}t∈N given by

M0 = 0, Mt =
t∑

k=1

Xk,

is called random walk. For p = 1/2, the random walk is said to be symmetric.

To understand the meaning of the term “random walk”, consider a particle moving on the
real line in the following way: if Xt = 1 (i.e., if the toss number t is a head), at time t the
particle moves one unit of length to the right, if Xt = −1 (i.e., if the toss number t is a head)
it moves one unit of length to the left. Then Mt gives the total amount of units of length
that the particle has travelled to the right or to the left up to time t.

Exercise 2.14. Which of the following holds?

FM(t) ⊂ FX(t), FM(t) = FX(t), FX(t) ⊂ FM(t).

Justify the answer.

The increments of the random walk are defined as follows. If (k1, . . . , kN) ∈ NN , such that
1 ≤ k1 < k2 < · · · < kN , we set

∆1 = Mk1 −M0 = Mk1 , ∆2 = Mk2 −Mk1 , . . . , ∆N = MkN −MkN−1
.

Hence ∆j is the total displacement of the particle from time kj−1 to time kj.

Theorem 2.4. The increments ∆1, . . . ,∆N of the random walk are independent random
variables.

Proof. Since

∆1 = X1 + · · ·+Xk1 = g1(X1, . . . , Xk1),

∆2 = Xk1+1 + · · ·+Xk2 = g2(Xk1+1, . . . , Xk2),

.

.

∆N = XkN−1+1 + · · ·+XkN = gN(XkN−1+1, . . . , XkN ),

the result follows by Theorem 2.1.
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The interpretation of this result is that the particle has no memory of past movements: the
distance travelled by the particle in a given interval of time is not affected by the motion of
the particle at earlier times.

We may now define the most important of all stochastic processes.

Definition 2.14. A Brownian motion (or Wiener process) is a stochastic process
{W (t)}t≥0 such that

(i) The paths are continuous and start from 0 almost surely, i.e., the sample points ω ∈ Ω
such that γωW (0) = 0 and γωW is a continuous function comprise a set of probability 1;

(ii) The increments over disjoint time intervals are independent, i.e., for all 0 = t0 < t1 <
· · · < tm, the random variables

W (t1)−W (t0), W (t2)−W (t1), . . . , W (tm)−W (tm−1)

are independent;

(iii) For all s < t, the increment W (t)−W (s) belongs to N (0, t− s).

Remark 2.5. The properties defining a Brownian motion depend on the probability mea-
sure P. Thus a stochastic process may be a Brownian motion relative to a probability
measure P and not a Brownian motion with respect to another (possibly equivalent) proba-

bility measure P̃. If we want to emphasize the probability measure P with respect to which
a stochastic process is a Brownian motion we shall say that it is a P-Brownian motion.

It can be shown that Brownian motions exist. In particular, it can be shown that the
sequence of stochastic processes {Wn(t)}t≥0, n ∈ N, defined by

Wn(t) =
1√
n
M[nt], (2.13)

where Mt is the symmetric random walk and [z] denotes the integer part of z, converges (in
distribution) to a Brownian motion. Therefore one may think of a Brownian motion as a
time-continuum version of a symmetric random walk which runs for an infinite number of
“infinitesimal time steps”. In fact, provided the number of time steps is sufficiently large, the
process {Wn(t)}t≥0 gives a very good approximation of a Brownian motion, which is useful
for numerical computations. An example of path to the stochastic process {Wn(t)}t≥0, for
n = 1000, is shown in Figure 2.4.

Once a Brownian motion is introduced it is natural to require that the filtration {F(t)}t≥0

be somehow related to it. For our financial applications in Chapter 6, the following class of
filtrations will play a fundamental role.

Definition 2.15. Let {W (t)}t≥0 be a Brownian motion and denote by σ+(W (t)) the σ-
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algebra generated by the increments {W (s)−W (t); s ≥ t}, that is

σ+(W (t)) = FO(t), O(t) = ∪s≥tσ(W (s)−W (t)).

A filtration {F(t)}t≥0 is said to be a non-anticipating filtration for the Brownian motion
{W (t)}t≥0 if {W (t)}t≥0 is adapted to {F(t)}t≥0 and if the σ-algebras σ+(W (t)), F(t) are
independent for all t ≥ 0.

The meaning is the following: the increments of the Brownian motion after time t are
independent of the information available at time t in the σ-algebra F(t). Clearly {FW (t)}t≥0

is a non-anticipating filtration for {W (t)}t≥0. We shall see later that many properties of
Brownian motions that depend on {FW (t)}t≥0 also holds with respect to any non-anticipating
filtration (e.g., the martingale property, see Section 3.4).

200 400 600 800 1000

-10

-5

5

10

15

20

25

Figure 2.4: A path of the stochastic process (2.13) for n = 1000.

Another important example of stochastic process used in financial mathematics is the fol-
lowing.

Definition 2.16. A Poisson process with rate λ is a stochastic process {N(t)}t≥0 such
that

(i) N(0) = 0 a.s.;

(ii) The increments over disjoint time-intervals are independent;

(iii) For all s < t, the increment N(t)−N(s) belongs to P(λ(t− s)).
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Note in particular that N(t) is a discrete random variable, for all t ≥ 0, and that, in contrast
to the Brownian motion, the paths of a Poisson process are not continuous. The Poisson
process is the building block to construct more general stochastic processes with jumps,
which are popular nowadays as models for the price of certain financial assets, see [4].

2.4 Stochastic processes in financial mathematics

Remark 2.6. More information on the financial concepts introduced in this section can
be found in the text Basic financial concepts, available on the course homepage. Unless
otherwise stated, it is assumed throughout these notes that assets pay no dividend.

All variables in financial mathematics are represented by stochastic processes. The most
obvious example is the price of financial assets. The stochastic process representing the
price per share of a generic asset at different times will be denoted by {Π(t)}t≥0. Depending
on the type of asset considered, we use a different specific notation for the stochastic process
modeling its price.

Remark 2.7. We always assume that t = 0 is earlier or equal to the present time. In
particular, the value of all financial variables is known at time t = 0. Hence, if {X(t)}t≥0 is
a stochastic process modelling a financial variable, then X(0) is a deterministic constant.

Stock price

The price per share a time t of a stock will be denoted by S(t). Typically S(t) > 0, for
all t ≥ 0, however, as discussed in Section 2.2, some models allow for the possibility that
S(t) = 0 with positive probability at finite times t > 0 (risk of default). Clearly {S(t)}t≥0

is a stochastic process. If we have several stocks, we shall denote their price by {S1(t)}t≥0,
{S2(t)}t≥0, etc.

A popular model for the price of stocks is the geometric Brownian motion stochastic
process, which is given by

S(t) = S(0) exp(αt+ σW (t)). (2.14)

Here {W (t)}t≥0 is a Brownian motion, α ∈ R is called the mean of log return (or log-
drift) of the stock, while σ > 0 is called the volatility of the stock ( α and σ are constant
parameters in this model). Moreover, S(0) is the price at time t = 0 of the stock, which,
according to Remark 2.7, is a deterministic constant. The interpretation of the parameters
α, σ is the following: If α is positive (resp. negative), the stock price as a tendency to increase
(resp. decrease), while the larger is σ2, the more wildly the stock price oscillates in time.
In Chapter 4 we introduce a generalization of the geometric Brownian motion, in which the
mean of log-return and the volatility of the stock are stochastic processes {α(t)}t≥0, {σ(t)}t≥0

(generalized geometric Brownian motion).
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Exercise 2.15 (Sol. 13). Derive the density of the geometric Brownian motion (2.14) and
use the result to show that P(S(t) = 0) = 0, i.e., a stock whose price is described by a
geometric Brownian motion cannot default.

Financial derivative

A financial derivative (or derivative security) is a contract whose value depends on the
performance of one (or more) other asset(s), which is called the underlying asset. There
exist various types of financial derivatives, the most common being options, futures, forwards
and swaps. Financial derivatives can be traded over the counter (OTC), or in a regularized
exchange market. In the former case, the contract is stipulated between two individual
investors, who agree upon the conditions and the price of the contract. In particular, the same
derivative (on the same asset, with the same parameters) can have two different prices over
the counter. Derivatives traded in the market, on the contrary, are standardized contracts.
Anyone, after a proper authorization, can make offers to buy or sell derivatives in the market,
in a way much similar to how stocks are traded. Let us see some examples of financial
derivatives (we shall introduce more in Chapter 6).

A call option is a contract between two parties, the buyer (or owner) of the call and
the seller (or writer) of the call. The contract gives to the buyer the right, but not the
obligation, to buy the underlying asset at some future time for a price agreed upon today,
which is called strike price of the call. If the buyer can exercise this option only at some
given time t = T > 0 (where t = 0 corresponds to the time at which the contract is
stipulated) then the call option is called European, while if the option can be exercised
at any time in the interval (0, T ], then the option is called American. The time T > 0 is
called maturity time, or expiration date of the call. The seller of the call is obliged to
sell the asset to the buyer (at the strike price) if the latter decides to exercise the option. If
the option to buy in the definition of a call is replaced by the option to sell, then the option
is called a put option.

In exchange for the option, the buyer must pay a premium to the seller. Suppose that the
option is a European option with strike price K, maturity time T and premium Π0 on a
stock with price S(t) at time t. In which case is it then convenient for the buyer to exercise
the call? Let us define the payoff of a European call as

Y = (S(T )−K)+ := max(0, S(T )−K) (call);

similarly for a European put we set

Y = (K − S(T ))+ (put).

Note that Y is a random variable, because it depends on the random variable S(T ). Clearly, if
Y > 0 it is more convenient for the buyer to exercise the option rather than buying/selling the
asset on the market. Note however that the real profit for the buyer is given by N(Y −Π0),
where N is the number of option contracts owned by the buyer.
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Let us introduce some further terminology. A call (resp. put) is said to be in the money at
time t if S(t) > K (resp. S(t) < K). The call (resp. put) is said to be out of the money
if S(t) < K (resp. S(t) > K). If S(t) = K, the (call or put) option is said to be at the
money at time t. The meaning of this terminology is self-explanatory.

European call and put options are examples of more general contracts called European
derivatives. Given a function g : (0,∞) → R, a standard European derivative with
pay-off Y = g(S(T )) and maturity time T > 0 is a contract that pays to its owner the
amount Y at time T > 0. Here S(T ) is the price of the underlying asset (which we take to
be a stock) at time T . The function g is called pay-off function of the derivative, while
Y (t) = g(S(t)) is called intrinsic value of the derivative. The term “European” refers to
the fact that the contract cannot be exercised before time T , while the term “standard”
refers to the fact that the pay-off depends only on the price of the underlying at time T .
The pay-off of non-standard (or exotic) European derivatives depends on the path of the
asset price during the interval [0, T ]. For example, the pay-off of an Asian call is given by

Y = ( 1
T

∫ T
0
S(t) dt−K)+.

The price at time t of a European derivative (standard or not) with pay-off Y and expiration
date T will be denoted by ΠY (t). Hence {ΠY (t)}t∈[0,T ] is a stochastic process.

A standard American derivative with pay-off function g is a contract which can be
exercised at any time t ∈ (0, T ] prior or equal to its maturity and that, upon exercise, pays
the amount g(S(t)) (i.e., the intrinsic value) to the holder of the derivative. Non-standard
American derivatives are defined similarly as the European ones but with the further option
of earlier exercise. In these notes we are mostly concerned with European derivatives, but
in Section 6.10 we also discuss briefly some properties of American call/put options.

Portfolio

The portfolio of an investor is the set of all assets in which the investor is trading. Mathe-
matically it is described by a collection of N stochastic processes

{h1(t)}t≥0, {h2(t)}t≥0, . . . , {hN(t)}t≥0,

where hk(t) represents the number of shares of the asset k at time t in the investor portfolio.
If hk(t) is positive, resp. negative, the investor has a long, resp. short, position on the asset
k at time t. If Πk(t) denotes the value of the asset k at time t, then {Πk(t)}t≥0 is a stochastic
process; the portfolio value is the stochastic process {V (t)}t≥0 given by

V (t) =
N∑
k=1

hk(t)Πk(t).

Remark 2.8. For modeling purposes, it is convenient to assume that an investor can trade
any fraction of shares of the assets, i.e., hk(t) : Ω→ R, rather than hk(t) : Ω→ Z.
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A portfolio process is said to be self-financing in the interval [0, T ] if no cash is ever added
or withdrawn from the portfolio during the interval [0, T ]. In particular, in a self-financing
portfolio, buying more shares of one asset is only possible by selling shares of another asset
for an equivalent value. The owner of a self-financing portfolio makes a profit in the time
interval [0, T ] if V (T ) > V (0), while if V (T ) < V (0) the investor incurs in a loss. We now
introduce the important definition of arbitrage portfolio.

Definition 2.17. A self-financing portfolio process in the interval [0, T ] is said to be an
arbitrage portfolio if its value {V (t)}t∈[0,T ] satisfies the following properties:

(i) V (0) = 0 almost surely;

(ii) V (T ) ≥ 0 almost surely;

(iii) P(V (T ) > 0) > 0.

Hence a self-financing arbitrage portfolio is a risk-free investment in the interval [0, T ] which
requires no initial wealth and with a positive probability to give profit. We remark that the
arbitrage property depends on the probability measure P. However, it is clear that if two
measures P and P̃ are equivalent, then the arbitrage property is satisfied with respect to P if
and only if it is satisfied with respect to P̃. The guiding principle to devise theoretical models
for asset prices in financial mathematics is to ensure that one cannot set-up an arbitrage
portfolio by investing on these assets, in which case the market is said to be arbitrage-free.

We now show in an arbitrage free market there holds ΠY (T ) = Y , i.e., there exist no offers to
buy or sell a derivative for less or more than Y at the time of maturity. In fact, if a derivative
is sold for ΠY (T ) < Y “just before” it expires at time T , then buyer would make the sure
profit Y − ΠY (T ) at time T . Conversely, if a derivative is sold “just before” maturity for
more than Y , then the seller will make the sure profit ΠY (T )− Y . Thus, in a arbitrage-free
market, ΠY (T ) = Y (or, more precisely, ΠY (t)→ Y , as t→ T ).

The discount process

Let {r(t)}t≥0 be a stochastic process modeling the risk-free rate of the money market.
Denote by B(t) the value at time t of a risk-free asset with value B(0) at time t = 0, that
is

B(t) = B(0) exp

(
−
∫ t

0

r(s) ds

)
. (2.15)

The stochastic process {D(t)}t≥0 given by

D(t) =
B(0)

B(t)
= exp

(
−
∫ t

0

r(s) ds

)
(2.16)

is called the discount process. If τ < t and X(t) denotes the price of an asset at time t,
the quantity D(t)X(t)/D(τ), is called the t-price of the asset discounted at time τ . When
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τ = 0 we refer to D(t)X(t)/D(0) = D(t)X(t) = X∗(t) simply as the discounted price
of the asset. For instance, the discounted (at time t = 0) price of a stock with price S(t)
at time t is given by S∗(t) = D(t)S(t) and has the following meaning: S∗(t) is the amount
that should be invested on the money market at time t = 0 in order that the value of this
investment at time t replicates the value of the stock at time t. Notice that S∗(t) < S(t)
when r(t) > 0. The discounted price of the stock measures, roughly speaking, the loss in the
stock value due to the “time-devaluation” of money expressed by the ratio B(0)/B(t).

Markets

A market in which the objects of trading are N risky assets (e.g., stocks) and M risk-free
assets in the money market is said to be “N +M dimensional”. Most of these notes focus on
the case of 1+1 dimensional markets in which we assume that the risky asset is a stock.
A portfolio process invested in this market is a stochastic process {hS(t), hB(t)}t≥0, where
hS(t) is the number of shares of the stock and hB(t) the number of shares of the risk-free
asset in the portfolio at time t. The value of such portfolio is given by

V (t) = hS(t)S(t) + hB(t)B(t),

where S(t) is the price of the stock (given for instance by (2.14)), while B(t) is the value at
time t of the risk-free asset, which is given by (2.15).
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Chapter 3

Expectation

Throughout this chapter we assume that (Ω,F , {F(t)}t≥0,P) is a given filtered probability
space.

3.1 Expectation and variance of random variables

Suppose that we want to estimate the value of a random variable X before the experiment
has been performed. What is a reasonable definition for our “estimate” of X? Let us first
assume that X is a simple random variable of the form

X =
N∑
k=1

akIAk ,

for some finite partition {Ak}k=1,...,N of Ω and real distinct numbers a1, . . . , aN . In this case,
it is natural to define the expected value (or expectation) of X as

E[X] =
N∑
k=1

akP(Ak) =
N∑
k=1

akP(X = ak).

That is to say, E[X] is a weighted average of all the possible values attainable by X, in
which each value is weighted by its probability of occurrence. This definition applies also for
N =∞ (i.e., for discrete random variables) provided of course the infinite series converges.
For instance, if X ∈ P(µ) we have

E[X] =
∞∑
k=0

kP(X = k) =
∞∑
k=0

k
µke−µ

k!

= e−µ
∞∑
k=1

µk

(k − 1)!
= e−µ

∞∑
r=0

µr+1

r!
= e−µµ

∞∑
r=0

µr

r!
= µ.
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Exercise 3.1 (Sol. 14). Compute the expectation of binomial variables.

Now let X be a non-negative random variable and consider the sequence {sXn }n∈N of simple
functions defined in Theorem 2.2. Recall that sXn converges pointwise to X as n→∞, i.e.,
sXn (ω)→ X(ω), for all ω ∈ Ω (see Exercise 2.5). Since

E[sXn ] =
n2n−1∑
k=1

k

2n
P(

k

2n
≤ X <

k + 1

2n
) + nP(X ≥ n), (3.1)

it is natural to introduce the following definition.

Definition 3.1. Let X : Ω → [0,∞) be a non-negative random variable. We define the
expectation of X as

E[X] = lim
n→∞

n2n−1∑
k=1

k

2n
P(

k

2n
≤ X <

k + 1

2n
) + nP(X ≥ n), (3.2)

i.e., E[X] = limn→∞ E[sXn ], where sX1 , s
X
2 , . . . is the sequence of simple functions converging

pointwise to X and defined in Theorem 2.2.

We remark that the limit in (3.2) exists, because (3.1) is an increasing sequence (see next
exercise), although this limit could be infinity. When the limit is finite we say that X has
finite expectation. This happens for instance when X is bounded, i.e., 0 ≤ X ≤ C a.s., for
some positive constant C.

Exercise 3.2. Show that E[sXn ] is increasing in n ∈ N. Show that the limit (3.2) is finite
when the non-negative random variable X is bounded.

Remark 3.1 (Monotone convergence theorem). It can be shown that that the limit (3.2) is
the same along any non-decreasing sequence of non-negative random variables that converge
pointwise to X, hence we can use any such sequence to define the expectation of a non-
negative random variable. This follows by the monotone convergence theorem, whose
precise statement is the following: IfX1, X2, , . . . is a non-decreasing sequence of non-negative
random variables such that Xn → X pointiwise a.s., then E[Xn]→ E[X].

Remark 3.2 (Dominated convergence theorem). The sequence of simple random variables
used to define the expectation of a non-negative random variable need not be non-decreasing
either. This follows by the dominated convergence theorem, whose precise statement
is the following: if X1, X2, . . . is a sequence of non-negative random variables such that
Xn → X, as n → ∞, pointwise a.s., and supnXn ≤ Y for some non-negative random
variable Y with finite expectation, then limn→∞ E[Xn] = E[X].

Next we extend the definition of expectation to general random variables. For this purpose
we use that every random variable X : Ω→ R can be written as

X = X+ −X−,
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where
X+ = max(0, X), X− = −min(X, 0)

are respectively the positive and negative part of X. Since X± are non-negative random
variables, then their expectation is given as in Definition 3.1.

Definition 3.2. Let X : Ω → R be a random variable and assume that at least one of the
random variables X+, X− has finite expectation. Then we define the expectation of X as

E[X] = E[X+]− E[X−].

If X± have both finite expectation, we say that X has finite expectation or that it is an
integrable random variable. The set of all integrable random variables on Ω will be denoted
by L1(Ω), or by L1(Ω,P) if we want to specify the probability measure.

Remark 3.3 (Notation). Of course the expectation of a random variable depends on the

probability measure. If another probability measure P̃ is defined on the σ-algebra of events
(not necessarily equivalent to P), we denote the expectation of X in P̃ by Ẽ[X].

Remark 3.4 (Expectation=Lebesgue integral). The expectation of a random variable X
with respect to the probability measure P is also called the Lebesgue integral of X over Ω
in the measure P and denoted by

E[X] =

∫
Ω

X(ω)dP(ω).

We shall not use this notation.

The following theorem collects some useful properties of the expectation:

Theorem 3.1. Let X, Y : Ω→ R be integrable random variables. Then the following holds:

(i) Linearity: For all α, β ∈ R, E[αX + βY ] = αE[X] + βE[Y ];

(ii) If X ≤ Y a.s. then E[X] ≤ E[Y ];

(iii) If X ≥ 0 a.s., then E[X] = 0 if and only if X = 0 a.s.;

(iv) If X, Y are independent, then E[XY ] = E[X]E[Y ];

(v) Jensen’s inequality: If f : R→ R is measurable and convex, then f(E[X]) ≤ E[f(X)].

Sketch of the proof. The argument for the proof of (i)–(iv) is divided in three steps: STEP
1: Show that it suffices to prove the claim for non-negative random variables. STEP 2:
Prove the claim for simple functions. STEP 3: Take the limit along the sequences {sXn }n∈N,
{sYn }n∈N of simple functions converging to X, Y . Carrying out these three steps for (i), (ii)
and (iii) is simpler, so let us focus on (iv). Let X+ = f(X), X− = g(X), and similarly for
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Y , where f(s) = max(0, s), g(s) = −min(0, s). By Exercise 2.4, each of (X+, Y+), (X−, Y+),
(X+, Y−) and (X−, Y−) is a pair of independent (non-negative) random variables. Assume
that the claim is true for non-negative random variables. Then, using X = X+ − X−,
Y = Y+ − Y− and the linearity of the expectation, we find

E[XY ] = E[(X+ −X−)(Y+ − Y−)]

= E[X+Y+]− E[X−Y+]− E[X+Y−] + E[X−Y−]

= E[X+]E[Y+]− E[X−]E[Y+]− E[X+]E[Y−] + E[X−]E[Y−]

= (E[X+]− E[X−])(E[Y+]− E[Y−]) = E[X]E[Y ].

Hence it suffices to prove the claim for non-negative random variables. Next assume that
X, Y are independent simple functions and write

X =
N∑
j=1

ajIAj , Y =
M∑
k=1

bkIBk .

We have

XY =
N∑
j=1

M∑
k=1

ajbkIAjIBk =
N∑
j=1

M∑
k=1

ajbkIAj∩Bk .

Thus by linearity of the expectation, and since the events Aj, Bk are independent, for all
j, k, we have

E[XY ] =
N∑
j=1

M∑
k=1

ajbkE[IAj∩Bk ] =
N∑
j=1

M∑
k=1

ajbkP(Aj ∩Bk)

=
N∑
j=1

M∑
k=1

ajbkP(Aj)P(Bk) =
N∑
j=1

ajP(Aj)
M∑
k=1

bkP(Bk) = E[X]E[Y ].

Hence the claim holds for simple functions. It follows that

E[sXn s
Y
n ] = E[sXn ]E[sYn ].

Letting n→∞, the right hand side converges to E[X]E[Y ]. To complete the proof we have
to show that the left hand side converges to E[XY ]. This follows by applying the monotone
convergence theorem (see Remark 3.1) to the sequence Zn = sXn s

Y
n . Next we prove Jensen’s

inequality. We assume for simplicity that f is differentiable. Then it is easy to see that
for all a ∈ R the graph of f(z) lies above the graph of the straight line f ′(a)(z − a) + f(a)
tangent to f(z) at z = a. Hence

f(z) ≥ f ′(a)(z − a) + f(a).

Choosing z = X(ω) and a = E[X], we obtain that for all sample points ω ∈ Ω there holds

f(X(ω)) ≥ f ′(E[X])(X(ω)− E[X]) + f(E[X]).

41



Taking the expectation of both sides and using the monotonicity and the linearity of the
expectation we obtain

E[f(X)] ≥ f ′(E[X])(E[X]− E[X]) + f(E[X]) = f(E[X]),

which concludes the proof of Jensen’s inequality when f is differentiable (see [7] for the
general case).

As |X| = X+ +X−, a random variable X is integrable if and only if E[|X|] <∞. Hence we
have

X ∈ L1(Ω)⇔ E[X] <∞⇔ E[|X|] <∞.
The set of random variables X : Ω→ R such that |X|2 is integrable, i.e., E[|X|2] <∞, will
be denoted by L2(Ω) or L2(Ω,P).

Exercise 3.3 (Sol. 15). Prove the Schwarz inequality,

E[XY ] ≤
√
E[X2]E[Y 2], (3.3)

for all random variables X, Y ∈ L2(Ω).

Letting Y = 1 in (3.3), we find
L1(Ω) ⊂ L2(Ω).

The covariance Cov(X, Y ) of two random variables X, Y ∈ L2(Ω) is defined as

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Two random variables are said to be uncorrelated if Cov(X, Y ) = 0. By Theorem 3.1(iv),
if X, Y are independent then they are uncorrelated, but the opposite is not true in general.
Consider for example the simple random variables

X =


−1 with probability 1/3
0 with probability 1/3
1 with probability 1/3

and

Y = X2 =

{
0 with probability 1/3
1 with probability 2/3

Then X and Y are clearly not independent, but

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X3]− 0 = 0,

since E[X3] = E[X] = 0.

Definition 3.3. The variance of a random variable X ∈ L2(Ω) is given by

Var[X] = E[(X − E[X])2].
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Using the linearity of the expectation we can rewrite the definition of variance as

Var[X] = E[X2]− 2E[E[X]X] + E[X]2 = E[X2]− E[X]2 = Cov(X,X).

It follows that a random variable has zero variance if and only if X = E[X] a.s., hence we
may view Var[X] as a measure of the “randomness of X”. As a way of example, let us
compute the variance of X ∈ P(µ). We have

E[X2] =
∞∑
k=0

k2P(X = k) =
∞∑
k=0

k2µ
ke−µ

k!
= e−µ

∞∑
k=1

k

(k − 1)!
µk

= e−µ
∞∑
r=0

r + 1

r!
µr+1 = e−µµ

∞∑
r=0

µr

r!
+ µ

∞∑
r=0

rP(X = r) = µ+ µE[X] = µ+ µ2.

Hence
Var[X] = E[X2]− E[X]2 = µ+ µ2 − µ2 = µ.

Exercise 3.4. Compute the variance of binomial random variables.

Exercise 3.5 (Sol. 16). Prove the following:

1. Var[αX] = α2Var[X], for all constants α ∈ R;

2. Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y );

3. −
√

Var[X]Var[Y ] ≤ Cov(X, Y ) ≤
√

Var[X]Var[Y ]. The left (resp. right) inequality
becomes an equality if and only if there exists a negative (resp. positive) constant a0

and a real constant b0 such that Y = a0X + b0 almost surely.

By the previous exercise, Var(X + Y ) = Var(X) + Var(Y ) holds if and only if X, Y are
uncorrelated. Moreover, if we define the correlation of X, Y as

Cor(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
,

then Cor(X, Y ) ∈ [−1, 1] and |Cor(X, Y )| = 1 if and only if Y is a linear function of X.
The interpretation is the following: the closer is Cor(X, Y ) to 1 (resp. −1), the more the
variables X and Y have tendency to move in the same (resp. opposite) direction (for instance,
(Cor(X,−2X) = −1, Cor(X, 2X) = 1). An important problem in quantitative finance is to
find correlations between the price of different assets.

Exercise 3.6. Let {Mk}k∈N be a random walk (not necessarily symmetric). Compute E[Mk]
and Var[Mk], for all k ∈ N.

Exercise 3.7. Show that the function ‖ · ‖2 which maps a random variable Z to ‖Z‖2 =√
E[Z2] is a norm in L2(Ω).
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Remark 3.5 (L2-norm). The norm defined in the previous exercise is called L2 norm. It
can be shown that it is a complete norm, i.e., if {Xn}n∈N ⊂ L2(Ω) is a Cauchy sequence of
random variables in the norm L2, then there exists a random variable X ∈ L2(Ω) such that
‖Xn −X‖2 → 0 as n→∞.

Exercise 3.8 (Sol. 17). Let {Wn(t)}t≥0, n ∈ N, be the sequence of stochastic processes
defined in (2.13). Compute E[Wn(t)], Var[Wn(t)], Cov[Wn(t),Wn(s)]. Show that

Var(Wn(t))→ t, Cov(Wn(t),Wn(s))→ min(s, t), as n→ +∞.

Next we want to present a first application in finance of the theory outlined above. In
particular we establish a sufficient condition which ensures that a portfolio is not an arbitrage.

Theorem 3.2. Let a portfolio process be given with value {V (t)}t≥0. Let V ∗(t) = D(t)V (t) be

the discounted portfolio value. If there exists a measure P̃ equivalent to P such that Ẽ[V ∗(t)]
is constant (independent of t), then for all T > 0 the portfolio is not an arbitrage in the
interval [0, T ].

Proof. Assume that the portfolio is an arbitrage in some interval [0, T ]. Then V (0) = 0
almost surely; as V ∗(0) = V (0), the assumption of constant expectation in the probability

measure P̃ gives
Ẽ[V ∗(t)] = 0, for all t ≥ 0. (3.4)

Moreover P(V (T ) ≥ 0) = 1 and P(V (T ) > 0) > 0. Since P and P̃ are equivalent, we also

have P̃(V (T ) ≥ 0) = 1 and P̃(V (T ) > 0) > 0. Since the discount process is positive, we

also have P̃(V ∗(T ) ≥ 0) = 1 and P̃(V ∗(T ) > 0) > 0. However this contradicts (3.4), due to
Theorem 3.1(iii). Hence our original hypothesis that the portfolio is an arbitrage portfolio
is false.

Radon-Nikodým theorem

Theorem 3.2 will be applied in Chapter 6. To this purpose we shall need the following
characterization of equivalent probability measures.

Theorem 3.3. Given a probability measure P, the following are equivalent:

(i) P̃ is a probability measure equivalent to P;

(ii) There exists a random variable Z : Ω→ R such that Z > 0 P-almost surely, E[Z] = 1

and P̃(A) = E[ZIA], for all A ∈ F .

Moreover, assuming any of these two equivalent conditions, the random variable Z is unique
(up to a P-null set) and for all random variables X such that XZ ∈ L1(Ω,P), we have

X ∈ L1(Ω, P̃) and

Ẽ[X] = E[ZX]. (3.5)
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Proof. The implication (i) ⇒ (ii) is the Radon-Nikodým theorem, whose proof can be

found for instance in [7]. As to the implication (ii) ⇒ (i), we first observe that P̃(Ω) =

E[ZIΩ] = E[Z] = 1. Hence, to prove that P̃ is a probability measure, it remains to show
that it satisfies the countable additivity property: for all families {Ak}k∈N of disjoint events,

P̃(∪kAk) =
∑

k P̃(Ak). To prove this let

Bn = ∪nk=1Ak.

Clearly, ZIBn is an increasing sequence of random variables. Hence, by the monotone con-
vergence theorem (see Remark 3.1) we have

lim
n→∞

E[ZIBn ] = E[ZIB∞ ], B∞ = ∪∞k=1Ak,

i.e.,
lim
n→∞

P̃(Bn) = P̃(B∞). (3.6)

On the other hand, by linearity of the expectation,

P̃(Bn) = E[ZBn] = E[ZI∪nk=1Ak
] = E[Z(IA1 + · · ·+ IAn)] =

n∑
k=1

E[ZAk] =
n∑
k=1

P̃(Ak).

Hence (3.6) becomes
∞∑
k=1

P̃(Ak) = P̃(∪∞k=1Ak).

This proves that P̃ is a probability measure. To show that P and P̃ are equivalent, let A be
such that P̃(A) = 0. Since ZIA ≥ 0 almost surely, then P̃(A) = E[ZIA] = 0 is equivalent, by
Theorem 3.1(iii), to ZIA = 0 almost surely. Since Z > 0 almost surely, then this is equivalent

to IA = 0 a.s., i.e., P(A) = 0. Thus P̃(A) = 0 if and only if P(A) = 0, i.e., the probability

measures P and P̃ are equivalent. It remains to prove the identity (3.5). If X is the simple
random variable X =

∑
k akIAk , then the proof is straightforward:

Ẽ[X] =
∑
k

akP̃(Ak) =
∑
k

akE[ZIAk ] = E[Z
∑
k

akIAk ] = E[ZX].

For a general non-negative random variable X the result follows by applying (3.5) to an
increasing sequence of simple random variables converging to X and then passing to the
limit (using the monotone convergence theorem). The result for a general random variable
X : Ω → R follows by applying (3.5) to the positive and negative part of X and using the
linearity of the expectation.

Remark 3.6 (Radon-Nikodým derivative). Using the Lebesgue integral notation (see Re-
mark 3.4) we can write (3.5) as∫

Ω

X(ω)dP̃(ω) =

∫
Ω

X(ω)Z(ω)dP(ω).

45



This leads to the formal identity dP̃(ω) = Z(ω)dP(ω), or Z(ω) = dP̃(ω)
dP(ω)

, which explains why

Z is also called the Radon-Nikodým derivative of P̃ with respect to P.

An application of Theorem 3.3 is given in Exercise 3.12 below.

Computing the expectation of a random variable

Next we discuss how to compute the expectation of a random variable X. Definition 3.1 is
clearly not very useful to this purpose, unless X is a simple random variable. There exist
several methods to compute the value for E[X], some of which will be presented later in these
notes. In this section we show that the expectation and the variance of a random variable
can be computed easily when the random variable admits a density.

Theorem 3.4. Let X : Ω→ R be a random variable and g : R→ R be a measurable function
such that g(X) ∈ L1(Ω). Assume that X admits the density fX . Then

E[g(X)] =

∫
R
g(x)fX(x) dx.

In particular, the expectation and the variance of X are given by

E[X] =

∫
R
xfX(x) dx, Var[X] =

∫
R
x2fX(x) dx−

(∫
R
xfX(x) dx

)2

.

Proof. We prove the theorem under the assumption that g is a simple measurable function,
the proof for general functions g follows by a limit argument similar to the one used in the
proof of Theorem 3.1, see Theorem 1.5.2 in [26] for the details. Hence we assume

g(x) =
N∑
k=1

αkIUk(x),

for some disjoint Borel sets U1, . . . , UN ⊂ R. Thus

E[g(X)] = E
[∑

k

αkIUk(X)] =
∑
k

αkE[IUk(X)].

Let Yk = IUk(X) : Ω → R. Then Yk is the simple random variable that takes value 1 if
ω ∈ Ak and 0 if ω ∈ Ack, where Ak = {X ∈ Uk}. Thus the expectation of Yk is given by
E[Yk] = P(Ak) and so

E[g(X)] =
∑
k

αkP(X ∈ Uk) =
∑
k

αk

∫
Uk

f(x) dx =

∫
R

∑
k

αkIUk(x)f(x) dx =

∫
R
g(x)f(x) dx,

as claimed.
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For instance, if X ∈ N (m,σ2), we have

E[X] =

∫
R
xe−

(x−m)2

2σ2
dx√
2πσ2

= m,

Var[X] =

∫
R
x2e−

(x−m)2

2σ2
dx√
2πσ2

−m2 = σ2,

which explains why m is called the expectation and σ2 the variance of the normal random
variable X. Note in particular that, for a Brownian motion {W (t)}t≥0, there holds

E[W (t)−W (s)] = 0, Var[W (t)−W (s)] = |t− s|, for all s, t ≥ 0. (3.7)

Let us show that1

Cov(W (t),W (s)) = min(s, t). (3.8)

For s = t, the claim is equivalent to Var[W (t)] = t, which holds by definition of Brownian
motion (see (3.7)). For t > s we have

Cov(W (t),W (s)) = E[W (t)W (s)]− E[W (t)]E[W (s)]

= E[W (t)W (s)]

= E[(W (t)−W (s))W (s)] + E[W (s)2].

SinceW (t)−W (s) andW (s) are independent random variables, then E[(W (t)−W (s))W (s)] =
E(W (t)−W (s)]E[W (s)] = 0, and so

Cov(W (t),W (s)) = E[W (s)2] = Var[W (s)] = s = min(s, t), for t > s.

A similar argument applies for t < s.

Exercise 3.9 (Sol. 18). Let g : (0,∞)→ R be a differentiable function and let

X(t) = g(t)W (t)−
∫ t

0

g′(s)W (s) ds.

Show that

X(t) ∈ N (0,∆(t)), ∆(t) =

∫ t

0

g(s)2 ds.

HINT: Use the Riemann sum approximation of the integral.

Exercise 3.10. The moment of order n of a random variable X is the quantity µn = E[Xn],
n = 1, 2, . . . . Let X ∈ N (0, σ2). Prove that

µn =

{
0 if n is odd

1 · 3 · 5 . . . · · · · (n− 1)σn if n is even.
1Compare (3.8) with the result of Exercise 3.8.
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Exercise 3.11 (Sol. 19). Compute the expectation and the variance of exponential random
variables.

Exercise 3.12 (Sol. 20). Let X ∈ E(λ) be an exponential random variable with intensity λ.

Given λ̃ > 0, let

Z =
λ̃

λ
e−(λ̃−λ)X .

Define P̃(A) = E[ZIA], A ∈ F . Show that P̃ is a probability measure equivalent to P. Prove

that X ∈ E(λ̃) in the probability measure P̃.

Remark 3.7. Exercise 3.12 shows that one can pick a probability measure P̃ equivalent to P
such that exponential random variables in the probability P remain exponentially distributed
in the probability P̃. The extension of this result to more general random variables is
Girsanov’s theorem discussed in the next chapter.

Exercise 3.13. Compute the expectation and the variance of Cauchy distributed random
variables. Compute the expectation and the variance of Lévy distributed random variables.

Exercise 3.14. Compute the expectation and the variance of the geometric Brownian mo-
tion (2.14).

Exercise 3.15 (?). Show that the paths of the Brownian motion have unbounded linear
variation. Namely, given 0 = t0 < t1 < · · · < tn = t with tk − tk−1 = h, for all k = 1, . . . , n,
show that

E[
n∑
k=1

|W (tk)−W (tk−1)|]→∞, as n→∞.

(However, Brownian motions have finite quadratic variation, see Section 3.2).

A result similar to Theorem 3.4 can be used to compute the correlation between two random
variables that admit a joint density.

Theorem 3.5. Let X, Y : Ω → R be two random variables with joint density fX,Y : R2 →
[0,∞) and let g : R2 → R be a measurable function such that g(X, Y ) ∈ L1(Ω). Then

E[g(X, Y )] =

∫
R2

g(x, y)fX,Y (x, y) dx dy.

In particular, for X, Y ∈ L2(Ω),

Cov(X, Y ) =

∫
R2

xyfX,Y (x, y) dx dy −
∫
R
xfX(x) dx

∫
R
yfY (y) dy,

where

fX(x) =

∫
R
fX,Y (x, y) dy, fY (y) =

∫
R
fX,Y (x, y) dx

are the (marginal) densities of X and Y .
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Exercise 3.16. Show that if X1, X2 : Ω→ R are jointly normally distributed with covariant
matrix C = (Cij)i,j=1,2, then Cij = Cov(Xi, Xj).

Combining the results of Exercises 2.11 and 3.16, we see that the parameter ρ in Equa-
tion (2.10) is precisely the correlation of the two jointly normally distributed random vari-
ables X, Y . It follows by Remark 2.3 that two jointly normally distributed random variables
are independent if and only if they are uncorrelated. Recall that for general random variables,
independence implies uncorrelation, but the opposite is in general not true.

Characteristic function

In this section, and occasionally in the rest of the notes, we shall need to take the expectation
of a complex-valued random variable Z : Ω → C. Letting Z = Re(Z) + iIm(Z), the
expectation of Z is the complex number defined by

E[Z] = E[Re(Z)] + iE[Im(Z)].

Definition 3.4. Let X ∈ L1(Ω). The function θX : R→ C given by

θX(u) = E[eiuX ]

is called the characteristic function of X. The positive, real-valued function MX(u) =
E[euX ], when it exists in some neighborhood of u = 0, is called the moment-generating
function of X.

Note that if the random variable X admits the density fX , then

θX(u) =

∫
R
eiuxfX(x) dx,

i.e., the characteristic function is the inverse Fourier transform of the density. Table 3.1
contains some examples of characteristic functions.

Remark 3.8. While θX is defined for all u ∈ R, the moment-generating function of a
random variable may be defined only in a subset of the real line, or not defined at all (see
Exercise 3.17). For instance, when X ∈ E(λ) we have

MX(u) = E[euX ] = λ

∫ ∞
0

e(u−λ)x dx =

{
+∞ if u ≥ λ
(1− u/λ)−1 if u < λ

Hence MX(u) is defined (as a positive function) only for u < λ.

Exercise 3.17. Show that Cauchy random variables do not have a well-defined moment-
generating function.
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Density Characteristic function

N (m,σ2) exp(ium− 1
2
σ2u2)

E(λ) (1− iu/λ)−1

χ2(δ) (1− 2iu)−δ/2

χ2(δ, β) (1− 2iu)−δ/2 exp
(
− βu

2u+i

)

Table 3.1: Examples of characteristic functions

The characteristic function of a random variable provides a lot of information. In particular,
it determines completely the distribution function of the random variable, as shown in the
following theorem (for the proof, see [7, Sec. 9.5]).

Theorem 3.6. Let X, Y ∈ L1(Ω). Then θX = θY if and only if FX = FY . In particular,
if θX = θY and one of the two variables admits a density, then the other does too and the
densities are equal.

According to the previous theorem, if we want for instance to prove that a random variable
X is normally distributed, we may try to show that its characteristic function θX is given by
θX(u) = exp(ium− 1

2
σ2u2), see Table 3.1. Another useful property of characteristic functions

is proved in the following theorem.

Theorem 3.7. Let X1, . . . , XN ∈ L1(Ω) be independent random variables. Then

θX1+···+XN = θX1 · · · θXN .

Proof. We have

θX1+···+XN (u) = E[eiu(X1+···+XN )] = E[eiuX1eiuX2 · · · eiuXN ].

Using that the variables Y1 = eiuX1 , . . . , YN = eiuXN are independent (see Theorem 2.1) and
that the expectation of the product of independent random variables is equal to the product
of their expectations (see Theorem 3.1(iv)) we obtain

E[eiuX1eiuX2 · · · eiuXN ] = E[eiuX1 ] · · ·E[euXN ] = θX1(u) · · · θXN (u),

which concludes the proof.

As an application of the previous theorem, we now show that if X1, . . . XN are indepen-
dent normally distributed random variables with expectations m1, . . . ,mN and variances
σ2

1, . . . , σ
2
N , then the random variable

Y = X1 + · · ·+XN
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is normally distributed with mean m and variance σ2 given by

m = m1 + · · ·+mN , σ2 = σ2
1 + · · ·+ σ2

N . (3.9)

In fact,

θX1+···+XN (u) = θX1(u) · · · θXN (u) = eium1− 1
2
σ2

1u
2 · · · eiumN− 1

2
σ2
Nu

2

= eium−
1
2
σ2u2

.

The right hand side of the previous equation is the characteristic function of a normal
variable with expectation m and variance σ2 given by (3.9). Thus Theorem 3.6 implies that
X1 + · · ·+XN ∈ N (m,σ2).

Exercise 3.18 (?). Let X1 ∈ N (m1, σ
2
1), . . . , XN ∈ N (mN , σ

2
N), N ≥ 2, be independent.

Show that Y =
∑N

k=1(Xk/σk)
2 ∈ χ2(N, β) where β = (m1/σ1)2 + · · · + (mN/σN)2 (compare

with Exercise 2.8).

Exercise 3.19. Let X, Y ∈ N (0, 1) be independent and jointly normally distributed. Show
that the random variable Z defined by

Z =

{
Y/X for X 6= 0,

0 otherwise

is Cauchy distributed.

In a similar fashion, we define the characteristic function of the vector-valued random variable
X = (X1, . . . , Xn) as θX : Rn → C,

θX(u1, . . . , un) = E[eu1X1+u2X2+···+unXn ].

For instance, it can be shown that two random variables X1, X2 are jointly normal with
mean m = (m1 m2) and covariance matrix C = (Cij)i,j=1,2 if and only if the characteristic
function of X = (X1, X2) is given by

θX(u1, u2) = eimu−
1
2
uTC u, u =

(
u1

u2

)
.

Exercise 3.20 (?). Let X1, X2 ∈ N (0, 1) be independent and define

Y1 = aX1 + bX2, Y2 = cX1 + dX2,

for some constants a, b, c, d ∈ R. Assume that the matrix

A =

(
a b
c d

)
is invertible. Show that Y1, Y2 are jointly normally distributed with zero mean and covariant
matrix C = AAT .
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Exercise 3.21. Let {W (t)}t≥0 be a Brownian motion and t1 < t2. Show that W (t1), W (t2)
are jointly normally distributed with zero mean and covariance matrix

C =

(
t1 t1
t1 t2

)
.

Exercise 3.22. Let X, Y ∈ L1(Ω) be independent random variables with densities fX , fY .
Show that X + Y has the density

fX+Y (x) =

∫
R
fX(x− y)fY (y) dy.

Remark: The right hand side of the previous identity defines the convolution product of
the functions fX , fY .

The characteristic function is also very useful to establish whether two random variables are
independent, as shown in the following exercise.

Exercise 3.23. Let X, Y ∈ L1(Ω) and define their joint characteristic function as

θX,Y (u, v) = E[eiuX+ivY ], u, v ∈ R.

Show that X, Y are independent if and only if θX,Y (u, v) = θX(u)θY (v).

3.2 Quadratic variation of stochastic processes

We continue this chapter by discussing the important concept of quadratic variation. We
introduce this concept to measure how “wild” a stochastic process oscillates in time, which
in financial mathematics is a measure of the volatility of an asset price.

Let {X(t)}t≥0 be a stochastic process. A partition of the interval [0, T ] is a set of points
Π = {t0, t1, . . . tm} such that

0 = t0 < t1 < t2 < · · · < tm = T.

The size of the partition is given by

‖Π‖ = max
j=0,...,m−1

(tj+1 − tj).

To measure the amount of oscillations of {X(t)}t≥0 in the interval [0, T ] along the partition
Π, we compute

QΠ(ω) =
m−1∑
j=0

(X(tj+1, ω)−X(tj, ω))2.

QΠ is a random variable and it depends on the partition.

52



To define the quadratic variation of the stochastic process {X(t)}t≥0, we compute QΠn along
a sequence {Πn}n∈N of partitions to the interval [0, T ] such that ‖Πn‖ → 0 as n → ∞ and
then we take the limit of QΠn as n→∞. Since {QΠn}n∈N is a sequence of random variables,
there are several ways to define its limit as n → ∞. The precise definition that we adopt
is that of L2-quadratic variation, in which the limit is taken in the norm ‖ · ‖2 defined in
Exercise 3.5.

Definition 3.5. We say that the stochastic process {X(t)}t≥0 has L2-quadratic variation
[X,X](T ) in the interval [0, T ] along the sequence of partitions {Πn}n∈N if

lim
n→∞

E

m(n)−1∑
j=0

(X(t
(n)
j+1)−X(t

(n)
j ))2 − [X,X](T )

2 = 0,

where m(n) + 1 is the number of points in the partition Πn = {t0, t(n)
1 , t

(n)
2 , . . . , t

(n)
m(n)−1, T}.

Remark 3.9. If the limit in the previous definition does not exist, the quadratic variation
cannot be defined as we did (an alternative definition is possible, but we shall not need it).

The quadratic variation is a random variable that depends in general on the sequence of
partitions of the interval [0, T ] along which it is computed, although this is not reflected in
our notation [X,X](T ). However for several important examples of stochastic processes—
and in particular for all applications considered in these notes—the quadratic variation is
independent of the sequence of partitions. To distinguish this important special case, we
shall use the following (standard) notation:

dX(t)dX(t) = q(t)dt,

to indicate that the quadratic variation of the stochastic process {X(t)}t≥0 in any interval
[0, T ] is given by

[X,X](T ) =

∫ T

0

q(t) dt

independently from the sequence of partitions of the interval [0, T ] along which it is computed.
Here {q(t)}t≥0 is a stochastic process called rate of quadratic variation of {X(t)}t≥0 and
which measures how fast quadratic variation accumulates in time.

Now we show that if the paths of the stochastic process {X(t)}t≥0 are sufficiently regular,
then its quadratic variation is zero along any sequence of partitions.

Theorem 3.8. Assume that the paths of the stochastic process {X(t)}t≥0 satisfy

P(|X(t)−X(s)| ≤ C|t− s|γ) = 1, (3.10)

for all t, s ≥ 0 and for some positive constants C > 0, γ > 1/2. Then

dX(t)dX(t) = 0.
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Proof. We have

E

m(n)−1∑
j=0

(X(t
(n)
j+1)−X(t

(n)
j ))2

2 ≤ C4E

m(n)−1∑
j=0

(t
(n)
j+1 − t(n)

j )2γ

2
= C4E

m(n)−1∑
j=0

(t
(n)
j+1 − t(n)

j )2γ−1(t
(n)
j+1 − t(n)

j )

2 .
Now we use that t

(n)
j+1 − t(n)

j ≤ ‖Πn‖ and
∑

j(t
(n)
j+1 − t(n)

j ) = T , so that

E

m(n)−1∑
j=0

(X(t
(n)
j+1)−X(t

(n)
j ))2

2 ≤ (C2‖Πn‖2γ−1T
)2 → 0, as ‖Πn‖ → 0.

As a special important case we have that

dtdt = 0. (3.11)

Next we compute the quadratic variation of Brownian motions.

Theorem 3.9. For a Brownian motion {W (t)}t≥0 there holds

dW (t)dW (t) = dt. (3.12)

Proof. Let

QΠn(ω) =

m(n)−1∑
j=0

(W (t
(n)
j+1, ω)−W (t

(n)
j , ω))2,

where we recall that m(n) + 1 is the number of points in the partition Πn of [0, T ]. We
compute

E[(QΠn − T )2] = E[Q2
Πn ] + T 2 − 2TE[QΠn ].

But

E[QΠn ] =

m(n)−1∑
j=0

E[(W (t
(n)
j+1)−W (t

(n)
j ))2] =

m(n)−1∑
j=0

Var[W (t
(n)
j+1)−W (t

(n)
j )]

=

m(n)−1∑
j=0

(t
(n)
j+1 − t(n)

j ) = T.

Hence we have to prove that
lim
‖Πn‖→0

E[Q2
Πn ]− T 2 = 0,
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or equivalently (as we have just proved that E[QΠn ] = T ),

lim
‖Πn‖→0

Var(QΠn) = 0. (3.13)

Since the increments of a Brownian motion are independent, we have

Var(QΠn) =

m(n)−1∑
j=0

Var[(W (t
(n)
j+1)−W (t

(n)
j ))2] =

m(n)−1∑
j=0

E[(W (t
(n)
j+1)−W (t

(n)
j ))4]

−
m(n)−1∑
j=0

E[(W (t
(n)
j+1)−W (t

(n)
j ))2]2

Now we use that

E[(W (t
(n)
j+1)−W (t

(n)
j ))2] = Var[W (t

(n)
j+1)−W (t

(n)
j )] = t

(n)
j+1 − t(n)

j ,

and, as it follows by Exercise 3.10,

E[(W (t
(n)
j+1)−W (t

(n)
j ))4] = 3(t

(n)
j+1 − t(n)

j )2.

We conclude that

Var[QΠn ] = 2

m(n)−1∑
j=0

(t
(n)
j+1 − t(n)

j )2 ≤ 2‖Πn‖T → 0, as ‖Πn‖ → 0,

which proves (3.13) and thus the theorem.

Remark 3.10 (No-where differentiability of Brownian motions). Combining Theorem 3.9
and Theorem 3.8, we conclude that the paths of a Brownian motion {W (t)}t≥0 cannot
satisfy the regularity condition (3.10). In fact, while the paths of a Brownian motion are a.s.
continuous by definition, they turn out to be no-where differentiable, in the sense that
the event {ω ∈ Ω : γωW ∈ C1} is a null set. A proof of this can be found for instance in [9].

Finally we need to consider a slight generalization of the concept of quadratic variation.

Definition 3.6. We say that two stochastic processes {X1(t)}t≥0 and {X2(t)}t≥0 have L2-
cross variation [X1, X2](T ) in the interval [0, T ] along the sequence of partitions {Πn}n∈N,
if

lim
n→∞

E

m(n)−1∑
j=0

(X1(t
(n)
j+1)−X1(t

(n)
j ))(X2(t

(n)
j+1)−X2(t

(n)
j ))− [X1, X2](T )

2 = 0,

where m(n) + 1 is the number of points in the partition Πn.
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As for the quadratic variation of a stochastic process, we use a special notation to express that
the cross variation of two stochastic processes is independent of the sequence of partitions
along which it is computed. Namely, we write

dX1(t)dX2(t) = ξ(t) dt,

to indicate that the cross variation [X1, X2](T ) equals
∫ T

0
ξ(t) dt along any sequence of par-

titions {Πn}n∈N of the interval [0, T ]. The following generalization of Theorem 3.8 is easily
established.

Theorem 3.10. Assume that the paths of the stochastic processes {X1(t)}t≥0, {X2(t)}t≥0

satisfy

P(|X1(t)−X1(s)| ≤ C|t− s|γ) = 1, P(|X2(t)−X2(s)| ≤ C|t− s|λ) = 1,

for all s, t ≥ 0 and some positive constants C, γ, λ such that γ+λ > 1/2. Then dX1(t)dX2(t) =
0.

Exercise 3.24. Prove the theorem.

As a special case we find that
dW (t)dt = 0. (3.14)

It is important to memorize the identities (3.11), (3.12) and (3.14), as they will be used
several times in the following chapters.

Exercise 3.25 (?). Let {W1(t)}t≥0, {W2(t)}t≥0 be two independent Brownian motions. Use
the definition of cross variation to show that that dW1(t)dW2(t) = 0.

3.3 Conditional expectation

Recall that the expectation value E[X] is an estimate on the average value of the random
variable X. This estimate does not depend on the σ-algebra F , nor on any sub-σ-algebra
thereof. However, if some information is known in the form of a σ-algebra G, then one
expects to be able to improve the estimate on the value of X. To quantify this we introduce
the definition of “expected value of X given G”, or conditional expectation, which we denote
by E[X|G]. We want the conditional expectation to verify the following properties:

(i) If X is G-measurable, then it should hold that E[X|G] = X, because the information
provided by G is sufficient to determine X;

(ii) If X is independent of G, then E[X|G] = E[X], because the occurrence of the events
in G does not effect the probability distribution of X;
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Property (i) already indicates that E[X|G] is a random variable. To begin with we define
the conditional expectation of a random variable X with respect to an event A ∈ F . Let’s
assume first that X is the simple random variable

X =
N∑
k=1

akIAk .

Let B ∈ F : P(B) > 0 and P(Ak|B) = P(Ak∩B)
P(B)

be the conditional probability of Ak given B,
see Definition 1.6. It is natural to define the conditional expectation of X given the event B
as

E[X|B] =
N∑
k=1

akP(Ak|B).

Moreover, since

XIB =
N∑
k=1

akIAkIB =
N∑
k=1

akIAk∩B,

we also have the identity E[X|B] = E[XIB ]
P(B)

. We use the latter identity to define the conditional
expectation given B of general random variables.

Definition 3.7. Let X ∈ L1(Ω) and B ∈ F . When P(B) > 0 we define the conditional
expectation of X given the event B as

E[X|B] =
E[XIB]

P(B)
.

When P(B) = 0 we define E[X|B] = E[X].

Remark 3.11. E[X|B] is a deterministic constant.. Moreover using the Lebesgue integral
notation of the expectation, see Remark 3.4, we may rewrite

E[X|B] =
1

P(B)

∫
B

X(ω)dP(ω),

which shows that the conditional expectation of a random variable X with respect to an
event B is just the average of X within B.

Next we discuss the concept of conditional expectation given a σ-algebra G. We first assume
that G is generated by a (say, finite) partition {Ak}k=1,...,M of Ω, see Exercise 1.4. Then it is
natural to define

E[X|G] =
M∑
k=1

E[X|Ak]IAk , (3.15)

which is a G-measurable simple function. It will now be shown that (3.15) satisfies the
identity

E[E[X|G]|B] = E[X|B], for all B ∈ G : P(B) > 0. (3.16)
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In fact,

P(B)E[E[X|G]|B] = E[E[X|G]IB]

= E[
M∑
k=1

E[X|Ak]IAkIB]

=
M∑
k=1

E[E[X|Ak]IAk∩B]

=
M∑
k=1

E[
E[XIAk ]
P(Ak)

IAk∩B]

=
M∑
k=1

1

P(Ak)
E[XIAk ]E[IAk∩B].

Since {A1, . . . , AM} is a partition of Ω, there exists I ⊂ {1, . . . ,M} such that B = ∪k∈IAk;
hence the above sum may be restricted to k ∈ I. Since E[IAk∩B] = E[IAk ] = P(Ak), for k ∈ I,
we obtain

P(B)E[E[X|G]|B] =
∑
k∈I

E[XIAk ] = E[XI∪k∈IAk ] = E[XIB],

by which (3.16) follows.

Exercise 3.26. What is the interpretation of (3.16)?

The conditional expectation of a random variable with respect to a general σ-algebra can
be constructed explicitly only in some special cases. However an abstract definition is still
possible, which we give after the following theorem.

Theorem 3.11. Let G be a sub-σ-algebra of F and X ∈ L1(Ω). If Y1, Y2 ∈ L1(Ω) are
G-measurable and satisfy

E[Yi|A] = E[X|A], for i = 1, 2 and all A ∈ G : P(A) > 0, (3.17)

then Y1 = Y2 a.s.

Proof. We want to prove that P(B) = 0, where

B = {ω ∈ Ω : Y1(ω) 6= Y2(ω)}.

Let B+ = {Y1 > Y2} and assume P(B+) > 0. Then, by (3.17) and Definition 3.7,

E[(Y1 − Y2)IB+ ] = E[Y1IB+ ]− E[Y2IB+ ] = P(B+)(E[Y1|B+]− E[Y2|B+]) = 0.

By Theorem 3.1(iii), this is possible if and only if (Y1 − Y2)IB+ = 0 a.s., which entails
P(B+) = 0. At the same fashion one proves that P(B−) = 0, where P(B−) = {Y1 < Y2}.
Hence P(B) = P(B+) + P(B−) = 0, as claimed.
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Theorem 3.12 (and Definition). Let X ∈ L1(Ω) and G be a sub-σ-algebra of F . There
exists a G-measurable random variable E[X|G] ∈ L1(Ω) such that

E[E[X|G]|A] = E[X|A], for all A ∈ G : P(A) > 0. (3.18)

The random variable E[X|G], which by Theorem 3.11 is uniquely defined up to a null set, is
called the conditional expectation of X given the σ-algebra G. If G is the σ-algebra
generated by a random variable Y , i.e., G = σ(Y ), we write E[X|G] = E[X|Y ].

Proof. See [26, Appendix B].

Remark 3.12. Following Remark 3.3, we denote by Ẽ[X|G] the conditional expectation of

X in a new probability measure P̃, not necessarily equivalent to P.

We conclude this section with a list of properties satisfied by the conditional expectation.

Theorem 3.13. Let X, Y ∈ L1(Ω) and G be a sub-σ-algebra of F . The following properties
hold almost surely:

(i) Linearity: E[αX + βY |G] = αE[X|G] + βE[Y |G], for all α, β ∈ R;

(ii) Monotonicity: If X ≤ Y then E[X|G] ≤ E[Y |G].

(iii) E[E[X|G]] = E[X];

(iv) If X is G-measurable, then E[X|G] = X;

(v) Tower property: If H ⊂ G is a sub-σ-algebra, then E[E[X|G]|H] = E[X|H];

(vi) If G consists of trivial events only, then E[X|G] = E[X];

(vii) If X is independent of G, then E[X|G] = E[X];

(viii) Take it out what is known: If X is G-measurable, then E[XY |G] = XE[Y |G];

(ix) Jensen’s inequality: Given f : R→ R measurable and convex there holds E[f(X)|G] ≥
f(E[X|G]);

(x) Independence Lemma: If X is G-measurable and Y is independent of G, then for any
measurable function g : R2 → [0,∞), the function f : R→ [0,∞) defined by

f(x) = E[g(x, Y )]

is measurable and moreover

E[g(X, Y )|G] = f(X).
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Proof. (i) Linearity follows easily by (3.18).

(ii) This follows easily by (3.18) and the fact that X ≤ Y ⇒ E[X|A] ≤ E[Y |A].

(iii) Replace A = Ω into (3.18).

(iv) As (3.17) is satisfied by Y1 = E[X|G] and Y2 = X, when X is G-measurable we have
E[X|G] = X a.s., by uniqueness.

(v) Using (3.18), and since H ⊂ G, the random variables E[E[X|G]|H], E[X|G] and E[X|H]
satisfy

E[E[E[X|G]|H]|A] = E[E[X|G]|A],

E[E[X|G]|A] = E[X|A],

E[E[X|H]|A] = E[X|A],

for all A ∈ H : P(A) > 0. It follows that

E[E[E[X|G]|H]|A] = E[E[X|H]|A]

and thus by uniqueness the claim follows.

(vi) This again follows at once by (3.18).

(vii) E[X|G] is uniquely characterized by the identity (3.18). As X is independent of G,
the random variables X and IA are independent, for all A ∈ G, hence E[X|A] =
E[XIA]/P(A) = E[X]E[IA]/P(A) = E[X] = E[E[X]|A]. Hence (3.18) becomes E[E[X|G]|A] =
E[E[X]|A], for all A ∈ G with positive probability, which implies the claim.

(viii)–(x) The proofs of these properties are more complicated and can be found in [7].

Remark 3.13. The meaning of (iv) and (viii) has been discussed at the beginning of the
section. The meaning of property (v) (tower property) is that upon estimating X with the
information in G and then with the information inH ⊂ G, the information contained in G�H
is lost (property (iii) follows as a special case). The meaning of (vi) is that trivial events do
not help to estimate random variables. The meaning of property (x) (independence lemma)
is that, under the stated assumptions, we can compute the random variable E[g(X, Y )|G] as
if X were a deterministic constant.

Exercise 3.27 (Sol. 21). The purpose of this exercise is to show that the conditional expec-
tation is the best estimator of a random variable when some information is given in the form
of a sub-σ-algebra. Let X ∈ L1(Ω) and G ⊆ F be a sub-σ-algebra. Define Err = X−E[X|G].
Show that E[Err] = 0 and

Var[Err] = min
Y

Var[Y −X],

where the minimum is taken with respect to all G-measurable random variables Y .
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3.4 Martingales

A martingale is a stochastic process which has no tendency to rise or fall. The precise
definition is the following:

Definition 3.8. A stochastic process {M(t)}t≥0 is called a martingale relative to the fil-
tration {F(t)}t≥0 if it is adapted to {F(t)}t≥0, M(t) ∈ L1(Ω) for all t ≥ 0, and

E[M(t)|F(s)] = M(s), for all 0 ≤ s ≤ t, (3.19)

for all t ≥ 0.

Hence a stochastic process is martingale if the information available up to time s does not
help to predict whether the stochastic process will raise or fall after time s.

Remark 3.14. If the condition (3.19) is replaced by E[M(t)|F(s)] ≥ M(s), for all 0 ≤
s ≤ t, the stochastic process {M(t)}t≥0 is called a sub-martingale. The interpretation
is that M(t) has no tendency to fall, but our expectation is that it will increase. If the
condition (3.19) is replaced by E[M(t)|F(s)] ≤ M(s), for all 0 ≤ s ≤ t, the stochastic
process {M(t)}t≥0 is called a super-martingale. The interpretation is that M(t) has not
tendency to rise, but our expectation is that it will decrease.

Remark 3.15. If we want to emphasize that the martingale property is satisfied with respect
to the probability measure P, we shall say that {M(t)}t≥0 is a P-martingale.

Since the conditional expectation of a random variable X is uniquely determined by (3.18),
then the property (3.19) is satisfied if and only if

E[M(s)IA] = E[M(t)IA], for all 0 ≤ s ≤ t and for all A ∈ F(s). (3.20)

In particular, letting A = Ω, we obtain that the expectation of a martingale is constant, i.e.,

E[M(t)] = E[M(0)], for all t ≥ 0. (3.21)

Combining the latter result with Theorem 3.2, we obtain the following sufficient condition
for no arbitrage.

Theorem 3.14. Let a portfolio be given with value {V (t)}t≥0. If there exists a measure

P̃ equivalent to P and a filtration {F(t)}t≥0 such that the discounted value of the portfolio
{V ∗(t)}t≥0 is a martingale, then for all T > 0 the portfolio is not an arbitrage in the interval
[0, T ].

Proof. The assumption is that

Ẽ[D(t)V (t)|F(s)] = D(s)V (s), for all 0 ≤ s ≤ t.

Hence, by (3.21), Ẽ[D(t)V (t)] = Ẽ[D(0)V (0)] = Ẽ[V (0)]. The result follows by Theorem 3.2.
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Theorem 3.15. Let {F(t)}t≥0 be a non-anticipating filtration for the Brownian motion
{W (t)}t≥0. Then {W (t)}t≥0 is a martingale relative to {F(t)}t≥0.

Proof. The martingale property for s = t, i.e., E[W (t)|F(t)] = W (t), follows by the fact
W (t) is F(t)-measurable, and thus Theorem 3.13(iv) applies. For 0 ≤ s < t we have

E[W (t)|F(s)] = E[(W (t)−W (s))|F(s)] + E[W (s)|F(s)],

= E[W (t)−W (s)] +W (s) = W (s),

where we used that W (t)−W (s) is independent of F(s), and so E[(W (t)−W (s))|F(s)] =
E[(W (t)−W (s))] by Theorem 3.13(vii), and the fact that W (s) is F(s)-measurable (and so
E[W (s)|F(s)] = W (s)).

Exercise 3.28 (?). Consider the stochastic process {Z(t)}t≥0 given by

Z(t) = exp
(
σW (t)− 1

2
σ2t
)
,

where {W (t)}t≥0 is a Brownian motion and σ ∈ R is a constant. Let {F(t)}t≥0 be a non-
anticipating filtration for {W (t)}t≥0. Use the definition of martingale to show that {Z(t)}t≥0

is a martingale relative to {F(t)}t≥0.

Brownian motions are martingales, have a.s. continuous paths and have quadratic variation
t in the interval [0, t], see Theorem 3.9. The following theorem shows that these three
properties characterize Brownian motions and is often used to prove that a given stochastic
process is a Brownian motion. The proof can be found in [18].

Theorem 3.16 (Lévy characterization theorem). Let {M(t)}t≥0 be a martingale relative
to a filtration {F(t)}t≥0. Assume that (i) M(0) = 0 a.s., (ii) the paths t→M(t, ω) are a.s.
continuous and (iii) dM(t)dM(t) = dt. Then {M(t)}t≥0 is a Brownian motion and {F(t)}t≥0

a non-anticipating filtration thereof.

Exercise 3.29 (Sol. 22). Let {N(t)}t≥0 be a Poisson process generating the filtration {FN(t)}t≥0.
Show that (i) {N(t)}t≥0 is a sub-martingale relative to {FN(t)}t≥0 and (ii) the so-called com-
pound Poisson process {N(t)− λt}t≥0 is a martingale relative to{FN(t)}t≥0, where λ is
the rate of the Poisson process (see Definition 2.16).

Exercise 3.30 (?). Let {F(t)}t∈[0,T ] be a filtration and {M(t)}t∈[0,T ] be a stochastic process
adapted to {F(t)}t∈[0,T ] such that M(t) ∈ L1(Ω), for all t ∈ [0, T ]. Show that {M(t)}t∈[0,T ] is
a martingale if and only if there exists a F(T )-measurable random variable H ∈ L1(Ω) such
that

M(t) = E[H|F(t)].

Now assume that {Z(t)}t≥0 is a martingale such that Z(t) > 0 a.s. and E[Z(0)] = 1. Since
martingales have constant expectation, then E[Z(t)] = 1 for all t ≥ 0. By Theorem 3.3, the

map P̃ : F → [0, 1] given by

P̃(A) = E[Z(T )IA], A ∈ F (3.22)
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is a probability measure equivalent to P, for all T > 0. Note that P̃ depends on T > 0 and
P̃ = P, for T = 0. The dependence on T is however not reflected in our notation. As usual,
the (conditional) expectation in the probability measure P̃ will be denoted Ẽ. The relation

between E and Ẽ is revealed in the following theorem.

Theorem 3.17. Let {Z(t)}t≥0 be a P-martingale relative to a filtration {F(t)}t≥0 such that

Z(t) > 0 a.s. and E[Z(0)] = 1. Let T > 0 and let P̃ be the probability measure equivalent
to P defined by (3.22). Let t ∈ [0, T ] and let X be a F(t)-measurable random variable such

that Z(t)X ∈ L1(Ω,P). Then X ∈ L1(Ω, P̃) and

Ẽ[X] = E[Z(t)X]. (3.23)

Moreover, for all 0 ≤ s ≤ t and for all random variables Y such that Z(t)Y ∈ L1(Ω,P),
there holds

Ẽ[Y |F(s)] =
1

Z(s)
E[Z(t)Y |F(s)]. (3.24)

Proof. As shown in Theorem 3.3, Ẽ[X] = E[Z(T )X]. By Theorem 3.13(iii), Theorem 3.13(viii),
and the martingale property of {Z(t)}t≥0, we have

E[Z(T )X] = E[E[Z(T )X|F(t)]] = E[XE[Z(T )|F(t)]] = E[Z(t)X].

To prove (3.24), recall that the conditional expectation is uniquely defined (up to null sets)
by (3.18). Hence the identity (3.24) follows if we show that

Ẽ[Z(s)−1E[Z(t)Y |F(s)]IA] = Ẽ[Y IA],

for all A ∈ F(s). Since IA is F(s)-measurable, and using (3.23) at t = s and with

X = Z(s)−1E[Z(t)Y IA|F(s)]

we have

Ẽ[Z(s)−1E[Z(t)Y |F(s)]IA] = Ẽ[Z(s)−1E[Z(t)Y IA|F(s)]] = E[E[Z(t)Y IA|F(s)]]

= E[Z(t)Y IA] = Ẽ[Y IA],

where in the last step we used again (3.23). The proof is complete.

3.5 Markov processes

In this section we introduce another class of stochastic processes, which will play a funda-
mental role in the following chapters.
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Definition 3.9. A stochastic process {X(t)}t≥0 is called a Markov process with respect
to the filtration {F(t)}t≥0 if it is adapted to {F(t)}t≥0 and if for every measurable function
g : R → R such that g(X(t)) ∈ L1(Ω), for all t ≥ 0, there exists a measurable function
fg : [0,∞)× [0,∞)× R→ R such that

E[g(X(t))|F(s)] = fg(t, s,X(s)), for all 0 ≤ s ≤ t. (3.25)

The function fg(t, s, ·) is called the transition probability of {X(t)}t≥0 from time s to time
t. If fg(t, s, x) = fg(t − s, 0, x), for all t ≥ s and x ∈ R, we say that the Markov process is
time-homogeneous. If there exists a measurable function p : [0,∞)× [0,∞)×R×R→ R
such that y → p(t, s, x, y) is integrable for all (t, s, x) ∈ [0,∞)× [0,∞)× R and

fg(t, s, x) =

∫
R
g(y)p(t, s, x, y) dy, for 0 ≤ s < t, (3.26)

holds for all bounded measurable functions g, then we call p the transition probability
density of the Markov process.

The interpretation is the following: for a Markov process, the conditional expectation of
g(X(t)) at the future time t depends only on the random variable X(s) at time s, and not
on the behavior of the process before or after time s.

Remark 3.16. For a time-homogeneous Markov process the transition between any two
different times is equivalent to a transition starting at s = 0.

Remark 3.17. We will say that a stochastic process is a P-Markov process if we want to
emphasize that the Markov property holds in the probability measure P.

Exercise 3.31 (Sol. 23). Show that the function fg(t, s, x) in the right hand side of (3.25)
is given by

fg(t, s, x) = E[g(X(t))|X(s) = x] for all 0 ≤ s ≤ t. (3.27)

Theorem 3.18. Let {X(t)}t≥0 be a Markov process with transition density p(t, s, x, y) rela-
tive to the filtration {F(t)}t≥0. Assume X(s) = x ∈ R is a deterministic constant and that
F(s) is the trivial σ-algebra. Then X(t) has probability density fX(t) given by

fX(t)(y) = p(t, s, x, y), for all t > s.

Proof. By definition of density, we have to show that

P(X(t) ≤ z) =

∫ z

−∞
fX(t)(y) dy,

see Definition 2.7. Letting X(s) = x into (3.25)-(3.26) we obtain

E[g(X(t))] =

∫
R
g(y)p(t, s, x, y) dy.
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Choosing g = I(−∞,z], we obtain

P(X(t) ≤ z) =

∫ z

−∞
p(t, s, x, y) dy,

for all z ∈ R, hence fX(t)(y) = p(t, s, x, y).

Theorem 3.19. Let {F(t)}t≥0 be a non-anticipating filtration for the Brownian motion
{W (t)}t≥0. Then {W (t)}t≥0 is a homogeneous Markov process relative to {F(t)}t≥0 with
transition density p(t, s, x, y) = p∗(t− s, x, y), where

p∗(τ, x, y) =
1√
2πτ

e−
(y−x)2

2τ . (3.28)

Proof. The statement holds for s = t, with fg(t, t, x) = g(x). For s < t we write

E[g(W (t))|F(s)] = E[g(W (t)−W (s) +W (s))|F(s)] = E[g̃(W (s),W (t)−W (s))|F(s)],

where g̃(x, y) = g(x + y). Since W (t) − W (s) is independent of F(s) and W (s) is F(s)
measurable, then we can apply Theorem 3.13(x). Precisely, letting

fg(t, s, x) = E[g̃(x,W (t)−W (s))],

we have
E[g(W (t))|F(s)] = fg(t, s,W (s)),

which proves that the Brownian motion is a Markov process relative to {F(t)}t≥0. To derive
the transition density we use that Y = W (t)−W (s) ∈ N (0, t− s), so that

E[g(x+ Y )] =
1√

2π(t− s)

∫
R
g(x+ y)e−

y2

2(t−s) dy =
1√

2π(t− s)

∫
R
g(y)e−

(y−x)2

2(t−s) dy,

hence

E[g(W (t))|F(s)] =

[∫
R
g(y)p∗(t− s, x, y) dy

]
x=W (s)

,

where p∗ is given by (3.28). This concludes the proof of the theorem.

Remark 3.18. According to Theorem 3.18, the random variable x + W (t) has density

fx+W (t)(y) = 1√
2πt
e−

(y−x)2

2t , for all x ∈ R and t > 0, which is of course correct because

x+W (t) ∈ N (x, t).

Exercise 3.32. Show that, when p is given by (3.28), the function

u(t, x) =

∫
R
g(y)p∗(t− s, x, y) dy (3.29)

solves the heat equation with initial datum g at time t = s, namely

∂tu =
1

2
∂2
xu, u(s, x) = g(x), t > s, x ∈ R. (3.30)
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Exercise 3.33. Let {F(t)}t≥0 be a non-anticipating filtration for the Brownian motion
{W (t)}t≥0. Show that the geometric Brownian motion

S(t) = S(0)eσW (t)+αt

is a homogeneous Markov process in the filtration {F(t)}t≥0 with transition density p(t, s, x, y) =
p∗(t− s, x, y), where

p∗(τ, x, y) =
1

σy
√

2πτ
exp

{
−(log(y/x)− ατ)2

2σ2τ

}
Iy>0. (3.31)

Show also that, when p is given by (3.31), the function v : (s,∞)× (0,∞)→ R given by

v(t, x) =

∫
R
g(y)p∗(t− s, x, y) dy (3.32)

satisfies

∂tvs − (α + σ2/2)x∂xvs −
1

2
σ2x2∂2

xvs = 0, for x > 0, t > s, (3.33a)

v(s, x) = g(x), for x > 0. (3.33b)

The correspondence between Markov processes and PDE’s alluded to in the last two exercises
is a general property which will be further discussed later in Chapter 5.
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Chapter 4

Stochastic calculus

Throughout this chapter we assume that the probability space (Ω,F ,P) and the Brownian
motion {W (t)}t≥0 are given. Moreover we denote by {F(t)}t≥0 a non-anticipating filtration
for the Brownian motion, e.g., F(t) = FW (t) (see Definition 2.15).

4.1 Introduction

So far we have studied in detail only one example of stochastic process, namely the Brownian
motion {W (t)}t≥0. In this chapter we define several other processes which are naturally
derived from {W (t)}t≥0 and which in particular are adapted to {F(t)}t≥0. To begin with, if
f : [0,∞)×R→ R is a measurable function, then we can introduce the stochastic processes

{f(t,W (t))}t≥0, {
∫ t

0

f(s,W (s)) ds}t≥0.

The integral in the second stochastic process is the standard Lebesgue integral on the s-
variable. It is well-defined for instance when f is a continuous function.

The next class of stochastic processes that we want to consider are those obtained by inte-
grating along the paths of a Brownian motion, i.e., we want to give sense to the integral

I(t) =

∫ t

0

X(s)dW (s), (4.1)

where {X(t)}t≥0 is a stochastic process adapted to {F(t)}t≥0. For our purposes we need to
give a meaning to I(t) when {X(t)}t≥0 has merely continuous paths a.s. (e.g., X(t) = W (t)).
The problem now is that the integral

∫
X(t)dg(t) is well-defined for continuous functions

X (in the Riemann-Stieltjes sense) only when g is of bounded variation. As shown in
Exercise 3.15, the paths of the Brownian motion are not of bounded variation, hence the
definition of (4.1) requires some new ideas. We begin in the next section by defining (4.1)
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when {X(t)}t≥0 is a step process. Then we shall extend the definition to stochastic processes
{X(t)}t≥0 such that

{X(t)}t≥0 is {F(t)}t≥0-adapted and E[

∫ T

0

X(t)2 dt] <∞, for all T > 0. (4.2)

We denote by L2[F(t)] the family of stochastic processes satisfying (4.2). The integral (4.1)
can be defined for more general processes than those in the class L2[F(t)], as we briefly
discuss in Theorem 4.4. In particular the stochastic integral is well-defined for adapted
processes with a.s. continuous paths.

4.2 The Itô integral of step processes

Given 0 = t0 < t1 < · · · < tk < tk+1 < . . . and a sequence X1, X2, . . . of random variables
such that, for all j ∈ N, Xj ∈ L2(Ω) and Xj is F(tj)-measurable, consider the {F(t)}t≥0-
adapted step process

∆(t) =
∞∑
j=0

∆(tj)I[tj ,tj+1), ∆(tj) = Xj. (4.3)

Note that {∆(t)}t≥0 ∈ L2[F(t)], by the assumption Xj ∈ L2(Ω), for all j ∈ N. If we had to
integrate ∆(t) along a stochastic process {Y (t)}t≥0 with differentiable paths, we would have,
assuming t ∈ (tk, tk+1),∫ t

0

∆(s)dY (s) =

∫ t

0

∞∑
j=0

∆(tj)I[tj ,tj+1)dY (t) =
k−1∑
j=0

∆(tj)

∫ tj+1

tj

dY (t) + ∆(tk)

∫ t

tk

dY (t)

=
k−1∑
j=0

∆(tj)(Y (tj+1)− Y (tj)) + ∆(tk)(Y (t)− Y (tk)).

The second line makes sense also for stochastic processes {Y (t)}t≥0 whose paths are no-
where differentiable, and thus in particular for the Brownian motion. We then introduce the
following definition.

Definition 4.1. The Itô integral over the interval [0, t] of a step process {∆(t)}t≥0 ∈
L2[F(t)] is given by

I(t) =

∫ t

0

∆(s)dW (s) =
k−1∑
j=0

∆(tj)(W (tj+1)−W (tj)) + ∆(tk)(W (t)−W (tk)),

where tk is such that tk ≤ t < tk+1.

Note that {I(t)}t≥0 is a {F (t)}t≥0-adapted stochastic process with a.s. continuous paths (in
fact, the only dependence on the t variable is through W (t)). The following theorem collects
some other important properties of the Itô integral of a step process.

68



Theorem 4.1. The Itô integral of a step process {∆(t)}t≥0 ∈ L2[F(t)] satisfies the following
properties.

(i) Linearity: for every pair of {F(t)}t≥0-adapted step processes {∆1(t)}t≥0, {∆2(t)}t≥0

and real constants c1, c2 ∈ R there holds∫ t

0

(c1∆1(s) + c2∆2(s))dW (s) = c1

∫ t

0

∆1(s)dW (s) + c2

∫ t

0

∆2(s)dW (s).

(ii) Martingale property: the stochastic process {I(t)}t≥0 is a martingale in the filtration
{F(t)}t≥0. In particular, E[I(t)] = E[I(0)] = E[0] = 0.

(iii) Quadratic variation: the quadratic variation of the stochastic process {I(t)}t≥0 on
the interval [0, T ] is independent of the sequence of partitions along which it is computed
and it is given by

[I, I](T ) =

∫ T

0

∆2(s) ds, i.e., dI(t)dI(t) = ∆(t)2dt.

(iv) Itô’s isometry: E[I2(t)] = E[
∫ t

0
∆2(s) ds], for all t ≥ 0.

Proof. The proof of (i) is straightforward. For the remaining claims, see the following theo-
rems in [26]: Theorem 4.2.1 (martingale property), Theorem 4.2.2 (Itô’s isometry), Theorem
4.2.3 (quadratic variation). Here we present the proof of (ii). First we remark that the con-
dition I(t) ∈ L1(Ω), for all t ≥ 0, follows easily by the assumption that ∆(tj) = Xj ∈ L2(Ω),
for all j ∈ N and the Schwartz inequality. Hence we have to prove that

E[I(t)|F(s)] = I(s), for all 0 ≤ s ≤ t.

There are two possibilities: (1) either s, t ∈ [tk, tk+1), for some k ∈ N, or (2) there exists
l < k such that s ∈ [tl, tl+1) and t ∈ [tk, tk+1). We assume that (2) holds, the proof in the
case (1) being simpler. We write

I(t) =
l−1∑
j=0

∆(tj)(W (tj+1)−W (tj)) + ∆(tl)(W (tl+1)−W (tl))

+
k−1∑
j=l+1

∆(tj)(W (tj+1)−W (tj)) + ∆(tk)(W (t)−W (tk))

= I(tl+1) +

∫ t

tl+1

∆(u)dW (u).

Taking the conditional expectation of I(tl+1) we obtain

E[I(tl+1)|F(s)] =
l−1∑
j=0

E[∆(tj)(W (tj+1)−W (tj))|F(s)] + E[∆(tl)(W (tl+1)−W (tl))|F(s)].
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As tl−1 < s, all random variables in the sum in the right hand side of the latter identity are
F(s)-measurable. Hence, by Theorem 3.13(iv),

l−1∑
j=0

E[∆(tj)(W (tj+1)−W (tj))|F(s)] =
l−1∑
j=0

∆(tj)(W (tj+1)−W (tj)).

Similarly,

E[∆(tl)(W (tl+1)−W (tl))|F(s)] = E[∆(tl)W (tl+1)|F(s)]− E[∆(tl)W (tl)|F(s)]

= ∆(tl)E[W (tl+1)|F(s)]−∆(tl)W (tl)

= ∆(tl)W (s)−∆(tl)W (tl),

where for the last equality we used that {W (t)}t≥0 is a martingale in the filtration {F(t)}t≥0.
Hence

E[I(tl+1)|F(s)] =
l−1∑
j=0

∆(tj)(W (tj+1)−W (tj)) + ∆(tl)(W (s)−W (tl)) = I(s).

To conclude the proof we have to show that

E[

∫ t

tl+1

∆(u)dW (u)] =
k−1∑
j=l+1

E[∆(tj)(W (tj+1)−W (tj))|F(s)]+E[∆(tk)(W (t)−W (tk))|F(s)] = 0.

To prove this, we first note that, as before,

E[∆(tj)(W (tj+1)−W (tj))|F(tj)] = ∆(tj)W (tj)−∆(tj)W (tj) = 0.

Moreover, since F(s) ⊂ F(tj), for j = l + 1, . . . , k − 1, as using Theorem 3.13(v),

E[∆(tj)(W (tj+1)−W (tj))] = E[E[∆(tj)(W (tj+1)−W (tj))|F(tj)]|F(s)] = E[0|F(s)] = 0.

At the same fashion, since F(s) ⊂ F(tk), we have

E[∆(tk)(W (t)−W (tk))|F(s)] = E[E[∆(tk)(W (t)−W (tk))|F(tk)]|F(s)] = 0.

Next we show that any stochastic process can be approximated, in a suitable sense, by step
processes.

Theorem 4.2. Let {X(t)}t≥0 ∈ L2[F(t)]. Then for all T > 0 there exists a sequence of step
processes {{∆T

n (t)}t≥0}n∈N such that ∆T
n (t) ∈ L2[F(t)] for all n ∈ N and

lim
n→∞

E[

∫ T

0

|∆T
n (t)−X(t)|2 dt] = 0. (4.4)
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Proof. For simplicity we argue under the stronger assumption that the stochastic process
{X(t)}t≥0 is bounded and with continuous paths, namely

ω → X(t, ω) is bounded in Ω, for all t ≥ 0,

t→ X(t, ω) is continuous for all ω ∈ Ω and t ≥ 0.

Now consider the partition of [0, T ] given by

0 = t
(n)
0 < t

(n)
1 < · · · < t(n)

n = T, t
(n)
j =

jT

n

and define

∆T
n (t) =

n−1∑
j=0

X(t
(n)
k )I

[t
(n)
k ,t

(n)
k+1)

, t ≥ 0,

see Figure 4.1. Let us show that {∆T
n (t)}t≥0 is adapted to {F(t)}t≥0. This is obvious for t ≥ T

t
(n)
0 = 0 t

(n)
1 t

(n)
2

t
(n)
3 t

(n)
4

X(t)

∆n(t)

t
(n)
5

Figure 4.1: A step process approximating a general stochastic process

(since the step process is identically zero for t ≥ T ). For t ∈ [0, T ) we have ∆T
n (t) = X(t

(n)
k ),

for t ∈ [t
(n)
k , t

(n)
k+1), hence

F∆T
n (t) = F

X(t
(n)
k )
⊂
(∗)
F(t

(n)
k ) ⊂

(∗∗)
F(t),
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where in (*) we used that {X(t)}t≥0 is adapted to {F(t)}t≥0 and in (**) the fact that t
(n)
k < t.

Moreover,
lim
n→∞

∆T
n (t) = X(t), for all ω ∈ Ω,

by the assumed continuity of the paths of {X(t)}t≥0. For the next step we use the dominated
convergence theorem, see Remark 3.2. Since ∆T

n (t) and X(t) are bounded on [0, T ]×Ω, there
exists a constant CT such that |∆n(t)−X(t)|2 ≤ CT . Hence we may move the limit on the
left hand side of (4.4) across the expectation and integral operators and conclude that

lim
n→∞

E[

∫ T

0

|∆T
n (t)−X(t)|2 dt] = E[

∫ T

0

lim
n→∞

|∆T
n (t)−X(t)|2 dt] = 0,

as claimed.

4.3 Itô’s integral of general stochastic processes

The Itô integral of a general stochastic process is defined as the limit of the Itô integral
along a sequence of approximating step processes (in the sense of Theorem 4.2). The precise
definition is the following.

Theorem 4.3 (and Definition). Let {X(t)}t≥0 ∈ L2[F(t)], T > 0 and {{∆T
n (t)}t≥0}n∈N

be a sequence of L2[F(t)]-step processes converging to {X(t)}t≥0 in the sense of (4.4). Let

In(T ) =

∫ T

0

∆T
n (s)dW (s).

Then there exists a random variable I(T ) such that

‖In(T )− I(T )‖2 :=
√
E[|In(T )− I(T )|2]→ 0, as n→∞.

The random variable I(T ) is independent of the sequence of L2[F(t)]-step processes con-
verging to {X(t)}t≥0. I(T ) is called Itô’s integral of {X(t)}t≥0 on the interval [0, T ] and
denoted by

I(T ) =

∫ T

0

X(s)dW (s).

Proof. By Itô’s isometry,

E[|In(T )− Im(T )|2] = E[

∫ T

0

|∆T
n (s)−∆T

m(s)|2ds].

We have

E[

∫ T

0

|∆T
n (s)−∆T

m(s)|2ds] ≤ 2E[

∫ T

0

|∆T
n (s)−X(s)|2ds]

+ 2E[

∫ T

0

|∆T
m(s)−X(s)|2ds]→ 0 as n,m→∞.
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It follows that {In(T )}n∈N is a Cauchy sequence in the norm ‖ · ‖2. As mentioned in Re-
mark 3.5, the norm ‖ · ‖2 is complete, i.e., Cauchy sequences converge. This proves the exis-
tence of I(T ) such that ‖In(T )− I(T )‖2 → 0. To prove that the limit is the same along any
sequence of L2[F(t)]-step processes converging to {X(t)}t≥0, assume that {{∆n(t)}t≥0}n∈N,

{{∆̃n(t)}t≥0}n∈N are two such sequences and denote

In(T ) =

∫ T

0

∆n(s)dW (s), Ĩn(t) =

∫ T

0

∆̃n(s)dW (s).

Then, using (i), (iv) in Theorem 4.1, we compute

E[(In(T )− Ĩn(T ))2] = E[(

∫ T

0

(∆n(s)− ∆̃n(s))dW (s))2] = E[

∫ T

0

|∆n(s)− ∆̃n(s)|2ds]

≤ 2E[

∫ T

0

|∆n(s)−X(s)|2ds] + 2E[

∫ T

0

|∆̃n(s)−X(s)|2ds]→ 0,

as n→∞,

which proves that In(T ) and Ĩn(T ) have the same limit. This completes the proof of the
theorem.

As a way of example, we compute the Itô integral of the Brownian motion. We claim that,
for all T > 0, ∫ T

0

W (t)dW (t) =
W 2(T )

2
− T

2
. (4.5)

To prove the claim, we approximate the Brownian motion by the sequence of step processes
introduced in the proof of Theorem 4.2. Hence we define

∆T
n (t) =

n−1∑
j=0

W (
jT

n
)I[ jT

n
, j+1
n
T ).

By definition

In(T ) =

∫ T

0

∆T
n (t)dW (t) =

n−1∑
j=0

W (
jT

n
)[W (

(j + 1)T

n
)−W (

jT

n
)].

To simplify the notation we let Wj = W (jT/n). Hence our goal is to prove

E[

∣∣∣∣∣
n−1∑
j=0

Wj(Wj+1 −Wj)−
W 2(T )

2
+
T

2

∣∣∣∣∣
2

]→ 0, as n→∞. (4.6)

We prove below that the sum within the expectation can be rewritten as

n−1∑
j=0

Wj(Wj+1 −Wj) =
1

2
W (T )2 − 1

2

n−1∑
j=0

(Wj+1 −Wj)
2. (4.7)
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Hence (4.6) is equivalent to

1

4
E[

∣∣∣∣∣
n−1∑
j=0

(Wj+1 −Wj)
2 − T

∣∣∣∣∣
2

]→ 0, as n→∞,

which holds true by the already proven fact that [W,W ](T ) = T , see Theorem 3.9. It remains
to establish (4.7). Since W (T ) = Wn, we have

W (T )

2
− 1

2

n−1∑
j=0

(Wj+1 −Wj)
2 =

1

2
W 2
n −

1

2

n−1∑
j=0

W 2
j+1 −

1

2

n−1∑
j=0

W 2
j +

n−1∑
j=0

WjWj+1

= −1

2

n−2∑
j=0

W 2
j+1 −

1

2

n−1∑
j=1

W 2
j +

n−1∑
j=1

WjWj+1

= −
n−1∑
j=1

W 2
j +

n−1∑
j=1

WjWj+1 =
n−1∑
j=1

Wj(Wj+1 −Wj)

=
n−1∑
j=0

Wj(Wj+1 −Wj).

The proof of (4.5) is complete.

Exercise 4.1 (?). Use the definition of Itô’s integral to prove that

TW (T ) =

∫ T

0

W (t)dt+

∫ T

0

tdW (t). (4.8)

The Itô integral can be defined under weaker assumptions on the integrand stochastic process
than those considered so far. As this fact will be important in the following sections, it is
worth to briefly discuss it. LetM2 denote the set of {F(t)}t≥0-adapted stochastic processes

{X(t)}t≥0 such that
∫ T

0
X(t)2 dt is bounded a.s. for all T > 0 (of course, L2[F(t)] ⊂M2).

Theorem 4.4 (and Definition). For every process {X(t)}t≥0 ∈M2 and T > 0 there exists
a sequence of step processes {{∆T

n (t)}t≥0}n∈N ⊂M2 such that

lim
n→∞

∫ T

0

|X(s)−∆T
n (s)|2 ds→ 0 a.s.

and ∫ T

0

∆n(t)dW (t)

converges in probability as n→∞. The limit is independent of the sequence of step processes
converging to {X(t)}t≥0 and is called the Itô integral of the process {X(t)}t≥0 in the interval
[0, T ]. If {X(t)}t≥0 ∈ L2[F(t)], the Itô integral just defined coincides (a.s.) with the one
defined in Theorem 4.3.
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For the proof of the previous theorem, see [1, Sec. 4.4]. We remark that Theorem 4.4 implies
that all {F(t)}t≥0-adapted stochastic processes with a.s. continuous paths are Itô integrable.
In fact, if {X(t)}t≥0 has a.s. continuous paths, then for all T > 0, there exists CT (ω) such
that supt∈[0,T ] |X(t, ω)| ≤ CT (ω) a.s. Hence∫ T

0

|X(s)|2 ds ≤ TC2
T (ω), a.s.

and thus Theorem 4.4 applies. The case of stochastic processes with a.s. continuous paths
covers all the applications in the following chapters, hence we shall restrict to it from now
on.

Definition 4.2. We define C0[F(t)] to be the space of all {F(t)}t≥0-adapted stochastic pro-
cesses {X(t)}t≥0 with a.s. continuous paths.

In particular, if {X(t)}t≥0, {Y (t)}t≥0 ∈ C0[F(t)], then for all continuous functions f the
process {f(t,X(t), Y (t))}t≥0 belongs to C0[F(t)] and thus it is Itô integrable.

The properties listed in Theorem 4.1 carry over to the Itô integral of a general stochastic
process. For easy reference, we rewrite these properties in the following theorem, together
with an additional property, the martingale representation theorem.

Theorem 4.5. Let {X(t)}t≥0 ∈ C0[F(t)]. Then the Itô integral

I(t) =

∫ t

0

X(s)dW (s) (4.9)

satisfies the following properties for all t ≥ 0.

(0) {I(t)}t≥0 ∈ C0[F(t)]. If {X(t)}t≥0 ∈ L2[F(t)], then {I(t)}t≥0 ∈ L2[F(t)].

(i) Linearity: For all stochastic processes {X1(t)}t≥0, {X2(t)}t≥0 ∈ C0[F(t)] and real
constants c1, c2 ∈ R there holds∫ t

0

(c1X1(s) + c2X2(s))dW (s) = c1

∫ t

0

X1(s)dW (s) + c2

∫ t

0

X2(s)dW (s).

(ii) Martingale property: If {X(t)}t≥0 ∈ L2[F(t)], the stochastic process {I(t)}t≥0 is
a martingale in the filtration {F(t)}t≥0. In particular, E[I(t)] = E[I(0)] = 0, for all
t ≥ 0.

(iii) Quadratic variation: For all T > 0, the quadratic variation of the stochastic process
{I(t)}t≥0 on the interval [0, T ] is independent of the sequence of partitions along which
it is computed and it is given by

[I, I](T ) =

∫ T

0

X2(s) ds, i.e., dI(t)dI(t) = X2(t)dt (4.10)
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(iv) Itô’s isometry: If {X(t)}t≥0 ∈ L2[F(t)], then Var[I(t)] = E[I2(t)] = E[
∫ t

0
X2(s) ds],

for all t ≥ 0.

(v) Martingale representation theorem: Let {M(t)}t≥0 ∈ L2[FW (t)], for all t ≥ 0, be
a martingale stochastic process relative to the filtration {FW (t)}t≥0. Then there exists
a stochastic process {Γ(t)}t≥0 ∈ L2[FW (t)] such that

M(t) = M(0) +

∫ t

0

Γ(s)dW (s), for all t ≥ 0.

Proof of (ii). By (iv) and the Schwartz inequality, E[I(t)] ≤
√
E[I2(t)] < ∞. According

to (3.20), it now suffices to show that

E[I(t)IA] = E[I(s)IA], for all A ∈ F(s).

Let {{In(t)}t≥0}n∈N be a sequence of Itô integrals of step processes which converges to
{I(t)}t≥0 in L2(Ω), uniformly in compact intervals of time (see Theorem 4.3). Since {In(t)}t≥0

is a martingale for each n ∈ N, see Theorem 4.1, then

E[In(t)IA] = E[In(s)IA], for all A ∈ F(s).

Hence the claim follows if we show that E[In(t)IA] → E[I(t)IA], for all t ≥ 0. Using the
Schwarz inequality (3.3), we have

E[(In(t)− I(t))IA] ≤
√
E[(In(t)− I(t))2]E[IA] ≤ ‖In(t)− I(t)‖2

√
P(A)

≤ ‖In(t)− I(t)‖2 → 0, as n→∞,

and the claim follows.

Remark 4.1. Note carefully that the martingale property (ii) requires {X(t)}t≥0 ∈ L2[F(t)].
A stochastic process in C0[F(t)] \ L2[F(t)] is not a martingale in general (although it is a
local martingale, see [1]).

Remark 4.2. For a proof of the martingale representation theorem see for instance Theorem
4.3.4 in [22]. This important result will be used in Chapter 6 to show the existence of hedging
portfolios of European derivatives, see Theorem 6.2. Note carefully that the filtration used in
the martingale representation theorem must be the one generated by the Brownian motion.

Exercise 4.2. Prove the following generalization of Itô’s isometry. Let {X(t)}t≥0, {Y (t)}t≥0 ∈
C0[F(t)]∩L2[F(t)] and denote by IX(t), IY (t) their Itô integral over the interval [0, t]. Then

Cov(IX(t), IY (t)) = E[

∫ t

0

X(s)Y (s) ds].

We conclude this section by introducing the “differential notation” for stochastic integrals,
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which means that instead of (4.9) we write

dI(t) = X(t)dW (t).

For instance, the identities (4.5), (4.8) are also expressed as

d(W 2(t)) = dt+ 2W (t)dW (t), d(tW (t)) = W (t)dt+ tdW (t).

The differential notation is very useful to provide informal proofs in stochastic calculus.
For instance, using dI(t) = X(t)dW (t), and dW (t)dW (t) = dt, see (3.12), we obtain the
following simple “proof” of Theorem 4.5(iii):

dI(t)dI(t) = X(t)dW (t)X(t)dW (t) = X2(t)dW (t)dW (t) = X2(t)dt.

4.4 Diffusion processes

Now that we know how to integrate along the paths of a Brownian motion, we can define a
new class of stochastic processes.

Definition 4.3. Given {α(t)}t≥0, {σ(t)}t≥0 ∈ C0[F(t)], the stochastic process {X(t)}t≥0 ∈
C0[F(t)] given by

X(t) = X(0) +

∫ t

0

σ(s)dW (s) +

∫ t

0

α(s) ds, t ≥ 0 (4.11)

is called diffusion process (or Itô process) with diffusion rate {σ(t)}t≥0 and drift rate
{α(t)}t≥0.

We denote diffusion processes also as

dX(t) = σ(t)dW (t) + α(t)dt. (4.12)

Note that

dX(t)dX(t) = σ2(t)dW (t)dW (t) + α2(t)dtdt+ σ(t)α(t)dW (t)dt

and thus, by (3.11), (3.12) and (3.14), we obtain

dX(t)dX(t) = σ2(t)dt,

which means that the quadratic variation of the diffusion process (4.12) is given by

[X,X](t) =

∫ t

0

σ2(s) ds, t ≥ 0.
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Thus the squared of the diffusion rate in a diffusion process is the rate of quadratic variation
of the diffusion process. Furthermore, assuming {σ(t)}t≥0 ∈ L2[F(t)], we have

E[

∫ t

0

σ(s)dW (s)] = 0.

Hence the term
∫ t

0
α(s)ds is the only one contributing to the evolution of the average of

{X(t)}t≥0, which is the reason to call α(t) the drift rate of the diffusion process (if α = 0 and
{σ(t)}t≥0 ∈ L2[F(t)], the diffusion process is a martingale, as it follows by Theorem 4.5(ii)).
Finally, the integration along the paths of the diffusion process (4.12) is defined as∫ t

0

Y (s)dX(s) :=

∫ t

0

Y (s)σ(s)dW (s) +

∫ t

0

Y (s)α(s)ds, (4.13)

for all {Y (t)}t≥0 ∈ C0[F(t)].

The product rule in stochastic calculus

Recall that if f, g : R→ R are two differentiable functions, the product (or Leibnitz) rule of
ordinary calculus states that

(fg)′ = f ′g + fg′,

and thus

fg(t) = fg(0) +

∫ t

0

(g(s)df(s) + f(s)dg(s)).

Can this rule be true in stochastic calculus when f and g are general diffusion processes with
continuous paths? The answer is clearly no. In fact, letting for instance f(t) = g(t) = W (t),
Leibnitz’s rule give us the relation d(W 2(t)) = 2W (t)dW (t), while we have seen before that
the correct formula in Itô’s calculus is d(W 2(t)) = 2W (t)dW (t) + t. The correct product
rule in Itô’s calculus is the following.

Theorem 4.6. Let {X1(t)}t≥0 and {X2(t)}t≥0 be the diffusion processes

dXi(t) = σi(t)dW (t) + αi(t)dt.

Then {X1(t)X2(t)}t≥0 is the diffusion process given by

d(X1(t)X2(t)) = X2(t)dX1(t) +X1(t)dX2(t) + σ1(t)σ2(t)dt. (4.14)

Exercise 4.3 (Sol. 24). Prove the theorem in the case that αi and σi are deterministic
constants and Xi(0) = 0, for i = 1, 2.

Recall that the correct way to interpret (4.14) is

X1(t)X2(t) = X1(0)X2(0) +

∫ t

0

X2(s)dX1(s) +

∫ t

0

X1(s)dX2(s) +

∫ t

0

σ1(s)σ2(s)ds, (4.15)
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where the integrals along the paths of the processes {Xi(t)}t≥0 are defined as in (4.13).
All integrals in (4.15) are well-defined, since the integrand stochastic processes have a.s.
continuous paths. We also remark that, since

dX1(t)dX2(t) = (σ1(t)dW (t) + α1(t)dt)(σ2(t)dW (t) + α2(t)dt)

= σ1(t)σ2(t)dW (t)dW (t) + (α1(t)σ2(t) + α2(t)σ1(t))dW (t)dt+ α1(t)α2(t)dtdt

= σ1(t)σ2(t)dt,

then we may rewrite (4.14) as

d(X1(t)X2(t)) = X2(t)dX1(t) +X1(t)dX2(t) + dX1(t)dX2(t), (4.16)

which is somehow easier to remember. Going back to the examples considered in Section 4.3,
the Itô product rule gives

d(W 2(t)) = W (t)dW (t) +W (t)dW (t) + dW (t)dW (t) = 2W (t)dW (t) + dt,

d(tW (t)) = tdW (t) +W (t)dt+ dW (t)dt = tdW (t) +W (t)dt,

in agreement with our previous calculations, see (4.5) and (4.8).

The chain rule in stochastic calculus

Next we consider the generalization to Itô’s calculus of the chain rule. Let us first recall how
the chain rule works in ordinary calculus. Assume that f : R × R → R and g : R → R are
differentiable functions. Then

d

dt
f(t, g(t)) = ∂tf(t, g(t)) + ∂xf(t, g(t))

d

dt
g(t),

by which we derive

f(t, g(t)) = f(0, g(0)) +

∫ t

0

∂sf(s, g(s)) ds+

∫ t

0

∂xf(s, g(s)) dg(s).

Can this formula be true in stochastic calculus when g is a general diffusion process with
continuous paths? The answer is clearly no. In fact by setting f(t, x) = x2, g(t) = W (t) and
t = T in the previous formula we obtain

W 2(T ) = 2

∫ T

0

W (t)dW (t), i.e.,

∫ T

0

W (t)dW (t) =
W 2(T )

2
,

while the Itô integral of the Brownian motion is given by (4.5). The correct formula for the
chain rule in stochastic calculus is given in the following theorem.
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Theorem 4.7. Let f : R×R→ R, f = f(t, x), be a C1 function such that ∂2
xf is continuous

and let {X(t)}t≥0 be the diffusion process dX(t) = σ(t)dW (t) +α(t)dt. Then Itô’s formula
holds:

df(t,X(t)) = ∂tf(t,X(t)) dt+ ∂xf(t,X(t)) dX(t) +
1

2
∂2
xf(t,X(t)) dX(t)dX(t), (4.17)

i.e.,

df(t,X(t)) = ∂tf(t,X(t)) dt+ ∂xf(t,X(t)) (σ(t)dW (t) + α(t)dt) +
1

2
∂2
xf(t,X(t))σ2(t) dt.

(4.18)

For instance, letting X(t) = W (t) and f(t, x) = x2, we obtain d(W 2(t)) = 2W (t)dW (t) +dt,
i.e., (4.5), while for f(t, x) = tx we obtain d(tW (t)) = W (t)dt + tdW (t), which is (4.8). In
fact, the proof of Theorem 4.7 is similar to proof of (4.5) and (4.8). We omit the details
(see [26, Theorem 4.4.1] for a sketch of the proof).

Recall that (4.18) is a shorthand for

f(t,X(t)) = f(0, X(0))+

∫ t

0

(∂tf+α(s)∂xf+
1

2
σ2(s)∂2

xf)(s,X(s)) ds+

∫ t

0

∂xf(s,X(s))dW (s).

All integrals in the right hand side of the previous equation are well defined, as the integrand
stochastic processes have continuous paths. We conclude with the generalization of Itô’s
formula to functions of several random variables, which again we give without proof.

Theorem 4.8. Let f : R × RN → R be a C1 function such that f = f(t, x) is twice con-
tinuously differentiable on the variable x ∈ RN . Let {X1(t)}t≥0, . . . , {XN(t)}t≥0 be diffusion
processes and let X(t) = (X1(t), . . . , XN(t)). Then there holds:

df(t,X(t)) = ∂tf(t,X(t)) dt+
N∑
i=1

∂xif(t,X(t)) dXi(t)

+
1

2

N∑
i,j=1

∂xi∂xjf(t,X(t)) dXi(t)dXj(t). (4.19)

For instance, for N = 2 and letting f(t, x1, x2) = x1x2 into (4.19), we obtain the Itô product
rule (4.16).

Remark 4.3. Let {X(t)}t≥0, {Y (t)}t≥0 be diffusion processes and define the complex-valued
stochastic process {Z(t)}t≥0 by Z(t) = X(t) + iY (t). Then any stochastic process of the
form g(t, Z(t)) can be written in the form f(t,X(t), Y (t)), where f(t, x, y) = g(t, x + iy).
Hence dg(t, Z(t)) can be computed using Theorem 4.8. An application to this formula is
given in Exercise 4.8 below.

The following exercises help to get familiar with the rules of stochastic calculus.
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Exercise 4.4 (Sol. 25). Let {W1(t)}t≥0, {W2(t)}t≥0 be Brownian motions. Assume that there
exists a constant ρ ∈ [−1, 1] such that dW1(t)dW2(t) = ρdt. Show that ρ is the correlation of
the two Brownian motions at time t. Assuming that {W1(t)}t≥0, {W2(t)}t≥0 are independent,
compute P(W1(t) > W2(s)), for all s, t > 0.

Exercise 4.5 (Sol. 26). Consider the stochastic process {X(t)}t≥0 defined by X(t) = W (t)3−
3tW (t). Show that {X(t)}t≥0 is a martingale and find a process {Γ(t)}t≥0 adapted to
{FW (t)}t≥0 such that

X(t) = X(0) +

∫ t

0

Γ(s)dW (s).

(The existence of the process {Γ(t)}t≥0 is ensured by Theorem 4.5(v).)

Exercise 4.6 (Sol. 27). Let {θ(t)}t≥0 ∈ C0[F(t)] and define the stochastic process {Z(t)}t≥0

by

Z(t) = exp

(
−
∫ t

0

θ(s)dW (s)− 1

2

∫ t

0

θ2(s)ds

)
.

Show that

Z(t) = 1−
∫ t

0

θ(s)Z(s) dW (s).

Processes of the form considered in Exercise 4.6 are fundamental in mathematical finance.
In particular, it is important to know whether {Z(t)}t≥0 is a martingale. By Exercise 4.6 and
Theorem 4.5(ii), {Z(t)}t≥0 is a martingale if θ(t)Z(t) ∈ L2[F(t)], which is however difficult
in general to verify directly. The following condition, known as Novikov’s condition, is
more useful in the applications, as it involves only the given process {θ(t)}t≥0. The proof
can be found in [17].

Theorem 4.9. Let {θ(t)}t≥0 ∈ C0[F(t)] satisfy

E[exp(
1

2

∫ T

0

θ(t)2 dt)] <∞, for all T > 0. (4.20)

Then the stochastic process {Z(t)}t≥0 given by

Z(t) = exp

(
−
∫ t

0

θ(s)dW (s)− 1

2

∫ t

0

θ2(s)ds

)
.

is a martingale relative the filtration {F(t)}t≥0.

In particular, the stochastic process {Z(t)}t≥0 is a martingale when θ(t) = const, hence we
recover the result of Exercise 3.28. The following exercise extends the result of Exercise 4.6
to the case of several independent Brownian motions.

Exercise 4.7. Let {W1(t)}t≥0, . . . , {WN(t)}t≥0 be independent Brownian motions and let
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{F(t)}t≥0 be a non-anticipating filtration for all of them. Let {θ1(t)}t≥0, . . . {θN(t)}t≥0 ∈
C0[F(t)] be adapted to {F(t)}t≥0 and set θ(t) = (θ1(t), . . . , θN(t)). Compute dZ(t), where

Z(t) = exp

(
−

N∑
j=1

∫ t

0

θj(s)dWj(s)−
1

2

∫ t

0

‖θ(s)‖2ds

)
,

where ‖θ(t)‖ =
√
θ1(t)2 + · · ·+ θN(t)2 is the Euclidean norm of θ(t).

Exercise 4.8 (?). Let A : R → R be continuous deterministic function of time. Show that
the random variable

I(t) =

∫ t

0

A(s) dW (s)

is normally distributed with zero expectation and variance
∫ t

0
A(s)2ds.

Exercise 4.9. Show that the process {W 2(t) − t}t≥0 is a martingale relative to {F(t)}t≥0,
where {W (t)}t≥0 is a Brownian motion and {F(t)}t≥0 a non-anticipating filtration thereof.
Prove also the following logically opposite statement: assume that {X(t)}t≥0 and {X2(t) −
t}t≥0 are martingales relative to {F(t)}t≥0, {X(t)}t≥0 has a.s. continuous paths and X(0) =
0 a.s.. Then {X(t)}t≥0 is a Brownian motion with non-anticipating filtration {F(t)}t≥0.

4.5 Girsanov’s theorem

In this section we assume that the non-anticipating filtration of the Brownian motion coin-
cides with {FW (t)}t≥0. Let {θ(t)}t≥0 ∈ C0[FW (t)] satisfy the Novikov condition (4.20). It
follows by Theorem 4.9 that the positive stochastic process {Z(t)}t≥0 given by

Z(t) = exp

(
−
∫ t

0

θ(s)dW (s)− 1

2

∫ t

0

θ2(s)ds

)
(4.21)

is a martingale relative to {FW (t)}t≥0. As Z(0) = 1, then E[Z(t)] = 1 for all t ≥ 0. Thus

we can use the stochastic process {Z(t)}t≥0 to generate a measure P̃ equivalent to P as we

did at the end of Section 3.4, namely P̃ : F → [0, 1] is given by

P̃(A) = E[Z(T )IA], A ∈ F , (4.22)

for some given T > 0. The relation between E and Ẽ has been determined in Theorem 3.17,
where we showed that

Ẽ[X] = E[Z(t)X], (4.23)

for all t ≥ 0 and FW (t)-measurable random variables X, and

Ẽ[Y |FW (s)] =
1

Z(s)
E[Z(t)Y |FW (s)] (4.24)

for all 0 ≤ s ≤ t and random variables Y . We can now state and sketch the proof of
Girsanov’s theorem, which is a fundamental result with deep applications in mathematical
finance.
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Theorem 4.10. Define the stochastic process {W̃ (t)}t≥0 by

W̃ (t) = W (t) +

∫ t

0

θ(s)ds, (4.25)

i.e., dW̃ (t) = dW (t)+θ(t)dt. Then {W̃ (t)}t≥0 is a P̃-Brownian motion with non-anticipating
filtration {FW (t)}t≥0.

Sketch of the proof. We prove only that {W̃ (t)}t≥0 is a P̃-Brownian motion using the Lévy

characterization of Brownian motions, see Theorem 3.16. Clearly, {W̃ (t)}t≥0 starts from zero

and has continuous paths a.s. Moreover we (formally) have dW̃ (t)dW̃ (t) = dW (t)dW (t) =

dt. Hence it remains to show that the Brownian motion {W̃ (t)}t≥0 is P̃-martingale relative
to the filtration {FW (t)}t≥0. By Itô’s product rule we have

d(W̃ (t)Z(t)) = W̃ (t)dZ(t) + Z(t)dW̃ (s) + dW̃ (t)dZ(t)

= (1− θ(t)W̃ (t))Z(t)dW (t),

that is to say,

W̃ (t)Z(t) =

∫ t

0

(1− W̃ (u)θ(u))Z(u)dW (u).

It follows by Theorem 4.5(ii) that the stochastic process {Z(t)W̃ (t)}t≥0 is a P-martingale
relative to {FW (t)}t≥0, i.e.,

E[Z(t)W̃ (t)|FW (s)] = Z(s)W̃ (s).

But according to (4.24),

E[Z(t)W̃ (t)|FW (s)] = Z(s)Ẽ[W̃ (t)|FW (s)].

Hence Ẽ[W̃ (t)|FW (s)] = W̃ (s), as claimed.

Later we shall need also the multi-dimensional version of Girsanov’s theorem. Let

{W1(t)}t≥0, . . . , {WN(t)}t≥0

be independent Brownian motions and let {FW (t)}t≥0 be their own generated filtration. Let
{θ1(t)}t≥0, . . . , {θN(t)}t≥0 ∈ C0[FW (t)] and set θ(t) = (θ1(t), . . . , θN(t)). We assume that the
Novikov condition (4.20) is satisfied (with θ(t)2 = ‖θ(t)‖2 = θ1(t)2 + · · ·+ θN(t)2). Then, as
shown in Exercise 4.7, the stochastic process {Z(t)}t≥0 given by

Z(t) = exp

(
−

N∑
j=1

∫ t

0

θj(s)dWj(s)−
1

2

∫ t

0

‖θ(s)‖2ds

)
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is a martingale relative to {FW (t)}t≥0. It follows as before that the map P̃ : F → [0, 1] given
by

P̃(A) = E[Z(T )IA], A ∈ F (4.26)

is a new probability measure equivalent to P and the following N -dimensional generalization
of Girsanov’s theorem holds.

Theorem 4.11. Define the stochastic processes {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0 by

W̃k(t) = Wk(t) +

∫ t

0

θk(s)ds, k = 1, . . . , N. (4.27)

Then {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0 are independent Brownian motions in the probability mea-

sure P̃. Moreover the filtration {FW (t)}t≥0 generated by {W1(t)}t≥0, . . . , {WN(t)}t≥0 is a

non-anticipating filtration for {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0.

4.6 Diffusion processes in financial mathematics

The purpose of this final section is to introduce some important examples of diffusion pro-
cesses in financial mathematics. The analysis of the properties of such processes is the subject
of Chapter 6.

Generalized geometric Brownian motion

Given two stochastic processes {α(t)}t≥0, {σ(t)}t≥0 ∈ C0[FW (t)], the stochastic process
{S(t)}t≥0 ∈ C0[FW (t)] given by

S(t) = S(0) exp

(∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s)

)
(4.28)

is called generalized geometric Brownian motion with mean of log-return (or log-
drift) {α(t)}t≥0 and volatility {σ(t)}t≥0. Since

d(logS(t)) = α(t) dt+ σ(t) dW (t),

then α(t) is the drift rate of the log-price while σ(t) is the diffusion rate of the log-price (i.e.,
σ(t)2 is the rate of quadratic variation of logS(t)). When α(t) = α ∈ R and σ(t) = σ > 0
are deterministic constant, the process above reduces to the geometric Brownian motion,
see (2.14). The generalized geometric Brownian motion provides a quite more general and
realistic model for the dynamics of stock prices than the simple geometric Brownian motion.
In the rest of these notes we assume that stock prices are modeled by (4.28).

Since
S(t) = S(0)eX(t), dX(t) = α(t)dt+ σ(t)dW (t),
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then Itô’s formula gives

dS(t) = S(0)eX(t)dX(t) +
1

2
S(0)eX(t)dX(t)dX(t)

= S(t)α(t)dt+ S(t)σ(t)dW (s) +
1

2
σ2(t)S(t)dt

= µ(t)S(t)dt+ σ(t)S(t)dW (t), where µ(t) = α(t) +
1

2
σ2(t),

hence a generalized geometric Brownian motion is a diffusion process in which the diffusion
and the drift depend on the process itself.

In the presence of several stocks, it is reasonable to assume that each of them introduced a
new source of randomness in the market. Thus, when dealing with N stocks, we assume the
existence of N independent Brownian motions {W1(t)}t≥0, . . . , {WN(t)}t≥0 and model the
evolution of the stocks prices {S1(t)}t≥0, . . . , {SN(t)}t≥0 by the following N-dimensional
generalized geometric Brownian motion:

dSk(t) =

(
µk(t) +

N∑
j=1

σkj(t)dWj(t)

)
Sk(t) (4.29)

for some stochastic processes {µk(t)}t≥0, {σkj(t)}t≥0 ∈ C0[FW (t)], j, k = 1, . . . , N .

Self-financing portfolios

Consider a portfolio {hS(t), hB(t)}t≥0 invested in a 1+1-dimensional market. We assume
that the price of the stock follows the generalized geometric Brownian motion

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (4.30)

while the value of the risk-free asset is given by (2.15), i.e.,

dB(t) = B(t)r(t)dt, (4.31)

where {r(t)}t≥0 is the risk-free rate of the money market. Moreover we assume that the
market parameters {µ(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 have continuous paths a.s. and are
adapted to the filtration {FW (t)}t≥0. The value of the portfolio is given by

V (t) = hS(t)S(t) + hB(t)B(t). (4.32)

We say that the portfolio is self-financing if purchasing more shares of one asset is possible
only by selling shares of the other asset for an equivalent value (and not by infusing new cash
into the portfolio), and, conversely, if any cash obtained by selling one asset is immediately
re-invested to buy shares of the other asset (and not withdrawn from the portfolio). To
translate this condition into a mathematical formula, assume that (hS, hB) is the investor
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position on the stock and the risk-free asset during the “infinitesimal” time interval [t, t+δt).
Let V −(t+ δt) be the value of this portfolio immediately before the time t+ δt at which the
position is changed, i.e.,

V −(t+ δt) = lim
u→t+δt

hSS(u) + hBB(u) = hSS(t+ δt) + hBB(t+ δt),

where we used the continuity in time of the assets price. At the time t + δt, the investor
sells/buys shares of the assets. Let (h′S, h

′
B) be the new position on the stock and the risk-free

asset. Then the value of the portfolio at time t+ δt is given by

V (t+ δt) = h′SS(t+ δt) + h′BB(t+ δt).

The difference V (t + δt)− V −(t + δt), if not zero, corresponds to cash withdrawn or added
to the portfolio as a result of the change in the position on the assets. In a self-financing
portfolio, however, this difference must be zero. We obtain

V (t+ δt)− V −(t+ δt) = 0⇔ (hS − h′S)S(t+ δt) + (hB − h′B)B(t+ δt) = 0.

Hence, the change of the portfolio value in the interval [t, t+ δt] is given by

δV = V (t+ δt)− V (t) = h′SS(t+ δt) + h′BB(t+ δt)− (hSS(t) + hBB(t)) = hSδS + hBδB,

where δS = S(t+ δt)− S(t), and δB = B(t+ δt)−B(t) are the changes of the assets value
in the interval [t, t+ δt]. This discussion leads to the following definition.

Definition 4.4. A portfolio process {hS(t), hB(t)}t≥0 invested in the 1+1-dimensional mar-
ket (4.30)-(4.31) is said to be self-financing if it is adapted to {FW (t)}t≥0 and if its value
process {V (t)}t≥0 satisfies

dV (t) = hS(t)dS(t) + hB(t)dB(t). (4.33)

Exercise 4.10 (Sol. 28). Show that given a diffusion process {hS(t)}t≥0, it is always possible
to find a diffusion process {hB(t)}t≥0 such that the portfolio process {hS(t), hB(t)}t≥0 is self-
financing.

We conclude with the important definition of hedging portfolio. Suppose that at time t a
European derivative with pay-off Y at the time of maturity T > t is sold for the price ΠY (t).
An important problem in financial mathematics is to find a strategy for how the seller should
invest the premium ΠY (t) of the derivative in order to hedge the derivative, i.e., in order to
ensure that the portfolio value of the seller at time T is enough to pay-off the buyer of the
derivative. We assume that the seller invests the premium of the derivative only on the 1+1
dimensional market consisting of the underlying stock and the risk-free asset (∆-hedging).

Definition 4.5. Consider the European derivative with pay-off Y and time of maturity T ,
where we assume that Y is FW (T )-measurable. A portfolio process {hS(t), hB(t)}t≥0 invested
in the underlying stock and the risk-free asset is said to be an hedging portfolio if

86



(i) {hS(t), hB(t)}t≥0 is adapted to {FW (t)}t≥0;

(ii) The value of the portfolio satisfies V (T ) = Y .

In Chapter 6 we shall answer the following questions:

1) What is a reasonable “fair” price for the European derivative at time t ∈ [0, T ] ?

2) What investment strategy (on the underlying stock and the risk-free asset) should the
seller undertake in order to hedge the derivative?
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Chapter 5

Stochastic differential equations and
partial differential equations

Throughout this chapter, the probability space (Ω,F ,P) is given and {F(t)}t≥0 denotes a
non-anticipating filtration for the given Brownian motion {W (t)}t≥0 (e.g., F(t) ≡ FW (t)).
Given T > 0, we denote by DT the open region in the (t, x)-plane given by

DT = {t ∈ (0, T ), x ∈ R} = (0, T )× R.
The closure and the boundary of DT are given respectively by

DT = [0, T ]× R, ∂DT = {t = 0, x ∈ R} ∪ {t = T, x ∈ R}.
Similarly we denote D+

T the open region

D+
T = {t ∈ (0, T ), x > 0} = (0, T )× (0,∞),

whose closure and boundary are given by

D+
T = [0, T ]× [0,∞), ∂D+

T = {t = 0, x ≥ 0} ∪ {t = T, x ≥ 0} ∪ {t ∈ [0, T ], x = 0}.
Moreover we shall employ the following notation for functions spaces: For D = DT or D+

T ,

� Ck(D) is the space of k-times continuously differentiable functions u : D → R;

� C1,2(D) is the space of functions u ∈ C1(D) such that ∂2
xu ∈ C(D);

� Ck(D) is the space of functions u : D → R such that u ∈ Ck(D) and the partial
derivatives of u up to order k extend continuously on D.

� Ck
c (Rn) is the space of k-times continuously differentiable functions u : Rn → R with

compact support. We also let C∞c (Rn) = ∩k∈NCk
c (Rn)

A function u : D → R is uniformly bounded if there exists CT > 0 such that |u(t, x)| ≤ CT ,
for all (t, x) ∈ D. Unless otherwise stated, all functions are real-valued.
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5.1 Stochastic differential equations

Definition 5.1. Given s ≥ 0, α, β ∈ C0([s,∞) × R), and a deterministic constant x ∈ R,
we say that a stochastic process {X(t)}t≥s is a global (strong) solution to the stochastic
differential equation (SDE)

dX(t) = α(t,X(t)) dt+ β(t,X(t)) dW (t) (5.1)

with initial value X(s, ω) = x at time t = s, if {X(t)}t≥s ∈ C0[F(t)] and

X(t) = x+

∫ t

s

α(τ,X(τ)) dτ +

∫ t

s

β(τ,X(τ)) dW (τ), t ≥ s. (5.2)

The initial value of a SDE can be a random variable instead of a deterministic constant, but
we shall not need this more general case. Note also that the integrals in the right hand side
of (5.2) are well-defined, as the integrand functions have continuous paths a.s. Of course
one needs suitable assumptions on the functions α, β to ensure that there is a (unique)
process {X(t)}t≥s satisfying (5.2). The precise statement is contained in the following global
existence and uniqueness theorem for SDE’s, which is reminiscent of the analogous result for
ordinary differential equations (Picard’s theorem).

Theorem 5.1. Assume that for each T > s there exist constants CT , DT > 0 such that α, β
satisfy

|α(t, x)|+ |β(t, x)| ≤ CT (1 + |x|), (5.3)

|α(t, x)− α(t, y)|+ |β(t, x)− β(t, y)| ≤ DT |x− y|, (5.4)

for all t ∈ [s, T ], x, y ∈ R. Then there exists a unique global solution {X(t)}t≥s of the
SDE (5.1) with initial value X(s) = x. Moreover {X(t)}t≥s ∈ L2[F(t)].

A proof of Theorem 5.1 can be found in [22, Theorem 5.2.1]. Note that the result proved
in [22] is a bit more general than the one stated above, as it covers the case of systems of
SDE’s with random initial value.

The solution of (5.1) with initial initial value x at time t = s will be also denoted by
{X(t; s, x)}t≥s. It can be shown that, under the assumptions of Theorem 5.1, the random
variable X(t; s, x) depends (a.s.) continuously on the initial conditions (s, x), see [1, Sec. 7.3].

Remark 5.1. The uniqueness statement in Theorem 5.1 is to be understood “up to null
sets”. Precisely, if {Xi(t)}t≥s, i = 1, 2 are two solutions with the same initial value x, then

P( sup
t∈[s,T ]

|X1(t)−X2(t)| > 0) = 0, for all T > s.

Remark 5.2. If the assumptions of Theorem 5.1 are satisfied only up to a fixed time T > 0,
then the solution of (5.1) could explode at some finite time in the future of T . For example,
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the stochastic process given by X(t) = log(W (t) + ex) solves (5.1) with α = − exp(−2x)/2
and β = exp(−x), but only up to the time T∗ = inf{t : W (t) = −ex} > 0. Note that T∗ is a
random variable in this example1. In these notes we are only interested in global solutions
of SDE’s, hence we require (5.3)-(5.4) to hold for all T > 0.

Remark 5.3. The growth condition (5.3) alone is sufficient to prove the existence of a global
solution to (5.1). The Lipschitz condition (5.4) is used to ensure uniqueness. By using a
more general notion of solution (weak solution2) and uniqueness (pathwise uniqueness),
one can extend Theorem 5.1 to a larger class of SDE’s, which include in particular the CIR
process considered in Section 5.3; see [24] for details.

Exercise 5.1 (Sol. 29). Within many applications in finance, the drift term α(t, x) is linear,
an so it can be written in the form

α(t, x) = a(b− x), a, b constant. (5.5)

A stochastic process {X(t)}t≥0 is called mean reverting if there exists a constant c such
that E[X(t)] → c as t → +∞. Most financial variables are required to satisfy the mean
reversion property. Assume that β satisfies the assumptions in Theorem 5.1. Prove that the
solution {X(t; s, x)}t≥0 of (5.1) with linear drift (5.5) satisfies

E[X(t; s, x)] = xe−a(t−s) + b(1− e−a(t−s)). (5.6)

Hence the process {X(t; s, x)}t≥0 is mean reverting if and only if a > 0 and in this case the
long time mean is given by c = b.

Linear SDE’s

A SDE of the form

dX(t) = (a(t) + b(t)X(t)) dt+ (γ(t) + σ(t)X(t)) dW (t), X(s) = x, (5.7)

where a, b, γ, σ are deterministic functions of time, is called a linear stochastic differential
equation. We assume that for all T > 0 there exists a constant CT such that

sup
t∈[s,T ]

(|a(t)|+ |b(t)|+ |γ(t)|+ |σ(t)|) < CT ,

and so by Theorem 5.1 there exists a unique global solution of (5.7). For example, the
geometric Brownian motion (2.14) solves the linear SDE dS(t) = µS(t) dt + σS(t) dW (t),
where µ = α + σ2/2. Another example of linear SDE in finance is the Vasicek interest rate
model, see Exercise 6.36. Linear SDE’s can be solved explicitly, as shown in the following
theorem.

1More precisely, a stopping time, see Definition 6.10.
2A weak solution of (5.1) is a stochastic process {X(t)}t≥s that satisfy (5.2) for some Brownian motion

{W (t)}t≥0 (not necessarily equal to the given one). See also Remark 5.9.
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Theorem 5.2. The solution {X(t)}t≥s of (5.7) is given by X(t) = Y (t)Z(t), where

Z(t) = exp

(∫ t

s

σ(τ)dW (τ) +

∫ t

s

(b(τ)− σ(τ)2

2
)dτ

)
,

Y (t) = x+

∫ t

s

a(τ)− σ(τ)γ(τ)

Z(τ)
dτ +

∫ t

s

γ(τ)

Z(τ)
dW (τ).

Exercise 5.2 (?). Proof Theorem 5.2.

For example, in the special case in which the functions a, b, γ, σ are constant (independent
of time), the solution of (5.7) with initial value X(0) = x at time t = 0 is

X(t) = eσW (t)+(b−σ
2

2
)t
(
x+ (a− γσ)

∫ t

0

e−σW (τ)−(b−σ
2

2
)τdτ + γ

∫ t

0

e−σW (τ)−(b−σ
2

2
)τdW (τ)

)
.

Exercise 5.3 (Sol. 30). Consider the linear SDE (5.7) with constant coefficients a, b, γ and
σ = 0, namely

dX(t) = (a+ bX(t)) dt+ γdW (t), t ≥ s, X(s) = x. (5.8)

Find the solution and show that X(t; s, x) ∈ N (m(t− s, x),∆(t− s)2), where

m(τ, x) = xebτ +
a

b
(ebτ − 1), ∆(τ)2 =

γ2

2b
(e2bτ − 1). (5.9)

Exercise 5.4 (Sol. 31). Find the solution {X(t)}t≥0 of the linear SDE

dX(t) = tX(t) dt+ dW (t), t ≥ 0

with initial value X(0) = 1. Find Cov(X(s), X(t)).

Exercise 5.5. Compute Cov(W (t), X(t)) and Cov(W 2(t), X(t)), where X(t) = X(t; s, x) is
the stochastic process in Exercise 5.3.

Markov property

It can be shown that, under the assumptions of Theorem 5.1, the solution {X(t; s, x)}t≥s
of (5.1) is a Markov process, see for instance [1, Th. 9.2.3]. Moreover when α, β in (5.1) are
time-independent, {X(t; s, x)}t≥s is a homogeneous Markov process. The fact that solutions
of SDE’s should satisfy the Markov property is quite intuitive, for, as shown in Theorem 5.1,
the solution at time t is uniquely characterized by the initial value at time s < t. Consider
for example the linear SDE (5.8). As shown in Exercise 5.3, the solution satisfies X(t; s, x) ∈
N (m(t− s, x),∆(t− s)2), where m(τ, x) and ∆(τ) are given by (5.9). By Theorem 3.18, the
transition density of the Markov process {X(t; s, x)}t≥0 is given by the pdf of the random
variable X(t; s, x), namely p(t, s, x, y) = p∗(t− s, x, y), where

p∗(τ, x, y) = e
(y−m(τ,x))2

2∆(τ)2
1√

2π∆(τ)2
. (5.10)

This example rises the question of how one can find the transition density of the solution to a
SDE (assuming that such density exists). This problem is one of the subjects of Section 5.2.
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Systems of SDE’s

Occasionally in the next chapter we need to consider systems of several SDE’s. All the
results presented in this section extend mutatis mutandis to systems of SDE’s, the difference
being merely notational. For example, given two Brownian motions {W1(t)}t≥0, {W2(t)}t≥0

and continuous functions α1, α2, β11, β12, β21, β22 : [s,∞)× R2 → R, the relations

dXi(t) = αi(t,X1(t), X2(t)) dt+
∑
j=1,2

βij(t,X1(t), X2(t))dWj(t), (5.11a)

Xi(s) = xi, i = 1, 2 (5.11b)

define a system of two SDE’s on the stochastic processes {X1(t)}t≥0, {X2(t)}t≥0 with initial
values X1(s) = x1, X2(s) = x2 at time s. As usual, the correct way to interpret the relations
above is in the integral form:

Xi(t) = xi +

∫ t

s

αi(τ,X1(τ), X2(τ)) dτ +
∑
j=1,2

∫ t

s

βij(τ,X1(τ), X2(τ))dWj(τ) i = 1, 2.

Upon defining the vector and matrix valued functions α = (α1, α2)T , β = (βij)i,j=1,2, and
letting X(t) = (X1(t), X2(t)), x = (x1, x2), W (t) = (W1(t),W2(t)), we can rewrite (5.11) as

dX(t) = α(t,X(t)) dt+ β(t,X(t)) · dW (t), X(s) = x, (5.12)

where · denotes the row by column matrix product. In fact, every system of any arbitrary
number of SDE’s can be written in the form (5.12). Theorem 5.1 continues to be valid for
systems of SDE’s, the only difference being that |α|, |β| in (5.3)-(5.4) stand now for the
vector norm of α and for the matrix norm of β.

5.2 Kolmogorov equations

Most financial variables are represented by stochastic processes solving (systems of) SDE’s.
In this context, a problem which recurs often is to find a function f such that the process
{Y (t)}t≥0 given by Y (t) = f(t,X(t)) is a martingale, where {X(t)}t≥0 is the global solution
of (5.1) with initial value X(0) = x. To this regard we have the following result.

Theorem 5.3. Let T > 0 and u : DT → R such that u ∈ C1,2(DT ) and ∂xu is uniformly
bounded. Assume that u satisfies the partial differential equation

∂tu+ α(t, x)∂xu+
1

2
β(t, x)2∂2

xu = 0 (5.13)

in the region DT . Assume also that α, β satisfy the conditions in Theorem 5.1 (with s = 0)
and let {X(t)}t≥0 be the unique global solution of (5.1) with initial value X(0) = x. The
stochastic process {u(t,X(t))}t∈[0,T ] is a martingale and satisfies

u(t,X(t)) = u(0, x) +

∫ t

0

β(τ,X(τ))∂xu(τ,X(τ)) dW (τ), t ∈ [0, T ]. (5.14)
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Proof. By Itô’s formula we find

du(t,X(t)) = (∂tu+ α∂xu+
β2

2
∂2
xu)(t,X(t)) dt+ (β∂xu)(t,X(t)) dW (t).

As u solves (5.13), then du(t,X(t)) = (β∂xu)(t,X(t)) dW (t), which is equivalent to (5.14)
(because u(0, X(0)) = u(0, x)). As ∂xu is uniformly bounded, there exists a constant CT > 0
such that |∂xu(t, x)| ≤ CT and so, due also to (5.3), the process Y (t) = β∂xu(t,X(t)) satisfies
|Y (t)| ≤ CT (1 + |X(t)|). Since {X(t)}t≥0 ∈ L2(F(t)), then {Y (t)}t≥0 ∈ L2(F(t)) as well and
so the Itô integral in the right hand side of (5.14) is a martingale. This concludes the proof
of the theorem.

Definition 5.2. The partial differential equation (PDE) (5.13) is called the backward Kol-
mogorov equation associated to the SDE (5.1). We say that u : DT → R is a strong
solution of (5.13) in the region DT if u ∈ C1,2(DT ), ∂xu is uniformly bounded and u
solves (5.13) for all (t, x) ∈ DT . Similarly, replacing DT with D+

T , one defines strong solu-
tions of (5.13) in the region D+

T

Exercise 5.6. Derive the backward Kolmogorov PDE associated to the system of SDE’s (5.11)
when the Brownian motions {W1(t)}t≥0, {W2(t)}t≥0 have constant correlation ρ ∈ [−1, 1].
HINT: Remember that dW1(t)dW2(t) = ρ dt, see Exercise 4.4.

The statement of Theorem 5.3 rises the question of whether the backward Kolmogorov
PDE admits in general strong solutions. This problem is discussed, with different degrees
of generality, in any textbook on PDE’s, see [12] for example. Here we are particularly
interested in which conditions ensure the uniqueness of the strong solution. To this regard
we have the following theorem.

Theorem 5.4. Assume that α, β ∈ C0([0,∞) × R) satisfy (5.3)-(5.4) for all T > 0 and
(t, x) ∈ [0, T ] × R and let {X(t;x, s)}t≥s be the unique global solution of (5.1) with initial
value X(s) = x. Let g ∈ C2(R), resp. g ∈ C2([0,∞)) such that g′ is uniformly bounded.
The backward Kolmogorov PDE

∂tu+ α(t, x)∂xu+
1

2
β(t, x)2∂2

xu = 0, (t, x) ∈ DT , resp. (t, x) ∈ D+
T , (5.15)

with the terminal condition

lim
t→T

u(t, x) = g(x), for all x ∈ R, resp. x > 0, (5.16)

admits at most one strong solution. Moreover, when it exists, the strong solution is given by
the Feynman-Kac formula:

uT (t, x) = E[g(X(T ; t, x))], 0 ≤ t ≤ T. (5.17)
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Proof. Let v be a strong solution and set Y (τ) = v(τ,X(τ ; t, x)), for t ≤ τ ≤ T . By Itô’s
formula and using that v solves (5.15) we find dY (τ) = β∂xv(τ,X(τ ; t, x))dW (τ). Hence

v(T,X(T ; t, x))− v(t,X(t; t, x)) =

∫ T

t

β∂xv(τ,X(τ ; t, x))dW (τ). (5.18)

Moreover v(T,X(T ; t, x)) = g(X(T ; t, x)), v(t,X(t; t, x)) = v(t, x) and in addition, by (5.3)
and the fact that of ∂xv is uniformly bounded, the Itô integral in the right hand side of (5.18)
is a martingale. Hence taking the expectation we find v(t, x) = E[g(T,X(T ; t, x))] = u(t, x).

Remark 5.4. As shown in [22, Theorem 8.1.1], the function (5.17) is indeed the strong
solution of the Kolmogorov PDE in the whole space x ∈ R under quite general conditions
on the terminal value g and the coefficients α, β. The case when the problem is posed on
the half-space x > 0 is however more subtle, see the discussion at the end of Section 5.3 for
the Kolmogorov PDE associated to the CIR process.

Remark 5.5. The conditions on the function g in Theorem 5.4 can be considerably weak-
ened. In particular the theorem still holds if one chooses g to be the pay-off function of call
(or put) options, i.e., g(x) = (x−K)+, although of course in this case the solution does not
have a smooth extension on the terminal time boundary t = T .

Remark 5.6. It is often convenient to study the backward Kolmogorov PDE with an initial,
rather than terminal, condition. To this purpose it suffices to make the change of variable
t→ T − t in (5.15). Letting ū(t, x) = u(T − t, x), we now see that ū satisfies the PDE

− ∂tū+ α(T − t, x)∂xū+
1

2
β(T − t, x)2∂2

xū = 0, (5.19)

with initial condition ū(0, x) = g(x). Note that this is the equation considered in [22,
Theorem 8.1.1]

Remark 5.7. It is possible to define other concepts of solution to the backward Kolmogorov
PDE than the strong one, e.g., weak solution, entropy solution, etc. In general these solutions
are not uniquely characterized by their terminal value. In these notes we only consider strong
solutions, which, as proved in Theorem 5.4, are uniquely determined by (5.16).

Exercise 5.7. Find the strong solution in the region D+
T of the Kolmogorov PDE associated

to the linear SDE (5.8) and with terminal condition u(T, x) = e−x. HINT: Use the ansatz
u(t, x) = e−xA(t)+B(t).

The study of the backward Kolmogorov equation is also important to establish whether the
solution of a SDE admits a transition density. In fact, it can be shown that when {X(t)}t≥s
admits a smooth transition density, then the latter coincides with the fundamental solu-
tion of the backward Kolmogorov equation. To state the result, let us denote by δ(x − y)
the δ-distribution centered in y ∈ R, i.e., the distribution satisfying∫

R
ψ(x)δ(x− y) dx = ψ(y), for all ψ ∈ C∞c (R).
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A sequence of measurable functions (gn)n∈N is said to converge to δ(x − y) in the sense of
distributions if

lim
n→∞

∫
R
gn(x)ψ(x) dx→ ψ(y), as n→∞, for all ψ ∈ C∞c (R).

Theorem 5.5. Assume the conditions in Theorem 5.1 are satisfied. Let {X(t; s, x)}t≥s be
the global solution of (5.1) with initial value X(s) = x; recall that this solution is a Markov
stochastic process.

(i) If {X(t; s, x)}t≥s admits a transition density p(t, s, x, y) which is C1 in the variable s
and C2 in the variable x, then p(t, s, x, y) solves the backward Kolmogorov PDE

∂sp+ α(s, x)∂xp+
1

2
β(s, x)2∂2

xp = 0, 0 < s < t, x ∈ R, (5.20)

with terminal value
lim
s→t

p(t, s, x, y) = δ(x− y). (5.21)

(ii) If {X(t; s, x)}t≥s admits a transition density p(t, s, x, y) which is C1 in the variable t
and C2 in the variable y then p(t, s, x, y) solves the forward Kolmogorov PDE3

∂tp+ ∂y(α(t, y)p)− 1

2
∂2
y(β(t, y)2p) = 0, t > s, x ∈ R, (5.22)

with initial value
lim
t→s

p(t, s, x, y) = δ(x− y). (5.23)

Exercise 5.8. Prove Theorem 5.5. HINT: See Exercises 6.8 and 6.9 in [26].

Remark 5.8. The solution p of the problem (5.20)-(5.21) is called the fundamental so-
lution for the backward Kolmogorov PDE, since any other solution can be reconstructed
from it. For example, for all sufficiently regular functions g, the solution of (5.15) with the
terminal condition (5.16) is given by

uT (t, x) =

∫
R
p(T, t, x, y)g(y) dy.

This can be verified either by a direct calculation or by using the interpretation of the
fundamental solution as transition density. Similarly, p is the fundamental solution of the
forward Kolmogorov equation.

Let us discuss a simple application of Theorem 5.5. First recall that when the functions
α, β in (5.1) are time-independent, then the Markovian stochastic process {X(t; s, x)}t≥s is
homogeneous and therefore the transition density, when it exists, has the form p(t, s, x, y) =

3Also known as Fokker-Planck PDE.
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p∗(t− s, x, y). By the change of variable s→ t− s = τ in (5.20), and by (5.22), we find that
p∗(τ, x, y) satisfies

− ∂τp∗ + α(x)∂xp∗ +
1

2
σ(x)2∂2

xp∗ = 0, (5.24)

as well as

∂τp∗ + ∂y(α(y)p∗)−
1

2
∂2
y(σ(y)2p∗) = 0, (5.25)

with the initial condition p∗(0, x, y) = δ(x − y). For example the Brownian motion is a
Markov process with transition density (3.28). In this case, (5.24) and (5.25) both reduce to
the heat equation −∂τp∗ + 1

2
∂2
xp∗ = 0. It is straightforward to verify that (3.28) satisfies the

heat equation for (τ, x) ∈ (0,∞) × R. Now we show that, as claimed in Theorem 5.5, the
initial condition p∗(0, x, y) = δ(x− y) is also verified, that is

lim
τ→0

∫
R
p∗(τ, x, y)ψ(y) dy = ψ(x), for all ψ ∈ C∞c (R) and x ∈ R.

Indeed with the change of variable y = x+
√
τz, we have∫

R
p∗(τ, x, y)ψ(y) dy =

1√
2π

∫
R
e−

z2

2 ψ(x+
√
τz) dz → ψ(0)

∫
R
e−

z2

2
dz√
2π

= ψ(0),

as claimed. Moreover, as W (0) = 0 a.s., Theorem 5.5 entails that the density of the Brownian

motion is fW (t)(y) = p∗(t, 0, y) = 1√
2πt
e−

y2

2t , which is of course correct (because W (t) ∈
N (0, t)).

Exercise 5.9. Show that the transition density (5.10) is the fundamental solution of the
Kolmogorov equation for the linear SDE (5.8).

5.3 The CIR process

A CIR process is a stochastic process {X(t)}t≥s satisfying the SDE

dX(t) = a(b−X(t)) dt+ c
√
X(t) dW (t), X(s) = x > 0, (5.26)

where a, b, c are constant (c 6= 0). CIR processes are used in finance to model the stock
volatility in the Heston model (see Section 6.6) and the spot interest rate of bonds in the
CIR model (see Section 6.7). Note that the SDE (5.26) is not of the form considered so far, as
the function β(t, x) = c

√
x is defined only for x ≥ 0 and, more importantly, it is not Lipschitz

continuous in a neighborhood of x = 0 as required in Theorem 5.1. Nevertheless, as already
mentioned in Remark 5.3, it can be shown that (5.26) admits a unique global solution for
all x > 0. Clearly the solution satisfies X(t) ≥ 0 a.s., for all t ≥ 0, otherwise the Itô integral
in the right hand side of (5.26) would not even be defined. For future applications, it is
important to know whether the solution can hit zero in finite time with positive probability.
This question is answered in the following theorem, whose proof is outlined for instance in
Exercise 37 of [20, Sec. 6.3].
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Theorem 5.6. Let {X(t)}t≥0 be the CIR process with initial value X(0) = x > 0 at time
t = 0. Define the (stopping4) time

τx0 = inf{t ≥ 0 : X(t) = 0}.

Then P(τx0 <∞) = 0 if and only if ab ≥ c2/2, which is called Feller’s condition.

The following theorem shows how to build a CIR process from a family of linear SDE’s.

Theorem 5.7. Let {W1(t)}t≥0, . . . {WN(t)}t≥0 be N ≥ 2 independent Brownian motions and
assume that {X1(t)}t≥0, . . . , {XN(t)}t≥0 solve

dXj(t) = −θ
2
Xj(t) dt+

σ

2
dWj(t), j = 1, . . . , N, Xj(0) = xj ∈ R, (5.27)

where θ, σ are deterministic constant. There exists a Brownian motion {W (t)}t≥0 such that
the stochastic process {X(t)}t≥0 given by

X(t) =
N∑
j=1

Xj(t)
2

solves (5.26) with a = θ, c = σ and b = Nσ2

4θ
.

Proof. Let X(t) =
∑N

j=1Xj(t)
2. Applying Itô’s formula we find, after straightforward cal-

culations,

dX(t) = (
Nσ2

4
− θX(t)) dt+ σ

N∑
j=1

Xj(t) dWj(t).

Letting a = θ, c = σ, b = Nσ2

4θ
and

dW (t) =
N∑
j=1

Xj(t)√
X(t)

dWj(t),

we obtain that X(t) satisfies

dX(t) = a(b−X(t)) dt+ c
√
X(t) dW (t).

Thus {X(t)}t≥0 is a CIR process, provided we prove that {W (t)}t≥0 is a Brownian motion.
Clearly, W (0) = 0 a.s. and the paths t→ W (t, ω) are a.s. continuous. Moreover {W (t)}t≥0

is a martingale, as it is the sum of matingale Itô integrals. Hence to conclude that {W (t)}t≥0

4See Definition 6.10 for the general definition of stopping time.
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is a Brownian motion we must show that dW (t)dW (t) = dt, see Theorem 3.16. We have

dW (t)dW (t) =
1

X(t)

N∑
i,j=1

Xi(t)Xj(t)dWi(t)dWj(t) =
1

X(t)

N∑
i,j=1

Xi(t)Xj(t)δijdt

=
1

X(t)

N∑
j=1

X2
j (t)dt = dt,

where we used that dWi(t)dWj(t) = δijdt, since the Brownian motions are independent.

Remark 5.9. The process {X(t)}t≥0 in Theorem 5.7 is said to be a weak solution of (5.26),
because the Brownian motion {W (t)}t≥0 in the SDE is not given advance, but rather it
depends on the solution itself.

Since N ≥ 2 in the previous theorem implies the Feller condition ab ≥ c2/2, then (provided
xj 6= 0 for some j, so that X(0) > 0) the CIR process constructed in Theorem 5.7 does not
hit zero, see Theorem 5.6. Moreover, since the solution of (5.27) is

Xj(t) = e−
1
2
θt

(
xj +

σ

2

∫ t

0

e
1
2
θτdWj(τ)

)
,

then it follows by Exercise 4.8 that the random variables X1(t), . . . , XN(t) are normally
distributed with

E[Xj(t)] = e−
1
2
θtxj, Var[Xj(t)] =

σ2

4θ
(e

1
2
θt − 1).

It follows by Exercise 3.18 that the CIR process constructed Theorem 5.7 is non-central χ2

distributed. The following theorem shows that this is a general property of CIR processes.

Theorem 5.8. Assume ab > 0. The CIR process starting at x > 0 at time t = s satisfies

X(t; s, x) =
1

2k
Y, Y (t; s, x) ∈ χ2(δ, β),

where

k =
2a

(1− e−a(t−s))c2
, δ =

4ab

c2
, β = 2kxe−a(t−s).

Proof. As the CIR process is a time-homogeneous Markov process, it is enough to prove the
claim for s = 0. Let X(t) = X(t; 0, x) for short. The characteristic function of X(t) is given
by

θX(t)(u) = E[eiuX(t)] = E[eiu
Y (t)
2k ] = θY (t)(

u

2k
)

where Y (t) = Y (t, 0, x). Thus the statement of the theorem is equivalent to

h(t, u) := θX(t)(u) =
exp

(
− βu

2(u+ik)

)
(1− iu/k)δ/2

, (5.28)
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where k = 2a
(1−e−at)c2 , δ = 4ab

c2
, β = 2kxe−at, see Table 3.1. To prove this denote p(t, 0, x, y) =

p∗(t, x, y) the transition density of X(t). Then

h(t, u) =

∫
R
eiuyp∗(t, x, y) dy. (5.29)

By Theorem 5.5, p∗ solves the Fokker-Planck equation

∂tp∗ + ∂y(a(b− y)p∗)−
1

2
∂2
y(c

2y p∗) = 0, (5.30)

with initial datum p∗(0, x, y) = δ(x − y). After straightforward calculations we derive the
following equation on h

∂th− iabuh+ (au− c2

2
iu2)∂uh = 0. (5.31a)

The initial condition for equation (5.31a) is

h(0, u) = eiux, (5.31b)

which is equivalent to p∗(0, x, y) = δ(x − y). Now the proof can be completed by showing
that (5.28) satisfies the initial value problem (5.31a)-(5.31b).

Exercise 5.10. Derive (5.31a) from (5.30) using (5.29). Show that (5.28) satisfies the initial
value problem (5.31a)-(5.31b).

Exercise 5.11. Use the result of Theorem 5.32 to show that, for ab > 0, the density of the
CIR process starting at x is fCIR(y; t− s, x), where

fCIR(y; τ, x) = keaqτ/2 exp(−k(y + xe−aτ ))
(y
x

)q/2
Iq(2ke

−aτ/2√xy), q =
δ

2
− 1. (5.32)

Finally we discuss briefly the question of existence of strong solutions to the Kolmogorov
equation for the CIR process, which is

∂tu+ a(b− x)∂xu+
c2

2
x∂2

xu = 0, (t, x) ∈ D+
T , u(T, x) = g(x). (5.33)

Note carefully that the Kolmogorov PDE is now defined only for x > 0, as the initial value
x in (5.26) must be positive. Now, if a strong solution of (5.33) exists, then it must be given
by u(t, x) = E[g(X(T ; t, x))] (see Theorem 5.4). Supposing ab > 0, then

u(t, x) = E[g(X(T ; t, x))] =

∫ ∞
0

fCIR(y;T − t, x)g(y) dy,

where fCIR(y; τ, x) is given by (5.32). Using the asymptotic behavior of fCIR(y; τ, x) as
x→ 0+, it can be shown ∂xu(t, x) is bounded near the axis x = 0 only if the Feller condition
ab ≥ c2/2 is satisfied. Hence u is the (unique) strong solution of (5.33) if and only if
ab ≥ c2/2.
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5.4 Finite different solutions of PDE’s

The finite difference methods are techniques to find (numerically) approximate solutions to
ordinary differential equations (ODE’s), stochastic differential equations (SDE’s) and partial
differential equations (PDE’s). They are based on the idea to replace the ordinary/partial
derivatives with a finite difference quotient, e.g., y′(x) ≈ (y(x + h) − y(x))/h. The various
methods differ by the choice of the finite difference used in the approximation. We shall
present a number of methods by examples.

ODE’s

Consider the first order ODE

dy

dt
= ay + bt, y(0) = y0, t ∈ [0, T ], (5.34)

for some constants a, b ∈ R and T > 0. The solution is given by

y(t) = y0e
at +

b

a2
(eat − at− 1). (5.35)

We shall apply three different finite difference methods to approximate the solution of (5.34).
In all cases we divide the time interval [0, T ] into a uniform partition,

0 = t0 < t1 < · · · < tn = T, tj = j
T

n
, ∆t = tj+1 − tj =

T

n

and define
y(tj) = yj, j = 0, . . . , n.

Forward Euler method

In this method we introduce the following approximation of dy/dt at time t:

dy

dt
(t) =

y(t+ ∆t)− y(t)

∆t
+O(∆t),

i.e.,

y(t+ ∆t) = y(t) +
dy

dt
(t)∆t+O(∆t2). (5.36)

For Equation (5.34) this becomes

y(t+ ∆t) = y(t) + (ay(t) + bt)∆t+O(∆t2).

Setting t = tj, ∆t = T/n, t + ∆t = tj + T/n = tj+1 and neglecting second order terms we
obtain

yj+1 = yj + (ayj + btj)
T

n
, j = 0, . . . , n− 1. (5.37)
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As y0 is known, the previous iterative equation can be solved at any step j. This method is
called explicit, because the solution at the step j+1 is given explicitly in terms of the solution
at the step j. It is a simple matter to implement this method numerically, for instance using
the following Matlab function:5

function [time,sol]=exampleODEexp(T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

a=1; b=1;

sol(1)=y0;

for j=2:n+1

sol(j)=sol(j-1)+(a*sol(j-1)+b*time(j-1))*dt;

time(j)=time(j-1)+dt;

end

Exercise 5.12. Compare the approximate solution with the exact solution for increasing
values of n. Compile a table showing the difference between the approximate solution and
the exact solution at time T for increasing value of n.

Backward Euler method

This method consists in approximating dy/dt at time t as

dy

dt
(t) =

y(t)− y(t−∆t)

∆t
+O(∆t),

hence

y(t+ ∆t) = y(t) +
dy

dt
(t+ ∆t)∆t+O(∆t2). (5.38)

The iterative equation for (5.34) now is

yj+1 = yj + (ayj+1 + btj+1)
T

n
, j = 0, . . . , n− 1. (5.39)

This method is called implicit, because the solution at the step j+1 depends on the solution
at both the step j and the step j + 1 itself. Therefore implicit methods involve an extra
computation, which is to find yj+1 in terms of yj only. For the present example this is a
trivial step, as we have

yj+1 =
(
1− aT

n

)−1(
yj + btj+1

T

n

)
, (5.40)

5The Matlab codes presented in this text are not optimized. Moreover the powerful vectorization tools of
Matlab are not employed, so as to make the codes easily adaptable to other computer softwares and languages.
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provided n 6= aT . Here is a Matlab function implementing the backward Euler method for
the ODE (5.34):

function [time,sol]=exampleODEimp(T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

a=1; b=1;

sol(1)=y0;

for j=2:n+1

time(j)=time(j-1)+dt;

sol(j)=1/(1-a*dt)*(sol(j-1)+b*time(j)*dt);

end

Exercise 5.13. Compare the approximate solution obtained with the backward Euler method
with the exact solution and the approximate one obtained via the forward Euler method.
Compile a table for increasing values of n as in Exercise 1.

Central difference method

By a Taylor expansion,

y(t+ ∆t) = y(t) +
dy

dt
(t)∆t+

1

2

d2y

dt2
(t)∆t2 +O(∆t3), (5.41)

and replacing ∆t with −∆t,

y(t−∆t) = y(t)− dy

dt
(t)∆t+

1

2

d2y

dt2
(t)∆t2 +O(∆t3). (5.42)

Subtracting the two equations we obtain the following approximation for dy/dt at time t:

dy

dt
(t) =

y(t+ ∆t)− y(t−∆t)

2∆t
+O(∆t2),

which is called central difference approximation. Hence

y(t+ ∆t) = y(t−∆t) + 2
dy

dt
(t)∆t+O(∆t3). (5.43)

Note that, compared to (5.36) and (5.38), we have gained one order in accuracy. The iterative
equation for (5.34) becomes

yj+1 = yj−1 − 2(ayj + btj)
T

n
, j = 0, . . . , n− 1. (5.44)
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The first step j = 0 requires y−1. This is fixed by the backward method

y−1 = y0 −
T

n
ay0, (5.45)

which is (5.39) for j = −1.

Exercise 5.14. Write a Matlab function that implements the central difference method
for (5.34). Compile a table comparing the exact solution with the approximate solutions
at time T obtained by the three methods presented above for increasing value of n.

A second order ODE

Consider the second order ODE for the harmonic oscillator:

d2y

dt2
= −ω2y, y(0) = y0, ẏ(0) = ỹ0. (5.46)

The solution to this problem is given by

y(t) = y0 cos(ωt) +
ỹ0

ω
sin(ωt). (5.47)

One can define forward/backward/central difference approximations for second derivatives
in a way similar as for first derivatives. For instance, adding (5.41) and (5.42) we obtain the
following central difference approximation for d2y/dt2 at time t:

d2y

dt2
(t) =

y(t+ ∆t)− 2y(t) + y(t−∆t)

∆t2
+O(∆t),

which leads to the following iterative equation for (5.46):

yj+1 = 2yj − yj−1 −
(
T

n

)2

ω2yj, j = 1, . . . , n− 1, (5.48)

y1 = y0 + ỹ0
T

n
. (5.49)

The approximate solution y1 at the first node is computed using the forward method and
the initial datum ẏ(0) = ỹ0. The Matlab function solving this iteration is the following.

function [time,sol]=harmonic(w,T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

sol(1)=y0(1);

sol(2)=sol(1)+y0(2)*dt;

for j=3:n+1
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sol(j)=2*sol(j-1)-sol(j-2)-dt^2*w^2*sol(j-1);

time(j)=time(j-1)+dt;

end

Exercise 5.15. Compare the exact and approximate solutions at time T for increasing values
of n.

SDE’s

The Euler method can be straightforwardly generalized to SDE’s, see [15]. In this section we
present briefly the so-called Euler-Maruyama method, which is the generalization to SDE’s
of the forward Euler method for ODE’s.

Consider the SDE
dX(t) = α(t,X(t)) dt+ β(t,X(t)) dW (t), (5.50)

where we assumed that the assumptions in Theorem 5.1 are satisfied. Given the uniform
partition

0 = t0 < t1 < · · · < tn = T, tj = j
T

n
, ∆t = tj+1 − tj =

T

n

of the interval [0, T ], we define

X(tj) = Xj, j = 0, . . . , n, Wj = W (tj).

Note that Xj,Wj are random variables and that

Gj =
Wj −Wj−1√

∆t

are independent standard normal random variables for j = 1, . . . , n. The (explicit) finite
difference approximation of (5.50) is

Xj = Xj−1 + α(tj−1, Xj−1)
T

n
+ β(tj−1, Xj−1)

√
T

n
Gj. (5.51)

The following Matlab function applies the iterative equation (5.51) to the linear SDE (5.8),
for which (5.51) becomes

Xj = Xj−1 + (a+ bXj−1)(T/n) + γ
√
T/nGj, X0 = x0,

where x0 is the (constant) initial datum. The output sol contains one path of the stochas-
tic process X(t) along the time partition {t0 = 0, t1, . . . , tn = T}, that is, a path (X0 =
x0, X(t1), . . . , X(tn) = X(T )).
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function [time,sol] = linearSDEexample(T,x0,n,a,b,gamma)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

G=randn(1,n);

sol(1)=x0;

for j=2:n+1

sol(j)=sol(j-1)+(a+b*sol(j-1))*dt+gamma*sqrt(dt)*G(j-1);

time(j)=time(j-1)+dt;

end

PDE’s

In this section we present three finite difference methods to find approximate solutions to
the one-dimensional heat equation

∂tu = ∂2
xu, u(0, x) = u0(x), (5.52)

where u0 is continuous. We refer to t as the time variable and to x as the spatial variable,
since this is what they typically represent in the applications of the heat equation. As before,
we let t ∈ [0, T ]. As to the domain of the spatial variable x, we distinguish two cases

(i) x runs over the whole real line, i.e., x ∈ (−∞,∞), and we are interested in finding an
approximation to the solution u ∈ C1,2(DT ).

(ii) x runs over a finite interval, say x ∈ (xmin, xmax), and we want to find an approximation
of the solution u ∈ C1,2(D), where D = (0, T ) × (xmin, xmax), which satisfies the
boundary conditions6

u(t, xmin) = uL(t), u(t, xmax) = ur(t), t ∈ [0, T ],

for some given continuous functions uL, uR. We also require uL(0) = u0(xmin), uR(0) =
u0(xmax), so that the solution is continuous on the boundary.

In fact, for numerical purposes, problem (i) is a special case of problem (ii), for the domain
(−∞,∞) must be approximated by (−A,A) for A >> 1 when we solve problem (i) in
a computer. Note however that in the finite domain approximation of problem (i), the
boundary conditions at x = ±A cannot be prescribed freely! Rather they have to be given by
suitable approximations of the limit values at x = ±∞ of the solution to the heat equation
on the real line.

6These are called Dirichlet type boundary conditions. Other types of boundary conditions can be imposed,
but the Dirichlet type is sufficient for our forthcoming applications to financial problems.
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By what we have just said we can focus on problem (ii). To simplify the discussion we
assume that the domain of the x variable is given by x ∈ (0, X) and we assign zero boundary
conditions, i.e., uL = uR = 0. Hence we want to study the problem

∂tu = ∂2
xu, (t, x) ∈ (0, T )× (0, X), (5.53a)

u(0, x) = u0(x), u(t, 0) = u(t,X) = 0, x ∈ [0, X], t ∈ [0, T ]; u0(0) = u0(X) = 0.
(5.53b)

We introduce the partition of the interval (0, X) given by

0 = x0 < x1 < · · · < xm = X, ∆jx = xj+1 − xj, j = 0, . . . ,m− 1,

and the partition of the time interval [0, T ] given by

0 = t0 < t1 < · · · < tn = T, ti = i
T

n
, ∆t = ti+1 − ti =

T

n
.

Note that we use a uniform partition for the time interval while the partition for the spatial
domain is in general not uniform. Of course

∆0x+ ∆1x+ · · ·+ ∆m−1x = X

and the spatial partition is uniform if and only if

∆0x = ∆1x = · · · = ∆m−1x = ∆x =
X

m
, xj = j∆x. (5.54)

Using non-uniform partitions is important when one needs more accuracy in some region.
For instance, when computing the price of options with the finite difference methods, a
more refine partition is recommended in the “nearly at the money” region. In the rest of
this section we assume that the spatial partition is uniform and leave the generalization to
non-uniform partitions as an exercise (Exercise 5.17). We denote

ui,j = u(ti, xj), i = 0, . . . , n, j = 0, . . . ,m.

Hence ui,j is a n + 1 × m + 1 matrix. The ith row contains the value of the approximate
solution at each point of the spatial mesh at the fixed time ti. For instance, the zeroth row
is the initial datum: u0,j = u0(xj), i = 0, . . .m. The columns of the matrix ui,j contain the
values of the approximate solution at one spatial point for different times. For instance, the
column ui,0 are the values of the approximate solution at x0 = 0 for different times ti, while
ui,m contains the values at xm = X. By the given boundary conditions we then have

ui,0 = ui,m = 0, i = 0, . . . , n.

We define (for a uniform spatial partition)

d =
∆t

∆x2
=

T

X2

m2

n
. (5.55)
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Method 1: Forward in time, centered in space

In this method we use a forward difference approximation for the time derivative and a
centered difference approximation for the second spatial derivative:

∂tu(t, x) =
u(t+ ∆t, x)− u(t, x)

∆t
+O(∆t),

∂2
xu(t, x) =

u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

∆x2
+O(∆x).

We find
u(t+ ∆t, x) = u(t, x) + d(u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)).

Hence we obtain the following iterative equation

ui+1,j = ui,j + d(ui,j+1 − 2ui,j + ui,j−1), i = 0, . . . , n− 1, j = 1, . . . ,m− 1, (5.56)

where we recall that u0,j = u0(xj), ui,0 = ui,m+1 = 0, i = 0, . . . , n, j = 0, . . .m. Let

ui = (ui,1 ui,1 . . . ui,m−1)T

be the column vector containing the approximate solution at time ti; note that we do not
need to include ui,0, ui,m in the vector ui, as these components are fixed equal to zero by the
boundary conditions. We can rewrite (5.56) in matrix form as follows:

ui+1 = A(d)ui, (5.57)

where A(z) is the (m− 1)× (m− 1) matrix with non-zero entries given by

Ak,k(z) = 1− 2z, k = 1, . . . ,m− 1, Aq,q+1(z) = Aq+1,q(z) = z, q = 1, . . . ,m− 2.
(5.58)

This method is completely explicit, as the solution at the time step i + 1 is explicitly given
in terms of the solution at the time step i. A Matlab function solving the iteration (5.57)
with the initial datum u0(x) = exp(X2/4)− exp((x−X/2)2) is the following.

function [time,space,sol]=heatexp(T,X,n,m)

dt=T/n; dx=X/m;

d=dt/dx^2;

sol=zeros(n+1,m+1);

time=zeros(1,n+1);

space=zeros(1,m+1);

for i=2:n+1

time(i)=time(i-1)+dt;

end

for j=2:m+1

space(j)=space(j-1)+dx;
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end

for j=1:m+1

sol(1,j)=exp(X^2/4)-exp((space(j)-X/2)^2);

end

sol(:,1)=0; sol(:,m+1)=0;

A=zeros(m-1,m-1);

for k=1:m-1

A(k,k)=1-2*d;

end

for q=1:m-2

A(q,q+1)=d;

A(q+1,q)=d;

end

for i=2:n+1

sol(i,2:m)=sol(i-1,2:m)*transpose(A);

end

To visualize the result it is convenient to employ an animation which plots the approximate
solution at each point on the spatial mesh for some increasing sequence of times in the
partition {t0, t1, . . . , tn}. This visualization can be achieved with the following simple Matlab
function:

function anim(r,F)

N=length(F(:,1));

Max=max(max(F));

for i=1:N

plot(r,F(i,:));

axis([0 1 0 Max]);

drawnow;

pause(0.01);

end

Upon running the command anim(space,sol), the previous function will plot the approxi-
mate solutions at different increasing times.

Let us try the following: [time,space,sol]=heatexp(1,1,2500,50). Hence we solve the
problem on the unit square (t, x) ∈ (0, 1)2 on a mesh of (n,m) = 2500 × 50 points. The
value of the parameter (5.55) is

d = 1.

If we now try to visualize the solution by running anim(space,sol,0.1), we find that the
approximate solution behaves very strangely (it produces just random oscillations). However
by increasing the number of time steps with [time,space,sol]=heatexp(1,1,5000,50),
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so that
d = 0.5,

and visualize the solution, we shall find that the approximate solution converges quickly
and smoothly to u ≡ 0, which is the equilibrium of our problem (i.e., the time independent
solution of (5.53)). In fact, this is not a coincidence, as it can be shown that the forward-
centered method for the heat equation is unstable if d > 0.5 and stable for d ≤ 0.5. The term
unstable here refers to the fact that numerical errors, due for instance to the truncation
and round-off of the initial datum on the spatial grid, will increase in time. On the other
hand, stability of a finite difference method means that the error will remain small at all
times. The stability condition d ≤ 0.5 for the forward-centered method applied to the heat
equation is very restrictive: it forces us to choose a very high number of points on the time
partition. To avoid such a restriction, which could be very costly in terms of computation
time, implicit methods are preferred, such as the one we present next.

Method 2: Backward in time, centered in space

In this method we employ the backward finite difference approximation for the time derivative
and the central difference for the second spatial derivative (same as before). This results in
the following iterative equation:

ui+1,j = ui,j + d(ui+1,j+1 − 2ui+1,j + ui+1,j−1), i = 0, . . . , n− 1, j = 1, . . . ,m− 1, (5.59)

where we recall that u0,j = u0(xj), ui,0 = ui,m+1 = 0, i = 0, . . . , n, j = 0, . . .m. This method
is implicit and we need therefore to solve for the solution at time i+1 in terms of the solution
at time i. To this purpose we let, as before,

ui = (ui,1 ui,1 . . . ui,m−1)T

and rewrite (5.59) in matrix form as follows:

A(−d)ui+1 = ui, (5.60)

where A(z) is the matrix with non-zero entries (5.58). The matrix A is invertible, hence we
can express ui+1 in terms of ui as

ui+1 = A(−d)−1ui. (5.61)

This method is unconditionally stable, i.e., it is stable for all values of the parameter d.
We can test this property by using the following Matlab function, which solves the iterative
equation (5.61):

function [time,space,sol]=heatimp(T,X,n,m)

dt=T/n; dx=X/m;

d=dt/dx^2;
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sol=zeros(n+1,m+1);

time=zeros(1,n+1);

space=zeros(1,m+1);

for i=2:n+1

time(i)=time(i-1)+dt;

end

for j=2:m+1

space(j)=space(j-1)+dx;

end

for j=1:m+1

sol(1,j)=exp(X^2/4)-exp((space(j)-X/2)^2);

end

sol(:,1)=0; sol(:,m+1)=0;

A=zeros(m-1,m-1);

for k=1:m-1

A(k,k)=1+2*d;

end

for q=1:m-2

A(q,q+1)=-d;

A(q+1,q)=-d;

end

for i=2:n+1

sol(i,2:m)=sol(i-1,2:m)*transpose(inv(A));

end

If we now run [time,space,sol]=heatexp(1,1,500,50), for which d = 5, and visualize
the solution we shall obtain that the approximate solution behaves smoothly as expected,
indicating that the instability problem of the forward-centered method has been solved.

Method 3: The θ-method

This is an implicit method with higher order of accuracy than the backward-centered method.
It is obtained by simply averaging between methods 1 and 2 above, as follows

ui+1,j = θuback
i+1,j + (1− θ)uforw

i+1,j, θ ∈ (0, 1),

where the first term in the right hand side is computed with method 1 and the second term
with method 2. Thus we obtain the following iterative equation

ui+1,j = ui,j + d[(1− θ)(ui,j+1 − 2ui,j + ui,j−1) + θ(ui+1,j+1 − 2ui+1,j + ui+1,j−1)], (5.62)

or, in matrix form
A(−dθ)ui+1 = A(d(1− θ))ui
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Remark 5.10. Note carefully that the solution obtained with the θ-method is not the
average of the solutions obtained with methods 1 and 2, but rather the solution obtained by
averaging the two methods.

Remark 5.11. For θ = 1/2, the θ-method is also called Crank-Nicolson method.

Exercise 5.16. Write a Matlab function that implements the θ-method for the heat equation.

Exercise 5.17. Generalize the methods 1-3 to the case of non-uniform spatial partition.
Write the iterative equations in matrix form. Write a Matlab function that implements the
θ-method with non-uniform spatial partition to the heat equation.
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Chapter 6

Applications to finance

Throughout this chapter we assume that the probability space (Ω,F ,P) and the Brownian
motion {W (t)}t≥0 are given. Moreover, in order to avoid the need of repeatedly specifying
technical assumptions, we stipulate the following conventions:

� All stochastic processes in this chapter are assumed to belong to the space C0[FW (t)],
i.e., they are adapted to {FW (t)}t≥0 and have a.s. continuous paths. This assumption
may be relaxed, but for our applications it is general enough.

� All Itô integrals in this chapter are assumed to be martingales, which holds for instance
when the integrand stochastic process is in the space L2[FW (t)].

6.1 Arbitrage-free markets

The ultimate purpose of this section is to prove that any self-financing portfolio invested in a
1+1 dimensional market is not an arbitrage. We shall prove the result by using Theorem 3.14,
i.e., by showing that there exists a probability measure P̃, equivalent to P, with respect to
which the discounted value of the portfolio is a martingale. We first define such a measure.
We have seen in Theorem 4.9 that, given a stochastic process {θ(t)}t≥0 satisfying the Novikov
condition (4.20), the stochastic process {Z(t)}t≥0 defined by

Z(t) = exp

(
−
∫ t

0

θ(s) dW (s)− 1

2

∫ t

0

θ(s)2 ds

)
(6.1)

is a P-martingale relative to the filtration {FW (t)}t≥0 and that the map P̃ : F → [0, 1] given
by

P̃(A) = E[Z(T )IA] (6.2)

is a probability measure equivalent to P, for all given T > 0.
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Definition 6.1. Consider the 1+1 dimensional market

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), dB(t) = B(t)r(t)dt.

Assume that σ(t) > 0 almost surely for all times. Let {θ(t)}t≥0 be the stochastic process
given by

θ(t) =
µ(t)− r(t)

σ(t)
, (6.3)

and define {Z(t)}t≥0 by (6.1). Assume that {Z(t)}t≥0 is a martingale (e.g., {θ(t)}t≥0 satisfies

the Novikov condition (4.20)). The probability measure P̃ equivalent to P given by (6.2) is
called the risk-neutral probability measure of the market at time T , while the process
{θ(t)}t≥0 is called the market price of risk.

By the definition (6.3) of the stochastic process {θ(t)}t≥0, we can rewrite dS(t) as

dS(t) = r(t)S(t)dt+ σ(t)S(t)dW̃ (t), (6.4)

where
dW̃ (t) = dW (t) + θ(t)dt. (6.5)

By Girsanov theorem, Theorem 4.10, the stochastic process {W̃ (t)}t≥0 is a P̃-Brownian

motion. Moreover, {FW (t)}t≥0 is a non-anticipating filtration for {W̃ (t)}t≥0. We also recall
that a portfolio {hS(t), hB(t)}t≥0 is self-financing if its value {V (t)}t≥0 satisfies

dV (t) = hS(t)dS(t) + hB(t)dB(t), (6.6)

see Definition 4.4. Moreover S∗(t) = D(t)S(t) is the discounted price (at time t = 0) of the
stock, where D(t) = exp(−

∫ t
0
r(s) ds) is the discount process.

Theorem 6.1. Consider the 1+1 dimensional market

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), dB(t) = B(t)r(t)dt, (6.7)

where σ(t) > 0 almost surely for all times.

(i) The discounted stock price {S∗(t)}t≥0 is a P̃-martingale in the filtration {FW (t)}t≥0.

(ii) A portfolio process {hS(t), hB(t)}t≥0 is self-financing if and only if its discounted value
satisfies

V ∗(t) = V (0) +

∫ t

0

D(s)hS(s)σ(s)S(s)dW̃ (s). (6.8)

In particular the discounted value of self-financing portfolios is a P̃-martingale in the
filtration {FW (t)}t≥0.
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(iii) If {hS(t), hB(t)}t≥0 is a self-financing portfolio, then {hS(t), hB(t)}t≥0 is not an arbi-
trage.

Proof. (i) By (6.4) and dD(t) = −D(t)r(t)dt we have

dS∗(t) = S(t)dD(t) +D(t)dS(t) + dD(t)dS(t)

= −S(t)r(t)D(t) dt+D(t)(r(t)S(t) dt+ σ(t)S(t) dW̃ (t))

= D(t)σ(t)S(t)dW̃ (t),

and so the discounted price {S∗(t)}t≥0 of the stock is a P̃-martingale relative to {FW (t)}t≥0.

(ii) By (6.4) and hS(t)S(t) +hB(t)B(t) = V (t), the definition (6.6) of self-financing portfolio
is equivalent to

dV (t) = hS(t)S(t)[(µ(t)− r(t))dt+ σ(t)dW (t)] + V (t)r(t)dt. (6.9)

Hence
dV (t) = hS(t)S(t)σ(t)dW̃ (t) + V (t)r(t)dt.

In terms of the discounted portfolio value V ∗(t) = D(t)V (t) the previous equation reads

dV ∗(t) = V (t)dD(t) +D(t)dV (t) + dD(t)dV (t)

= −D(t)V (t)r(t) dt+D(t)hS(t)S(t)σ(t)dW̃ (t) +D(t)V (t)r(t)dt

= D(t)hS(t)S(t)σ(t)dW̃ (t),

which proves (6.8).

(iii) By (6.8), the discounted value of self-financing portfolios is a P̃-martingale relative to

the filtration {FW (t)}t≥0. As P̃ and P are equivalent, (iii) follows by Theorem 3.14.

Remark 6.1 (Arbitrage-free principle). The absence of self-financing arbitrage portfolios in
the 1+1 dimensional market (6.7) is consistent with the observations. In fact, even though
arbitrage opportunities do exist in real markets, they typically last only for very short times,
as they are quickly exploited by investors. In general, when a stochastic model for the price of
assets is introduced, we require that it should satisfy the arbitrage-free principle, namely
that any self-financing portfolio invested in these assets and in the money market should be
no arbitrage. Theorem 6.1 shows that a stock market consisting of one single stock with price
modeled by the generalized geometric Brownian motion satisfies the arbitrage-free principle,
provided σ(t) > 0 a.s. for all times. The generalization of this result to stock markets with
several stocks is discussed in Section 6.9.

6.2 The risk-neutral pricing formula

Consider the European derivative with pay-off Y and time of maturity T > 0. We assume
that Y is FW (T )-measurable. Suppose that the derivative is sold at time t < T for the price
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ΠY (t). The first concern of the seller is to hedge the derivative, that is to say, to invest
the amount ΠY (t) in such a way that the value of the seller portfolio at time T is enough
to pay-off the buyer of the derivative. The purpose of this section is to define a theoretical
price for the derivative which makes it possible for the seller to set-up an hedging portfolio.
We argue under the following assumptions:

1. the seller is only allowed to invest the amount ΠY (t) in the 1+1 dimensional market
consisting of the underlying stock and the risk-free asset (∆-hedging);

2. the investment strategy of the seller is self-financing.

It follows by Theorem 6.1 that the sought hedging portfolio is not an arbitrage. We may
interpret this fact as a “fairness” condition on the price of the derivative ΠY (t). In fact, if the
seller can hedge the derivative and still be able to make a risk-less profit on the underlying
stock, this may be considered unfair for the buyer.

We thus consider the 1+1 dimensional market

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), dB(t) = B(t)r(t)dt,

where σ(t) > 0 almost surely for all times. Let {hS(t), hB(t)}t≥0 be a self-financing portfolio
invested in this market and let {V (t)}t≥0 be its value. By Theorem 6.1, the discounted value

{V ∗(t)}t≥0 of the portfolio is a P̃-martingale relative to the filtration {FW (t)}t≥0, hence

D(t)V (t) = Ẽ[D(T )V (T )|FW (t)].

Requiring the hedging condition V (T ) = Y gives

V (t) =
1

D(t)
Ẽ[D(T )Y |FW (t)].

Since D(t) is FW (t)-measurable, we can move it inside the conditional expectation and write
the latter equation as

V (t) = Ẽ[Y
D(T )

D(t)
|FW (t)] = Ẽ[Y exp(−

∫ T

t

r(s) ds)|FW (t)],

where we used the definition D(t) = exp(−
∫ t

0
r(s) ds) of the discount process. Assuming

that the derivative is sold at time t for the price ΠY (t), then the value of the seller portfolio
at this time is precisely equal to the premium ΠY (t), which leads to the following definition.

Definition 6.2. Let Y be a FW (T )-measurable random variable with finite expectation. The
risk-neutral price (or fair price, or arbitrage-free price) at time t ∈ [0, T ] of the
European derivative with pay-off Y and time of maturity T > 0 is given by

ΠY (t) = Ẽ[Y exp(−
∫ T

t

r(s) ds)|FW (t)], (6.10)

i.e., it is equal to the value at time t of any self-financing hedging portfolio invested in the
underlying stock and the risk-free asset.
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Since the risk-neutral price of the European derivative equals the value of self-financing hedg-
ing portfolios invested in a 1+1 dimensional market, then, by Theorem 6.1, the discounted
risk-neutral price {Π∗Y (t)}t∈[0,T ] is a P̃-martingale relative to the filtration {FW (t)}t≥0. In
fact, this property follows directly also by Definition 6.10, as shown in the first part of the
following theorem.

Theorem 6.2. Consider the 1+1 dimensional market

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), dB(t) = B(t)r(t)dt,

where σ(t) > 0 almost surely for all times. Assume that the European derivative on the stock
with pay-off Y and time of maturity T > 0 is priced by (6.10) and let Π∗Y (t) = D(t)ΠY (t) be
the discounted price of the derivative. Then the following holds.

(i) The process {Π∗Y (t)}t∈[0,T ] is a P̃-martingale relative to {FW (t)}t≥0.

(ii) There exists a stochastic process {∆(t)}t∈[0,T ], adapted to {FW (t)}t≥0, such that

Π∗Y (t) = ΠY (0) +

∫ t

0

∆(s)dW̃ (s), t ∈ [0, T ]. (6.11)

(iii) The portfolio {hS(t), hB(t)}t∈[0,T ] given by

hS(t) =
∆(t)

D(t)σ(t)S(t)
, hB(t) = (ΠY (t)− hS(t)S(t))/B(t) (6.12)

is self-financing and replicates the derivative at any time, i.e., its value V (t) is equal
to ΠY (t) for all t ∈ [0, T ]. In particular, V (T ) = ΠY (T ) = Y , i.e., the portfolio is
hedging the derivative.

Proof. (i) We have

Π∗Y (t) = D(t)ΠY (t) = Ẽ[ΠY (T )D(T )|FW (t)] = Ẽ[Π∗Y (T )|FW (t)],

where we used that ΠY (T ) = Y . Hence, for s ≤ t, and using Theorem 3.13(v),

Ẽ[Π∗Y (t)|FW (s)] = Ẽ[Ẽ[Π∗Y (T )|FW (t)]|FW (s)] = Ẽ[Π∗Y (T )|FW (s)] = Π∗Y (s).

This shows that the discounted price of the derivative is a P̃-martingale relative to the
filtration {FW (t)}t≥0.

(ii) By (i) and (3.24) we have

Z(s)Π∗Y (s) = Z(s)Ẽ[Π∗Y (t)|FW (s)] = E[Z(t)Π∗Y (t)|FW (s)], (6.13)
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i.e., the stochastic process {Z(t)Π∗Y (t)}t∈[0,T ] is a P-martingale relative to the filtration
{FW (t)}t≥0. Hence, by the martingale representation theorem, Theorem 4.5(v), there exists
a stochastic process {Γ(t)}t∈[0,T ] adapted to {FW (t)}t≥0 such that

Z(t)Π∗Y (t) = ΠY (0) +

∫ t

0

Γ(s)dW (s), t ∈ [0, T ],

i.e.,
d(Z(t)Π∗Y (t)) = Γ(t)dW (t). (6.14a)

On the other hand, by Itô’s product rule,

dΠ∗Y (t) =d(Z(t)Π∗Y (t)/Z(t)) = d(1/Z(t))Z(t)Π∗Y (t) + 1/Z(t)d(Z(t)Π∗Y (t))

+ d(1/Z(t))d(Z(t)Π∗Y (t)). (6.14b)

By Itô’s formula and dZ(t) = −θ(t)Z(t)dW (t), we obtain

d(1/Z(t)) = − 1

Z(t)2
dZ(t) +

1

Z(t)3
dZ(t)dZ(t) =

θ(t)

Z(t)
dW̃ (t). (6.14c)

Hence

d(1/Z(t))d(Z(t)Π∗Y (t)) =
θ(t)Γ(t)

Z(t)
dt. (6.14d)

Combining Equations (6.14) we have

dΠ∗Y (t) = ∆(t)dW̃ (t), where ∆(t) = θ(t)Π∗Y (t) +
Γ(t)

Z(t)
,

which proves (6.11).

(iii) It is clear that the portfolio {hS(t), hB(t)}t∈[0,T ] given by (6.12) is adapted to {FW (t)}t≥0.
By the definition of hB(t) we have V (t) = hS(t)S(t)+hB(t)B(t) = ΠY (t), hence the portfolio
replicates the derivative. Furthermore (6.11) entails that V ∗(t) = Π∗Y (t) satisfies (6.8),
hence, by Theorem 6.1(ii), {hS(t), hB(t)}t∈[0,T ] is a self-financing portfolio, and the proof is
completed.

Consider now the 2+1 dimensional market consisting of a stock, a European derivative on
the stock and the risk-free asset. The value of a self-financing portfolio invested in this
market satisfies

dV (t) = hS(t)dS(t)+hY (t)dΠY (t)+hB(t)dB(t), V (t) = hS(t)S(t)+hY (t)ΠY (t)+hB(t)B(t),

where hY (t) is the number of shares of the derivative in the portfolio. It follows by (6.11)
that the discounted value of this portfolio satisfies

d(V ∗(t)) = −r(t)D(t)V (t)dt+D(t)hS(t)dS(t) +D(t)hY (t)dΠY (t) +D(t)hB(t)B(t)r(t)dt

= −r(t)D(t)hS(t)S(t)dt+D(t)hS(t)dS(t)

− r(t)D(t)hY (t)ΠY (t)dt+D(t)hY (t)dΠY (t)

= −hS(t)d(D(t)S(t))− hY (t)d(D(t)ΠY (t))

= −hS(t)D(t)σ(t)S(t)dW̃ (t)− hY (t)∆(t)dW̃ (t).

117



We infer that the discounted value process {V ∗(t)}t≥0 is a P̃-martingale relative to {FW (t)}t≥0.
Hence, by Theorem 3.14, the portfolio is not an arbitrage and therefore the risk-neutral price
model for European derivatives satisfies the arbitrage-free principle, see Remark 6.1.

Put-call parity

Being defined as a conditional expectation, the risk-neutral price (6.10) can be computed
explicitly only for simple models on the market parameters, see Sections 6.3, 6.6 and 6.7.
However the formula (6.10) can be used to derive a number of general qualitative properties
on the fair price of options. The most important is the put-call parity relation.

Theorem 6.3. Let Πcall(t) be the fair price at time t of the European call option on the stock
with maturity T > t and strike K > 0. Let Πput(t) be the price of the European put option
with the same strike and maturity. Then the put-call parity identity holds:

Πcall(t)− Πput(t) = S(t)−KB(t, T ), (6.15)

where B(t, T ) = Ẽ[D(T )/D(t)|FW (t)] is the fair value at time t of the contract1 with constant
pay-off=1 at time T .

Proof. The pay-off of the call/put option is

Ycall = (S(T )−K)+, Yput = (K − S(T ))+.

Using (x−K)+ − (K − x)+ = (x−K), for all x ∈ R, we obtain

Πcall(t)− Πput(t) = Ẽ[D(t)−1D(T )(S(T )−K)+|FW (t)]− Ẽ[D(t)−1D(T )(K − S(T ))+|FW (t)]

= Ẽ[D(t)−1D(T )(S(T )−K)|FW (t)]

= D(t)−1Ẽ[D(T )S(T )|FW (t)]−KẼ[D(t)−1D(T )|FW (t)]

= S(t)−KB(t, T ),

where in the last step we use that the discounted stock price process is a martingale in the
risk-neutral probability measure.

Exercise 6.1. Prove that the risk-neutral price of European call/put options satisfy the
following properties:

(i) Πcall(t) ≤ S(t), Πput(t) ≤ KB(t, T )

(ii) Πcall(t) is non-increasing and convex in the strike price. Similarly Πput(t) is non-
decreasing and convex in the strike price.

1This contract is called zero-coupon bond, see Section 6.7
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(iii) If B(t, T ) ≤ 1, then Πcall(t) ≥ (S(t)−K)+ and Πcall(t) is non-decreasing with respect
to T .

Give an intuitive explaination of why these properties are reasonable.

Remark 6.2. Since B(t, T ) = Ẽ[exp(−
∫ T
t
r(s) ds)|FW (t)], the condition B(t, T ) ≤ 1 in the

property (iii) is satisfied in particular when the interest rate process is non-negative.

Exercise 6.2 (Sol. 32). Consider the European derivative with pay-off Y at maturity T and
the derivative with pay-off Z = ΠY (t∗) at maturity t∗ < T . Show that ΠZ(t) = ΠY (t),
t ∈ [0, t∗].

6.3 Black-Scholes price of standard European deriva-

tives

In the particular case of a standard European derivative, i.e., when Y = g(S(T )), for some
measurable function g, the risk-neutral price formula (6.10) becomes

ΠY (t) = Ẽ[g(S(T )) exp(−
∫ T

t

r(s) ds)|FW (t)].

By (6.4) we have

S(T ) = S(t) exp

(∫ T

t

(r(s)− 1

2
σ2(s))ds+

∫ T

t

σ(s)dW̃ (s)

)
,

hence the risk-neutral price of standard European derivatives takes the form

ΠY (t) = Ẽ[g(S(t)e
∫ T
t (r(s)− 1

2
σ2(s))ds+

∫ T
t σ(s)dW̃ (s)) exp(−

∫ T

t

r(s) ds)|FW (t)]. (6.16)

In this section we compute (6.16) in a Black-Scholes market, i.e., in the case when the
market parameters {µ(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 are deterministic constants. Letting µ(t) =
µ, r(t) = r, σ(t) = σ > 0 into (6.4) we obtain that the stock price satisfies

dS(t) = rS(t) dt+ σS(t) dW̃ (t), (6.17)

where W̃ (t) = W (t) + µ−r
σ
t is a Brownian motion in the risk-neutral probability measure.

The market price of risk θ = (µ− r)/σ is constant. Integrating (6.17) we obtain that, in the
risk-neutral probability, S(t) is given by the geometric Brownian motion

S(t) = S(0)e(r−σ
2

2
)t+σW̃ (t). (6.18)
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By (6.16), the risk-neutral price of the standard European derivative is

ΠY (t) = e−rτ Ẽ[g(S(t)e(r− 1
2
σ2)τeσ(W̃ (T )−W̃ (t)))|FW (t)],

where τ = T − t is the time left to maturity. As the increment W̃ (T )− W̃ (t) is independent
of FW (t) and S(t) is FW (t)-measurable, the conditional expectation above can be computed
using Theorem 3.13(x), namely

ΠY (t) = vg(t, S(t)), (6.19a)

where the Black-Scholes price function vg : D+
T → R is given by

vg(t, x) = e−rτ Ẽ[g(xe(r− 1
2
σ2)τeσ(W̃ (T )−W̃ (t)))] =

e−rτ√
2π

∫
R
g(xe(r− 1

2
σ2)τeσ

√
τy)e−

y2

2 dy. (6.19b)

Of course we need some conditions on the function g in order for the integral in the right-
hand side of (6.19b) to converge to a smooth function. For our purposes it suffices to require
that g ∈ G, where

G = {g : [0,∞)→ R :
(i) g is almost everywhere twice differentiable
(ii) |g(z)| ≤ A+B|z| for some constants A,B > 0
(iii) g′, g′′ are uniformly bounded}

(6.20)

Conditions (i)-(iii) are satisfied by the typical pay-off functions used in the applications. It
is an easy exercise to show that g ∈ G ⇒ vg ∈ C1,2(D+

T ).

Definition 6.3. Let g ∈ G. The stochastic process {ΠY (t)}t∈[0,T ] given by (6.19), is called
the Black-Scholes price of the standard European derivative with pay-off Y = g(S(T )) and
time of maturity T > 0.

Remark 6.3. The fact that the Black-Scholes price of the derivative at time t is a de-
terministic function of S(t), that is, ΠY (t) = vg(t, S(t)), is an important property for the
applications. In fact, thanks to this property, at time t we may look at the price S(t) of the
stock in the market and compute explicitly the theoretical price ΠY (t) of the derivative. This
theoretical value is, in general, different from the real market price. The difference between
the Black-Scholes price and the market price is expressed in terms of the implied volatility
of the derivative, as we discuss below.

Next we show that the formula (6.19) is equivalent to the Markov property of the geometric

Brownian motion (6.18) in the risk-neutral probability measure P̃. To this purpose we rewrite
the Black-Scholes price function as vg(t, x) = h(T − t, x), where, by a change of variable in
the integral on the right hand side of (6.19b),

h(τ, x) =

∫
R
g(y)q(τ, x, y) dy,
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where

q(τ, x, y) =
e−rτ Iy>0

y
√

2πσ2τ
exp

[
− 1

2σ2τ

(
log

y

x
− (r − 1

2
σ2)τ

)2
]
.

Comparing this expression with (3.31), we see that we can write the function q as

q(τ, x, y) = e−rτp∗(τ, x, y),

where p∗ is the transition density of the geometric Brownian motion (6.18). In particular,
the risk-neutral pricing formula of standard European derivatives in a market with constant
parameters is equivalent to the identity

Ẽ[g(S(T ))|FW̃ (t)] =

∫
R
p∗(T − t, S(t), y)g(y) dy,

and thus, since 0 ≤ t ≤ T are arbitrary, it is equivalent to the Markov property of the
geometric Brownian motion (6.18) in the risk-neutral probability measure P̃, see again Exer-
cise 3.33. We shall generalize this discussion to markets with non-deterministic parameters
in Section 6.6. Moreover replacing s = 0, t = τ , α = r − σ2/2 into (3.33), and letting
u(τ, x) = erτh(τ, x), we obtain that u satisfies

−∂τu+ rx∂xu+
1

2
σ2x2∂2

xu = 0, u(0, x) = h(0, x) = vg(T, x) = g(x).

Hence the function h(τ, x) satisfies

−∂τh+ rx∂xh+
1

2
σ2x2∂2

xh = rh, h(0, x) = g(x).

As vg(t, x) = h(T − t, x), we obtain the following result.

Theorem 6.4. Given g ∈ G, the Black-Scholes price function vg is the unique strong solution
of the Black-Scholes PDE

∂tvg + rx∂xvg +
1

2
σ2x2∂2

xvg = rvg, (t, x) ∈ D+
T (6.21a)

with the terminal condition
vg(T, x) = g(x). (6.21b)

Exercise 6.3. Write a Matlab code that computes the finite difference solution of the prob-
lem (6.21). Use the θ-method presented in Section 5.4.

Remark 6.4. For the previous exercise one needs to fix the boundary condition at x = 0 for
the strong solution of (6.21a). To derive this boundary condition we just let x = 0 into (6.21a)
and use that ∂xvg, ∂

2
xvg are bounded to obtain that v(t) = vg(t, 0) satisfies dv/dt = rv, hence

v(t) = v(T )er(t−T ). Moreover v(T ) = vg(T, 0) = g(0) and thus the boundary condition at
x = 0 of the Black-Scholes pricing function vg is

vg(t, 0) = g(0)er(t−T ), for all t ∈ [0, T ]. (6.22)
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For instance, in the case of a call, i.e., when g(z) = (z − K)+, we obtain vg(t, 0) = 0, for
all t ∈ [0, T ], hence the risk-neutral price of a call option is zero when the price of the
underlying stock tends to zero. That this should be the case is clear, for the call will never
expire in the money if the price of the stock is arbitrarily small. For a put option, i.e., when
g(z) = (K − z)+, we have vg(t, 0) = Ke−rτ , hence the risk-neutral price of a put option
is given by the discounted value of the strike price when the price of the underlying stock
tends to zero. This is also clear, since in this case the put option will certainly expire in the
money, i.e., its value at maturity is K with probability one, and so the value at any earlier
time is given by discounting its terminal value.

Next we consider the problem of constructing a replicating (and thus hedging) portfolio of
the derivative.

Theorem 6.5. Consider a standard European derivative priced according to Definition 6.3.
The portfolio {hS(t), hB(t)} given by

hS(t) = ∂xvg(t, S(t)), hB(t) = (ΠY (t)− hS(t)S(t))/B(t)

is a self-financing replicating portfolio for the derivative.

Proof. According to Theorem 6.2, we have to show that the discounted value of the Black-
Scholes price satisfies

dΠ∗Y (t) = D(t)S(t)σ∂xvg(t, S(t))dW̃ (t).

A straightforward calculation, using ΠY (t) = vg(t, S(t)), Itô’s formula and Itô’s product rule,
gives

d(D(t)ΠY (t)) =D(t)[∂tvg(t, x) + rx∂xvg(t, x) +
1

2
σ2x2∂2

xvg(t, x)− rvg(t, x)]x=S(t)

+D(t)σS(t)∂xvg(t, S(t))dW̃ (t). (6.23)

Since vg solves the Black-Scholes PDE (6.21a), the result follows.

Exercise 6.4. Work out the details of the computation leading to (6.23).

Exercise 6.5. Derive the price function of standard European derivatives assuming that the
market parameters are deterministic functions of time.

Black-Scholes price of European vanilla options

In this section we focus the discussion on call/put options, which are also called vanilla
options. We thereby assume that the pay-off of the derivative is given by

Y = (S(T )−K)+, i.e., Y = g(S(T )), g(x) = (x−K)+, for a call option,

Y = (K − S(T ))+, i.e., Y = g(S(T )), g(x) = (K − x)+, for a put option.

The function vg given by (6.19b) will be denoted by C, for a call option, and by P , for a put
option.
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Theorem 6.6. The Black-Scholes price at time t of a European call option with strike price
K > 0 and maturity T > 0 is given by C(t, S(t)), where

C(t, x) = xΦ(d1)−Ke−rτΦ(d2), (6.24a)

d2 =
log
(
x
K

)
+
(
r − 1

2
σ2
)
τ

σ
√
τ

, d1 = d2 + σ
√
τ , (6.24b)

and where Φ(x) = 1√
2π

∫ x
−∞ e

− 1
2
y2
dy is the standard normal distribution. The Black-Scholes

price of the corresponding put option is given by P (t, S(t)), where

P (t, x) = Φ(−d2)Ke−rτ − Φ(−d1)x. (6.24c)

Moreover the put-call parity identity holds:

C(t, S(t))− P (t, S(t)) = S(t)−Ke−rτ . (6.25)

Proof. We derive the Black-Scholes price of call options only, the argument for put options
being similar (see Exercise 6.6). We substitute g(z) = (z − K)+ into the right hand side
of (6.19b) and obtain

C(t, x) =
e−rτ√

2π

∫
R

(
xe(r− 1

2
σ2)τeσ

√
τy −K

)
+
e−

y2

2 dy.

Now we use that xe(r− 1
2
σ2)τeσ

√
τy > K if and only if y > −d2. Hence

C(t, x) =
e−rτ√

2π

[∫ ∞
−d2

xe(r− 1
2
σ2)τeσ

√
τye−

y2

2 −K
∫ ∞
−d2

e−
y2

2 dy

]
.

Using −1
2
y2 +σ

√
τy = −1

2
(y−σ√τ)2 + σ2

2
τ and changing variable in the integrals we obtain

C(t, x) =
e−rτ√

2π

[
xerτ

∫ ∞
−d2

e−
1
2

(y−σ
√
τ)2

dy −K
∫ ∞
−d2

e−
y2

2 dy

]
=
e−rτ√

2π

[
xerτ

∫ d2+σ
√
τ

−∞
e−

1
2
y2

dy −K
∫ d2

−∞
e−

y2

2 dy

]
= sΦ(d1)−Ke−rτΦ(d2).

The put-call parity (6.25) follows by replacing r(t) = r in (6.15), or directly by (6.24):

C(t, x)− P (t, x) = sΦ(d1)−Ke−rτΦ(d2)− Φ(−d2)Ke−rτ + sΦ(−d1)

= x(Φ(d1) + Φ(−d1))−Ke−rτ (Φ(d2) + Φ(−d2)).

As Φ(z) + Φ(−z) = 1, the claim follows.
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Exercise 6.6. Derive the Black-Scholes price P (t, S(t)) of European put options claimed in
Theorem 6.6.

Remark 6.5. The formulas (6.24)-(6.24c) appeared for the first time in the seminal paper [2].

As to the self-financing replicating portfolio for the call/put option, we have hS(t) = ∂xC(t, S(t))
for call options and hS(t) = ∂xP (t, S(t)) for put options, see Theorem 6.5, while the number
of shares of the risk-free asset in the hedging portfolio is given by

hB(t) = (C(t, S(t))− S(t)∂xC(t, S(t)))/B(t), for call options,

and
hB(t) = (P (t, S(t))− S(t)∂xP (t, S(t)))/B(t), for put options.

Let us compute ∂xC:

∂xC = Φ(d1) + xΦ′(d1)∂xd1 −Ke−rτΦ′(d2)∂xd2.

As ∂xd1 = ∂xd2 = 1
σ
√
τx

, and Φ′(x) = e−
1
2
x2
/
√

2π, we obtain

∂xC = Φ(d1) +
1

σ
√

2πτ

(
e−

1
2
d2

1 − K

x
e−rτe−

1
2
d2

2

)
.

Replacing d1 = d2 + σ
√
τ in the second term we obtain

∂xC = Φ(d1) +
e−

1
2
d2

2

σ
√

2πτ

(
e−

1
2
σ2τ−d2σ

√
τ − K

x
e−rτ

)
.

Using the definition of d2, the term within round brackets in the previous expression is easily
found to be zero, hence

∂xC = Φ(d1).

By the put-call parity we find also

∂xP = Φ(d1)− 1 = −Φ(−d1).

Note that ∂xC > 0, while ∂xP < 0. This agrees with the fact that call options are bought
to protect a short position on the underlying stock, while put options are bought to protect
a long position on the underlying stock.

Exercise 6.7 (Sol. 33). Consider a European derivative with maturity T and pay-off Y given
by

Y = k + S(T ) logS(T ),

where k > 0 is a constant. Find the Black-Scholes price of the derivative at time t < T and
the replicating self-financing portfolio. Find the probability that the derivative expires in the
money.
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Exercise 6.8 (Sol. 34). A binary (or digital) call option with strike K and maturity T
pays-off the buyer if and only if S(T ) > K. If the pay-off is a fixed amount of cash L,
then the binary call option is said to be “cash-settled”, while if the pay-off is the stock itself
then the option is said to be “physically settled”. Compute the Black-Scholes price and the
replicating portfolio of the physically settled and of the cash-settled binary call option. Repeat
the exercise for put options. Is there a put-call parity?

Exercise 6.9 (Sol. 35). Given T2 > T1, a chooser option with maturity T1 is a contract
which gives to the buyer the right to choose at time T1 whether the derivative becomes a
call or a put option with strike K and maturity T2. Show that the Black-Scholes price of a
chooser option is given by

ΠY (t) = C(t, S(t), K, T2) + P (t, S(t), Ke−r(T2−T1), T1).

where C(t, S(t), K, T ) (resp. P (t, S(t), K, T )) is the Black-Scholes price of a European call
(resp. put) with strike K and maturity T . HINT: You need the result of Exercise 6.2 and
the identity max(a, b) = a+ max(0, b− a).

Exercise 6.10 (Sol. 36). Let 0 < s < T . Find the Black-Schole price ΠY (t), t ∈ [0, T ], of the
European derivative with pay-off Y = (S(T )−S(s))+ and maturity T . Find also the put-call
parity relation satisfied by this derivative and the derivative with pay-off Z = (S(s)−S(T ))+.

The greeks. Implied volatility and volatility curve

The Black-Scholes price of a call (or put) option derived in Theorem 6.6 depends on the price
of the underlying stock, the time to maturity, the strike price, as well as on the (constant)
market parameters r, σ (it does not depend on α). The partial derivatives of the price
function C with respect to these variables are called greeks. We collect the most important
ones (for call options) in the following theorem.

Theorem 6.7. The price function C of call options satisfies the following:

∆ := ∂xC = Φ(d1), (6.26)

Γ := ∂2
xC =

φ(d1)

xσ
√
τ
, (6.27)

ρ := ∂rC = Kτe−rτΦ(d2), (6.28)

Θ := ∂tC = −xφ(d1)σ

2
√
τ
− rKe−rτΦ(d2), (6.29)

ν := ∂σC = xφ(d1)
√
τ (called “vega”). (6.30)

In particular:

� ∆ > 0, i.e., the price of a call is increasing on the price of the underlying stock;
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� Γ > 0, i.e., the price of a call is convex on the price of the underlying stock;

� ρ > 0, i.e., the price of the call is increasing on the risk-free interest rate;

� Θ < 0, i.e., the price of the call is decreasing in time;

� ν > 0, i.e., the price of the call is increasing on the volatility of the stock.

Exercise 6.11. Use the put-call parity to derive the greeks of put options.

The greeks measure the sensitivity of options prices with respect to the market conditions.
This information can be used to draw some important conclusions. Let us comment for
instance on the fact that vega is positive. It implies that the wish of an investor with a long
position on a call option is that the volatility of the underlying stock increased. As usual,
since this might not happen, the investor portfolio is exposed to possible losses due to the
decrease of the stock volatility (which makes the call option in the portfolio loose value).
This exposure can be secured by taking a short position on a swap on the variance of the
underlying stock2; see Section 6.6.

Exercise 6.12. Prove that

lim
σ→0+

C(t, x) = (x−Ke−rτ )+, lim
σ→∞

C(t, x) = x.

Exercise 6.13 (Sol. 37). Derive the probability density function fC(t) of the Black-Scholes
price C(t) = C(t, S(t)) of the call option.

Implied volatility

Let us temporarily re-denote the Black-Scholes price of the call as

C(t, S(t), K, T, σ),

which reflects the dependence of the price on the parameters K,T, σ (we disregard the
dependence on r). As shown in Theorem 6.7,

∂σC(t, S(t), K, T, σ) = vega =
S(t)√

2π
e−

d21
2
√
τ > 0.

Hence the Black-Scholes price of the option is an increasing function of the volatility. Fur-
thermore, by Exercise 6.12,

lim
σ→0+

C(t, S(t), K, T ) = (S(t)−Ke−rτ )+, lim
σ→+∞

C(t, S(t), K, T ) = S(t).

2At least theoretically, since variance swaps on the underlying stock might not be available in the market.
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Therefore the function C(t, S(t), K, T, ·) is a one-to-one map from (0,∞) into the interval
I = ((S(t) − Ke−rτ )+, S(t)), see Figure 6.1. Now suppose that at some given fixed time t

the real market price of the call is C̃(t) ∈ I. Then there exists a unique value of σ, which
depends on the fixed parameters T,K and which we denote by σimp(T,K), such that

C(t, S(t), K, T, σimp(T,K)) = C̃(t).

σimp(T,K) is called the implied volatility of the option. The implied volatility must be
computed numerically (for instance using Newton’s method), since there is no close formula
for it.
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Figure 6.1: We fix S(t) = 10, K = 12, r = 0.01, τ = 1/12 and depict the Black-Scholes price
of the call as a function of the volatility. Note that in practice only the very left part of this
picture is of interest, because typically 0 < σ < 1.

The implied volatility of an option (in this example of a call option) is a very important
parameter and it is often quoted together with the price of the option. If the market followed
exactly the assumptions in the Black-Scholes theory, then the implied volatility would be a
constant, independent of T,K and equal to the volatility of the underlying asset. In this
respect, σimp(T,K) may be viewed as a quantitative measure of how real markets deviate
from ideal Black-Scholes markets.

As a way of example, in Figure 6.2 the implied volatility is determined (graphically) for
various Apple call options on May 12, 2014, when the stock was quoted at 585.54 dollars
(closing price of the previous market day). All options expire on June 13, 2014 (τ = 1 month
= 1/12). The value r = 0.01 has been used, but the results do no change significantly even

assuming r = 0.05. In the pictures, K denotes the strike price and C̃(t) the call price.
We observe that the implied volatility is 20 % in three cases, while for the call with strike
K = 565 dollars the implied volatility is a little smaller (≈ 16%), which means that the
latter call is slightly underpriced compare to the others.
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Figure 6.2: Implied volatility of various call options on the Apple stock

Volatility curve

As mentioned before, the implied volatility depends on the parameters T,K. Here we are
particularly interested in the dependence on the strike price, hence we re-denote the implied
volatility as σimp(K). If the market behaved exactly as in the Black-Scholes theory, then
σimp(K) = σ for all values of K, hence the graph of K → σimp(K) would be just a straight
horizontal line. Given that real markets do not satisfy exactly the assumptions in the Black-
Scholes theory, what can we say about the graph of the volatility curve K → σimp(K)?
Remarkably, it has been found that there exists recurrent convex shapes for the graph of
volatility curves, which are known as volatility smile and volatility skew, see Figure 6.3.
In the case of a volatility smile, the minimum of the graph is reached at the strike price
K ≈ S(t), i.e., when the call is at the money. This behavior indicates that the more the
call is far from being at the money, the more it will be overpriced. Volatility smiles have
been common in the market since after the crash in October 19th, 1987 (Black Monday),
indicating that this event led investors to be more cautious when trading on options that are
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in or out of the money. Devising mathematical models of volatility and asset prices able to
reproduce volatility curves is an active research topic in financial mathematics. We discuss
the most popular volatility models in Section 6.6.
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Figure 6.3: Volatility smile and skew of a call option (not from real data!)

European derivatives on a dividend-paying stock

In this section we consider Black-Scholes markets with a dividend-paying stock. For modeling
purposes we assume that, at the dividend payment day, the price of the stock decreases of
exactly the amount paid by the dividend. Let t0 ∈ (0, T ) be the payment day and a ∈ (0, 1)
be the fraction of the stock price payed by the dividend. Letting S(t−0 ) = limt→t−0

S(t), we
then have

S(t0) = S(t−0 )− aS(t−0 ) = (1− a)S(t−0 ). (6.31)

We assume that on each of the intervals [0, t0), [t0, T ], the stock price follows a geometric
Brownian motion, namely,

S(s) = S(t)eα(s−t)+σ(W (s)−W (t)), t ∈ [0, t0), s ∈ [t, t0) (6.32)

S(s) = S(u)eα(s−u)+σ(W (s)−W (u)), u ∈ [t0, T ], s ∈ [u, T ]. (6.33)

Theorem 6.8. Consider the standard European derivative with pay-off Y = g(S(T )) and

maturity T . Let Π
(a,t0)
Y (t) be the Black-Scholes price of the derivative at time t ∈ [0, T ]

assuming that the underlying stock pays the dividend aS(t−0 ) at time t0 ∈ (0, T ). Then

Π
(a,t0)
Y (t) =

{
vg(t, (1− a)S(t)), for t < t0,

vg(t, S(t)), for t ≥ t0,

where vg(t, x) is the Black-Scholes pricing function in the absence of dividends, which is
given by (6.19b).
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Proof. Using S(T )
S(t)

= eατ+σ(W (T )−W (t)), we can rewrite the Black-Scholes price in the form

ΠY (t) = e−rτE[g(S(T )e(r−σ
2

2
−α)τ )|FW (t)]. (6.34)

Taking the limit s → t−0 in (6.32) and using the continuity of the paths of the Brownian
motion we find

S(t−0 ) = S(t)eα(t0−t)+σ(W (t0)−W (t)), t ∈ [0, t0).

Replacing in (6.31) we obtain

S(t0) = (1− a)S(t)eα(t0−t)+σ(W (t0)−W (t)), t ∈ [0, t0).

Hence, letting (s, u) = (T, t0) and (s, u) = (T, t) into (6.33), we find

S(T ) =

{
(1− a)S(t)eατ+σ(W (T )−W (t)) for t ∈ [0, t0),

S(t)eατ+σ(W (T )−W (t)) for t ∈ [t0, T ].
(6.35)

By the definition of Black-Scholes price in the form (6.34) and denoting G = (W (T ) −
W (t))/

√
τ , we obtain

Π
(a,t0)
Y (t) = e−rτE[g((1− a)S(t)e(r−σ

2

2
)τ+σ

√
τG|FW (t)]], for t ∈ [0, t0),

Π
(a,t0)
Y (t) = e−rτE[g(S(t)e(r−σ

2

2
)τ+σ

√
τG|FW (t)]], for t ∈ [t0, T ].

As G ∈ N (0, 1) and S(t) is independent of G, the conditional expectation can be computed
using Theorem 3.13(x), and the result follows.

We conclude that for t ≥ t0, i.e., after the dividend has been paid, the Black-Scholes price
function of the derivative is again given by (6.19b), while for t < t0 it is obtained by replacing
x with (1− a)x in (6.19b). To see the effect of this change, suppose that the derivative is a
call option; let C(t, x) be the Black-Scholes price function in the absence of dividends and
Ca(t, x) be the price function in the case that a dividend is paid at time t0. Then, according
to Theorem 6.8,

Ca(t, x) =

{
C(t, (1− a)x), for t < t0,

C(t, x), for t ≥ t0.

Since ∂xC > 0 (see Theorem 6.7), it follows that Ca(t, x) < C(t, x), for t < t0, that is to say,
the payment of a dividend makes the call option on the stock less valuable (i.e., cheaper)
than in the absence of dividends until the dividend is paid.

Exercise 6.14 (?). Give an intuitive explanation for the property just proved for call options
on a dividend paying stock.

Exercise 6.15 (Sol. 38). A standard European derivative pays the amount Y = (S(T ) −
S(0))+ at time of maturity T . Find the Black-Scholes price ΠY (0) of this derivative at time
t = 0 assuming that the underlying stock pays the dividend (1− e−rT )S(T

2
−) at time t = T

2
.

Exercise 6.16. Derive the Black-Scholes price of the derivative with pay-off Y = g(S(T )),
assuming that the underlying pays a dividend at each time t1 < t2 < · · · < tM ∈ [0, T ].
Denote by ai the dividend paid at time ti, i = 1, . . . ,M .
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6.4 The Asian option

The Asian call option with arithmetic average, strike K > 0 and maturity T > 0 is the
non-standard European style derivative with pay-off

YAC =

(
1

T

∫ T

0

S(t) dt−K
)

+

,

while for the Asian put the pay-off is

YAP =

(
K − 1

T

∫ T

0

S(t) dt

)
+

.

We study the Asian option in a Black-Scholes market, i.e., assuming that the market pa-
rameters are deterministic constants. The risk-neutral price at time t ≤ T of the Asian call
is therefore given by

ΠAC(t) = e−r(T−t)Ẽ[(Q(T )/T −K)+|FW (t)],

where

Q(t) =

∫ t

0

S(τ) dτ, S(τ) = S(0)e(r−σ
2

2
)τ+σW̃ (τ).

Exercise 6.17 (Sol. 39). Prove the following put-call parity identity for Asian options:

ΠAC(t)− ΠAP(t) =
Q(t)

T
e−r(T−t) +

S(t)

rT
(1− e−r(T−t))−Ke−r(T−t). (6.36)

Exercise 6.18. The Asian call with geometric average is the European style derivative
with pay-off

Z =

(
exp

( 1

T

∫ T

0

logS(t) dt
)
−K

)
+

,

where T > 0 and K > 0 are respectively the maturity and strike of the call. Derive an exact
formula for the Black-Scholes price of this option and for the corresponding put option.
Derive also the put-call parity. Prove that the Asian call with geometric average is cheaper
than the corresponding Asian call with arithmetic average.

Exercise 6.19 (Sol. 40). Let r ≥ 0. Prove the following inequalities between the Black
-Scholes price of the Asian call and the European call options:

ΠAC(0) <
1− e−rT
rT

C(0, S0, K, T ).

Conclude from this that for r ≥ 0 the Asian call is less valuable than the European call.
HINT: You need the Jensen inequality for integrals: f( 1

b−a

∫ b
a
g(x) dx) ≤ 1

b−a

∫ b
a
f(g(x)) dx,

for all b > a and for all functions f, g such that f is convex.

A simple closed formula for the price of the Asian option with arithmetic average is not
available. In this section we discuss two numerical methods to price the Asian option with
arithmetic average, namely the finite difference method applied to the pricing PDE and the
Monte Carlo method applied to the risk-neutral pricing formula (at time t = 0).
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The PDE method

To price the Asian option with arithmetic average using the PDE method we first observe
that the stochastic processes {Q(t)}t∈[0,T ], {S(t)}t∈[0,T ] satisfy the system of SDE’s

dQ(t) = S(t) dt, dS(t) = rS(t) dt+ σS(t) dW̃ (t).

By the Markov property of SDE’s it follows that the risk-neutral price of the Asian call
satisfies

ΠAC(t) = c(t, S(t), Q(t)). (6.37)

for some measurable function c.

Theorem 6.9. Let c : [0, T ]× (0,∞)2 → (0,∞) be the strong solution to the terminal value
problem

∂tc+ rx∂xc+ x∂yc+
σ2

2
x2∂2

xc = rc, t ∈ (0, T ), x, y > 0 (6.38a)

c(T, x, y) = (y/T −K)+, x, y > 0. (6.38b)

Then (6.37) holds. Moreover the number of shares of the stock in the self-financing hedging
portfolio is given by hS(t) = ∂xc(t, S(t), Q(t)).

Proof. We have

d(e−rtc(t, S(t), Q(t)) = e−rt[∂tc+ rx∂xc+ x∂yc+
σ2

2
x2∂2

xc− rc](t, S(t), Q(t)) dt

+ e−rt∂xc(t, S(t))σS(t)dW̃ (t).

As c satisfies (6.38), then

d(e−rtc(t, S(t), Q(t)) = e−rt∂xc(t, S(t), Q(t))σS(t)dW̃ (t). (6.39)

It follows that the process {e−rtc(t, S(t), Q(t))}t∈[0,T ] is a P̃-martingale relative to {FW (t)}t∈[0,T ].
In particular

e−rT Ẽ[c(T, S(T ), Q(T ))|FW (t)] = e−rtc(t, S(t), Q(t)), T ≥ t.

Using c(T, S(T ), Q(T )) = (Q(T )/T −K)+ proves (6.37). Moreover by (6.39) the discounted
value of the Asian call satisfies

Π∗AC(t) = ΠAC(0) +

∫ t

0

e−rτ∂xc(τ, S(τ), Q(τ))σS(t) dW̃ (τ),

hence by Theorem 6.2 the number of shares of the stock in the hedging portfolio is hS(t) =
∂xc(t, S(t), Q(t)).

132



Remark 6.6. It can be shown that, as stated in the theorem, the problem (6.38) admits
a unique strong solution, although the proof requires a highly non-trivial generalization of
the results presented in Chapter 5. In fact, while at any time t ∈ [0, T ] the solution is a
function of the two variables x, y, the diffusion operator (i.e., the second-order differential
operator) acts only on the x variable. This type of PDE’s are called hypoelliptic and have
been studied systematically by the Swedish mathematician Hörmander (see [16]).

Exercise 6.20. Use Theorem 6.9 to give an alternative proof of the put-call parity (6.36).

A simple closed formula solution for the problem (6.38) is not available, hence one needs
to rely on numerical methods to find approximate solutions. One such method is the finite
difference method described in Chapter 5. To apply this method one needs to specify the
boundary conditions for (6.38) at infinity and for {x = 0, y > 0}, {y = 0, x > 0}. Concerning
the boundary condition at x = 0, let c̄(t, y) = c(t, 0, y). Letting x = 0 in (6.38) we obtain
that c̄ satisfies ∂tc̄ = rc̄ and c̄(T, y) = (y/T − K)+, from which we derive the boundary
condition

c(t, 0, y) = e−r(T−t)
( y
T
−K

)
+
. (6.40)

As to the boundary condition when y → ∞, we first observe that the Asian put becomes
clearly worthless if Q(t) reaches arbitrarily large values. Hence the put-call parity (6.36)
leads us to impose

c(t, x, y) ∼ y

T
e−r(T−t), as y →∞, for all x > 0 (6.41)

The boundary conditions at y = 0 and x→∞ are not so obvious. The next theorem shows
that one can avoid giving these boundary conditions by a suitable variable transformation.

Theorem 6.10. Let u : [0,∞)× R→ [0,∞) be the strong solution to the problem

∂tu+
σ2

2
(γ(t)− z)2∂2

zu = 0, t ∈ (0, T ), z ∈ R (6.42a)

u(T, z) = (z)+, lim
z→−∞

u(t, z) = 0, lim
z→∞

(u(t, z)− z) = 0, t ∈ [0, T ), (6.42b)

where γ(t) = 1−e−r(T−t)
rT

. Then the function

c(t, x, y) = xu

(
t,

1

rT
(1− e−r(T−t)) +

e−r(T−t)

x

( y
T
−K

))
(6.43)

solves (6.38) as well as (6.40)-(6.41)

Proof. Proving that c solves the PDE in (6.38) is a straightforward calculation which is
left as an exercise. We now show that u satisfies the stated boundary conditions. First we
observe that c(T, x, y) = xu(T, x−1(y/T −K)) = x[x−1(y/T −K)]+ = (y/T −K)+, thus c
verifies the terminal condition in (6.38). Now, for all x given, y → ∞ is equivalent to the
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second argument in the function (6.43) going to infinity, hence u ∼ z as z →∞ implies that,
as y →∞,

c ∼ xz =
x

rT
(1− e−r(T−t)) + e−r(T−t)(y/T −K) ∼ e−r(T−t)y/T,

which proves (6.41). Similarly, the second argument in the function (6.43) tends to −∞
if and only if x → 0+ and y/T − K < 0. Hence u → 0 as z → −∞ implies (6.40) for
y/T −K < 0. When y > 0 is given such that y/T > K, we have that x → 0 is equivalent
to the second argument in the function (6.43) diverging to ∞. Hence using u ∼ z as z →∞
as before we have

c ∼ xz =
x

rT
(1− e−r(T−t)) + e−r(T−t)(y/T −K) ∼ e−r(T−t)(y/T −K), as x→ 0+,

which is (6.40) for y/T > K. Finally for y/T = K we have c(t, x, y) = xu(t, (1 −
e−r(T−t))/rT )→ 0 as x→ 0+. This concludes the proof of the theorem.

Exercise 6.21. Prove that the function (6.43) solves the PDE in (6.38).

A project to analyze the Asian option by solving numerically the problem (6.42) is proposed
in Appendix A.1. An alternative method to compute the price of Asian options is the Monte
Carlo method which we discuss next.

The Monte Carlo method

A very popular method to compute numerically the price of non-standard derivatives is
the Monte Carlo method. In this section we describe briefly how the method works for
Asian options with arithmetic average and leave the generalization to other derivatives as
an exercise.

The crude Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to compute the
expectation of a random variable. Its mathematical validation is based on the Law of
Large Numbers, which states the following: Suppose {Yi}i≥1 is a sequence of i.i.d. random
variables with expectation E[Yi] = µ. Then the sample average of the first n components of
the sequence, i.e.,

Y =
1

n
(Y1 + Y2 + · · ·+ Yn),

converges (in probability) to µ as n→∞.

The law of large numbers can be used to justify the fact that if we are given a large number
of independent trials Y1, . . . , Yn of the random variable Y , then

E[Y ] ≈ 1

n
(Y1 + Y2 + · · ·+ Yn).
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To measure how reliable is the approximation of E[Y ] given by the sample average, consider
the standard deviation of the trials Y1, . . . , Yn:

sY =

√√√√ 1

n− 1

n∑
i=1

(Y − Yi)2.

A simple application of the Central Limit Theorem proves that the random variable

µ− Y
sY /
√
n

converges in distribution to a standard normal random variable. We use this result to show
that the true value µ of E[Y ] has about 95% probability to be in the interval

[Y − 1.96
sY√
n
, Y + 1.96

sY√
n

]. (6.44)

Indeed, for n large,

P
(
−1.96 ≤ µ− Y

sY /
√
n
≤ 1.96

)
≈
∫ 1.96

−1.96

e−x
2/2 dx√

2π
≈ 0.95.

In the applications to options pricing, the random variable Y is the pay-off of a European
derivative. Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time t = 0 of the European derivative with pay-off
Y and maturity T > 0 with the sample average

ΠY (0) = e−rT
Y1 + . . . Yn

n
, (6.45)

where Y1, . . . , Yn is a large number of independent trials of the pay-off. Each trial Yi is
determined by a path of the stock price. Letting 0 = t0 < t1 < · · · < tN = T be a partition
of the interval [0, T ] with size ti − ti−1 = h, we may construct a sample of n paths of the
geometric Brownian motion on the given partition with the following simple Matlab function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;

W=randn(n,N);

q=ones(n,N);

Path=s*exp((r-sigma^2/2)*h.*cumsum(q’)+sigma*sqrt(h)*cumsum(W’));

Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian motion with mean of
log return α = r − σ2/2, which means that the geometric Brownian motion is risk-neutral.
This is of course correct, since the expectation in (6.45) that we want to compute is in
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the risk-neutral probability measure. In the case of the Asian call option with arithmetic
average, strike K and maturity T the pay-off is given by

Y =

(
1

T

∫ T

0

S(t) dt−K
)

+

≈
(

1

N

N∑
i=1

S(ti)−K
)

+

.

The following function computes the approximate price of the Asian option using the Monte
Carlo method:

function [price, conf95]=MonteCarlo AC(s,sigma,r,K,T,N,n)

tic

stockPath=StockPath(s,sigma,r,T,N,n);

payOff=max(0,mean(stockPath)-K);

price=exp(-r*T)*mean(payOff);

conf95=1.96*std(payOff)/sqrt(n);

toc

The function also return the 95% confidence interval of the result. For example, by running
the command

[price, conf95]=MonteCarlo AC(100,0.5,0.05,100,1/2,100,1000000)

we get price=8.5799, conf95=0.0283, which means that the Black-Scholes price of the Asian
option with the given parameters has 95% probability to be in the interval 8.5799± 0.0283.
The calculation took about 4 seconds. Note that the 95% confidence is 0.0565/8.5799∗100 ≈
0.66% of the price.

Exercise 6.22 (Matlab). Look for the definition of Barrier options and Lookback options.
Write a Matlab code that computes the price of these derivatives using the Monte Carlo
method. Study numerically the dependence of the price on the market parameters.

Control variate Monte Carlo method

The crude Monte Carlo method just described can be improved in a number of ways. For
instance, it follows by (6.44) that in order to shrink the confidence interval of the Monte
Carlo price one can try to reduce the standard derivation s. There exist several methods to
decrease the standard deviation of a Monte Carlo computation, which are collectively called
variance reduction techniques. Here we describe the control variate method.

Suppose we want to compute E[Y ]. The idea of the control variate method is to introduce
a second random variable Z for which E[Z] can be computed exactly and then write

E[Y ] = E[X] + E[Z], where X = Y − Z.

Hence the Monte Carlo approximation of E[Y ] can now be written as

E[Y ] ≈ X1 + · · ·+Xn

n
+ E[Z],
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where X1, . . . , Xn are independent trials of the random variable X. This approximation
improves the crude Monte Carlo estimate (without control variate) if the sample average
estimator of E[X] is better than the sample average estimator of E[Y ]. Because of (6.44),
this will be the case if (sX)2 < (sY )2. It will now be shown that the latter inequality holds
if Y, Z have a positive large correlation. Letting Y1, . . . , Yn be independent trials of Y and
Z1, . . . , Zn be independent trials of Z, we compute

(sX)2 =
1

n− 1

n∑
i=1

(X −Xi)
2 =

1

n− 1

n∑
i=1

((Y − Z)− (Yi − Zi))2

= (sY )2 + (sZ)2 − 2C(Y, Z),

where C(Y, Z) is the sample covariance of the trials (Y1, . . . , Yn), (Z1, . . . , Zn), namely

C(Y, Z) =
n∑
i=1

(Y − Yi)(Z − Zi).

Hence (sX)2 < (sY )2 holds provided C(Y, Z) is sufficiently large and positive (precisely,
C(Y, Z) > sZ/

√
2). As C(Y, Z) is an unbiased estimator of Cov(Y, Z), then the use of the

control variate Z will improve the performance of the crude Monte Carlo method if Y, Z
have a positive large correlation.

Exercise 6.23 (Matlab). Write a Matlab code that computes the Black-Scholes price at
time t = 0 and the confidence interval of the Asian option with arithmetic average using the
control variate Monte Carlo method and the pay-off of the Asian option with geometric mean
as control variate. Compare the new method with the crude Monte Carlo method and show
that the control variate technique improves the performance of the computation. Finally use
the control variate Monte Carlo method to study numerically how the price of the Asian call
with arithmetic average depends on the parameters of the option. In particular:

(a) Verify numerically the put-call parity (6.36)

(b) Show that the Asian call is less sensitive to volatility than the standard call. Do you
have an intuitive explanation for this?

(c) Show that for large volatility the Monte Carlo method becomes unstable (the confidence
interval grows very fast)

6.5 The lookback option

Lookback options are non-standard European style derivatives whose pay-off depends on the
minimum or maximum of the stock price within a given time period until maturity. There
exists four main types of lookback options.
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� A lookback call option with floating strike and maturity T > 0 gives to the owner
the right to buy the underlying stock at maturity for the minimum price of the stock
in the interval [0, T ]. Thus the pay-off for this lookback option is

Y float
LC = S(T )−min{S(t), t ∈ [0, T ]}.

� A lookback put option with floating strike and maturity T > 0 gives to the owner
the right to sell the underlying stock at maturity for the maximum price of the stock
in the interval [0, T ]. Thus the pay-off for this lookback option is

Y float
LP = max{S(t), t ∈ [0, T ]} − S(T ).

� A lookback call option with fixed strike K > 0 and maturity T > 0 pays the buyer
the difference between the maximum of the stock price in the interval [0, T ] and the
strike K, provided this difference is positive. Hence the pay-off for this lookback option
is

Y fixed
LC = (max{S(t), t ∈ [0, T ]} −K)+.

� A lookback put option with fixed strike K > 0 and maturity T > 0 pays the buyer
the difference between the strike price K and the minimum of the stock price in the
interval [0, T ], provided this difference is positive. Hence the pay-off for this lookback
option is

Y fixed
LP = (K −min{S(t), t ∈ [0, T ]})+.

In the following section we focus on the lookback call option with floating strike in a Black-
Scholes market. In particular the stock price is given by

S(t) = S(0)e(r− 1
2
σ2)t+σW̃ (t)

and the risk-neutral price for the floating strike lookback call option with maturity T > 0 is

Πfloat
LC (t) = e−r(T−t)Ẽ[S(T )−min{S(τ), τ ∈ [0, T ]}|FW (t)].

Exercise 6.24. Show that the price at time t = 0 of the lookback call and put options with
floating strike is a linear increasing function of the stock price at time zero.

Pricing PDE for the lookback call option with floating strike

The main purpose of this section is to derive the PDE satisfied by the pricing function of
lookback call options with floating strike.

138



Theorem 6.11. Let v : (0, T )× (0,∞)× (0,∞), v = v(t, x, y), satisfy

∂tv + rx∂xv +
1

2
σ2x2∂2

xv = rv, t ∈ (0, T ), x > 0, 0 < y < x, (6.46a)

∂yv(t, x, x) = 0, t ∈ [0, T ], x > 0, (6.46b)

v(T, x, y) = x− y, 0 ≤ y ≤ x. (6.46c)

Then Πfloat
LC (t) = v(t, S(t),min0≤τ≤t S(τ)).

Proof. Let Y (t) = min0≤τ≤t S(τ); note that {Y (t)}t≥0 is a non-increasing process in the
space C0[FW (t)]. However {Y (t)}t≥0 is not a diffusion process. We now show that

dY (t)dY (t) = 0.

Recall that this means that the quadratic variation of {Y (t)}t≥0 is zero in any interval [0, T ]
along any sequence of partitions {Πn}n∈N of this interval such that ‖Πn‖ → 0, as n → ∞.

Letting Πn = {t0 = 0, t
(n)
1 , . . . , tnm(n) = T}, we have to prove that

lim
n→∞

m(n)∑
j=1

(Y (t
(n)
j )− Y (t

(n)
j−1))2 = 0 in L2(Ω).

But

m(n)∑
j=1

(Y (t
(n)
j )− Y (t

(n)
j−1))2 ≤ max

j
|Y (t

(n)
j )− Y (t

(n)
j−1)|

∑
j

|Y (t
(n)
j )− Y (t

(n)
j−1)|

= max
j
|Y (t

(n)
j−1)− Y (t

(n)
j )|

∑
j

(Y (t
(n)
j−1)− Y (t

(n)
j ))

= max
j
|Y (t

(n)
j−1)− Y (t

(n)
j )|(Y (0)− Y (T )),

where in the sum we used that Y (t) is non-increasing to write |Y (t)− Y (s)| = Y (s)− Y (t),

for t ≥ s. As Y is continous in time, then maxj |Y (t
(n)
j−1))−Y (t

(n)
j )| → 0, pointwise in ω ∈ Ω.

As Y (t
(n
j ) ≤ Y (0), then, by the dominated convergence theorem, the limit is zero also in L2,

which completes the proof of dY (t)dY (t) = 0. Similarly one can prove that dS(t)dY (t) = 0
(see Exercise 6.25). Hence applying Itô’s formula we obtain

d(e−rtv(t, S(t), Y (t))) = e−rt(∂tv + rx∂xv +
1

2
σ2x2∂2

xv − rv)(t, S(t), Y (t)) dt

+ e−rtσS(t)∂xv(t, S(t), Y (t))dW̃ (t) + e−rt∂yv(t, S(t), Y (t))dY (t).

The drift term (. . . ) dt is zero by the PDE (6.46a). We now show that the term (. . . )dY (t)

is also zero, thereby concluding that {e−rtv(t, S(t)Y (t)}t≥0 is a P̃-martingale relative to
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{FW (t)}t≥0. Since Y (t) is non-increasing, then it has bounded first variation and therefore
the integral ∫ t

0

∂yv(τ, S(τ), Y (τ))dY (τ)

can be understood in the Riemann–Stieltjes sense. We divide this integral as∫ t

0

∂yv(τ, S(τ), Y (τ))dY (τ) =

∫
S(τ)>Y (τ)

∂yv(τ, S(τ), Y (τ))dY (τ)

+

∫
S(τ)=Y (τ)

∂yv(τ, S(τ), Y (τ))dY (τ).

The second piece is zero by the boundary condition (6.46b). The second piece is also zero,
because {S(τ) > Y (τ)} is an open set (as S, Y are time-continuous) and Y (τ) is constant
in this set (that is “dY (τ) = 0”). It follows that the process {e−rtv(t, S(t)Y (t)}t≥0 is a

P̃-martingale relative to {FW (t)}t≥0; in particular

Ẽ[e−rTv(T, S(T ), Y (T )]|FW (t)] = e−rtv(t, S(t), Y (t)).

Hence, by the terminal condition (6.46c),

v(t, S(t), Y (t)) = e−r(T−t)Ẽ[S(T )− Y (T )]|FW (t)],

which is the claim.

Exercise 6.25. Prove the property dS(t)dY (t) = 0 used in the previous theorem.

To study the problem (6.46) one needs a complete set of boundary conditions for strong
solutions. Assume first that y → 0. This means that the stock price has reached the value
zero at some time 0 ≤ τ ≤ t, in which case of course the minimum stock price in the interval
[0, T ] will be zero with probability 1. Hence for y → 0+, the lookback call price converges
to its highest possible value, that is

v(t, x, 0) = x. t ∈ [0, T ]. (6.47)

The boundary value as x → ∞ is not so obvious. In the next theorem we show that the
1+2 dimensional problem (6.46) can be reduced to a 1+1 dimensional problem with explicit
boundary conditions.

Theorem 6.12. Let u : (1,∞)→ R satisfy

∂tu+ rz∂zu+
1

2
σ2z2∂zzu = ru, t ∈ (0, T ), z > 1 (6.48a)

with terminal condition
u(T, z) = z − 1 (6.48b)
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and boundary conditions

lim
z→∞

(u(t, z)− z) = 0, u(t, 1)− ∂zu(t, 1) = 0. (6.48c)

Then

v(t, x, y) = yu

(
t,
x

y

)
solves (6.46) as well as (6.47).

Exercise 6.26. Prove the previous theorem.

6.6 Local and Stochastic volatility models

In this and the next section we present a method to compute the risk-neutral price of
European derivatives when the market parameters are not deterministic functions. We first
assume in this section that the interest rate of the money market is constant, i.e., r(t) = r,
which is quite reasonable for derivatives with short maturity such as options; stochastic
interest rate models are important for pricing derivatives with long time of maturity, e.g.
coupon bonds, which are discussed in Section 6.7. Assuming that the derivative is the
standard European derivative with pay-off function g and maturity T , the risk-neutral price
formula (6.1) becomes

ΠY (t) = e−rτ Ẽ[g(S(T ))|FW (t)], τ = T − t. (6.49)

Motivated by our earlier results on the Black-Scholes price, and Remark 6.3, we attempt to
re-write the risk-neutral price formula in the form

ΠY (t) = vg(t, S(t)) for all t ∈ [0, T ], for all T > 0, (6.50)

for some function vg : D+
T → (0,∞), which we call the pricing function of the derivative.

By (6.49), this is equivalent to

Ẽ[g(S(T ))|FW (t)] = erτvg(t, S(t)) (6.51)

i.e., to the property that {S(t)}t≥0 is a Markov process in the risk-neutral probability mea-

sure P̃, relative to the filtration {FW (t)}t≥0. At this point it remains to understand for
which stochastic processes {σ(t)}t≥0 does the generalized geometric Brownian motion (6.4)
satisfies this Markov property. We have seen in Section 5.1 that this holds in particular when
{S(t)}t≥0 satisfies a (system of) stochastic differential equation(s), see Section 5.1. Next we
discuss two examples which encompass most of the volatility models used in the applications:
Local volatility models and Stochastic volatility models.
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Local volatility models

A local volatility model is a special case of the generalized geometric Brownian motion
in which the instantaneous volatility of the stock {σ(t)}t≥0 is assumed to be a deterministic
function of the stock price S(t). Given a continuous function β : [0,∞) × [0,∞) → (0,∞),
we then let

σ(t)S(t) = β(t, S(t)), (6.52)

into (6.4), so that the stock price process {S(t)}t≥0 satisfies the SDE

dS(t) = rS(t) dt+ β(t, S(t))dW̃ (t), S(0) = S0 > 0. (6.53)

We assume that this SDE admits a unique global solution, which is true in particular under
the assumptions of Theorem 5.1. To this regard we observe that the drift term α(t, x) = rx
in (6.53) satisfies both (5.3) and (5.4), hence these conditions restrict only the form of the
function β(t, x). In the following we shall also assume that the solution {S(t)}t≥0 of (6.53)
is non-negative a.s. for all t > 0. Note however that the stochastic process solution of (6.53)
will in general hit zero with positive probability at any finite time. For example, letting
β(t, x) =

√
x, the stock price (6.53) is a CIR process (5.26) with b = 0 and so, according to

Theorem 5.6, S(t) = 0 with positive probability for all t > 0.

Theorem 6.13. Let g ∈ G and assume that the Kolmogorov PDE

∂tu+ rx∂xu+
1

2
β(t, x)2∂2

xu = 0 (t, x) ∈ D+
T , (6.54)

associated to (6.53) admits a (necessarily unique) strong solution in the region D+
T satisfying

u(T, x) = g(x). Let also
vg(t, x) = e−rτu(t, x).

Then we have the following.

(i) vg satisfies

∂tvg + rx∂xvg +
1

2
β(t, x)2∂2

xvg = rvg (t, x) ∈ D+
T , (6.55)

and the terminal condition
vg(T, x) = g(x). (6.56)

(ii) The price of the European derivative with pay-off Y = g(S(T )) and maturity T > 0 is
given by (6.50).

(iii) The portfolio given by

hS(t) = ∂xvg(t, S(t)), hB(t) = (ΠY (t)− hS(t)S(t))/B(t)

is a self-financing hedging portfolio.
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Proof. (i) It is straightforward to verify that vg satisfies (6.55).

(ii) Let X(t) = vg(t, S(t)). By Itô’s formula we find

dX(t) = (∂tvg(t, S(t)) + rS(t)∂xvg(t, S(t)) +
1

2
β(t, S(t))2∂2

xvg(t, S(t)))dt

+ β(t, S(t))∂xvg(t, S(t))dW̃ (t).

Hence

d(e−rtX(t)) = e−rt(∂tvg + rx∂xvg +
1

2
β(t, x)2∂2

xvg − rvg)(t, S(t))dt

+ e−rtβ(t, S(t))∂xvg(t, S(t))dW̃ (t).

As vg(t, x) satisfies (6.55), the drift term in the right hand side of the previous equation is
zero. Hence

e−rtvg(t, S(t)) = vg(t, S0) +

∫ t

0

e−ruβ(u, S(u))∂xvg(u, S(u))dW̃ (u). (6.57)

It follows that3 the stochastic process {e−rtvg(t, S(t))}t≥0 is a P̃-martingale relative to {FW (t)}t≥0.
Hence

Ẽ[e−rTvg(T, S(T ))|FW (t)] = e−rtvg(t, S(t)), for all 0 ≤ t ≤ T .

Using the boundary condition (6.56), we find

vg(t, S(t)) = e−rτ Ẽ[g(S(T ))|FW (t)],

which proves (6.50).

(iii) Replacing ΠY (t) = vg(t, S(t)) into (6.57), we find

Π∗Y (t) = ΠY (0) +

∫ t

0

e−ruβ(u, S(u))∂xvg(u, S(u))dW̃ (u).

Hence the claim on the hedging portfolio follows by Theorem 6.2.

A closed formula for the solution of (6.54) is rarely available, hence to compute the price of
the derivative one needs to rely on numerical methods, such as those discussed in Section 5.4.

3Recall that we assume that Itô’s integrals are martingales!
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Example: The CEV model

For the constant elasticity variance (CEV) model, we have β(t, S(t)) = σS(t)δ, where
σ > 0, δ > 0 are constants. The SDE for the stock price becomes

dS(t) = rS(t)dt+ σS(t)δdW̃ (t), S(0) = S0 > 0. (6.58)

For δ = 1 we recover the Black-Scholes model. For δ 6= 1, we can construct the solution
of (6.58) using a CIR process, as shown in the following exercise.

Exercise 6.27. Given σ, r and δ 6= 1, define

a = 2r(δ − 1), c = −2σ(δ − 1), b =
σ2

2r
(2δ − 1), θ = − 1

2(δ − 1)
.

Let {X(t)}t≥0 be the CIR process

dX(t) = a(b−X(t)) dt+ c
√
X(t)dW̃ (t), X(0) = x > 0.

Show that S(t) = X(t)θ solves (6.58) with S0 = xθ.

It follows by Exercise 6.27, and by Feller’s condition ab ≥ c2/2 for the positivity of the CIR
process, that the solution of (6.58) remains strictly positive a.s. if δ ≥ 1, while for 0 < δ < 1,
the stock price hits zero in finite time with positive probability.

The Kolmogorov PDE (6.54) associated to the CEV model is

∂tu+ rx∂xu+
σ2

2
x2δ∂2

xu = 0, (t, x) ∈ D+
T .

Given a terminal value g at time T as in Theorem 6.13, the previous equation admits a
unique solution. However a fundamental solution, in the sense of Theorem 5.5, exists only
for δ > 1, as otherwise the stochastic process {S(t)}t≥0 hits zero at any finite time with
positive probability and therefore the density of the random variable S(t) has a discrete
part. The precise form of the (generalized) density fS(t)(x) in the CEV model is known for
all values of δ and are given for instance in [21]. An exact formula for call options can be
found in [25]. A project that aims to analyze the CEV model by the finite difference method
is proposed in Appendix A.2.

Stochastic volatility models

For local volatility models, the stock price and the instantaneous volatility are both stochastic
processes. However there is only one source of randomness which drives both these processes,
namely a single Brownian motion {W (t)}t≥0. The next level of generalization consists in
assuming that the stock price and the volatility are driven by two different sources of ran-
domness.
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Definition 6.4. Let {W1(t)}t≥0, {W2(t)}t≥0 be two independent Brownian motions and
{FW (t)}t≥0 be their own generated filtration. Let ρ ∈ [−1, 1] be a deterministic constant
and µ, η, β : [0,∞)3 → R be continuous functions. A stochastic volatility model is a pair
of (non-negative) stochastic diffusion processes {S(t)}t≥0, {v(t)}t≥0 satisfying the following
system of SDE’s:

dS(t) = µ(t, S(t), v(t))S(t) dt+
√
v(t)S(t) dW1(t), (6.59)

dv(t) = η(t, S(t), v(t)) dt+ β(t, S(t), v(t))
√
v(t)(ρ dW1(t) +

√
1− ρ2 dW2(t)). (6.60)

We see from (6.59) that {v(t)}t≥0 is the instantaneous variance of the stock price {S(t)}t≥0.
Moreover the process {W (ρ)(t)}t≥0 given by

W (ρ)(t) = ρW1(t) +
√

1− ρ2W2(t)

is a Brownian motion satisfying

dW1(t)dW (ρ)(t) = ρ dt;

in particular the two Brownian motions {W1(t)}t≥0, {W (ρ)}t≥0 are not independent, as their
cross variation is not zero; in fact, by Exercise 4.4, ρ is the correlation of the two Brownian
motions. Hence in a stochastic volatility model the stock price and the volatility are both
stochastic processes driven by two correlated Brownian motions. We assume that {S(t)}t≥0

is non-negative and {v(t)}t≥0 is positive a.s. for all times, although we refrain from discussing
under which general conditions this is verified (we will present an example below).

Our next purpose is to introduce a risk-neutral probability measure such that the discounted
price of the stock is a martingale. As we have two Brownian motions in this model, we shall
apply the two-dimensional Girsanov Theorem 4.11 to construct such a probability measure.
Precisely, let r > 0 be the constant interest rate of the money market and γ : [0,∞)3 → R
be a continuous function We define

θ1(t) =
µ(t, S(t), v(t))− r√

v(t)
, θ2(t) = γ(t, S(t), v(t)), θ(t) = (θ1(t), θ2(t)).

Given T > 0, we introduce the new probability measure P̃(γ) equivalent to P by P̃(γ)(A) =
E[Z(T )IA], for all A ∈ F , where

Z(t) = exp

(
−
∫ t

0

θ1(s) dW1(s)−
∫ t

0

θ2(s) dW2(s)− 1

2

∫ t

0

‖θ(s)‖2 ds

)
.

Then by Theorem 4.11, the stochastic processes

W̃1(t) = W1(t) +

∫ t

0

θ1(s) ds, W̃
(γ)
2 (t) = W2(t) +

∫ t

0

γ(s) ds
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are two P̃(γ)-independent Brownian motions. Moreover (6.59)-(6.60) can be rewritten as

dS(t) = rS(t)dt+
√
v(t)S(t)dW̃1(t), (6.61a)

dv(t) = [η(t, S(t), v(t))−
√
v(t)ψ(t, S(t), v(t))β(t, S(t), v(t))]dt

+ β(t, S(t), v(t))
√
v(t)dW̃ (ρ,γ), (6.61b)

where {ψ(t, S(t), v(t))}t≥0 is the {FW (t)}t≥0-adapted stochastic process given by

ψ(t, S(t), v(t)) =
µ(t, S(t), v(t))− r√

v(t)
ρ+ γ(t, S(t), v(t))

√
1− ρ2 (6.62)

and where
W̃ (ρ,γ)(t) = ρW̃1(t) +

√
1− ρ2W̃

(γ)
2 (t).

Note that the P̃(γ)-Brownian motions {W̃1(t)}t≥0, {W̃ (ρ,γ)(t)}t≥0 satisfy

dW̃1(t)dW̃ (ρ,γ)(t) = ρdt, for ρ ∈ [−1, 1]. (6.63)

It follows immediately that the discounted price {e−rtS(t)}t≥0 is a P̃(γ)-martingale relative

to the filtration {FW (t)}t≥0. Hence all probability measures P̃(γ) are equivalent risk-neutral
probability measures.

Remark 6.7 (Incomplete markets). As the risk-neutral probability measure is not uniquely
defined, the market under discussion is said to be incomplete. Within incomplete markets
there is no unique value for the price of derivatives (it depends on which specific risk-neutral
probability measure is used to price the derivative). The stochastic process {ψ(t)}t≥0 is
called the market price of volatility risk and reduces to (6.3) for γ ≡ 0 (or ρ = 1).

Consider now the standard European derivative with pay-off Y = g(S(T )) at time of maturity
T . For stochastic volatility models it is reasonable to assume that the risk-neutral price ΠY (t)
of the derivative is a local function of the stock price and of the instantaneous variance, i.e.,
we make the following ansatz which generalizes (6.50):

ΠY (t) = e−r(T−t)Ẽ[g(S(T ))|FW (t)] = vg(t, S(t), v(t)) (6.64)

for all t ∈ [0, T ], for all T > 0 and for some measurable pricing vg. Of course, as in the case
of local volatility models, (6.64) is motivated by the Markov property of solutions to systems
of SDE’s. In fact, it is useful to consider a more general European derivative with pay-off Y
given by

Y = h(S(T ), v(T )),

for some function h : [0,∞)2 → R, i.e., the pay-off of the derivative depends on the stock
value and on the instantaneous variance of the stock at the time of maturity. We have the
following analogue of Theorem 6.13.
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Theorem 6.14. Assume that the functions η(t, x, y), β(t, x, y), ψ(t, x, y) in (6.61) are such
that the PDE

∂tu+ rx∂xu+ A∂yu+
1

2
yx2∂2

xu+
1

2
β2y∂2

yu+ ρβxy∂2
xyu = 0, (6.65a)

A = η −√yβψ, (t, x, y) ∈ (0, T )× (0,∞)2 (6.65b)

admits a unique strong solution u satisfying u(T, x, y) = h(x, y). Then the risk-neutral price
of the derivative with pay-off Y = h(S(T ), v(T )) and maturity T is given by

ΠY (t) = fh(t, S(t), v(t))

where the pricing function fh is given by fh(t, x, y) = e−rτu(t, x, y), τ = T − t.

Exercise 6.28. Prove the theorem. Hint: use Itô’s formula in two dimensions, see Theo-
rem 4.8, and the argument in the proof of Theorem 6.13.

As for the local volatility models, a closed formula solution of (6.65) is rarely available and
the use numerical methods to price the derivative becomes essential.

Heston model

A popular stochastic volatility model is the Heston model, which is obtained by the following
substitutions in (6.59)-(6.60):

µ(t, S(t), v(t)) = µ0, β(t, x, y) = c, η(t, x, y) = a(b− y),

where µ0, a, b, c are constant. Hence the stock price and the volatility dynamics in the Heston
model are given by the following stochastic differential equations:

dS(t) = µ0S(t) dt+
√
v(t)S(t)dW1(t), (6.66a)

dv(t) = a(b− v(t))dt+ c
√
v(t)dW (ρ)(t). (6.66b)

Note in particular that the variance in the Heston model is a CIR process in the physical
probability P, see (5.26). The condition 2ab ≥ c2 ensures that v(t) is strictly positive almost
surely. To pass to the risk neutral world we need to fix a risk-neutral probability measure,
that is, we need to fix the market price of volatility risk function ψ in (6.62). In the Heston
model it is assumed that

ψ(t, x, y) = λ
√
y, (6.67)

for some constant λ ∈ R, which leads to the following form of the pricing PDE (6.65):

∂tu+ rx∂xu+ (k −my)∂yu+
1

2
yx2∂2

xu+
c2

2
y∂2

yu+ ρcxy∂2
xyu = 0, (6.68)
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where the constant k,m are given by k = ab, m = (a + cλ). Note that the choice (6.67)
implies that the variance of the stock remains a CIR process in the risk-neutral probability
measure.

The general solution of (6.68) with terminal datum u(T, x, y) = h(x, y) is not known. How-
ever in the case of a call option (i.e., h(x, y) = g(x) = (x−K)+) an explicit formula for the
Fourier transform of the solution is available, see [14]. With this formula at hand one can
compute the price of call options by very efficient numerical methods, which is one of the
main reasons for the popularity of the Heston model.

Variance swaps

Variance swaps are financial derivatives4 on the realized annual variance of an asset (or
index). We first describe how the realized annual variance is computed from the historical
data of the asset price. Let T > 0 be measured in days and consider the partition

0 = t0 < t1 < · · · < tn = T, tj+1 − tj = h > 0,

of the interval [0, T ]. Assume for instance that the asset is a stock and let S(tj) = Sj be the
stock price at time tj. Here S1, . . . Sn are historical data for the stock price and not random
variables (i.e., the interval [0, T ] lies in the past of the present time). The realized annual
variance of the stock in the interval [0, T ] along this partition is defined as

σ2
1year(n, T ) =

κ

T

n−1∑
j=0

(
log

Sj+1

Sj
− 1

n
log

S(T )

S(0)

)2

, (6.69)

where κ is the number of trading days in one year (typically, κ = 252). Using T = nh we
see that, up to a normalization factor, (6.69) coincides with the sample variance of the log-
returns of the stock in the intervals [tj, tj+1], j = 0, . . . , n− 1. A variance swap stipulated
at time t = 0, with maturity T and strike variance K is a contract between two parties
which, at the expiration date, entails the exchange of cash given by N(σ2

1year−K), where N
(called variance notional) is a conversion factor from units of variance to units of currency.
In particular, the holder of the long position on the swap is the party who receives the cash
in the case that the realized annual variance at the expiration date is larger than the strike
variance. Variance swaps are traded over the counter and they are used by investors to
protect their exposure to the volatility of the asset. For instance, suppose that an investor
has a position on an asset which is profitable if the volatility of the stock price increases (e.g.,
the investor owns call options on the stock). Then it is clearly important for the investor
to secure such position against a possible decrease of the volatility. To this purpose the
investor opens a short position on a variance swap with another investor who is exposed to
the opposite risk.

4More precisely, forward contracts, see Section 6.8.
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Let us now discuss variance swaps from a mathematical modeling point of view. We assume
that the stock price follows the generalized geometric Brownian motion

S(t) = S(0) exp

(∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s)

)
.

Next we show that, as n→∞, the realized annual variance in the future time interval [0, T ]
converges in L2 to the random variable

QT =
κ

T
[logS, logS](T ) =

κ

T

∫ T

0

σ2(t) dt.

To see this we first rewrite the definition of realized annual variance as

σ2
1year(n, T ) =

κ

T

n−1∑
j=0

(
log

Sj+1

Sj

)2

− κ

nT

(
log

S(T )

S(0)

)2

. (6.70)

Hence

lim
n→∞

σ2
1year(n, T ) = lim

n→∞

κ

T

n−1∑
j=0

(
log

Sj+1

Sj

)2

in L2.

Moreover, by the definition of quadratic variation, it follows that

E

( κ
T

n−1∑
j=0

(
log

Sj+1

Sj

)2

−QT

)2
→ 0, as n→∞.

A variance swap can thus be defined as the (non-standard) European derivative with pay-off
Y = QT −K. Assuming that the interest rate of the money market is the constant r ∈ R,
the risk-neutral value of a variance swap is given by

ΠY (t) = e−rτ Ẽ[QT −K|FW (t)]. (6.71)

In particular, at time t = 0, i.e., when the contract is stipulated, we have

ΠY (0) = e−rT Ẽ[QT −K], (6.72)

where we used that FW (0) is a trivial σ-algebra, and therefore the conditional expectation
with respect to FW (0) is a pure expectation. As none of the two parties in a variance swap
has a privileged position on the contract, there is no premium associated to variance swaps,
that is to say, the fair value of a variance swap is zero5. The value K∗ of the variance strike
which makes the risk-neutral price of a variance swap equal to zero at time t = 0, i.e.,
ΠY (0) = 0, is called the fair variance strike. By (6.72) we find

K∗ =
κ

T

∫ T

0

Ẽ[σ2(t)] dt. (6.73)

5This is a general property of forward contracts, see Section 6.8.
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To computeK∗ explicitly, we need to fix a stochastic model for the variance process {σ2(t)}t≥0.
Let us consider the Heston model

dσ2(t) = a(b− σ2(t))dt+ cσ(t)dW̃ (t), (6.74)

where a, b, c are positive constants satisfying 2ab ≥ c2 and where {W̃ (t)}t≥0 is a Brownian
motion in the risk-neutral probability measure. To compute the fair variance strike of the
swap using the Heston model we use that

Ẽ[σ2(t)] = abt− a
∫ t

0

Ẽ[σ2(s)] ds,

which implies d
dt
Ẽ[σ2(t)] = ab− aẼ[σ2(t)] and so

Ẽ[σ2(t)] = b+ (σ2
0 − b)e−at, σ2

0 = Ẽ[σ2(0)] = σ2(0). (6.75)

Replacing into (6.73) we obtain

K∗ = κ

[
b+

σ2
0 − b
aT

(1− e−aT )

]
.

Exercise 6.29 (Sol. 41). Given σ0 > 0, let σ(t) = σ0

√
S(t), which is an example of CEV

model. Compute the fair strike of the variance swap.

Exercise 6.30 (Sol. 42). Assume that the price S(t) of a stock follows a generalized geometric
Brownian motion with instantaneous volatility {σ(t)}t≥0 given by the Heston model dσ2(t) =

a(b − σ2(t)) dt + cσ(t) dW̃ (t), where {W̃ (t)}t≥0 is a Brownian motion in the risk-neutral
probability measure and a, b, c are constants such that 2ab ≥ c2 > 0. The volatility call
option with strike K and maturity T is the financial derivative with pay-off

Y = N

√ κ

T

∫ T

0

σ2(t) dt−K


+

,

where κ is the number of trading days in one year and N is a dimensional constant that con-
verts units of volatility into units of currency. Assuming that the interest rate of the money
market is constant, find the partial differential equation and the terminal value satisfied by
the pricing function of the volatility option.

6.7 Interest rate contracts

Zero-coupon bonds

A zero-coupon bond (ZCB) with face (or nominal) value K and maturity T > 0 is a
contract that promises to pay to its owner the amount K at time T in the future. Zero-
coupon bonds, and related contracts described below, are issued by national governments
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and private companies as a way to borrow money and fund their activities. In the following
we assume that all ZCB’s are issued by one given institution, so that all bonds differ merely
by their face values and maturities. Moreover without loss of generality we assume from now
on that K = 1, as owning a ZCB with face value K is clearly equivalent to own K shares of
a ZCB with face value 1.

Once a debt is issued in the so-called primary market, it becomes a tradable asset in the
secondary bond market. It is therefore natural to model the value at time t of the ZCB
maturing at time T > t (and face value 1) as a random variable, which we denote by B(t, T ).
We assume throughout the discussion that the institution issuing the bond bears no risk of
default, i.e., B(t, T ) > 0, for all t ∈ [0, T ]. Clearly B(T, T ) = 1 and, under normal market
conditions, B(t, T ) < 1, for t < T , although exceptions are not rare6. A zero-coupon
bond market (ZCB market) is a market in which the objects of trading are ZCB’s with
different maturities. Our main goal is to introduce models for the prices of ZCB’s observed
in the market. For modeling purposes we assume that zero-coupon bonds are available with
a continuum range of maturities T ∈ [0, S], where S > 0 is sufficiently large so that all
ZCB’s in the market mature before the time S (e.g., S ≈ 50 years). Mathematically this
means that we model the prices of ZCB’s in the market as a stochastic process depending
on 2 parameters, namely

{B(t, T ), t ∈ [0, T ], T ∈ [0, S]}.
All processes {X(t, T ), t ∈ [0, T ], T ∈ [0, S]} introduced in this section are assumed to have
a.s. continuous paths in both variables t, T and to be adapted to the filtration {FW (t)}t≥0

generated by the given Brownian motion {W (t)}t≥0. This means that for all given T ∈ [0, S],
the stochastic process {X(t, T )}t∈[0,T ] is adapted to {FW (t)}t≥0. By abuse of notation we
continue to denote by C0[FW (t)] this class of processes.

Remark 6.8. The term “bond” is more specifically used for long term loans with maturity
T > 1 year. Short term loans have different names (e.g., bills, repo, etc.) and they constitute
the component of the loan market called money market. A bond which has less than one
year left to maturity is also considered a money market asset.

Forward and spot rate

The difference in value of zero-coupon bonds with different maturities is expressed through
the implied forward rate of the bond. To define this concept, suppose first that at the present
time t we open a portfolio that consists of −1 share of a zero-coupon bond with maturity
T > t and B(t, T )/B(t, T + δ) shares of a zero-coupon bond expiring at time T + δ. Note
that the value of this portfolio is V (t) = 0. This investment entails that we pay 1 at time T
and receive B(t, T )/B(t, T + δ) at time T + δ. Hence our investment at time t is equivalent

6For instance, zero-coupon (and other) national bonds in Sweden with maturity shorter than 5 years yield
currently (2017) a negative return.
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to an investment in the future time interval [T, T + δ] with (annualized) return given by

Fδ(t, T ) =
1

δ
(B(t, T )/B(t, T + δ)− 1) =

B(t, T )−B(t, T + δ)

δB(t, T + δ)
. (6.76)

The quantity Fδ(t, T ) is also called the simply compounded forward rate in the interval
[T, T+δ] locked at time t (or forward LIBOR, as it is commonly applied to LIBOR interest
rate contracts). The name is intended to emphasize that the return in the future interval
[T, T + δ] is locked at the time t ≤ T , that is to say, we know today which interest rate has
to be charged to borrow in the future time interval [T, T + δ] (if a different rate were locked
today, then an arbitrage opportunity would arise). In the limit δ → 0+ we obtain the so
called continuously compounded T-forward rate of the bond locked at time t:

F (t, T ) = lim
δ→0+

Fδ(t, T ) = − 1

B(t, T )
∂TB(t, T ) = −∂T logB(t, T ), (6.77)

where 0 ≤ t ≤ T and 0 ≤ T ≤ S. Inverting (6.77) we obtain

B(t, T ) = exp

(
−
∫ T

t

F (t, v) dv

)
, 0 ≤ t ≤ T ≤ S. (6.78)

By (6.78), a model for the price B(t, T ) of the ZCB’s in the market can be obtained by a
model on the forward rate curve T → F (t, T ). This approach to the problem of ZCB
pricing is known as HJM approach, from Heath, Jarrow, Morton, who introduced this method
in the late 1980s.

Letting T → t+ in (6.76) we obtain the simply compounded spot rate,

Rδ(t) = lim
T→t+

Fδ(t, T ), (6.79)

that is to say, the interest rate locked “on the spot”, i.e., at the present time t, to borrow
in the interval [t, t + δ]. Letting δ → 0+ we obtain the instantaneous (or continuously
compounded) spot rate {r(t)}t∈[0,S] of the ZCB market:

r(t) = lim
δ→0+

Rδ(t) = lim
T→t+

F (t, T ), t ∈ [0, S]. (6.80)

Note that r(t) is the interest rate locked at time t to borrow in the “infinitesimal interval” of
time [t, t+ dt]. Hence r(t) coincides with the risk-free rate of the money market used in the
previous sections. For the options pricing problem studied in Sections 6.3–6.6 we assumed
that r(t) was equal to a constant r, which is reasonable for short maturity contracts (T . 1
year). However when large maturity assets such as ZCB’s are considered, we have to relax
this assumption and promote {r(t)}t∈[0,S] to a stochastic process. In the so-called classical
approach to the problem of ZCB’s pricing, the fair value of B(t, T ) is derived from a model
on the spot rate process.
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Yield to maturity of ZCB’s

If a ZCB is bought at time t and kept until its maturity T > t, the annualized log-return of
the investment is

Y (t, T ) = − 1

T − t logB(t, T ) =
1

T − t

∫ T

t

F (t, v) dv, (6.81)

which is called the (continuously compounded) yield to maturity of the zero-coupon
bond, while T → Y (t, T ) is called the yield curve; see Figure 6.4 for an example of yield
curve (on Swedish bonds).

Inverting (6.81) we find

B(t, T ) = e−Y (t,T )(T−t) =
DY (T )

DY (t)
, where DY (s) = e−Y (t,T )s. (6.82)

Hence we may interpret the yield also as the constant interest rate which entails that the
value of the ZCB at time t equals the discounted value of the future payment 1 at time T .

Figure 6.4: Yield curve for Swedish bonds. Note that the yield is negative for maturities
shorter than 5 years.

Exercise 6.31. Yield curves observed in the market are classified based on their shape (e.g.,
steep, flat, inverted, etc.). Find out on the Internet what the different shapes mean from an
economical point of view.
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Coupon bonds

Let 0 < t1 < t2 < · · · < tM = T be a partition of the interval [0, T ]. A coupon bond with
maturity T , face value 1 and coupons c1, c2, . . . , cM ∈ [0, 1) is a contract that promises to pay
the amount ck at time tk and the amount 1+cM at maturity T = tM . Note that some ck may
be zero, which means that no coupon is actually paid at that time. We set c = (c1, . . . , cM)
and denote by Bc(t, T ) the value at time t of the bond paying the coupons c1, . . . , cM and
maturing at time T . Now, let t ∈ [0, T ] and k(t) ∈ {1, . . . ,M} be the smallest index such
that tk(t) > t, that is to say, tk(t) is the first time after t at which a coupon is paid. Holding
the coupon bond at time t is clearly equivalent to holding a portfolio containing ck(t) shares
of the ZCB expiring at time tk(t), ck(t)+1 shares of the ZCB expiring at time tk(t)+1, and so
on, hence

Bc(t, T ) =
M−1∑
j=k(t)

cjB(t, tj) + (1 + cM)B(t, T ), (6.83)

the sum being zero when k(t) = M .

Remark 6.9. The value of the coupon bond at time t does not depend on the coupons paid
at or before t. This of course makes sense, because purchasing a bond at time t does not
give the buyer any right concerning previous coupon payments.

The yield to maturity of a coupon bond is the quantity Yc(t, T ) defined implicitly by the
equation

Bc(t, T ) =
M−1∑
j=k(t)

cje
−Yc(t,T )(tj−t) + (1 + cM)e−Yc(t,T )(T−t). (6.84)

It follows that the yield of the coupon bond is the constant interest rate used to discount the
total future payments of the coupon bond.

Example. Consider a 3 year maturity coupon bond with face value 1 which pays 2% coupon
semiannually. Suppose that the bond is listed with an yield of 1%. What is the value of the
bond at time zero? The coupon dates are

(t1, t2, t3, t4, t5, t6) = (1/2, 1, 3/2, 2, 5/2, 3),

and c1 = c2 = · · · = c6 = 0.02. Hence

Bc(0, T ) = 0.02e−0.01∗ 1
2 + 0.02e−0.01∗1 + 0.02e−0.01∗ 3

2 + 0.02e−0.01∗2 + 0.02e−0.01∗ 5
2

+ (1 + 0.02)e−0.01∗3 = 1.08837.

Remark 6.10. As in the previous example, the coupons of a coupon bond are typically all
equal, i.e., c1 = c2 = · · · = cM = c ∈ (0, 1).

In the example above, the yield was given and Bc(0, T ) was computed. However one is most
commonly faced with the opposite problem, i.e., computing the yield of the coupon bond with
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given initial value Bc(0, T ). We can easily solve this problem numerically inverting (6.84).
For instance, assume that the bond is issued at time t = 0 with maturity T = M years (M
integer) and that the coupons are paid annually, that is t1 = 1, t2 = 2, . . . , tM = M . Then
x = exp(−Yc(0, T )) solves p(x) = 0, where p is the M -order polynomial given by

p(x) = c1x+ c2x
2 + · · ·+ (1 + cM)xM −Bc(0, T ). (6.85)

The roots of this polynomial can easily be computed numerically, e.g., with the command
roots[p] in matlab, see Exercise 6.32 below.

Exercise 6.32 (Matlab). Write a matlab function

yield(B, Coupon, FirstCoupDate, CoupFreq, T)

that computes the yield of a coupon bond. Here, B is the current (i.e., at time t = 0) price
of the coupon, Coupon ∈ [0, 1) is the (constant) coupon, FirstCoupDate is the first future
date at which the coupon is paid, CoupFreq is the frequency of coupon payments and T is
the maturity of the coupon bond. Express all time in fraction of years, using 1 day = 1/252
years. For example

yield(1.01, 0.02, 46/252, 1, 4)

computes the yield of a 2% coupon bond which today is valued 1.01, pays the first coupon in
46 days and expires in 4 years.

Classical approach to ZCB pricing

In the so-called classical approach to the problem of pricing ZCB’s we interpret the ZCB as
a derivative on the spot rate. Assume that a model for {r(t)}t∈[0,S] is given as a stochastic
process in the space C0[FW (t)]. As the pay-off of the ZCB equals one, the risk-neutral price
of the ZCB is given by

B(t, T ) = Ẽ[D(t)−1D(T )|FW (t)] = Ẽ
[

exp(−
∫ T

t

r(s) ds)|FW (t)
]

(6.86)

and by Theorem 6.2(i) (with Y = 1), the discounted price of the ZCB,B∗(t, T ) = D(t)B(t, T ),

is a P̃-martingale relative to {FW (t)}t≥0; in particular, self-financing portfolios invested in
the ZCB market are not arbitrage portfolios. Note however that the risk-neutral probability
measure in (6.86) cannot be determined solely by the spot rate, and therefore models for the
process {r(t)}t∈[0,S] must be given a priori in terms of a risk-neutral probability measure. As
the real world is not risk-neutral, the foundation of the classical approach is questionable.
There are two ways to get around this problem. One is the HJM approach described below;
the other is by adding a risky asset (e.g. a stock) to the ZCB market, which would then be
used to determine the risk-neutral probability measure. The last procedure is referred to as
“completing the ZCB market” and will be discussed in Section 6.8.
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As an application of the classical approach, assume that the spot rate is given by the Cox-
Ingersoll-Ross (CIR) model,

dr(t) = a(b− r(t))dt+ c
√
r(t)dW̃ (t), r(0) = r0 > 0, (6.87)

where {W̃ (t)}t∈[0,T ] is a Brownian motion in the risk-neutral probability measure and R0, a, b, c
are positive constants. To compute B(t, T ) under a CIR interest rate model, we make the
ansatz

B(t, T ) = v(t, r(t)), (6.88)

for some smooth function v : [0, T ] × R → R, which we want to find. Note that we do not
require the Feller condition ab ≥ c2/2, hence we allow the spot rate to become zero with
positive probability, although negative values are excluded in the CIR model.

Theorem 6.15. When the interest rate {r(t)}t>0 follows the CIR model (6.87), the value
B(t, T ) of the zero-coupon bond is given by

v(t, x) = e−xC(τ)−A(τ), τ = T − t, (6.89)

where C(τ), A(τ) satisfy the Cauchy problem

C ′(τ) = 1− aC(τ)− c2

2
C(τ)2, A′(τ) = abC(τ) (6.90a)

C(0) = 0, A(0) = 0. (6.90b)

Moreover the solution of the Cauchy problem (6.90) is given by

C(τ) =
sinh(γτ)

γ cosh(γτ) + 1
2
a sinh(γτ)

(6.91a)

A(τ) = −2ab

c2
log

[
γe

1
2
aτ

γ cosh(γτ) + 1
2
a sinh(γτ)

]
(6.91b)

and

γ =
1

2

√
a2 + 2c2. (6.91c)

Proof. Using Itô’s formula and the product rule, together with (6.87), we obtain

d(D(t)v(t, r(t)) = D(t)[∂tv(t, r(t)) + a(b− r(t))∂xv(t, r(t))

+
c2

2
r(t)∂2

xv(t, r(t))− r(t)v(t, r(t))]dt

+D(t)∂xv(t, r(t))c
√
r(t)dW̃ (t).

Hence, imposing that v be a solution of the PDE

∂tv + a(b− x)∂xv +
c2

2
x∂2

xv = xv, (t, x) ∈ D+
T , (6.92a)
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we obtain that the stochastic process {D(t)v(t, r(t))}t∈[0,T ] is a P̃-martingale relative to the
filtration {FW (t)}t∈[0,T ]. Imposing additionally the terminal condition

v(T, x) = 1, for all x > 0, (6.92b)

we obtain
D(t)v(t, r(t)) = Ẽ[D(T )v(T,R(T ))|FW (t)] = Ẽ[D(T )|FW (t)],

hence
v(t, r(t)) = Ẽ[D(T )/D(t)|FW (t)],

and thus (6.88) is verified. Replacing the ansatz (6.89) into (6.92) we find the following first
order polynomial equation

x(C ′(τ) + aC(τ) +
c2

2
C(τ)2 − 1) + A′(τ)− abC(τ) = 0.

The previous equation holds for all x if and only if (6.90a) hold, while the initial condi-
tions (6.90b) are equivalent to the terminal condition v(T, x) = 1. The proof of the claim
that (6.91) is the solution of the Cauchy problem (6.90) is left as an exercise.

Exercise 6.33. Show that (6.91) is the solution of the Cauchy problem (6.90).

Exercise 6.34. Use the matlab code in Exercise 6.32 to compute the yield Yc(0, T ) of coupon
bonds in the CIR model for a given value of r0 and different values of a, b, c. Assume that
the coupons are paid at times t = 1, 2, . . . , T . Plot the yield curve and try to reproduce all
the typical profiles found in Exercise 6.31. Remark: each bond in the yield curve might pay a
different coupon, but the constants r0, a, b, c in the CIR model must be chosen to be the same
for all bonds in the yield curve.

The CIR model is an example of affine model, i.e., a model for the interest rate which entails
a price function for the ZCB of the form B(t, T ) = exp(−r(t)C(t) − A(t)) (or equivalently,
an yield which is a linear function of the spot rate). The most general affine model has the
form

dr(t) = a(t)(b(t)− r(t)) dt+ c(t)
√
r(t) + δ(t) dW̃ (t), (6.93)

where a, b, c, δ are deterministic functions of time.

Exercise 6.35. Let B(t, T ) = v(t, r(t)) the price of the ZCB with face value 1 entailed by
the general affine model (6.93). Set v(t, x) = exp(−xC(T − t) − A(T − t)) and derive the
ODE’s verified by the functions A,C.

An example of non-affine model is the CKLS model (Chan, Karolyi, Longstaff, Sanders [6]),
which is given by the SDE

dr(t) = a(b− r(t)) dt+ cr(t)γ dW̃ , (6.94)
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where a, b, c, γ > 0 and γ 6= 1/2 (for γ = 1/2 we recover the CIR model, while for γ = 0 the
CKLS model reduces to the Vasicek model, see Exercise 6.36). Repeating the argument in
the proof of Theorem 6.15 we find that the pricing function of ZCB’s in the CKLS model
satisfies the PDE

∂tv + a(b− x)∂xv +
c2

2
x2γ∂2

xv = xv, (t, x) ∈ D+
T , (6.95)

with the terminal condition v(T, x) = 1. The solution to this terminal value problem is not
known, hence the use of numerical methods becomes essential to price ZCB’s in the CKLS
model.

Exercise 6.36 (Sol. 43). Assume that the interest rate of a zero-coupon bond is given by the
Vasicek model

dr(t) = a(b− r(t))dt+ c dW̃ (t), r(0) = r0 ∈ R,
where a, b, c are positive constants and {W̃ (t)}t≥0 is a Brownian motion in the risk-neutral

probability measure P̃. Show that r(t) is P̃-normally distributed and compute its expectation
and variance in the risk-neutral probability measure. Derive the PDE for the pricing function
v of the ZCB with face value 1 and maturity T > 0. Find v using the ansatz (6.89).

Interest rate swap

An interest rate swap can be seen as a coupon bond with variable (random) coupons, which
can be positive or negative. More precisely, consider a partition 0 = T0 < T1 < · · · < Tn = T
with Ti − Ti−1 = δ, for all i = 1, . . . , n. Let Rδ(Ti) = Fδ(Ti, Ti) be the simply compounded
spot rate in the interval [Ti, Ti+1]. Recall that this quantity is known at time Ti (but not at
time t = 0). An interest rate swap is a contract between two parties which at each time Ti+1,
i = 1, . . . , n−1, entails the exchange of cash N(Rδ(Ti)δ−rδ), where r is a fixed interest rate
and N > 0 is the notional amount converting units of interest rates into units of currency.
Without loss of generality, we assume N = 1 in the following. The party that receives this
cash flow when it is positive is called the receiver, while the opposite party is called the
payer. Hence the receiver has a long position on the spot rate, while the payer has a short
position on the spot rate. The risk-neutral value at time t = 0 of the interest rate swap is
the expectation, in the risk-neutral probability measure, of the discounted cash-flow entailed
by the contract, that is

Πirs(0) = δ

n−1∑
i=1

Ẽ[(Rδ(Ti)− r)D(Ti+1)], (6.96)

where D(t) is the discount process. Being a forward type contract (see Section 6.8), the fair
value of the interest rate swap is zero: neither the receiver nor the payer has a privileged
position in the contract and thus none of them needs to pay a premium. The value of r for
which Πirs(0) = 0 is called the (fair) swap rate of the interest rate swap.
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Theorem 6.16. The swap rate of an interest rate swap stipulated at time t = 0 and with
maturity T is given by

rswap =

∑n−1
i=1 B(0, Ti+1)Fδ(0, Ti)∑n−1

i=1 B(0, Ti+1)
. (6.97)

Proof. We show below that, for all T > 0 and δ > 0, the following identity holds:

Ẽ[D(T + δ)Fδ(T, T )] = B(0, T + δ)Fδ(0, T ). (6.98)

Using (6.98) in (6.96) we obtain

Πirs(0) = δ
n−1∑
i=1

Ẽ[Fδ(Ti, Ti)D(Ti + δ)]− δr
n−1∑
i=1

Ẽ[D(Ti+1)]

= δ

(
n−1∑
i=1

B(0, Ti+1)Fδ(0, Ti)− r
n−1∑
i=1

B(0, Ti+1)

)
, (6.99)

hence Πirs(0) = 0 if and only if r = rswap. It remains to prove (6.98). As B(t, T ) =

Ẽ[D(T )/D(t)|FW (t)], we have

Ẽ[D(T + δ)Fδ(T, T )] = Ẽ[D(T + δ)(
1−B(T, T + δ)

δB(T, T + δ)
)]

=
1

δ
Ẽ[D(T + δ)B(T, T + δ)−1]− 1

δ
Ẽ[D(T + δ)]

=
1

δ
Ẽ[Ẽ[

D(T + δ)

D(T )

D(T )

B(T, T + δ)
|FW (T )]]− 1

δ
B(0, T + δ)

=
1

δ
Ẽ[

D(T )

B(T, T + δ)
B(T, T + δ)]− 1

δ
B(0, T + δ)

=
1

δ

B(0, T )−B(0, T + δ)

B(0, T + δ)
B(0, T + δ) = B(0, T + δ)Fδ(0, T ).

Remark 6.11. Note carefully that all quantities in the right hand side of (6.97) are known
at time t = 0, hence the swap rate is fixed by information available at the time when the
interest rate swap is stipulated.

Caps and Floors

An interest rate cap is a contract that caps (i.e., put a maximum limit on) the spot rate.
More precisely, consider, as before, a uniform partition 0 = T0 < T1 < · · · < Tn = T of
the interval [0, T ] with Ti − Ti−1 = δ, for all i = 1, . . . , n. Let Rδ(Ti) = Fδ(Ti, Ti) be the
simply compounded spot rate in the interval [Ti, Ti+1]. An interest rate cap with strike rate
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r and notional amount N = 1 pays to its owner the amount (Rδ(Ti)δ − rδ)+ at time Ti+1,
i = 1, . . . , n − 1. Hence the spot rate for the owner of the interest rate cap is no higher
than r: any excess to the strike rate is paid by the seller of the interest rate cap. Similarly,
an interest rate floor put a minimum on the spot rate and pays to its owner the amount
(rδ − Rδ(Ti)δ)+ at every time Ti+1, i = 1, . . . , n − 1. The risk-neutral price of the interest
rate cap/floor at time t = 0 is given by

Πcap(0) = δ

n−1∑
i=1

Ẽ[(Rδ(Ti)− r)+D(Ti+1)], (6.100)

Πfloor(0) = δ
n−1∑
i=1

Ẽ[(r −Rδ(Ti))+D(Ti+1)]. (6.101)

As (Rδ(Ti)− r)+ − (r −Rδ(Ti))+ = (Rδ(Ti)− r), the cap-floor parity identity holds:

Πcap(0)− Πfloor(0) = Πirs(0).

In particular if the strike rate coincides with the swap rate then the cap and the floor have
the same initial price. An interest rate cap (resp. floor) on one time period (i.e., n = 1) is
called a caplet (resp. floorlet).

The HJM approach to ZCB pricing

Next we present a different approach for the evaluation of ZCB’s due to Heath, Jarrow and
Morton (HJM model). The cornerstone of this approach is to use the forward rate of the
market, instead of the spot rate, as the fundamental parameter to express the price of the
bond.

The starting point in the HJM approach is to assume that {F (t, T ), t ∈ [0, T ], T ∈ [0, S]} is
given by the diffusion process

dF (t, T ) = α(t, T ) dt+ σ(t, T )dW (t), t ∈ [0, T ], T ∈ [0, S]. (6.102)

where {α(t, T ), t ∈ [0, T ], T ∈ [0, S]}, {σ(t, T ), t ∈ [0, T ], T ∈ [0, S]} ∈ C0[FW (t)]; in the
applications they are often assumed to be deterministic functions of (t, T ). Note carefully
that, as opposed to the spot rate dynamics in the classical approach, the forward rate
dynamics in the HJM approach is given in terms of the physical (real-world) probability and
not a priori in the risk-neutral probability. Specifying the dynamics (6.102) for the forward
rate in the HJM approach corresponds to the assumption made in options pricing theory
that the underlying stock follows a (generalized) geometric Brownian motion.

Theorem 6.17. When the forward rate of the ZCB market is given by (6.102), the value (6.78)
of the zero-coupon bond is the diffusion process {B(t, T ), t ∈ [0, T ], T ∈ [0, S]} given by

dB(t, T ) = B(t, T )[r(t)− α(t, T ) +
1

2
σ(t, T )2]dt− σ(t, T )B(t, T ) dW (t), (6.103)
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where r(t) is the instantaneous spot rate (6.80) and

α(t, T ) =

∫ T

t

α(t, v) dv, σ(t, T ) =

∫ T

t

σ(t, v) dv. (6.104)

Proof. Let X(t) = −
∫ T
t
F (t, v) dv. By Itô’s formula,

dB(t, T ) = B(t, T )(dX(t) +
1

2
dX(t)dX(t)). (6.105)

Moreover

dX(t) = F (t, t) dt−
∫ T

t

dF (t, v) dv

= r(t) dt−
∫ T

t

(α(t, v) dt+ σ(t, v) dW (t)) dv

= r(t) dt− α(t, T ) dt− σ(t, T ) dW (t).

Replacing in (6.105) the claim follows.

We now establish a condition which ensures that investing on ZCB’s entails no arbitrage.
This can be achieved by the same argument used in Section 6 for 1+1 dimensional stock
markets, namely by showing that there exists a probability measure P̃ equivalent to P such
that the discounted value of the ZCB is a martingale for all maturities T ∈ [0, S]. Recall
that {α(t, T ), t ∈ [0, T ], T ∈ [0, S]} and σ(t, T )t ∈ [0, T ], T ∈ [0, S]} are given by (6.104).

Theorem 6.18. Let the forward rate process {F (t, T ), t ∈ [0, T ], T ∈ [0, S]} be given
by (6.102) such that σ(t, T ) > 0 a.s. for all 0 ≤ t ≤ T ≤ S. Assume that there exists
a stochastic process {θ(t)}t∈[0,S] ∈ C0[FW (t)] (the market price of risk), independent of
T ∈ [0, S], such that

α(t, T ) = θ(t)σ(t, T ) + σ(t, T )σ(t, T ), for all 0 ≤ t ≤ T ≤ S. (6.106)

and such that the stochastic process {Z(t)}t∈[0,S] given by

Z(t) = exp

(
−
∫ t

0

θ(s) dW (s)− 1

2

∫ t

0

θ(s)2 ds

)
is a P-martingale (e.g., {θ(t)}t∈[0,S] satisfies the Novikov condition). Let P̃ be the proba-

bility measure equivalent to P given by P̃(A) = E[Z(S)IA], for all A ∈ F , and denote by

{W̃ (t)}t∈[0,S] the P̃-Brownian motion given by dW̃ (t) = dW (t) + θ(t) dt. Then the following
holds:

(i) The forward rate satisfies

dF (t, T ) = σ(t, T )σ(t, T ) dt+ σ(t, T )dW̃ (t). (6.107)
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(ii) The discounted price (6.78) of the ZCB with maturity T ∈ [0, S] satisfies

dB∗(t, T ) = −σ(t, T )B∗(t, T )dW̃ (t). (6.108)

In particular for any given T ∈ [0, S], the discounted value process {B∗(t, T )}t∈[0,T ] is

a P̃-martingale relative to {FW (t)}t≥0, and so any self-financing portfolio that consists
of ZCB’s with different maturities is not an arbitrage.

(iii) The value of the ZCB satisfies the risk-neutral pricing formula (6.86).

The probability measure P̃ is called the risk neutral probability measure of the ZCB
market.

Proof. (6.107) follows at once by replacing (6.106) into (6.102) and using dW̃ (t) = dW (t) +
θ(t) dt. In order to prove (6.108) we first show that θ(t) can be rewritten as

θ(t) =
α(t, T )

σ(t, T )
− 1

2
σ(t, T ). (6.109)

Indeed, integrating (6.106) with respect to T and using σ(t, T ) = ∂Tσ(t, T ) we obtain

α(t, T ) = θ(t)σ(t, T ) +

∫ T

t

σ(t, v)σ(t, v) dv

= θ(t)σ(t, T ) +
1

2

∫ T

t

∂v(σ(t, v)2) dv

= θ(t)σ(t, T ) +
1

2
σ(t, T )2,

which gives (6.109). Next, by (6.103) and Itô’s product rule,

d(D(t)B(t, T )) = D(t)B(t, T )(r(t)− α(t, T ) +
1

2
σ(t, T )2) dt

−D(t)B(t, T )σ(t, T ) dW (t)−B(t, T )D(t)r(t) dt

= B∗(t, T )[(
1

2
σ(t, T )2 − α(t, T )) dt− σ(t, T ) dW (t)]

= −B∗(t, T )σ(t, T ) dW̃ (t),

where in the last step we use (6.109). Thus {B∗(t, T )}t∈[0,T ] is a P̃-martingale relative to
{FW (t)}t≥0. In particular

Ẽ[D(T )B(T, T )|FW (t)] = D(t)B(t, T ).

As B(T, T ) = 1, the previous equation is equivalent to (6.86).
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Example: The CIR model revisited

As a way of example we show how to re-formulate the CIR model in the HJM approach.
Recall that in the CIR model the spot rate is given by

dr(t) = a(b− r(t)) dt+ c
√
r(t) dW̃ (t). (6.110)

We have seen before that the price of the zero-coupon bond with face value 1 and maturity
T > 0 in the CIR model is given by B(t, T ) = v(t, r(t)), where v(t, x) = exp(−xC(T − t)−
A(T−t)) and where the deterministic functions A(τ), C(τ) satisfy (6.90). The instantaneous
forward rate satisfies

F (t, T ) = −∂T logB(t, T ) = r(t)C ′(T − t) + A′(T − t).

Hence, using (6.110),

dF (t, T ) = C ′(T − t)dr(t)− r(t)C ′′(T − t)dt− A′′(T − t)dt
= [a(b− r(t)) dt+ c

√
r(t) dW̃ (t)]− r(t)C ′′(T − t) dt− A′′(T − t) dt

= [a(b− r(t))C ′(T − t)− r(t)C ′′(T − t)− A′′(T − t)] dt+ C ′(T − t)c
√
r(t) dW̃ (t).

Comparing this result with (6.107) we are led to set

σ(t, T ) = C ′(T − t)c
√
r(t), (6.111)

σ(t, T )σ(t, T ) = [a(b− r(t))C ′(T − t)− r(t)C ′′(T − t)− A′′(T − t)]. (6.112)

As σ(t, T ) =
∫ T
t
σ(t, v) dv, we obtain

a(b− r(t))C ′(T − t)− r(t)C ′′(T − t)− A′′(T − t)

= C ′(T − t)c
√
r(t)

∫ T

t

C ′(v − t)c
√
r(t) dv

= c2r(t)C ′(T − t)C(T − t).

The latter identity holds for all possible value of r(t) if and only if the following two equations
are satisfied:

abC ′ − A′′ = 0, −aC ′ − C ′′ = −c2C ′C. (6.113)

Differentiating (6.90a) we find that (6.113) are indeed satisfied. Note that the HJM approach
gives the same result (i.e., the same pricing function for ZCB’s) as the classical approach
with the CIR model if we assume that the forward rate is given by (6.102) with α(t, T ) given
by (6.106) (where θ(t) is arbitrary, typically chosen to be constant) and σ(t, T ) is given
by (6.111). The advantage of the HJM approach is that the model for the forward rate is
expressed in the physical probability (as opposed to (6.110)) and thus the parameters of this
model can be calibrated using real market data.

163



Exercise 6.37 (Sol. 44). Use the HJM method to derive the dynamics of the instantaneous
forward rate F (t, T ) for the Vacisek model (see Exercise 6.36).

Exercise 6.38 (Sol. 45). Assume that the spot interest rate in the risk-neutral probability is
given by the Ho-Lee model:

dr(t) = a(t) dt+ cdW̃ (t),

where c > 0 is a constant and a(t) is a deterministic function of time. Derive the risk-neutral
price B(t, T ) of the ZCB with face value 1 and maturity T . Use the HJM method to derive
the dynamics of the instantaneous forward rate F (t, T ) in the physical probability.

6.8 Forwards and Futures

Forwards

A forward contract with delivery price K and maturity (or delivery) time T on an
asset U is a type of financial derivative stipulated by two parties in which one of the parties
promises to sell and deliver to the other party the asset U at time T in exchange for the cash
K. The party who agrees to buy, resp. sell, the asset has the long, resp. short, position on
the forward contract. Note that, as opposed to option contracts, both parties in a forward
contract are obliged to fulfill their part of the agreement. Forward contracts are traded over
the counter and most commonly on commodities or currencies. Let us give two examples.

Example of forward contract on a commodity. Consider a farmer who grows wheat and a
miller who needs wheat to produce flour. Clearly, the farmer interest is to sell the wheat for
the highest possible price, while the miller interest is to pay the least possible for the wheat.
The price of the wheat depends on many economical and non-economical factors (such as
whether conditions, which affect the quality and quantity of harvests) and it is therefore
quite volatile. The farmer and the miller then stipulate a forward contract on the wheat in
the winter (before the plantation, which occurs in the spring) with expiration date in the
end of the summer (when the wheat is harvested), in order to lock its future trading price
beforehand.

Example of forward contract on a currency. Suppose that a car company in Sweden promises
to deliver a stock of 100 cars to another company in the United States in exactly one month.
Suppose that the price of each car is fixed in Swedish crowns, say 100.000 crowns. Clearly
the American company will benefit by an increase of the exchange rate crown/dollars and
will be damaged in the opposite case. To avoid possible high losses, the American company
by a forward contract on 100×100.000=ten millions Swedish crowns expiring in one month
which gives the company the right and the obligation to buy ten millions crowns for a price
in dollars agreed upon today.

The delivery price K in a forward contract is the result of a pondered estimation for the
price of the asset at the time T in the future. In this respect, K is also called the forward
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price of U . More precisely, the T -forward price of the asset U at time t is the strike price of
a forward contract on U with maturity T stipulated at time t; the current, actual price Π(t)
of the asset is also called the spot price.

Let us apply the risk-neutral pricing theory introduced in Section 6.2 to derive a mathe-
matical model for the forward price of financial assets. Let f(t,Π(t), K, T ) be the value at
time t of the forward contract on the asset U with maturity T and delivery price K. Here
{Π(t)}t∈[0,T ] is the price process of the underlying asset. The pay-off for the long position on
the forward is given by

Ylong = (Π(T )−K),

while the pay-off for the short position is Yshort = (K − Π(T )). As both positions entail the
same rights/obligations, and thus no privileged position exists, none of the two parties has
to pay a premium to stipulate the forward contract. Hence f(t,Π(t), K, T ) = 0. Assuming
that the price {Π(t)}t≥0 of the underlying asset follows a generalized geometric Brownian
motion with strictly positive volatility, the risk-neutral value of the forward contract for the
two parties is

f(t,Π(t), K, T ) = ±Ẽ[(Π(T )−K)D(T )/D(t)|FW (t)]

= ±
(

1

D(t)
Ẽ(Π(T )D(T )|FW (t))−KẼ[exp(−

∫ T

t

r(s) ds)|FW (t)]

)
.

As the discounted price {Π∗(t)}t≥0 of the underlying asset is a P̃-martingale relative to the

filtration {FW (t)}t≥0, then Ẽ(Π(T )D(T )|FW (t)) = D(t)Π(t). Hence

f(t,Π(t), K, T ) = ±(Π(t)−KB(t, T )),

where

B(t, T ) = Ẽ[exp(−
∫ T

t

r(s) ds)|FW (t)], (6.114)

is the value of the ZCB computed using the risk-neutral probability. This leads to the
following definition.

Definition 6.5. Assume that the price {Π(t)}t≥0 of the asset satisfies

dΠ(t) = α(t)Π(t)dt+ σ(t)Π(t)dW (t),

where {α(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 ∈ C0[FW (t)] and σ(t) > 0 almost surely for all times.
The risk-neutral T -forward price at time t of the asset is the {FW (t)}t≥0-adapted stochas-
tic process {ForT (t)}t∈[0,T ] given by

ForT (t) =
Π(t)

B(t, T )
, t ∈ [0, T ],

where B(t, T ) is given by (6.114).
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Note that, as long as the spot rate is positive, the forward price increases with respect to
the time left to delivery, i.e., the longer we delay the delivery of the asset, the more we have
to pay for it. This is intuitive, as the seller of the asset is loosing money by not selling the
asset on the spot (due to its devaluation compared to the bond value).

Remark 6.12. For a constant interest rate r(t) = r the forward price becomes

ForT (t) = erτΠ(t), τ = T − t,

in which case we find that the spot price of an asset is the discounted value of the forward
price. When the asset is a commodity (e.g., corn), the forward price is also inflated by the
cost of storage. Letting c > 0 be the cost to storage one share of the asset for one year, then
the forward price of the asset, for delivery in τ years in the future, is ecτerτΠ(t).

Forward probability measure

Let t ∈ [0, T ] and define

Z(T )(t) =
D(t)B(t, T )

B(0, T )
=
B∗(t, T )

B(0, T )
. (6.115)

As the discounted value of the ZCB is a martingale in the risk-neutral probability measure,
then the process {Z(T )(t)}t∈[0,T ] is also a P̃-martingale. Moreover Ẽ[Z(T )(t)] = 1, hence, by

Theorem (3.17), for all t ∈ [0, T ], the function P(T )(A) = Ẽ[Z(T )(t)IA] defines a probability

measure equivalent to P̃, which is called the T -forward probability measure.

Theorem 6.19. Assume that the price {Π(t)}t≥0 of the asset satisfies

dΠ(t) = α(t)Π(t)dt+ σ(t)Π(t)dW (t),

where {α(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 ∈ C0[FW (t)] and σ(t) > 0 almost surely for all times.
The risk-neutral T -forward price process {ForT (t)}t∈[0,T ] of the asset is a martingale in the
T -forward probability measure relative to the filtration {FW (t)} and

ForT (t) = E(T )[Π(T )|FW (t)]. (6.116)

Moreover risk-neutral pricing formula (6.10) for the European derivative with pay-off Y at
maturity T can be written in terms of the forward probability measure as follows:

ΠY (t) = B(t, T )E(T )[Y |FW (t)] (6.117)

Proof. By (3.24) we have

E(T )[Π(T )|FW (t)] =
1

Z(T )(t)
Ẽ[Z(T )(T )Π(T )|FW (t)]

=
B(0, T )

D(t)B(t, T )
Ẽ[D(T )Π(T )/B(0, T )|FW (t)].
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As the discounted value of the asset is a martingale in the risk-neutral probability, we have

E(T )[Π(T )|FW (t)] =
Π(t)

B(t, T )
= ForT (t).

Moreover, by Exercise 3.30, equation (6.116) implies that the forward price is a P(T )-
martingale relative to the filtration {FW (t)}t≥0. Similarly,

E(T )[Y |FW (t)] =
1

Z(T )(t)
Ẽ[Z(T )(T )Y |FW (t)] =

1

B(t, T )
Ẽ[D−1(t)D(T )Y |FW (t)]

and so (6.117) follows.

An advantage of writing the risk-neutral pricing formula in the form (6.117) is that the
interest rate process does not appear within the conditional expectation. Thus, while in
the risk-neutral probability measure one needs the joint distribution of the discount factor
D(T ) and the pay-off Y in order to compute the price of the derivative, in the T -forward
probability measure only the distribution of the pay-off is required. This suggests a method
to compute the risk-neutral price of a derivative when the market parameters are stochastic.
Before we see an example of application of this argument, we remark that, by Theorem 6.2(ii)

with ΠY (t) = B(t, T ), the process {ZT (t)}t∈[0,T ] satisfies dZ(T )(t) = ∆(t)Z(T )dW̃ (t), for some
process {∆(t)}t∈[0,T ] adapted to {FW (t)}t≥0. Hence,

Z(T )(t) = exp

(
−
∫ t

0

θ(s)dW̃ (s)− 1

2

∫ t

0

θ2(s) ds

)
, θ(t) = −∆(t).

It follows by Girsanov’s theorem 4.10 that the process {W (T )(t)}t∈[0,T ] given by

W (T )(t) = W̃ (t) +

∫ t

0

θ(s) ds (6.118)

is a Brownian motion in the T -forward measure.

Theorem 6.20. Assume that the price {Π(t)}t≥0 of the asset U satisfies

dΠ(t) = α(t)Π(t)dt+ σ(t)Π(t)dW (t), Π(0) = Π0 > 0, σ(t) > 0, t ∈ [0, T ],

and that there exists a constant σ̂ > 0 such that

dForT (t) = σ̂ForT (t)dW (T )(t), ForT (0) = F0 := Π0/B(0, T ), (6.119)

where {W (T )(t)}t∈[0,T ] is the P(T )-Brownian motion defined above. Then the value at time
t = 0 of the European call on the asset U with strike K and maturity T can be written as

Πcall(0) = Π0Φ(d+)−KB(0, T )Φ(d−), (6.120)

where

d± =
log
(

Π0

KB(0,T )

)
± 1

2
σ̂2T

σ̂
√
T

. (6.121)
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Proof. According to (6.117) we have

Πcall(0) = B(0, T )E(T )[Π(T )−K)+].

In the right hand side we replace

Π(T ) = ForT (T ) = F0e
− 1

2
σ̂2T−σ̂W (T )(T ) = F0e

− 1
2
σ̂2T−σ̂

√
TG

and compute the expectation using that G ∈ N (0, 1) in the forward measure, that is

Πcall(0) = B(0, T )

∫
R
(F0e

− 1
2
σ̂2T−σ̂

√
Ty −K)+e

− y
2

2
dy√
2π
.

The result now follows by computing the integral as in the proof of Theorem 6.6.

Futures

Futures contracts are standardized forward contracts, i.e., rather than being traded over
the counter, they are negotiated in regularized markets. Perhaps the most interesting role
of futures contracts is that they make trading on commodities possible for anyone. To this
regard we remark that commodities, e.g. crude oil, wheat, etc, are most often sold through
long term contracts, such as forward and futures contracts, and therefore they do not usually
have an “official spot price”, but only a future delivery price (commodities “spot markets”
exist, but their role is marginal for the discussion in this section).

Futures markets are markets in which the objects of trading are futures contracts. Unlike
forward contracts, all futures contracts in a futures market are subject to the same regulation,
and so in particular all contracts on the same asset with the same delivery time T have the
same delivery price, which is called the T-future price of the asset and which we denote
by FutT (t). Thus FutT (t) is the delivery price in a futures contract on the asset with time
of delivery T and which is stipulated at time t < T . Futures markets have been existing
for more than 300 years and nowadays the most important ones are the Chicago Mercantile
Exchange (CME), the New York Mercantile Exchange (NYMEX), the Chicago Board of
Trade (CBOT) and the International Exchange Group (ICE).

In a futures market, anyone (after a proper authorization) can stipulate a futures contract.
More precisely, holding a position in a futures contract in the futures market consists in the
agreement to receive as a cash flow the change in the future price of the underlying asset
during the time in which the position is held. Note that the cash flow may be positive or
negative. In a long position the cash flow is positive when the future price goes up and it
is negative when the future price goes down , while a short position on the same contract
receives the opposite cash flow. Moreover, in order to eliminate the risk of insolvency, the
cash flow is distributed in time through the mechanism of the margin account. More
precisely, assume that at t = 0 we open a long position in a futures contract expiring at time
T . At the same time, we need to open a margin account which contains a certain amount
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Figure 6.5: Futures price of corn on May 12, 2014 (dashed line) and on May 13, 2014
(continuous line) for different delivery times

Jul�14 Jan�15 Jul�15

4.0

4.1

4.2

4.3

4.4

4.5

Delivery Time

Fu
tu

re
Pr

ic
e

Figure 6.6: Futures price of natural gas on May 13, 2014 for different delivery times
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of cash (usually, 10 % of the current value of the T -future price for each contract opened).
At t = 1 day, the amount FutT (1) − FutT (0) will be added to the account, if it positive, or
withdrawn, if it is negative. The position can be closed at any time t < T (multiple of days),
in which case the total amount of cash flown in the margin account is

(FutT (t)− FutT (t− 1)) + (FutT (t− 1)− FutT (t− 2))+

· · ·+ (FutT (1)− FutT (0)) = (FutT (t)− FutT (0)).

If a long position is held up to the time of maturity, then the holder of the long position
should buy the underlying asset.

Remark 6.13. Since a futures contract can be closed at any time prior to expiration, future
contracts are not European style derivatives.

Our next purpose is to derive a mathematical model for the future price of an asset. Our
guiding principle is that the 1+1 dimensional futures market consisting of a futures
contract and a risk-free asset should not admit self-financing arbitrage portfolios. Consider
a portfolio invested in h(t) shares of the futures contract and hB(t) shares of the risk-free
asset at time t. We assume that {h(t), hB(t)}t∈[0,T ] is adapted to {FW (t)}t≥0 and suppose
that {FutT (t)}t∈[0,T ] is a diffusion process. Since futures contracts have zero-value, the value
of the portfolio at time t is V (t) = hB(t)B(t). For a self-financing portfolio we require that
any positive cash-flow generated by the futures contract in the interval [t, t + dt] should be
invested to buy shares of the risk-free asset and that, conversely, any negative cash flow
should be settled by issuing shares of the risk-free asset (i.e., by borrowing money). Since
the cash-flow generated in the interval [t, t+ dt] is given by dC(t) = h(t)dFutT (t), the value
of a self-financing portfolio invested in the 1+1 dimensional futures market must satisfy

dV (t) = hB(t)dB(t) + h(t)dFutT (t) = r(t)V (t)dt+ h(t)dFutT (t),

or equivalently
dV ∗(t) = h(t)D(t)dFutT (t). (6.122)

Now, we have seen that a simple condition ensuring that a portfolio is not an arbitrage
is that its discounted value be a martingale in the risk-neutral measure relative to the
filtration generated by the Brownian motion. By (6.122), the latter condition is achieved by

requiring that dFutT (t) = ∆(t)dW̃ (t), for some stochastic process {∆(t)}t∈[0,T ] adapted to
{FW (t)}t∈[0,T ]. In particular, it is reasonable to impose that

(i) {FutT (t)}t∈[0,T ] should be a P̃-martingale relative to {FW (t)}t≥0.

Furthermore, it is clear that the future price of an asset at the expiration date T should be
equal to its spot price at time T , and so we impose that

(ii) FutT (T ) = Π(T ).
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It follows by Exercise 3.30 that the conditions (i)-(ii) determine a unique stochastic process
{FutT (t)}t∈[0,T ], which is given in the following definition.

Definition 6.6. Assume that the price {Π(t)}t≥0 of the asset satisfies

dΠ(t) = α(t)Π(t)dt+ σ(t)Π(t)dW (t),

where {α(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 ∈ C0[FW (t)] and σ(t) > 0 almost surely for all times.
The T -Future price at time t of the asset is the {FW (t)}t≥0-adapted stochastic process
{FutT (t)}t∈[0,T ] given by

FutT (t) = Ẽ[Π(T )|FW (t)], t ∈ [0, T ].

We now show that our goal to make the futures market arbitrage-free has been achieved.

Theorem 6.21. There exists a stochastic process {∆(t)}t∈[0,T ] adapted to {FW (t)}t≥0 such
that

FutT (t) = FutT (0) +

∫ t

0

∆(s)dW̃ (s). (6.123)

Moreover, any {FW (t)}t≥0-adapted self-financing portfolio {h(t), hB(t)}t∈[0,T ] invested in the
1+1 dimensional futures market is not an arbitrage.

Proof. The second statement follows immediately by the first one, since (6.122) and (6.123)
imply that the value of a self-financing portfolio invested in the 1+1 dimensional futures
market is a P̃-martingale relative to the filtration {FW (t)}t∈[0,T ]. To prove (6.123), we first
notice that, by (3.24),

Z(s)Ẽ[FutT (t)|FW (s)] = E[Z(t)FutT (t)|FW (s)].

By the martingale property of the future price, the left hand side is Z(s)FutT (s). Hence

Z(s)FutT (s) = E[Z(t)FutT (t)|FW (s)],

that is to say, the process {Z(t)FutT (t)}t∈[0,T ] is a P-martingale relative to the filtration
{FW (t)}t∈[0,T ]. By the martingale representation theorem, Theorem 4.5(v), there exists a
stochastic process {Γ(t)}t∈[0,T ] adapted to {FW (t)}t≥0 such that

Z(t)FutT (t) = FutT (0) +

∫ t

0

Γ(s)dW (s).

We now proceed as in the proof of Theorem 6.2, namely we write

dFutT (t) = d(Z(t)FutT (t)Z(t)−1)

and apply Itô’s product rule and Itô’s formula to derive that (6.123) holds with

∆(t) = θ(t)FutT (t) +
Γ(t)

Z(t)
.
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Exercise 6.39 (Sol. 46). Show that the Forward-Future spread of an asset, i.e., the
difference between its forward and future price, satisfies

ForT (t)−FutT (t) =
1

Ẽ[D(T )|FW (t)]

{
Ẽ[D(T )Π(T )|FW (t)]−Ẽ[D(T )|FW (t)]Ẽ[Π(T )|FW (t)]

}
.

(6.124)
Moreover, show that when the interest rate {r(t)}t∈[0,T ] is a deterministic function of time
(e.g., a deterministic constant), then ForT (t) = FutT (t), for all t ∈ [0, T ].

6.9 Multi-dimensional markets

In this section we consider N + 1 dimensional stock markets. We denote the stocks prices by

{S1(t)}t≥0, . . . , {SN(t)}t≥0

and assume the following dynamics

dSk(t) =

(
µk(t) dt+

N∑
j=1

σkj(t)dWj(t)

)
Sk(t), (6.125)

for some stochastic processes {µk(t)}t≥0, {σkj(t)}t≥0, j, k = 1, . . . , N in the class C0[FW (t)],
where in this section {FW (t)}t≥0 denotes the filtration generated by the Brownian motions
{W1(t)}t≥0, . . . {WN(t)}t≥0. Moreover we assume that the Brownian motions are indepen-
dent, in particular

dWj(t)dWk(t) = 0, for all j 6= k, (6.126)

see Exercise 3.25. Finally {r(t)}t≥0 ∈ C0[FW (t)] is the interest rate of the money market.

Now, given stochastic processes {θk(t)}t≥0 ∈ C0[FW (t)], k = 1, . . . , N , satisfying the Novikov
condition (4.20), the stochastic process {Z(t)}t≥0 given by

Z(t) = exp

(
−

N∑
k=1

(∫ t

0

1

2
θ2
k(s) ds+

∫ t

0

θk(s) dWk(s)

))
(6.127)

is a martingale relative to the filtration {FW (t)}t≥0 (see Exercise 4.7). Since E[Z(t)] =
E[Z(0)] = 1, for all t ≥ 0, we can use the stochastic process {Z(t)}t≥0 to define a risk-
neutral probability measure associated to the N + 1 dimensional stock market, as we did in
the one dimensional case, see Definition 6.1.

Definition 6.7. Let T > 0 and assume that the market price of risk equations

µj(t)− r(t) =
N∑
k=1

σjk(t)θk(t), j = 1, . . . , N, (6.128)
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admit a solution (θ1(t), . . . , θN(t)), for all t ≥ 0. Define the stochastic process {Z(t)}t≥0 as

in (6.127). Then the measure P̃ equivalent to P given by

P̃(A) = E[Z(T )IA]

is called the risk-neutral probability measure of the market at time T .

Note that, as opposed to the one dimensional case, the risk-neutral measure just defined
need not be unique, as the market price of risk equations may admit more than one solution.
For each risk-neutral probability measure P̃ we can apply the multidimensional Girsanov
theorem 4.11 and conclude that the stochastic processes {W̃1(t)}t≥0, . . . {W̃N(t)}t≥0 given by

W̃k(t) = Wk(t) +

∫ t

0

θk(s) ds

are P̃-independent Brownian motions. Moreover these Brownian motions are P̃-martingales
relative to the filtration {FW (t)}t≥0.

Now let {hS1(t)}t≥0, . . . , {hSN (t)}t≥0 ∈ C0[FW (t)] be stochastic processes representing the
number of shares on the stocks in a portfolio invested in the N+1 dimensional stock market.
Let {hB(t)}t≥0 be the number of shares on the risk-free asset. The portfolio value is

V (t) =
N∑
k=1

hSk(t)Sk(t) + hB(t)B(t)

and the portfolio process is self-financing if its value satisfies

dV (t) =
N∑
k=1

hSk(t)dSk(t) + hB(t)dB(t),

that is

dV (t) =
N∑
k=1

hSk(t)dSk(t) + r(t)

(
V (t)−

N∑
k=1

hSk(t)Sk(t)

)
dt.

Theorem 6.22. Assume that a risk-neutral probability P̃ exists, i.e., the equations (6.128)
admit a solution. Then the discounted value of any self-financing portfolio invested in the
N+1 dimensional market is a P̃-martingale relative to the filtration {FW (t)}t≥0. In particular
(by Theorem 3.14) there exists no self-financing arbitrage portfolio invested in the N + 1
dimensional stock market.
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Proof. The discounted value of the portfolio satisfies

dV ∗(t) = D(t)

(
N∑
j=1

hSj(t)Sj(t)(αj(t)− r(t)) dt+
N∑

j,k=1

hSj(t)Sj(t)σjk(t)dWk(t)

)

= D(t)

(
N∑
j=1

hSj(t)Sj(t)
N∑
k=1

σjk(t)θk(t)dt+
N∑

j,k=1

hSj(t)Sj(t)σjk(t)dWk(t)

)

= D(t)
N∑
j=1

hSj(t)Sj(t)
N∑
k=1

σjk(t)dW̃k(t).

All Itô’s integrals in the last line are P̃-martingales relative to {FW (t)}t≥0. The result
follows.

Exercise 6.40. Work out the details of the computations omitted in the proof of the previous
theorem.

Next we show that the existence of a risk-neutral probability measure is necessary for the
absence of self-financing arbitrage portfolios in N + 1 dimensional stock markets.

Let N = 3 and assume that the market parameters are constant. Let r(t) = r > 0,
(µ1, µ2, µ3) = (2, 3, 2) and let the volatility matrix be given by

σij =

 1 2 0
2 4 0
1 2 0

 .

Thus the stocks prices satisfy

dS1(t) = (2dt+ dW1(t) + 2dW2(t))S1(t),

dS2(t) = (3dt+ 2dW1(t) + 4dW2(t))S2(t),

dS3(t) = (2dt+ dW1(t) + 2dW2(t))S3(t).

The market price of risk equations are

θ1 + 2θ2 = 2− r
2θ1 + 4θ2 = 3− r
θ1 + 2θ2 = 2− r.

This system is solvable if and only if r = 1, in which case there exist infinitely many solutions
given by

θ1 ∈ R, θ2 =
1

2
(1− θ1).
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Hence for r = 1 there exists at least one (in fact, infinitely many) risk-neutral probability
measures, and thus the market is free of arbitrage. To construct an arbitrage portfolio when
0 < r < 1, let

hS1(t) =
1

S1(t)
, hS2(t) = − 1

S2(t)
, hS3(t) =

1

S3(t)

and choose hB(t) such that the portfolio process is self-financing (see Exercise 4.10). The
value {V (t)}t≥0 of this portfolio satisfies

dV (t) = hS1(t)dS1(t) + hS2(t)dS2(t) + hS3(t)dS3(t)

+ r(V (t)− hS1(t)S1(t)− hS2(t)S2(t)− hS3(t)S3(t))dt

= rV (t)dt+ (1− r)dt.
Hence

V (t) = V (0)ert +
1

r
(1− r)(ert − 1)

and this portfolio is an arbitrage, because for V (0) = 0 we have V (t) > 0, for all t > 0.
Similarly one can find an arbitrage portfolio for r > 1.

Next we address the question of completeness of N + 1 dimensional stock markets, i.e.,
the question of whether any European derivative can be hedged in this market. Consider a
European derivative on the stocks with pay-off Y and time of maturity T . For instance, for
a standard European derivative, Y = g(S1(T ), . . . SN(T )), for some measurable function g.
The risk-neutral price of the derivative is

ΠY (t) = Ẽ[Y exp(−
∫ T

t

r(s) ds)|FW (t)],

and coincides with the value at time t of any self-financing portfolio invested in the N + 1
dimensional market. The question of existence of an hedging portfolio is answered by the
following theorem.

Theorem 6.23. Assume that the volatility matrix (σjk(t))j,k=1,...N is invertible, for all t ≥ 0.
There exist stochastic processes {∆1(t)}t∈[0,T ], . . . {∆N(t)}t∈[0,T ], adapted to {FW (t)}t≥0, such
that

D(t)ΠY (t) = ΠY (0) +
N∑
k=1

∫ t

0

∆k(s)dW̃k(s), t ∈ [0, T ]. (6.129)

Let (Y1(t), . . . , YN(t)) be the solution of

N∑
k=1

σjk(t)Yj(t) =
∆k(t)

D(t)
. (6.130)

Then the portfolio {hS1(t), . . . , hSN (t), hB(t)}t∈[0,T ] given by

hSj(t) =
Yj(t)

Sj(t)
, hB(t) = (ΠY (t)−

N∑
j=1

hSj(t)Sj(t))/B(t) (6.131)
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is self-financing and replicates the derivative at any time, i.e., its value V (t) is equal to
ΠY (t) for all t ∈ [0, T ]. In particular, V (T ) = ΠY (T ) = Y , i.e., the portfolio is hedging the
derivative.

The proof of this theorem is conceptually very similar to that of Theorem 6.2 and is therefore
omitted (it makes use of the multidimensional version of the martingale representation the-
orem). Notice that, having assumed that the volatility matrix is invertible, the risk-neutral
probability measure of the market is unique. We now show that the uniqueness of the risk-
neutral probability measure is necessary to guarantee completeness. In fact, let r = 1 in
the example considered before and pick the following solutions of the market price of risk
equations:

(θ1, θ2) = (0, 1/2), and (θ1, θ2) = (1, 0)

(any other pair of solutions would work). The two corresponding risk-neutral probability

measures, denoted respectively by P̃ and P̂, are given by

P̃(A) = E[Z̃IA] P̂(A) = E[ẐIA], for all A ∈ F ,

where
Z̃ = e−

1
8
T− 1

2
W2(T ), Ẑ = e−

1
2
T−W1(T ).

Let A = {ω : 1
2
W2(T, ω)−W1(T, ω) < 3

8
T}. Hence

Ẑ(ω) < Z̃(ω), for ω ∈ A

and thus P̂(A) < P̃(A). Consider a financial derivative with pay-off Q = IA/D(T ). If there
existed an hedging, self-financing portfolio for such derivative, then, since the discounted
value of such portfolio is a martingale in both risk-neutral probability measures, we would
have

V (0) = Ẽ[QD(T )], and V (0) = Ê[QD(T )]. (6.132)

But
Ê[QD(T )] = Ê(IA) = P̂(A) < P̃(A) = Ẽ(IA) = Ẽ[QD(T )]

and thus (6.132) cannot be verified.

Multi-assets options

Multi-asset options are options on several underlying assets. Notable examples include rain-
bow options, basket options and quanto options.

In the following we discuss options on two stocks in a 2+1 dimensional Black-Scholes
market, i.e., a market with constant parameters. It follows that

dS1(t) = µ1 S1(t)dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t) (6.133a)

dS2(t) = µ2 S2(t)dt+ σ21S2(t)dW1(t) + σ22S2(t)dW2(t), (6.133b)
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where the volatility matrix

σ =

(
σ11 σ12

σ21 σ22

)
is invertible (so that the market is complete). Integrating (6.133) we obtain that (S1(t), S2(t))
is given by the 2-dimensional geometric Brownian motion:

S1(t) = S1(0)e(µ1− 1
2

(σ2
11+σ2

12))t+σ11W1(t)+σ12W2(t), (6.134a)

S2(t) = S2(0)e(µ2− 1
2

(σ2
21+σ2

22))t+σ21W1(t)+σ22W2(t), (6.134b)

or, more concisely,

Sj(t) = Sj(0)e(µj−
|σj |

2

2
)t+σj ·W (t),

where σj = (σj1, σj2), j = 1, 2, W (t) = (W1(t),W2(t)) and · denotes the standard scalar
product of vectors.

Theorem 6.24. The random variables S1(t), S2(t) have the joint density

fS1(t),S2(t)(x, y) =
e
− 1

2t

(
log x

S(0) − α1t log y
S(0) − α2t

)
(σσT )−1

log x
S(0) − α1t

log y
S(0) − α2t


txy
√

(2π)2 det(σσT )
, (6.135)

where αj = µj − |σj |
2

2
, j = 1, 2. Moreover logS1(t), logS2(t) are jointly normally distributed

with mean m = (logS1(0) + α1t, logS2(0) + α2t) and covariant matrix C = tσσT .

Proof. Letting Xi = Wi(t)/
√
t ∈ N (0, 1), we write the stock prices as

S1(t) = S1(0)eα1t+Y1 , S2(t) = S2(0)eα2t+Y2 ,

where
Y1 = σ11

√
tX1 + σ12

√
tX2, Y2 = σ21

√
tX1 + σ22

√
tX2.

It follows by Exercise 3.20 that Y1, Y2 are jointly normally distributed with zero mean and
covariant matrix C = tσσT , which proves the second statement in the theorem. To compute
the joint density of the stock prices, we notice that

S1(t) ≤ x⇔ Y1 ≤ log

(
x

S1(0)

)
− α1t, S2(t) ≤ y ⇔ Y2 ≤ log

(
y

S2(0)

)
− α2t,

hence
FS1(t),S2(t)(x, y) = FY1,Y2(log

x

S1(0)
− α1t, log

y

S2(0)
− α2t).

Hence

fS1(t),S2(t)(x, y) = ∂2
xyFS1(t),S2(t)(x, y) =

1

xy
fY1,Y2(log

x

S1(0)
− α1t, log

y

S2(0)
− α2t).

Using the joint normal density of Y1, Y2 completes the proof.

177



Exercise 6.41. Show that the process (6.133) is equivalent, in distribution, to the process

dSi(t) = µiSi(t) dt+ σiSi(t)dW
(ρ)
i (t), i = 1, 2, (6.136)

where

σi =
√
σ2
i1 + σ2

i2, ρ =
σ11σ21 + σ12σ22√

(σ2
11 + σ2

12)(σ2
21 + σ2

22)
∈ [−1, 1] (6.137)

and where W
(ρ)
1 (t), W

(ρ)
2 (t) are correlated Brownian motions with correlation ρ, i.e.,

dW
(ρ)
1 (t)dW

(ρ)
2 (t) = ρ dt.

TIP: Use Exercise 2.11.

Now let r(t) = r be the constant interest rate of the money market. The solution of the
market price of risk equations (6.128) can be written as

θ =

(
θ1

θ2

)
= σ−1

(
µ1 − r
µ2 − r

)
=

1

detσ

(
σ22 −σ12

−σ21 σ11

)(
µ1 − r
µ2 − r

)
,

that is

θ1 =
1

detσ
[σ22(µ1 − r)− σ12(µ2 − r)], θ2 =

1

detσ
[−σ21(µ1 − r) + σ11(µ2 − r)].

Replacing dWi(t) = dW̃i(t)− θi dt into (6.133) we find

dS1(t) = r S1(t)dt+ σ11S1(t)dW̃1(t) + σ12S1(t)dW̃2(t), (6.138a)

dS2(t) = r S2(t)dt+ σ21S2(t)dW̃1(t) + σ22S2(t)dW̃2(t). (6.138b)

Note that the discounted price of both stocks is a martingale in the risk-neutral probability
measure, as expected. Moreover the system (6.138) can be integrated to give

Sj(t) = Sj(0)e(r−
|σj |

2

2
)t+σj ·W̃ (t), (6.139)

where W̃ (t) = (W̃1(t), W̃2(t)). As W̃1(t), W̃2(t) are independent P̃-Brownian motions, the
joint distribution of the stock prices in the risk-neutral probability measure is given by (6.135)
where now

αi = r − |σj|
2

2
, i = 1, 2.

Next consider a standard European style derivative on the two stocks with pay-off Y =
g(S1(T ), S2(T )). The risk-neutral price of the derivative is

ΠY (t) = e−r(T−t)Ẽ[g(S1(T ), S2(T ))|FW (t)]. (6.140)

By the Markov property for systems of stochastic differential equations, there exists a func-
tion vg : [0, T ]× (0,∞)2 → (0,∞) such that

ΠY (t) = vg(t, S1(t), S2(t)). (6.141)

As in the case of options on one single stock, the pricing function can be computed in two
ways: using the joint probability density of the stocks or by solving a PDE.
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Black-Scholes price for options on two stocks

We show first how to compute the function vg in (6.141) using the joint probability density
of S1(t), S2(t) derived in Theorem 6.24. We argue as in Section 6.3. By (6.139) we have

Si(T ) = Sj(t)e
(r−

|σj |
2

2
)τ+σj ·(W̃ (T )−W̃ (t)), τ = T − t.

Replacing into (6.140) we obtain

ΠY (t) = e−rτ Ẽ[g(S1(t)e(r− |σ1|
2

2
)τ+σ1·(W̃ (T )−W̃ (t)), S2(t)e(r− |σ2|

2

2
)τ+σ2·(W̃ (T )−W̃ (t)))|FW (t)].

As (S1(t), S2(t)) is measurable with respect to FW (t) and W̃ (T ) − W̃ (t) is independent of
FW (t), Theorem 3.13(x) gives

ΠY (t) = vg(t, S1(t), S2(t)),

where

vg(t, x, y) = e−rτ Ẽ[g(xe(r− |σ1|
2

2
)τ+σ1·(W̃ (T )−W̃ (t)), ye(r− |σ2|

2

2
)τ+σ2·(W̃ (T )−W̃ (t)))].

To compute the expectation in the right hand side of the latter equation we use that the
random variables

Y1 = σ1 · (W̃ (T )− W̃ (t)), Y2 = σ2 · (W̃ (T )− W̃ (t))

are jointly normally distributed with zero mean and covariance matrix C = τσσT . Hence

vg(t, x, y) = e−rτ
∫
R

∫
R
g(xe(r− |σ1|

2

2
)τ+
√
τξ, ye(r− |σ2|

2

2
)τ+
√
τη)

exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη.

(6.142)

Definition 6.8. The stochastic process {ΠY (t)}t∈[0,T ] given by (6.141)-(6.142), is called
the Black-Scholes price of the standard 2-stocks European derivative with pay-off Y =
g(S1(T ), S2(T )) and time of maturity T > 0.

Black-Scholes PDE for options on two stocks

Next we show how to derive the pricing function vg by solving a PDE.

Theorem 6.25. Let vg be the (unique) strong solution to the terminal value problem

∂tvg + r(x∂xvg + y∂yvg) +
1

2
(σ2

11 + σ2
12)x2∂2

xvg +
1

2
(σ2

21 + σ2
22)y2∂2

yvg

+ (σ11σ21 + σ12σ22)xy∂xyvg = r vg, t ∈ (0, T ), x, y > 0, (6.143a)

vg(T, x, y) = g(x, y), x, y > 0. (6.143b)

Then (6.141) holds. The PDE in (6.143) is called the 2-dimensional Black-Scholes PDE.
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Proof. By Itô’s formula in two dimensions,

d(e−rtvg) =e−rt
(
− rvg dt+ ∂tvg dt+ ∂xvg dS1(t) + ∂yvg dS2(t)

+ ∂2
xyvg dS1(t)dS2(t) +

1

2
∂2
xvg dS1(t) dS1(t) +

1

2
∂2
yvg dS2(t) dS2(t)

)
.

Moreover, using (6.138),

dS1(t)dS1(t) = (σ2
11 + σ2

12)S1(t)2 dt

dS2(t)dS2(t) = (σ2
21 + σ2

22)S2(t)2 dt

dS1(t)dS2(t) = (σ11σ21 + σ12σ22)S1(t)S2(t) dt.

It follows that

d(e−rtvg(t, S1(t), S2(t)) = α(t) dt+ e−rtS1(t)∂xvg(t, S1(t), S2(t)) (σ11 dW̃1(t) + σ12dW̃2(t))

+ e−rtS2(t)∂yvg(t, S1(t), S2(t)) (σ21 dW̃1(t) + σ22dW̃2(t))

where the drift term is

α(t) =e−rt
(
− rvg + ∂tvg + r(x∂xvg + y∂yvg)

+
1

2
(σ2

11 + σ2
12)x2∂2

xvg +
1

2
(σ2

21 + σ2
22)y2∂2

yvg

+ (σ11σ21 + σ12σ22)xy∂xyvg
)
(t, S1(t), S2(t)) = 0,

due to vg solving (6.143). It follows that the stochastic process {e−rtvg(t, S1(t), S2(t))}t∈[0,T ]

is a P̃-martingale relative to {FW (t)}t≥0, hence, using the terminal condition vg(T ) = g, we
have

e−rT Ẽ[g(S1(T ), S2(T ))|FW (t)] = e−rtvg(t, S1(t), S2(t)), t ∈ [0, T ],

which proves (6.141).

Hedging portfolio

Finally we derive the formulas for the hedging portfolio for standard 2-stocks European
derivatives in Black-Scholes markets.

Theorem 6.26. The numbers of shares hS1(t), hS2(t) in the self-financing hedging portfolio
for the European derivative with pay-off Y = g(S1(T ), S2(T )) and maturity T are given by

hS1(t) = ∂xvg(t, S1(t), S2(t)), hS2(t) = ∂yvg(t, S1(t), S2(t)).

Proof. The discounted value of the derivative satisfies dΠ∗Y (t) = ∆1(t)dW̃1(t)+∆2(t)dW̃2(t),
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where

∆1(t) = e−rt(S1(t)σ11∂xvg + S2(t)σ21∂yvg)(t, S1(t), S2(t))

∆2(t) = e−rt(S1(t)σ12∂xvg + S2(t)σ22∂yvg)(t, S1(t), S2(t))

Letting ∆ = (∆1 ∆2)T , we have ∆/e−rt = σTY , where

Y =

(
S1(t)∂xvg(t, S1(t), S2(t))
S2(t)∂yvg(t, S1(t), S2(t))

)
.

Hence by Theorem 6.23, the number of stock shares in the hedging portfolio is hS1(t) =
Y1/S1(t) = ∂xvg(t, S1(t), S2(t)), hS2(t) = Y2/S2(t) = ∂yvg(t, S1(t), S2(t)), which concludes
the proof of the theorem.

An example of option on two stocks (outperformance option)

Let K,T > 0 and consider a standard European derivative with pay-off

Y =

(
S1(T )

S2(T )
−K

)
+

at time of maturity T . This is an example of outperformance option, i.e., an option that
allows investors to benefit from the relative performance of two underslying assets. Us-
ing (6.139), we can write the risk-neutral price of the derivative as

ΠY (t) = e−rτ Ẽ
[(

S1(T )

S2(T )
−K

)
+

|FW (t)

]
= e−rτ Ẽ

[(
S1(t)

S2(t)
e(
|σ2|

2

2
− |σ1|

2

2
)τ+(σ1−σ2)·(W̃ (T )−W̃ (t)) −K

)
+

|FW (t)

]
.

Now we write

(σ1 − σ2) · (W̃ (T )− W̃ (t)) =
√
τ [(σ11 − σ21)G1 + (σ12 − σ22)G2] =

√
τ(X1 +X2),

where Gj = (W̃j(T )−W̃j(t))/
√
τ ∈ N (0, 1), j = 1, 2, hence Xj ∈ N (0, (σ1j−σ2j)

2), j = 1, 2.
In addition, X1, X2 are independent random variables, hence, as shown in Section 3.1, X1+X2

is normally distributed with zero mean and variance (σ11− σ21)2 + (σ12− σ22)2 = |σ1− σ2|2.
It follows that

ΠY (t) = e−rτ Ẽ
[(

S1(t)

S2(t)
e(
|σ2|

2

2
− |σ1|

2

2
)τ+
√
τ |σ1−σ2|G) −K

)
+

]
,

where G ∈ N (0, 1). Hence, letting

r̂ =
|σ1 − σ2|2

2
+

( |σ2|2
2
− |σ1|2

2

)
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and a = e(r̂−r)τ , we have

ΠY (t) = ae−r̂τE
[(

S1(t)

S2(t)
e(r̂− |σ1−σ2|

2

2
)τ+
√
τ |σ1−σ2|G −K

)
+

]
Up to the multiplicative parameter a, this is the Black-Scholes price of a call on a stock with
price S1(t)/S2(t), volatility |σ1 − σ2| and for an interest rate of the money market given by
r̂. Hence, Theorem 6.6 gives

ΠY (t) = a

(
S1(t)

S2(t)
Φ(d+)−Ke−r̂τΦ(d−)

)
:= v(t, S1(t), S2(t)) = u(t,

S1(t)

S2(t)
) (6.144)

where

d± =
log S1(t)

KS2(t)
+ (r̂ ± |σ1−σ2|2

2
)τ

|σ1 − σ2|
√
τ

.

As to the self-financing hedging portfolio, we have hS1(t) = ∂xv(t, S1(t), S2(t)), hS2(t) =
∂yv(t, S1(t), S2(t)), j = 1, 2. Therefore, recalling the delta function of the standard European
call (see Theorem 6.7), we obtain

hS1(t) =
a

S2(t)
Φ(d+), hS2(t) = −aS1(t)

S2(t)2
Φ(d+).

The same result can be obtained by solving the terminal value problem (6.143). Indeed, the
form of the pay-off function of the derivative suggests to look for solutions of (6.143) of the
form vg(t, x, y) = u(t, x/y). The function u(t, z) satisfies a standard Black-Scholes PDE in
1+1 dimension, whose solution is given as in (6.144). The details are left as an exercise.

Exercise 6.42. Derive (6.144) by solving the terminal value problem (6.143).

Exercise 6.43. A two assets correlation call/put option with maturity T is the standard
European derivative with pay-off

Ycall =

{
(S2(T )−K2)+, if S1(T ) > K1

0 otherwise

Yput =

{
(K2 − S2(T ))+, if S1(T ) < K1

0 otherwise

where K1, K2 > 0 and S1(t), S2(t) are the prices of the underlying stocks. Show that in a
complete 2+1 dimensional Black-Scholes market the price of the call option is

Πcall(t) = S2(t)Φ(y2 + σ2

√
τ , y1 + ρ σ2

√
τ ; ρ)−K2e

−rτΦ(y2, y1; ρ),

where ρ, σi are given by (6.137), Φ(x, y; ρ) is the standard cumulative joint normal distribu-
tion, see (2.12), and

yi =
log(Si(t)/Ki) + (r − σ2

i /2)τ)

σi
√
τ

, i = 1, 2.
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Show that when the stock prices are independent, the price of the two-asset correlation call
option is the product of the price of a binary option and of a standard call option. Finally
derive the price of the corresponding put option and establish the put-call parity.

Exercise 6.44. Derive the Black-Scholes price, the Black-Scholes PDE (with the terminal
condition) and the put-call parity for the two-asset Asian geometric call/put option, whose
pay-off, for the call, is

Ycall =

(
exp

(
1

T

∫ T

0

log(S1(t)1/2S2(t)1/2) dt

)
−K

)
+

.

6.10 Introduction to American derivatives

Before giving the precise definition of fair price for American derivatives, we shall present
some general properties of these contracts. American derivatives can be exercised at any
time prior or including maturity T . Let Y (t) be the pay-off resulting from exercising the
derivative at time t ∈ (0, T ]. We call Y (t) the intrinsic value of the derivative. We consider
only standard American derivatives, for which we have Y (t) = g(S(t)), for some measurable
function g : R→ R. For instance, g(x) = (x−K)+ for American calls and g(x) = (K − x)+

for American puts. We denote by Π̂Y (t) the rsik-neutral price of the American derivative
with intrinsic value Y (t) and by ΠY (t) the risk-neutral price of the European derivative with
pay-off Y = Y (T ) at maturity time T (given by (6.10)). Even if we do not know yet how
π̂Y (t) is defined, two obvious properties of American derivatives are the following:

(i) Π̂Y (t) ≥ ΠY (t), for all t ∈ [0, T ]. In fact an American derivative gives to its owner
all the rights of the corresponding European derivative plus one: the option of early
exercise. Thus it is clear that the American derivative cannot be cheaper than the
European one.

(ii) Π̂Y (t) ≥ Y (t), for all t ∈ [0, T ]. If not, an arbitrage opportunity would arise by
purchasing the American derivative and exercising it immediately.

Any reasonable definition of fair price for American derivatives must satisfy (i)-(ii).

Definition 6.9. A time t ∈ (0, T ] is said to be an optimal exercise time for the American

derivative with intrinsic value Y (t) if Π̂Y (t) = Y (t).

Hence by exercising the derivative at an optimal exercise time t, the buyer takes full advan-
tage of the derivative: the resulting pay-off equals the value of the derivative. On the other
hand, if Π̂Y (t) > Y (t) and the buyer wants to close the (long) position on the American
derivative, then the optimal strategy is to sell the derivative, thereby cashing the amount
Π̂Y (t).
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Theorem 6.27. Assume (i) holds and let Ĉ(t) be the price of an American call at time
t ∈ [0, T ]. Assume further that the underlying stock price follows a generalized geometric
Brownian motion and that the interest rate r(t) of the money market is strictly positive for

all times. Then Ĉ(t) > Y (t), for all t ∈ [0, T ). In particular it is never optimal to exercise
the call prior to maturity.

Proof. For S(t) ≤ K the claim becomes Ĉ(t) > 0 for t ∈ [0, T ), which is obvious (since

Ĉ(t) ≥ C(t) > 0). For S(t) > K we write

Ĉ(t) ≥ C(t) = Ẽ[(S(T )−K)+D(T )/D(t)|FW (t)] ≥ Ẽ[(S(T )−K)D(T )/D(t)|FW (t)]

= Ẽ[S(T )D(T )/D(t)|FW (t)]−KẼ[D(T )/D(t)|FW (t)] > D(t)−1Ẽ[S∗(T )|FW (t)]−K
= S(t)−K = (S(t)−K)+,

where we used D(T )/D(t) < 1 (by the positivity of the interest rate r(t)) and the martingale
property of the discounted price {S∗(t)}t∈[0,T ] of the stock.

It follows that under the assumptions of the previous theorem the earlier exercise option
of the American call is worthless, hence American and European call options with the same
strike and maturity have the same value.

Exercise 6.45. Generalize the previous theorem standard American derivatives with convex
pay-off function.

Remark 6.14. A notable exception to the assumed conditions in Theorem 6.27 is when the
underlying stock pays a dividend. In this case it can be shown that it is optimal to exercise
the American call immediately before the dividend is payed, provided the price of the stock
is sufficiently high, see Theorem 6.32 below.

Definition 6.10. Let T ∈ (0,∞). A random variable τ : Ω → [0, T ] is called a stopping
time for the filtration {FW (t)}t≥0 if {τ ≤ t} ∈ FW (t), for all t ∈ [0, T ]. We denote by QT

the set of all stopping times for the filtration {FW (t)}t≥0.

Think of τ as the time at which some random event takes place. Then τ is a stopping time
if the occurrence of the event before or at time t can be inferred by the information available
up to time t (no future information is required). For the applications that we have in mind,
τ will be the optimal exercise time of an American derivative, which marks the event that
the price of the derivative equals its intrinsic value.

From now on we assume that the market has constant parameters and r > 0. Hence the
price of the stock is given by the geometric Brownian motion

S(t) = S(0)e(r−σ
2

2
)t+σW̃ (t).
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We recall that in this case the price ΠY (0, T ) at time t = 0 of the European derivative with
pay-off Y = g(S(T )) at maturity time T > 0 is given by

ΠY (0, T ) = Ẽ[e−rTg(S(T ))].

Now, if the writer of the American derivative were sure that the buyer would exercise at the
time u ∈ (0, T ], then the fair price of the American derivative at time t = 0 would be equal to
ΠY (0, u). As the writer cannot anticipate when the buyer will exercise, we would be tempted
to define the price of the American derivative at time zero as max{ΠY (0, u), 0 ≤ u ≤ T}.
However this definition would actually be unfair, as it does not take into account the fact
that the exercise time is a stopping time, i.e., it is random and it cannot be inferred using
future information. This leads us to the following definition.

Definition 6.11. In a market with constant parameters, the risk-neutral (or fair) price at
time t = 0 of the standard American derivative with intrinsic value Y (t) = g(S(t)) and
maturity T > 0 is given by

Π̂Y (0) = max
τ∈QT

Ẽ[e−rτg(S(τ))], (6.145)

where S(τ) = S(0)e(r−σ
2

2
)τ+σW̃ (τ).

It is not possible in general to find an closed formula for the risk-neutral price of American
derivatives. A notable exception is the price of perpetual American put options and of binary
American put options, which we discuss next.

Perpetual American put options

An American put option is called perpetual if it never expires, i.e., T =∞. This is of course
an idealization, but perpetual American puts are very useful to visualize the structure of
general American put options. In this section we follow closely the discussion on [26, Section
8.3]. Definition 6.145 becomes the following.

Definition 6.12. Let Q be the set of all stopping times for the filtration {FW (t)}t≥0, i.e.,
τ ∈ Q iff τ : Ω → [0,∞] is a random variable and {τ ≤ t} ∈ FW (t), for all t ≥ 0. The
risk-neutral price at time t = 0 of the perpetual American put with strike K is

Π̂(0) = max
τ∈Q

Ẽ[e−rτ (K − S(τ))+] (6.146)

where S(τ) = S(0)e(r−σ
2

2
)τ+σW̃ (τ).

Theorem 6.28. There holds
Π̂(0) = vL(S(0)), (6.147)
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where

vL(x) =

{
K − x 0 ≤ x ≤ L

(K − L)
(
x
L

)− 2r
σ2 x > L

and

L =
2r

2r + σ2
K.

Before we prove the theorem, some remarks are in order:

(i) L < K;

(ii) For S(0) ≤ L we have Π̂(0) = vL(S(0)) = K − S(0) = (K − S(0))+. Hence when
S(0) ≤ L it is optimal to exercise the derivative.

(iii) We have Π̂(0) > (K − S(0))+ for S(0) > L. In fact

v′L(x) = −2r

σ2

(x
L

)− 2r
σ2−1 K − L

L
,

hence v′L(L) = −1. Moreover

v′′L(x) =
2r

σ2
(
2r

σ2
+ 1)

(x
L

)− 2r
σ2−2 K − L

L2
,

which is always positive. Thus the graph of vL(x) always lies above K − x for x > L.
It follows that it is not optimal to exercise the derivative if S(0) > L.

(iv) In the perpetual case, any time is equivalent to t = 0, as the time left to maturity is
always infinite. Hence

Π̂(t) = vL(S(t)).

In conclusion the theorem is saying us that the buyer of the derivative should exercise as
soon as the stock price falls below the threshold L. In fact we can reformulate the theorem
in the following terms:

Theorem 6.29. The maximum of Ẽ[e−rτ (K − S(τ))+] over all possible τ ∈ Q is achieved
at τ = τ∗, where

τ∗ = min{t ≥ 0 : S(t) = L}.
Moreover Ẽ[e−rτ∗(K − S(τ∗))+] = vL(S(0)).

For the proof of Theorem 6.28 we need the optional sampling theorem:

Theorem 6.30. Let {X(t)}t≥0 be an adapted process and τ a stopping time. Let t ∧ τ =
min(t, τ). If {X(t)}t≥0 is a martingale/supermatingale/submartingale, then {X(t∧ τ)}t≥0 is
also a martingale/supermartingale/submartingale.
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We can now prove Theorem 6.28. We divide the proof in two steps, which correspond
respectively to Theorem 8.3.5 and Corollary 8.3.6 in [26].

Step 1: The stochastic process {e−r(t∧τ)vL(S(t∧ τ))}t≥0 is a super-martingale for all τ ∈ Q.
Moreover for S(0) > L the stochastic process {e−r(t∧τ∗)vL(S(t∧ τ∗))}t≥0 is a martingale. By
Itô’s formula,

d(e−rtvL(S(t))) = e−rt[−rvL(S(t)) + rS(t)v′L(S(t)) +
1

2
σ2S(t)2v′′L(S(t))]dt

+ e−rtσS(t)v′L(S(t))dW̃ (t).

The drift term is zero for S(t) > L and it is equal to −rK dt for S(t) ≤ L. Hence

e−rtvL(S(t)) = vL(S(0))− rK
∫ t

0

e−ruIS(u)≤L(u) du+

∫ t

0

e−ruσS(u)v′L(S(u))dW̃ (u).

Since the drift term is non-positive, then {e−rtvL(t)}t≥0 is a supermartingale and thus by the
optional sampling theorem, the process {e−r(t∧τ)vL(S(t ∧ τ)}t≥0 is a also a supermartingale,
for all τ ∈ Q. Now, if S(0) > L, then, by continuity of the paths of the geometric Brownian
motion, S(u, ω) > L as long as u < τ∗(ω). Hence by stopping the process at τ∗ the stock
price will never fall below L and therefore the drift term vanishes, that is

e−r(t∧τ∗)vL(S(t ∧ τ∗)) = vL(S(0)) +

∫ t∧τ∗

0

e−ruσS(u)v′L(S(u))dW̃ (u).

The Itô integral is a martingale and thus the Itô integral stopped at time τ∗ is also a
martingale by the optional sampling theorem. The claim follows.

Step 2: The identity (6.147) holds. The supermartingale property of the process {e−r(t∧τ)vL(S(t∧
τ))}t≥0 implies that its expectation is non-increasing, hence

Ẽ[e−r(t∧τ)vL(S(t ∧ τ))] ≤ vL∗(S(0)).

As vL(x) is bounded and continuous, the limit t→ +∞ gives

Ẽ[e−rτvL(S(τ))] ≤ vL(S(0)).

As vL(x) ≥ (K − x)+ we also have

Ẽ[e−rτ (K − S(τ))+] ≤ vL(S(0)).

Taking the maximum over all τ ∈ Q we obtain

Π̂(0) = max
τ∈Q

Ẽ[e−rτ (K − S(τ))+] ≤ vL(S(0)).
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Now we prove the reverse inequality Π̂(0) ≥ vL(S(0)). This is obvious for S(0) ≤ L. In fact,

letting τ̃ = min{t ≥ 0 : S(t) ≤ L}, we have τ̃ ≡ 0 for S(0) ≤ L and so maxτ∈Q Ẽ[e−rτ (K −
S(τ))+] ≥ Ẽ[e−rτ̃ (K − S(τ̃))+] = (K − S(0))+ = vL(S(0)), for S(0) ≤ L. For S(0) > L
we use the martingale property of the stochastic process {e−r(t∧τ∗)vL(S(t ∧ τ∗))}t≥0, which
implies

Ẽ[e−r(t∧τ∗)vL(S(t ∧ τ∗))] = vL(S(0)).

Hence in the limit t→ +∞ we obtain

vL(S(0)) = Ẽ[e−rτ∗vL(S(τ∗))].

Moreover e−rτ∗vL(S(τ∗)) = e−rτ∗vL(L) = e−rτ∗(K − S(τ∗))+, hence

vL(S(0)) = Ẽ[e−rτ∗(K − S(τ∗))+].

It follows that
Π̂(0) = max

τ∈Q
Ẽ[e−rτ (K − S(τ))+] ≥ vL(S(0)),

which completes the proof. 2

Next we discuss the problem of hedging the perpetual American put with a portfolio invested
in the underlying stock and the risk-free asset.

Definition 6.13. A portfolio process {hS(t), hB(t)}t≥0 is said to be replicating the perpetual

American put if its value {V (t)}t≥0 equals Π̂(t) for all t ≥ 0.

Thus by setting-up a replicating portfolio, the writer of the perpetual American put is sure
to always be able to afford to pay-off the buyer. Note that in the European case a self-
financing hedging portfolio is trivially replicating, as the price of European derivatives has
been defined as the value of such portfolios. However in the American case a replicating
portfolio need not be self-financing: if the buyer does not exercise at an optimal exercise
time, the writer must withdraw cash from the portfolio in order to replicate the derivative.
This leads to the definition of portfolio generating a cash flow.

Definition 6.14. A portfolio {hS(t), hB(t)}t≥0 with value {V (t)}t≥0 is said to generate a
cash flow with rate c(t) if {c(t)}t≥0 is adapted to {FW (t)}t≥0 and

dV (t) = hS(t)dS(t) + hB(t)dB(t)− c(t)dt (6.148)

Remark 6.15. Note that the cash flow has been defined so that c(t) > 0 when the investor
withdraws cash from the portfolio (causing a decrease of its value).

The following theorem is Corollary 8.3.7 in [26].

188



Theorem 6.31. The portfolio given by

hS(t) = v′L(S(t)), hB(t) =
vL(S(t))− hS(t)S(t)

B(0)ert

is replicating the perpetual American put while generating the case flow c(t) = rKIS(t)≤L
(i.e., cash is withdrawn at the rate rK whenever S(t) ≤ L, provided of course the buyer does
not exercise the derivative).

Proof. By definition, V (t) = hS(t)S(t) + hB(t)B(t) = vL(S(t)) = Π̂(t), hence the portfolio
is replicating. Moreover

dV (t) = d(vL(S(t))) = hS(t)dS(t) +
1

2
v′′L(S(t))σ2S(t)2dt. (6.149)

Now, a straightforward calculation shows that vL(x) satisfies

−rvL + rxv′L +
1

2
σx2v′′L = −rKIx≤L,

a relation which was already used in step 1 in the proof of Theorem 6.28. It follows that

1

2
v′′L(S(t))σ2S(t)2dt = r(vL(S(t))− S(t)hS(t))dt− rKIS(t)≤Ldt

= hB(t)dB(t)− rKIS(t)≤Ldt.

Hence (6.149) reduces to (6.148) with c(t) = rKIS(t)≤L, and the proof is complete.

Remarks on American put options with finite maturity

The pricing function vL(x) of perpetual American puts satisfies

− rvL + rxv′L +
1

2
σ2x2v′′L = 0 when x > L, (6.150)

vL(x) = (K − x), for x ≤ L, v′L(L) = −1. (6.151)

It can be shown that the pricing function of American put options with finite maturity
satisfies a similar problem. Namely, letting P̂ (t) be the fair price at time t of the American

put with strike K and maturity T > t, it can be shown that P̂ (t) = v(t, S(t)), where v(t, x)
satisfies

∂tv + rx∂xv +
1

2
σ2x2∂2

xv = rv, if x > x∗(t), (6.152)

v(t, x) = (K − x), for x ≤ x∗(t), ∂xv(t, x∗(t)) = −1, (6.153)

v(T, x) = (k − x)+, x∗(T ) = K, (6.154)

which is a free-boundary value problem. While a numerical solution of the previous
problem can be found using the finite difference method, the price of the American put
option is most commonly computed using binomial tree-approximations, see for instance [5].
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American calls on a dividend-paying stock

Let Ĉa(t, S(t), K, T ) denote the Black-Scholes price at time t of the American call with strike
K and maturity T assuming that the underlying stock pays the dividend aS(t−0 ) at time t0 ∈
(0, T ). We denote by Ca(t, S(t), K, T ) the Black-Scholes price of the corresponding European
call. We omit the subscript a to denote prices in the absence of dividends. Moreover replacing
the letter C with the letter P gives the price of the corresponding put option. We say that
it is optimal to exercise the American call at time t if its Black-Scholes price at this time
equals the intrinsic value of the call, i.e., Ĉa(t, S(t), K, T ) = (S(t)−K)+.

Theorem 6.32. Consider the American call with strike K and expiration date T and assume
that the underlying stock pays the dividend aS(t−0 ) at the time t0 ∈ (0, T ). Then

Ĉa(t, S(t), K, T ) > (S(t)−K)+, for t ∈ [t0, T ),

i.e., it is not optimal to exercise the American call prior to maturity after the dividend is
paid. Moreover, there exists δ > 0 such that, if

S(t−0 ) > max(
δ

1− a,K),

then the equality
Ĉa(t

−
0 , S(t−0 ), K, T ) = (S(t−0 )−K)+

holds, and so it is optimal to exercise the American call “just before” the dividend is to be
paid.

Proof. For the first claim we can assume (S(t)−K)+ = S(t)−K, otherwise the American
call is out of the money and so it is clearly not optimal to exercise. By Theorem 6.8 we have

Ca(t, S(t), K, T ) = C(t, S(t), K, T ), Pa(t, S(t), K, T ) = P (t, S(t), K, T ), for t ≥ t0.

Hence, by Theorem 6.6, the put-call parity holds after the dividend is paid:

Ca(t, S(t), K, T ) = Pa(t, S(t), K, T ) + S(t)−Ke−r(T−t), t ≥ t0.

Thus, for t ∈ [t0, T ),

Ĉa(t, S(t), K, T ) ≥ Ca(t, S(t), K, T ) > S(t)−K = (S(t)−K)+,

where we used that P (t, S(t), K, T ) > 0 and r ≥ 0. This proves the first part of the theorem,
i.e., the fact that it is not optimal to exercise the American call prior to expiration after the
dividend has been paid. In particular

Ĉa(t, S(t), K, T ) = Ca(t, S(t), K, T ), for t ≥ t0. (6.155)

Next we show that it is optimal to exercise the American call “just before the dividend is
paid”, i.e., Ĉa(t

−
0 , S(t−0 ), K, T ) = (S(t−0 )−K)+, provided the price of the stock is sufficiently
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high. Of course it must be S(t−0 ) > K. Assume first that Ĉa(t
−
0 , S(t−0 ), K, T ) > S(t−0 )−K;

then, owing to (6.155), Ĉa(t
−
0 , S(t−0 ), K, T ) = Ca(t

−
0 , S(t−0 ), K, T ) (buying the American call

just before the dividend is paid is not better than buying the European call, since it is
never optimal to exercise the derivative prior to expiration). By Theorem 6.8 we have
Ca(t

−
0 , S(t−0 ), K, T ) = C(t−0 , (1 − a)S(t−0 ), K, T ) = C(t0, (1 − a)S(t−0 ), K, T ), where for the

latter equality we used the continuity in time of the Black-Scholes price function in the
absence of dividends. Since (1− a)S(t−0 ) = S(t0), then

Ĉa(t
−
0 , S(t−0 ), K, T ) > S(t−0 )−K ⇒ Ĉa(t

−
0 , S(t−0 ), K, T ) = C(t0, S(t0), K, T ).

Hence

Ĉa(t
−
0 , S(t−0 ), K, T ) > S(t−0 )−K ⇒ C(t0, S(t0), K, T ) > S(t−0 )−K = S(t0)+(1−a)S(t−0 )−K.

Therefore, taking the contrapositive statement,

C(t0, S(t0), K, T ) ≤ S(t0) + (1− a)S(t−0 )−K ⇒ Ĉa(t
−
0 , S(t−0 ), K, T ) = S(t−0 )−K. (6.156)

Next we remark that the function x → c(t, x,K, T ) − x is decreasing (since ∆ = ∂xc =
Φ(d1) < 1, see Theorem 6.7), and

lim
x→0+

C(t, x,K, T )− x = 0,

lim
x→+∞

C(t, x,K, T )− x = lim
x→+∞

P (t, x,K, T )−Ke−r(T−t) = −Ke−r(T−t),

see Exercise 6.12. Thus if (1 − a)S(t−0 ) − K > −Ke−r(T−t), i.e., S(t−0 ) > (1 − a)−1K(1 −
e−r(T−t), there exists ω such that if S(t0) > ω, i.e., S(t−0 ) > ω/(1 − a), then the inequality
C(t0, S(t0), K, T ) ≤ S(t0)+(1−a)S(t−0 )−K holds. It follows by (6.156) that for such values
of S(t−0 ) it is optimal to exercise the call “at time t−0 ”. Letting δ = max(ω,K(1− e−r(T−t))
concludes the proof of the theorem.
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Appendix A

Numerical projects

A.1 A project on the Asian option

The Asian call option1 with strike K > 0 and maturity T > 0 is the non-standard European

derivative with pay-off Y =
(

1
T

∫ T
0
S(t) dt−K

)
+

and similarly one defines the Asian put

option. The Black-Scholes price of the Asian option can be computed numerically either by
the Monte Carlo method or by solving the boundary value problem (6.42) using the finite
difference method. The main purpose of this project is to compare the performance of the
two methods. For the finite difference approach it is convenient to invert the time direction
in the problem (6.42) by changing variable t→ T − t, thereby obtaining the system

− ∂tu+
σ2

2
(γ(t)− z)2∂2

zu = 0, t ∈ (0, T ), z ∈ R (A.1a)

u(0, z) = z+, lim
z→−∞

u(t, z) = 0, lim
z→∞

(u(t, z)− z) = 0, t ∈ (0, T ], (A.1b)

where γ(t) = 1−e−rt
rT

.

Part 1

� Write a short introduction on the Asian call/put option, where you should discuss in
particular its financial utility and main differences with the standard European call/put
(you can find plenty of info on the web). Outline the content of the rest of the report.

� Solve Exercise 6.18.

� Write a finite difference scheme that solves the PDE (A.1) in the domain (t, z) ∈
(0, T ) × (−Z,Z) with the appropriate initial and boundary conditions for Asian calls
or puts. Use the Crank-Nicolson method (see Remark 5.11).

1In this project “Asian option” always means “Asian option with arithmetic average”.
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Part 2

� Write a Matlab function that implements the finite difference scheme derived in Part
1. The parameters S0, r, σ,K, T , must appear as input variables of your function.

� Plot the initial price of the Asian call/put as a function of the volatility σ and of the
initial price S0. Discuss your findings, in particular the relation with the behavior of
standard call/put options. Verify numerically the validity of the put-call parity.

� Compare the price obtained by the finite difference method and by the control variate
Monte Carlo method for different value of σ and compare the efficiency of the two
methods, e.g., by performing speed tests. Present your results using tables and discuss
them.

Include your matlab codes in an appendix with a description of how they work (e.g., as
comments within the codes themselves).

A.2 A project on the CEV model

In the CEV (Constant Elasticity Variance) model, the price of the stock option with maturity
T > 0 and pay-off Y = g(S(T )) is given by ΠY (t) = e−r(T−t)u(t, S(t)), where S(t) is the
stock price at time t and u solves

∂tu+ rx∂xu+
σ2

2
x2δ∂2

xu = 0, x > 0, t ∈ (0, T ), (A.2)

with the terminal condition u(T, x) = g(x), x > 0. Here r > 0, σ > 0, δ > 0 are constants;
see Section 6.6 for a derivation of the model. Actually it is more convenient to work with
the equivalent problem

− ∂tu+ rx∂xu+
σ2

2
x2δ∂2

xu = 0, x > 0, t ∈ (0, T ), (A.3a)

u(0, x) = g(x), x > 0 (A.3b)

which is obtained by the change of variable t→ T − t in (A.2).

The main purpose of this project is to derive numerically some qualitative properties of the
CEV model, such as the implied volatility curve.

Part 1

� Write a short introduction on the CEV model, where you should discuss in particular
the applications of the CEV model (you can find plenty of info on the web) and the
main differences with the Black-Scholes model. Outline the content of the rest of the
report.
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� Solve Exercise 6.27.

� Write a finite difference scheme for the PDE (A.3a) on the domain (t, x) ∈ (0, T ) ×
(0, X) with initial data and boundary conditions corresponding to European call or
put options. Use the Crank-Nicolson method (see Remark 5.11).

Part 2

� Write a Matlab function that implements the finite difference scheme derived in Part
1 in the case of call/put options. The parameters S0, r,K, σ, δ,X, T , must appear as
input variables of your function.

� Compare the finite difference solution for δ = 1 with the exact Black-Scholes solution
and discuss possible sources of error and how to eliminate them.

� Plot the initial price of call and put options as a function of the initial stock price and
of the volatility parameter γ. Verify numerically the validity of the put-call parity.
Highlight the main differences between the Black-Scholes price and the CEV model
price of call/put options.

� Compare the price obtained by the finite difference method and the Monte Carlo
method for different values of γ and compare the efficiency of the two methods, e.g.,
by performing speed tests. Present your results using tables and discuss them. Remark:
Apply the Euler-Maruyama method to generate paths of the stock price.

Include your matlab codes in an appendix with a description of how they work (e.g., as
comments within the codes themselves).

194



Appendix B

Solutions to selected Exercises

1. Solution to Exercise 1.3. Since an event belongs to the intersection of σ-algebras if
and only if it belongs to each single σ-algebra, the proof of the first statement is trivial. As
an example of two σ-algebras whose union is not a σ algebra, take {∅, {1}, {2, 3, 4, 5, 6},Ω},
{∅, {2}, {1, 3, 4, 5, 6},Ω} on the sample space Ω = {1, 2, 3, 4, 5, 6}.

2. Solution to Exercise 1.6. Since A and Ac are disjoint, we have

1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac)⇒ P(Ac) = 1− P(A).

To prove 2 we notice that A∪B is the disjoint union of the sets A \B, B \A and A∩B. It
follows that

P(A ∪B) = P(A \B) + P(B \ A) + P(A ∩B).

Since A is the disjoint union of A ∩B and A \B, we also have

P(A) = P(A ∩B) + P(A \B)

and similarly
P(B) = P(B ∩ A) + P(B \ A). (B.1)

Combining the three identities above yields the result. Moreover, from (B.1) and assuming
A ⊂ B, we obtain P(B) = P(A) + P(B \ A) > P(A), which is claim 3.

3. Solution to Exercise 1.8. Since for all k = 0, . . . , N the number of N -tosses ω ∈ ΩN

having NH(ω) = k is given by the binomial coefficient(
N

k

)
=

N !

k!(N − k)!
,

then ∑
ω∈ΩN

P({ω}) =
∑
ω∈ΩN

pNH(ω)(1− p)NT (ω) =
N∑
k=0

(
N

k

)
pk(1− p)N−k.
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By the binomial theorem, (a+ b)N =
∑N

k=0

(
N
k

)
akbN−k, for all a, b > 0, hence

P(Ω) =
∑
ω∈ΩN

P({ω}) = (p+ 1− p)N = 1.

20 40 60 80 100
N

0.6

0.7

0.8

0.9

1.0
KHNL

Figure B.1: A numerical solution of Exercise 1.9 for a generic odd natural number N .

4. Solution to Exercise 1.9. We expect that P(A|B) > P(A), that is to say, the first toss
being a head increases the probability that the number of heads in the complete N -toss will
be larger than the number of tails. To verify this, we first observe that P(A) = 1/2, since
N is odd and thus there will be either more heads or more tails in any N -toss. Moreover,
P(A|B) = P(C), where C ∈ ΩN−1 is the event that the number of heads in a (N − 1)-toss
is larger or equal to the number of tails. Letting k be the number of heads, P(C) is the
probability that k ∈ {(N − 1)/2, . . . , N − 1}. Since there are

(
N−1
k

)
possible (N − 1)-tosses

with k-heads, then

P(C) =
N−1∑

k=(N−1)/2

(
N − 1

k

)(
1

2

)k (
1

2

)N−1−k

=
1

2N−1

N−1∑
k=(N−1)/2

(
N − 1

k

)
.

Thus proving the statement for a generic odd N is equivalent to prove the inequality

K(N) =
1

2N−1

N−1∑
k=(N−1)/2

(
N − 1

k

)
>

1

2
.
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A “numerical proof” of this inequality is provided in Figure B.1. Note that the function
K(N) is decreasing and converges to 1/2 as N →∞.

5. Solution to Exercise 2.1. Since Ω = {X ∈ R}, then Ω ∈ σ(X). {X ∈ U}c is the set
of sample points ω ∈ Ω such that X(ω) /∈ U . The latter is equivalent to X(ω) ∈ U c, hence
{X ∈ U}c = {X ∈ U c}. Since U c ∈ B(R), it follows that {X ∈ U} ∈ σ(X). Finally we have
to prove that σ(X) is closed with respect to the countable union of sets. Let {Ak}k∈N ⊂ σ(X).
By definition of σ(X), there exist {Uk}k∈N ⊂ B(R) such that Ak = {X ∈ Uk}. Thus we have
the following chain of equivalent statements

ω ∈ ∪k∈NAk ⇔ ∃k̄ ∈ N : X(ω) ∈ Uk̄ ⇔ X(ω) ∈ ∪k∈NUk ⇔ ω ∈ {X ∈ ∪k∈NUk}.
Hence ∪k∈NAk = {X ∈ ∪k∈NUk}. Since ∪k∈NUk ∈ B(R), then ∪k∈NAk ∈ σ(X).

6. Solution to Exercise 2.2. Let A be an event that is resolved by both variables X, Y .
This means that there exist U, V ∈ B(R) such that A = {X ∈ U} = {Y ∈ V }. Hence, using
the independence of X, Y ,

P(A) = P(A ∩ A) = P(X ∈ U, Y ∈ V ) = P(X ∈ U)P(Y ∈ V ) = P(A)P(A) = P(A)2.

Therefore P(A) = 0 or P(A) = 1. Now let a, b be two deterministic constants. Note that, for
all U ⊂ R,

P(a ∈ U) =

{
1 if a ∈ U
0 otherwise

and similarly for b. Hence

P(a ∈ U, b ∈ V ) =

{
1 if a ∈ U and b ∈ V
0 otherwise

= P(a ∈ U)P(b ∈ V ).

Finally we show that X and Y = g(X) are independent if and only if Y is a deterministic
constant. For the “if” part we use that

P(a ∈ U,X ∈ V ) =

{
P(X ∈ V ) if a ∈ U
0 otherwise

= P(a ∈ U)P(X ∈ V ).

For the “only if” part, let z ∈ R and U = {g(X) ≤ z} = {X ∈ g−1(−∞, z]}. Then, using
the independence of X and Y = g(X),

P(g(X) ≤ z) = P(g(X) ≤ z, g(X) ≤ z) = P(X ∈ g−1(−∞, z], g(X) ≤ z)

= P(X ∈ g−1(−∞, z])P(g(X) ≤ z) = P(g(X) ≤ z)P(g(X) ≤ z).

Hence P(Y ≤ z) is either 0 or 1, which implies that Y is a deterministic constant.

7. Solution to Exercise 2.4. A ∈ σ(f(X)) if and only if A = {f(X) ∈ U}, for some
U ∈ B(R). The latter is equivalent to X(ω) ∈ {f ∈ U}, hence A = {X ∈ {f ∈ U}}.
Similarly, B = {Y ∈ {g ∈ V }}, for some V ∈ B(R). Hence

P(A ∩B) = P({X ∈ {f ∈ U}} ∩ {Y ∈ {g ∈ V }}).
As X and Y are independent, the right hand side is equal to P({X ∈ {f ∈ U}})P({Y ∈
{g ∈ V }}), hence P(A ∩B) = P(A)P(B), as claimed.
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8. Solution to Exercise 2.6. Write (−∞, b] as the disjoint union of the sets (−∞, a] and
(a, b]. Hence also {X ∈ (−∞, a]}, {X ∈ (a, b]} are disjoint. It follows that

P(−∞ < X ≤ b) = P(−∞ < X ≤ a) + P(a < X ≤ b),

that is, F (b) = F (a) + P(a < X ≤ b), by which the claim follows. To establish that FX is
right-continuous we now show that

P(X ≤ x0 +
1

n
)→ P(X ≤ x0) as n→∞, for all x0 ∈ R.

By the first part of the exercise it suffices to show that P(x0 < x ≤ x0 + 1
n
)→ 0 as n→∞.

The intervals An = (x0, x0 + n−1] satisfy An+1 ⊂ An and ∩nAn = ∅. Hence by Exercise 1.7
we have limn→∞ P(An) = P(∅) = 0. The fact that FX is non-decreasing is obvious. The
properties limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0 are also obvious.

9. Solution Exercise 2.7. One way to solve this exercise is to set Ω = R, F = B(R),
X(ω) = ω, define the probability of the open interval (a, b) as P((a, b)) = F (b) − F (a) and
then use Caratheódory’s theorem to extend this definition to a probability measure on the
whole B(R). Moreover P(X ≤ x) = P(ω < x) = P((−∞, x)) = F (x).

10. Solution to Exercise 2.8. We first compute the distribution function FY of Y = X2.
Clearly, FY (y) = P(X2 ≤ y) = 0, if y ≤ 0. For y > 0 we have

FY (y) = P(X2 ≤ y) = P(−√y < X <
√
y) =

1√
2π

∫ √y
−√y

e−x
2/2 dx.

Hence, for y > 0,

fY (y) =
d

dy
FY (y) =

1√
2π

(
e−y/2

d

dy
(
√
y)− e−y/2 d

dy
(−√y)

)
=

1√
2π

e−y/2√
y
.

Since Γ(1/2) =
√
π, this is the claim.

11. Solution to Exercise 2.11. A 2× 2 symmetric matrix

C =

(
a b
b c

)
is positive definite if and only if TrC = a + c > 0 and detC = ac − b2 > 0. In particular,
a, c > 0. Let us denote

a = σ2
1, c = σ2

2, ρ =
b

σ1σ2

.

Note that ρ2 = b2

ac
< 1. Thus

C =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
,
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and so

C−1 =
1

1− ρ2

(
1
σ2

1
− ρ
σ1σ2

− ρ
σ1σ2

1
σ2

2

)
.

Substituting into (2.9) proves (2.10).

12. Solution to Exercise 2.12. X ∈ N (0, 1) means that X has density

fX(x) =
1√
2π
e−

x2

2 ,

while Y ∈ E(1) means that Y has density

fY (y) = e−yIy≥0.

Since X, Y are independent, they have the joint density fX,Y (x, y) = fX(x)fY (y). Hence

P(X ≤ Y ) =

∫∫
x≤y

fX,Y (x, y) dx dy =

∫
R
dx e−

x2

2

∫ ∞
x

dy
1√
2π
e−yIy≥0.

To compute this integral, we first divide the domain of integration on the variable x in x ≤ 0
and x ≥ 0. So doing we have

P(X ≤ Y ) =
1√
2π

∫ 0

−∞
dx e−

x2

2

∫ ∞
0

dy e−y +
1√
2π

∫ ∞
0

dx e−
x2

2

∫ ∞
x

dy e−y.

Computing the integrals we find

P(X ≤ Y ) =
1

2
+ e1/2(1− Φ(1)),

where Φ(z) = 1√
2π

∫ z
−∞ e

−y2/2dy is the standard normal distribution.

13. Solution to Exercise 2.15. The density of S(t) is given by

fS(t)(x) =
d

dx
FS(t)(x),

provided the distribution FS(t), i.e.,

FS(t)(x) = P(S(t) ≤ x)

is differentiable. Clearly, fS(t)(x) = FS(t)(x) = 0, for x < 0. For x > 0 we use that

S(t) ≤ x if and only if W (t) ≤ 1

σ

(
log

x

S(0)
− αt

)
:= A(x).
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Thus,

P(S(t) ≤ x) = P(−∞ < W (t) ≤ A(x)) =
1√
2πt

∫ A(x)

−∞
e−

y2

2t dy,

where for the second equality we used that W (t) ∈ N(0, t). Hence

fS(t)(x) =
d

dx

(
1√
2πt

∫ A(x)

−∞
e−

y2

2t dy

)
=

1√
2πt

e−
A(x)2

2t
dA(x)

dx
,

for x > 0, that is

fS(t)(x) =
1√

2πσ2t

1

x
exp

{
−(log x− logS(0)− αt)2

2σ2t

}
Ix>0.

Since ∫ ∞
0

fS(t)(y)dy = 1,

then p0 = P(S(t) = 0) = 0.

14. Solution to Exercise 3.1. Let X be a binomial random variable. Then

E[X] =
N∑
k=1

kP(X = k) =
N∑
k=1

k

(
N

k

)
pk(1− p)N−k.

Now, by the binomial theorem

N∑
k=0

(
N

k

)
xkyN−k = (x+ y)N ,

for all x, y > 0. Differentiating with respect to x we get

N∑
k=1

k

(
N

k

)
xk−1yN−k = N(x+ y)N−1,

Letting x = p and y = 1− p in the last identity we find E[X] = Np.

15. Solution to Exercise 3.3. If Y = 0 almost surely, the claim is obvious. Hence we
may assume that E[Y 2] > 0. Let

Z = X − E[XY ]

E[Y 2]
Y.

Then

0 ≤ E[Z2] = E[X2]− E[XY ]2

E[Y 2]
,

by which (3.3) follows.
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16. Solution to Exercise 3.5. The first and second properties follow by the linearity of
the expectation. In fact

Var[αX] = E[α2X2]− E[αX]2 = α2E[X2]− α2E[X]2 = α2Var[X],

and

Var[X + Y ] = E[(X + Y )2]− E[X + Y ]2 = E[X2] + E[Y 2] + 2E[XY ]

− E[X]2 − E[Y ]2 − 2E[X]E[Y ] = Var[X] + Var[Y ] + 2Cov(X, Y ).

For the third property, let a ∈ R and compute, using 1 and 2,

Var[Y − aX] = a2Var[X] + Var[Y ]− 2aCov(X, Y ).

Since the variance of a random variable is always non-negative, the parabola y(a) = a2Var[X]+
Var[Y ]−2aCov(X, Y ) must always lie above the a-axis, or touch it at one single point a = a0.
Hence

Cov(X, Y )2 − Var[X]Var[Y ] ≤ 0,

which proves the first part of the claim 3. Moreover Cov(X, Y )2 = Var[X]Var[Y ] if and only
if there exists a0 such that Var[−a0X + Y ] = 0, i.e., Y = a0X + b0 almost surely, for some
constant b0. Substituting in the definition of covariance, we see that Cov(X, a0X + b0) =
a0Var[X], by which the second claim of property 3 follows immediately.

17. Solution Exercise 3.8. By linearity of the expectation,

E[Wn(t)] =
1√
n
E[M[nt]] = 0,

where we used the fact that E[Xk] = E[Mk] = 0. Since Var[Mk] = k, we obtain

Var[Wn(t)] =
[nt]

n
.

Since [nt] ∼ nt, as n→∞, then limn→∞Var[Wn(t)] = t. As to the covariance of Wn(t) and
Wn(s) for s 6= t, we compute

Cov[Wn(t),Wn(s)] = E[Wn(t)Wn(s)]− E[Wn(t)]E[Wn(s)] = E[Wn(t)Wn(s)]

= E
[

1√
n
M[nt]

1√
n
M[ns]

]
=

1

n
E[M[nt]M[ns]]. (B.2)

Assume t > s (a similar argument applies to the case t < s). If [nt] = [ns] we have
E[M[nt]M[ns]] = Var[M[ns]] = [ns]. If [nt] ≥ 1 + [ns] we have

E[M[nt]M[ns]] = E[(M[nt]−M[ns])M[ns]]+E[M2
[ns]] = E[M[nt]−M[ns]]E[M[ns]]+Var[M[ns]] = [ns],

where we used that the increment M[nt]−M[ns] is independent of M[ns]. Replacing into (B.2)
we obtain

Cov[Wn(t),Wn(s)] =
[ns]

n
.

It follows that limn→∞Cov[Wn(t),Wn(s)] = s.
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18. Solution to Exercise 3.9. We have

E[X(t)] = g(t)E[W (t)]−
∫ t

0

g′(s)E[W (s)] ds = 0,

Var[X(t)] = E[X(t)2] = g(t)2E[W (t)2] + E

[(∫ t

0

g′(s)W (s) ds

)2
]

− 2g(t)E
[∫ t

0

g′(s)W (t)W (s) ds

]
= g(t)2t+

∫ t

0

∫ t

0

g′(s)g′(τ)Cov(W (s),W (τ)) dτ ds

− 2g(t)

∫ t

0

g′(s)Cov(W (s),W (t)) ds.

Using Cov(W (s),W (t)) = min(s, t), and after some technical but straightforward calcula-
tion, we obtain Var[X(t)] = ∆(t). To show that X(t) is normally distributed, let {t0 =
0, . . . , tn = t} be a uniform partition of the interval [0, t] and consider the Riemann sum
approximation of X(t):

Xn(t) = g(tn)W (tn)−
n∑
i=1

(g(ti)− g(ti−1)W (ti)

= −
n−1∑
i=1

g(ti)W (ti) +
n∑
i=1

g(ti−1)W (ti)

= −
n−1∑
i=0

g(ti)W (ti) +
n−1∑
j=0

g(tj)W (tj+1),

where in the last step we used W (t0) = W (0) = 0 in the first sum and made the change of
index j = i− 1 in the second sum. Hence

Xn(t) =
n−1∑
i=0

g(ti)(W (ti+1)−W (ti)).

Thus Xn(t) is normally distributed because it is a linear combination of the independent and
normally distributed random variables W (ti+1)−W (ti). It can be shown that this property
carries over in the limit n→∞ and since Xn(t)→ X(t) in this limit the proof is completed.

19. Solution to Exercise 3.11. We have

E[X] =

∫
R
λxe−λxIx≥0 dx = λ

∫ ∞
0

xe−λx dx =
1

λ
,
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and

Var[X] = E[X2]− E[X]2 =

∫
R
λx2e−λxIx≥0 dx−

1

λ2

= λ

∫ ∞
0

x2e−λx dx− 1

λ2
=

2

λ2
− 1

λ2
=

1

λ2
.

20. Solution to Exercise 3.12. According to Theorem 3.3, to prove that P̃ is equivalent
to P we have to show that E[Z] = 1. Using the density of exponential random variables we
have

E[Z] =
λ̃

λ
E[e−(λ̃−λ)X ] =

λ̃

λ

∫ ∞
0

e−(λ̃−λ)xλe−λx dx = 1.

To show that X ∈ E(λ̃) in the probability measure P̃ we compute

P̃(X ≤ x) = E[ZIX≤x] =
λ̃

λ
E[e−(λ̃−λ)XIX≤x] =

λ̃

λ

∫ x

0

e−(λ̃−λ)yλe−λy dy = 1− e−λ̃x.

21. Solution to Exercise 3.27. We have E[Err] = E[X] − E[E[X|G]] = 0. Let Y be
G-measurable and set µ = E[Y −X]. Then

Var[Y −X] = E[(Y −X − µ)2] = E[(Y −X − µ+ E[X|G]− E[X|G])2]

= E
[
(E[X|G]−X)2 + (Y − µ− E[X|G])2 + 2(E[X|G]−X)(Y − µ− E[X|G])

]
= Var[Err] + E[α] + 2E[β],

where α = (Y −µ−E[X|G])2 and β = (E[X|G]−X)(Y −µ−E[X|G]). As E[α] ≥ 0 we have
Var[Y −X] ≥ Var[Err] + 2E[β]. Furthermore, as Y − µ− E[X|G] is G-measurable, then

E[β] = E[E[β|G]] = E[(Y − µ− E[X|G])E[(E[X|G]−X)|G] = 0.

Hence Var[Y −X] ≥ Var[Err], for all G-measurable random variables Y .

22. Solution to Exercise 3.29. First we observe that claim (i) follows by claim (ii). In
fact, if the compound Poisson process is a martingale, then

E[N(t)− λt|FN(s)] = N(s)− λs, for all 0 ≤ s ≤ t,

by which it follows that

E[N(t)|FN(s)] = N(s) + λ(t− s) ≥ N(s), for all 0 ≤ s ≤ t.

Hence it remains to prove (ii). We have

E[N(t)− λt|FN(s)] = E[N(t)−N(s) +N(s)− λt|FN(s)]

= E[N(t)−N(s)|FN(s)] + E[N(s)|FN(s)]− λt
= E[N(t)−N(s)] +N(s)− λt = λ(t− s) +N(s)− λt = N(s)− λs.
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23. Solution to Exercise 3.31. Taking the conditional expectation of both sides of (3.25)
with respect to the event {X(s) = x} gives (3.27).

24. Solution to Exercise 4.3. Assume

Xi(t) = αit+ σidW (t), i = 1, 2,

for constants α1, α2, σ1, σ2. Then the right hand side of (4.15) is∫ t

0

[(α2s+ σ2W (s))σ1 + (α1s+ σ1W (s))σ2]dW (s)

+

∫ t

0

[(α2s+ σ2W (s))α1 + (α1s+ σ1W (s))α2 + σ1σ2]ds

= σ1

∫ t

0

(α2s+ σ2W (s))dW (s) + σ2

∫ t

0

(α1s+ σ1W (s))dW (s)

+ α1α2
t2

2
+ α1σ2

∫ t

0

W (s)ds+ α1α2
t2

2
+ σ1α2

∫ t

0

W (s)ds+ σ1σ2t

= σ1α2

∫ t

0

sdW (s) + 2σ1σ2

∫ t

0

W (s)dW (s) + σ2α1

∫ t

0

sdW (s)

+ α1α2t
2 + σ1σ2t+ (α1σ2 + σ1α2)

∫ t

0

W (s)ds

= 2σ1σ2(
W (t)2

2
− t

2
) + σ1σ2t+ α1α2t

2 + (σ1α2 + α1σ2)(

∫ t

0

sdW (s) +

∫ t

0

W (s)ds)

= σ1σ2W (t)2 + α1α2t
2 + (σ1α2 + α1σ2)tW (t)

= (α1t+ σ1W (t))(α2t+ σ2W (t)) = X1(t)X2(t).

25. Solution to Exercise 4.4. We have

Cor(W1(t),W2(t)) =
E[W1(t)W2(t)]√

Var[W1(t)]Var[W2(t)]
=

1

t
E[W1(t)W2(t)].

Hence we have to show that E[W1(t)W2(t)] = ρt. By Itô’s product rule

d(W1(t)W2(t)) = W1(t)dW2(t)+W2(t)dW1(t)+dW1(t)dW2(t) = W1(t)dW2(t)+W2(t)dW1(t)+ρdt.

Taking the expectation we find E[W1(t)W2(t)] = ρt, which concludes the first part of the
exercise. As to the second part, the independent random variables W1(t),W2(s) have the
joint density

fW1(t)W2(s)(x, y) = fW1(t)(x)fW2(s)(y) =
1

2π
√
ts
e−

x2

2t
− y

2

2s .

Hence

P(W1(t) > W2(s)) =
1

2π
√
ts

∫
x>y

e−
x2

2t
− y

2

2s dx dy =
1

2
.
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26. Solution to Exercise 4.5. To solve the exercise we must prove that dX(t) =
Γ(t)dW (t), for some process {Γ(t)}t≥0 adapted to {FW (t)}t≥0. In fact, by Itô’s formula,

dX(t) = −3W (t) dt+ (3W (t)− 3t) dW (t) +
1

2
6W (t)dW (t)dW (t) = 3(W (t)2 − t)dW (t),

where in the last step we used that dW (t)dW (t) = dt.

27. Solution to Exercise 4.6. By Itô’s formula, the stochastic process {Z(t)}t≥0 satisfies

dZ(t) = −θ(t)Z(t)dW (t),

which is the claim.

28. Solution to Exercise 4.10. We have

dV (t) = d(hS(t))S(t) + hS(t)dS(t) + dhS(t)dS(t) + d(hB(t))B(t) + hB(t)dB(t)

where we used that dhB(t)dB(t) = r(t)B(t)dhB(t)dt = 0. Hence dV (t) = hS(t)dS(t) +
hB(t)dB(t) holds by letting d(hB(t)) = −B(t)−1[dhS(t)dS(t) + hS(t)dS(t)].

29. Solution to Exercise 5.1. When the drift term α in (5.1) is given by (5.5), the
stochastic differential equations becomes

dX(t) = a(b−X(t))dt+ β(t,X(t)) dW (t).

Hence Y (t) = eatX(t) satisfies

dY (t) = eat(aX(t) dt+ dX(t)) = eat(ab dt+ β(t,X(t)) dW (t).

Integrating in the interval [s, t] we obtain

Y (t) = xeas + b(eat − eas) +

∫ t

s

eaτβ(τ,X(τ)) dW (τ).

As β(τ,X(τ)) ≤ C|X(τ)| and {X(t)}t≥s ∈ L2[F(t)], the Itô integral in the right hand side
is a martingale. Hence taking the expectation of both sides we obtain

E[Y (t)] = eatE[X(t)] = xeas + b(eat − eas).

30. Solution to Exercise 5.3. The solution of (5.8) could be found replacing a, b, γ=constants
and σ = 0 into the general solution in Theorem 5.7 , but it is actually quicker to solve this
special case independently. Letting Y (t) = e−btX(t) and applying Itô’s formula we find that
Y (t) satisfies

dY (t) = ae−bt dt+ γe−btdW (t), Y (s) = xe−bs.

Hence

Y (t) = xe−bs + a

∫ t

s

e−bu dτ + γ

∫ t

s

e−bu dW (u)
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and so

X(t; s, x) = xeb(t−s) − a

b
(1− eb(t−s)) +

∫ t

s

γeb(t−u)dW (u).

Taking the expectation we obtain immediately that E[X(t; s, x)] = m(t− s, x). Moreover by
Exercise 4.8, the Itô integral in X(t; s, x) is a normal random variable with zero mean and
variance ∆(t− s)2, hence the claim follows.

31. Solution to Exercise 5.4. Letting Y (t) = e−
t2

2 X(t), we find that dY (t) = e−
t2

2 dW (t)
and Y (0) = 1. Thus

X(t) = e
t2

2 + e
t2

2

∫ t

0

e−
u2

2 dW (u).

Note that X(t) is normally distributed with mean

E[X(t)] = e
t2

2 .

It follows that Cov(X(s), X(t)) = E[X(s)X(t)]− E[X(s)]E[X(t)] is

Cov(X(s), X(t)) = e
s2+t2

2 E
[ ∫ s

0

e−
u2

2 dW (u)

∫ t

0

e−
u2

2 dW (u)
]
.

Assume for example that s ≤ t. Hence

Cov(X(s), X(t)) = e
s2+t2

2 E
[ ∫ t

0

I[0,s]e−
u2

2 dW (u)

∫ t

0

e−
u2

2 dW (u)
]
.

Using the result of Exercise 4.2 we have

Cov(X(s), X(t)) = e
s2+t2

2

∫ t

0

I[0,s]e−
u2

2 e−
u2

2 du = e
s2+t2

2

∫ s

0

e−u
2

du

=
√
πe

s2+t2

2

∫ √2s

0

e−
u2

2
du√
2π

=
√
πe

s2+t2

2 (Φ(
√

2s)− 1

2
).

For general s, t ≥ 0 we find

Cov(X(s), X(t)) =
√
πe

s2+t2

2 (Φ(
√

2 min(s, t))− 1

2
).

32. Solution to Exercise 6.2. We have, for t ≤ t∗,

ΠZ(t) = D(t)−1Ẽ[D(t∗)ΠY (t∗)|FW (t)] = D(t)−1D(t)ΠY (t) = ΠY (t),

where we used the martingale property of the discounted price of the derivative with pay-off
Y , see Theorem 6.2.
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33. Solution to Exercise 6.7. The pay-off function is g(z) = k + z log z. Hence the
Black-Scholes price of the derivative is ΠY (t) = v(t, S(t)), where

v(t, x) = e−rτ
∫
R
g

(
xe

(
r−σ

2

2

)
τ+σ
√
τy

)
e−

y2

2
dy√
2π

= e−rτ
∫
R

(
k + xe(r−σ

2

2
)τ+σ

√
τy(log x+ (r − σ2

2
)τ + σ

√
τy)

)
e−

y2

2
dy√
2π

= ke−rτ + x log x

∫
R
e−

1
2

(y−σ
√
τ)2 dy√

2π

+ x(r − σ2

2
)τ

∫
R
e−

1
2

(y−σ
√
τ)2 dy√

2π
+ xσ

√
τ

∫
R
ye−

1
2

(y−σ
√
τ)2 dy√

2π

Using that ∫
R
e−

1
2

(y−σ
√
τ)2 dy√

2π
= 1,

∫
R
ye−

1
2

(y−σ
√
τ)2 dy√

2π
= σ
√
τ ,

we obtain

v(t, x) = ke−rτ + x log x+ x(r +
σ2

2
)τ.

Hence

ΠY (t) = ke−rτ + S(t) logS(t) + S(t)(r +
σ2

2
)τ.

This completes the first part of the exercise. The number of shares of the stock in the hedging
portfolio is given by

hS(t) = ∆(t, S(t)),

where ∆(t, x) = ∂v
∂x

= log x+ 1 + (r + σ2

2
)τ . Hence

hS(t) = 1 + (r +
σ2

2
)τ + logS(t).

The number of shares of the bond is obtained by using that

ΠY (t) = hS(t)S(t) +B(t)hB(t),

hence

hB(t) =
1

B(t)
(ΠY (t)− hS(t)S(t))

= e−rt(ke−rτ + S(t) logS(t) + S(t)(r +
σ2

2
)τ − S(t)− S(t)(r +

σ2

2
)τ − S(t) logS(t))

= ke−rT − S(t)e−rt.

This completes the second part of the exercise. To compute the probability that Y > 0,
we first observe that the pay-off function g(z) has a minimum at z = e−1 and we have
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g(e−1) = k − e−1. Hence if k ≥ e−1, the derivative has probability 1 to expire in the money.
If k < e−1, there exist a < b such that

g(z) > 0 if and only if 0 < z < a or z > b.

Hence for k < e−1 we have

P(Y > 0) = P(S(T ) < a) + P(S(T ) > b).

Since S(T ) = S(0)eαT−σ
√
TG, with G ∈ N(0, 1), then

S(T ) < a⇔ G >
log S(0)

a
+ αT

σ
√
T

:= A, S(t) > b⇔ G <
log S(0)

b
+ αT

σ
√
T

:= B.

Thus

P(Y > 0) = P(G > A) + P(G < B) =

∫ +∞

A

e−
x2

2
dx√
2π

+

∫ B

−∞
e−

x2

2
dx√
2π

= 1− Φ(A) + Φ(B).

This completes the solution of the third part of the exercise.

34. Solution to Exercise 6.8. The pay-off is

Y c = LH(S(T )−K), for the cash-settled binary call option,

Zc = S(T )H(S(T )−K), for the physically-settled binary call option,

Y p = LH(K − S(T )), for the cash-settled binary put option,

Zp = S(T )H(K − S(T )), for the physically-settled binary put option.

The Black-Scholes price in all cases is given by v(t, S(t)), where v(t, x) is the price function
of the derivative given by (6.19b). Replacing g(z) = LH(z −K) into (6.19b) we obtain

v(t, x) =
e−rτ√

2π
L

∫
R
H(xe(r−σ

2

2
)τeσ

√
τ y −K)e−

y2

2 dy

=
e−rτ√

2π
L

∫ ∞
−d2

e−
y2

2 dy = e−rτLΦ(d2) (cash-settled binary call),

where we recall that d2 = 1
σ
√
τ
[log(x/K) + (r − σ2

2
)τ ]. Similarly, using the pay-off function

g(x) = xH(x−K), one finds that the price function for the physically-settled binary option
is

v(t, x) = xΦ(d1) (physically-settled binary call),

where we recall that d1 = d2 + σ
√
τ . For the put options one obtains

v(t, x) =

{
Le−rτΦ(−d2) (cash-settled put),
xΦ(−d1) (physically-settled put).
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Hence, using Φ(z) + Φ(−z) = 1, the following put-call parity relations hold:

ΠY c(t) + ΠY p(t) = Le−rτ , ΠZc(t) + ΠZp(t) = S(t).

The number of shares of the stock in the hedging portfolio is given by hS(t) = ∆(t, S(t)),
where ∆(t, x) = ∂v(t, x), hence

∆(t, x) =

{
Le−rτφ(d2)

xσ
√
τ

(cash-settled call),

Φ(d1) + φ(d1)
σ
√
τ

(physically settled call),

and similarly for the put options. In any case the number of shares of the risk-free asset in
the hedging portfolio is hB(t) = B(t)−1[v(t, S(t))−∆(t, S(t))S(t)].

35. Solution to Exercise 6.9. The pay-off at time T1 for this derivative is

Y = max(C(T1, S(T1), K, T2), P (t1, S(T1), K, T2)).

Using the identity max(a, b) = a+ max(0, b− a) we obtain

Y = C(T1, S(T1), K, T2) + max(0, P (t1, S(T1), K, T2)− C(t1, S(T1), K, T2)).

By the put-call parity,

Y = C(T1, S(T1), K, T2) + max(0, Ke−r(T2−T1) − S(T1)) = Z + U. (B.3)

Hence ΠY (t) = ΠZ(t) + ΠU(t). Since U is the pay-off of a put option with strike Ke−r(T2−T1)

expiring at time T1 then

ΠU(t) = P (t, S(t), Ke−r(T2−T1), T1). (B.4)

Applying the result of Exercise 6.2 with Z = C(T1, S(T1), K, T2) = Π(S(T2)−K)+(T1) we obtain

ΠZ(t) = C(t, S(t), K, T2). (B.5)

Replacing (B.4) and (B.5) into (B.3) we finally obtain, for the Black-Scholes price of the
chooser option,

ΠY (t) = C(t, S(t), K, T2) + P (t, S(t), Ke−r(T2−T1), T1).

36. Solution to Exercise 6.10. First we note that for t ≥ s, we can consider the derivative
as a standard call option with maturity T and known strike price K = S(s), hence

ΠY (t) = C(t, S(t), S(s), T ), for t ≥ s,

where C(t, x,K, T ) is the Black-Scholes price function of the standard call option with strike
K and maturity T . For t < s we write

ΠY (t) = e−r(T−t)Ẽ[(S(T )− S(s))+|FW (t)]

= e−r(T−t)Ẽ[S(t)(e(r− 1
2
σ2)(T−t)+σ(W̃ (T )−W̃ (t)) − e(r− 1

2
σ2)(s−t)+σ(W̃ (s)−W̃ (t)))+|FW (t)]

= e−r(T−t)S(t)Ẽ[(e(r− 1
2
σ2)(T−t)+σ(W̃ (T )−W̃ (t)) − e(r− 1

2
σ2)(s−t)+σ(W̃ (s)−W̃ (t)))+]
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where in the last step we used that S(t) is measurable with respect to FW (t) and that the
Brownian motion increments are independent of FW (t). It follows that

ΠY (t) = e−r(T−t)S(t)Ẽ[e(r− 1
2
σ2)(s−t)+σ(W̃ (s)−W̃ (t))(e(r− 1

2
σ2)(T−s)+σ(W̃ (T )−W̃ (s)) − 1)+]

= e−r(T−t)S(t)Ẽ[e(r− 1
2
σ2)(s−t)+σ(W̃ (s)−W̃ (t))]Ẽ[(e(r− 1

2
σ2)(T−s)+σ(W̃ (T )−W̃ (s)) − 1)+]

where in the last step we used that the two Brownian motion increments are independent.
Computing the expectations using that W (t2) −W (t1) ∈ N (0, t2 − t1), for all t2 > t1, we
find

ΠY (t) = S(t)(Φ(a+ σ
√
T − t)− e−r(T−s)Φ(a)), a =

(r − 1
2
σ2)
√
T − s

σ

This completes the solution to the first part of the exercise. As to the put call parity, let
Z = (S(s)− S(T ))+. As (x− y)+ − (y − x)+ = x− y, we have

ΠY (t)− ΠZ(t) = e−r(T−t)Ẽ[(S(T )− S(s))+|FW (t)]− e−r(T−t)Ẽ[(S(s)− S(T ))+|FW (t)]

= e−r(T−t)Ẽ[S(T )− S(s)|FW (t)] = e−r(T−t)(Ẽ[S(T )|FW (t)]− Ẽ[S(s)|FW (t)])

=

{
S(t)− e−r(T−t)S(s) if s ≤ t
S(t)− e−r(T−s)S(t) if s > t.

Hence the put-call parity is

ΠY (t)− ΠZ(t) = S(t)− e−r(T−max(s,t))S(min(s, t)).

This completes the answer to the second question.

37. Solution to Exercise 6.13. Let Ct(x) = C(t, x). We have

P(C(t) ≤ x) = P(Ct(S(t)) ≤ x) = P(S(t) ≤ C−1
t (x)),

where we used that Ct(·) is a monotonically increasing and thus invertible function. It follows
that

FC(t)(x) = FS(t)(C
−1
t (x)),

hence

fC(t)(x) =
fS(t)(C

−1
t (x))

C ′t(C
−1
t (x))

.

Here fS(t) is the probability density of the geometric Brownian motion, see Exercise 2.15.

38. Solution to Exercise 6.15. Letting a = 1 − e−rT , the price at time t = 0 of a
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European derivative with pay-off function g(x) = (x− S(0))+ is

ΠY (0) = e−rT
∫
R3

g((1− a)S(0)e(r−σ2/2)T+σ
√
Ty)e−

y2

2
dy√
2π

= e−rTS(0)

∫
R3

(e−
σ2

2
T+σ

√
Ty − 1)+e

− y
2

2
dy√
2π

= e−rTS(0)

∫ +∞

σ
√
T/2

(
e−

1
2

(y−σ
√
T )2 − e y

2

2

) dy√
2π

= e−rTS(0)[Φ(
σ
√
T

2
)− Φ(−σ

√
T

2
)]

= S(0)e−rT (2Φ(
σ
√
T

2
)− 1)

where Φ is the standard normal cumulative distribution.

39. Solution to Exercise 6.17. We have

ΠAC(t)− ΠAP(t) = e−r(T−t)(Ẽ[(Q(T )/T −K)+|FW (t)]− Ẽ[(K −Q(T )/T )+|FW (t)])

= e−r(T−t)Ẽ[Q(T )/T −K|FW (t)] =
e−r(T−t)

T
Ẽ[Q(T )|FW (t)]−Ke−r(T−t).

(B.6)

We split Q as

Q(T ) =

∫ t

0

S(τ) dτ +

∫ T

t

S(τ) dτ.

Accordingly

Ẽ[Q(T )|FW (t)] =

∫ t

0

Ẽ[S(τ)|FW (t)] dτ +

∫ T

t

Ẽ[S(τ)|FW (t)] dτ.

Note that FW (t) = FW̃ (t), because the market parameters are constant. In the first integral
we use that S(τ) is FW (t)-measurable (because τ ≤ t), while in the second integral we use
that e−rτS(τ) is a martingale. Hence

Ẽ[Q(T )|FW (t)] = Q(t) + e−rtS(t)

∫ T

t

erτ dτ = Q(t) +
S(t)

r
(er(T−t) − 1).

Substituting in (B.6) concludes the exercise.

40. Solution to Exercise 6.19. By the convexity of the function (·)+ and the Jensen
inequality in the hint, we have

ΠAC(0) = e−rTEq
[(

1

T

∫ T

0

(S(t)−K) dt

)
+

]
≤ e−rT

T
Eq
[∫ T

0

(S(t)−K)+ dt

]
=
e−rT

T

∫ T

0

Eq[(S(t)−K)+] dt =
e−rT

T

∫ T

0

erte−rtEq[(S(t)−K)+] dt.
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Since for r ≥ 0 the (Black-Scholes) value of the call option is decreasing with maturity, then
e−rtEq[(S(t)−K)+] = C(0, S0, K, t) < C(0, S0, K, T ), for t ∈ [0, T ). Thus

ΠAC(0) <
e−rT

T
C(0, S0, K, T )

∫ T

0

ert dt =
1− e−rT
rT

C(0, S0, K, T ).

As the function x → (1 − e−x)/x is bounded by 1 for x ≥ 0, we obtain in particular
ΠAC(0) < C(0, S0, K, T ).

41. Solution to Exercise 6.29. Since we assume that the interest rate of the money
market is constant, the risk-neutral value of the swap at time t ∈ [0, T ] is

ΠY (t) = e−rτ Ẽ[QT |FW (t)], QT =
κ

T

∫ T

0

σ2(t) dt−K.

In particular, at time t = 0, i.e., when the contract is stipulated, we have ΠY (0) = e−rT Ẽ[QT ].
The fair strike of the swap is the value of K which makes ΠY (0) = 0. We find

K∗ =
κ

T

∫ T

0

Ẽ[σ2(t)] dt.

To compute K∗ when σ2(t) = σ2
0S(t), we first compute

dσ2(t) = σ2
0dS(t) = σ2

0(α(t)S(t)dt+ σ(t)S(t)dW (t))

= α(t)σ2(t)dt+ σ3(t)dW (t) = rσ2(t)dt+ σ3(t)dW̃ (t),

where {W̃ (t)}t≥0 is a Brownian motion in the risk-neutral probability measure. It follows
that

d(e−rtσ2(t)) = e−rtσ3(t)dW̃ (t)

and so Ẽ[σ2(t)] = σ2(0)ert = σ2
0S0e

rt. Substituting in the definition of fair strike above we
find

K∗ =
κ

T

σ2
0S0

r
(erT − 1).

42. Solution to Exercise 6.30. Let

Q(t) =

∫ t

0

σ(s)2 ds.

We have dQ(t) = σ(t)2 dt. We compute

d(e−rtf(t, σ2(t), Q(t))) =e−rt[−rf dt+ ∂tf dt+ ∂xf dσ
2(t) +

1

2
∂2
xf dσ

2(t)dσ2(t)

+ ∂yf dQ(t) +
1

2
∂2
yf dQ(t)dQ(t) + ∂2

xyf dQ(t)dσ2(t)]

= e−rt[∂tf + a(b− σ2(t))∂xf + σ2(t)∂yf +
c2

2
σ2(t)∂2

xf − rf ]dt

+ e−rtcσ(t)∂xfdW̃ (t).

212



where the function f and its derivatives are evaluated at (t, σ2(t), Q(t)). As the discounted
risk-neutral price must be a martingale in the risk-neutral probability measure, we need the
drift term in the above equation to be zero. This is achieved by imposing that f satisfies
the PDE

∂tf + a(b− x)∂xf + x∂yf +
c2

2
x∂2

xf = rf (B.7)

Since ΠY (T ) = Y = f(T, σ2(T ), Q(T )), the terminal condition is

f(T, x, y) = N

(√
κ

T
y −K

)
+

.

43. Solution to Exercise 6.36. As

d(eatr(t)) = abeatdt+ ceatdW̃ (t),

we have

r(t) = R0e
−at + b(1− e−at) +

∫ t

0

cea(s−t) dW̃ (s).

As r(t) is the sum of a deterministic function of time and the Itô integral of a deterministic
function of time, then it is normally distributed. As the expectation of the Itô integral is
zero, we have

Ẽ[r(t)] = R0e
−at + b(1− e−at).

Moreover,

Ṽar[r(t)] = c2Ṽar[

∫ t

0

ea(s−t) dW̃ (s)] = c2

∫ t

0

e2a(s−t) ds =
c2

2a
(1− e−2at),

where Itô’s isometry was used for the second equality. The risk-neutral price of a zero-coupon
bond with face-value 1 and expiring at time T is

ΠY (t) = Ẽ[e−
∫ T
t r(s) ds|FW (t)].

We make the ansatz ΠY (t) = v(t, r(t)); assuming that v satisfies the PDE

∂tv + a(b− x)∂xv +
1

2
c2∂2

xv = xv, x > 0, t ∈ (0, T ) (B.8)

we obtain that the stochastic process {D(t)v(t, r(t))}t∈[0,T ] is a P̃-martingale. Imposing the
terminal condition v(T, x) = 1, for all x > 0, we obtain

D(t)v(t, r(t)) = Ẽ[D(T )v(T,R(T ))|FW (t)] = Ẽ[D(T )|FW (t)]

⇒ v(t, R(T )) = Ẽ[e−
∫ T
t r(s) ds|FW (t)],

hence ΠY (t) = v(t, r(t)) holds. Next we assume the form (6.89) for the solution v. By
straightforward calculations one obtains that v(t, x) = e−xC(T−t)−A(T−t) solves (B.8) if and
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only if the functions A,C satisfy C ′ = 1− aC and A′ = abC − c2C2/2. Integrating with the
boundary conditions C(0) = A(0) = 0 we obtain

C(τ) =
1

a
(1− e−aτ ), (B.9a)

A(τ) =
e−2aτ

4a3

(
4a2beaτ (eaτ (aτ − 1) + 1) + c2

(
e2aτ (3− 2aτ)− 4eaτ + 1

))
(B.9b)

44. Solution to Exercise 6.37. Recall that

F (t, T ) = −∂T logB(t, T ) = −∂T log
(
e−r(t)C(T−t)−A(T−t)) = r(t)C ′(T − t) + A′(T − t),

where A, C are given by (B.9). In particular, A,C satisfy

C ′ = 1− aC, A′ = abC − c2

2
C2. (B.10)

Hence

dF (t, T ) = (abC ′(T − t)− ar(t)C ′(T − t)− r(t)C ′′(T − t)− A′′(T − t)) dt
+ cC ′(T − t) dW̃ (t)

= c2C(T − t)C ′(T − t) dt+ cC ′(T − t) dW̃ (t), (B.11)

where we used that C ′′ = −aC ′ and A′′ = abC ′ − c2CC ′ by (B.10). Now recall that in the
HJM approach the forward rate satisfies

dF (t, T ) = θ(t)σ(t, T )σ(t, T ) dt+ σ(t, T ) dW (t) (B.12)

in the physical probability and

dF (t, T ) = σ(t, T )σ(t, T ) dt+ σ(t, T ) dW̃ (t) (B.13)

in the risk-neutral probability. Here {θ(t)}t≥0 is the market price of risk used to pass from
the physical to the risk-neutral probability and

σ(t, T ) =

∫ T

t

σ(t, v) dv

Comparing (B.11) and (B.13) we find σ(t, T ) = cC ′(T − t) and so σ(t, T ) = cC(T − t).
Using the expression for C and replacing in (B.12), we derive the following dynamics for the
forward rate:

dF (t, T ) = θ(t)
c2

a
[e−a(T−t) − e−2a(T−t)] dt+ ce−a(T−t) dW (t).

This concludes the third part of the exercise.
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45. Solution to Exercise 6.38. Letting B(t, T ) = v(t, r(t)), and imposing that the drift
of B∗(t, T ) is zero, we find that v(t, x) satisfies the PDE

∂tv + a(t)∂xv +
c2

2
∂2
xv = xv, x > 0, t ∈ (0, T )

with the terminal condition v(T, x) = 1. Looking for solutions of the form v(t, x) =
e−xC(T,t)−A(T,t) we find that C,A satisfy C(T, T ) = 0, A(T, T ) = 0, and

∂tC = −1, ∂tA =
c2

2
C2 − Ca(t).

Solving the ODE’s,

C(T, t) = (T − t), A(T, t) = −c2 (T − t)3

6
+

∫ T

t

(T − s)a(s) ds.

The forward rate is given by

F (t, T ) = −∂T logB(t, T ) = r(t)∂TC(T, t) + ∂TA(T, t),

hence

dF (t, T ) = dr(t)∂TC(T, t) + r(t)∂t∂TC(T, t) dt+ ∂t∂TA(T, t) dt

= (c2(T − t)) dt+ c dW̃ (t)

Now, the general form of the forward rate in the HJM approach in the risk-neutral probability
measure is

dF (t, T ) = σ(t, T )σ(t, T ) dt+ σ(t, T ) dW̃ (t), where σ(t, T ) =

∫ T

t

σ(t, v) dv.

Comparing with the expression above we find σ(t, T ) = σ, so the dynamics of the forward
rate in the physical probability is

dF (t, T ) = (θ(t)σ(t, T ) + σ(t, T )σ(t, T )) dt+ σ(t, T )dW (t)

= σ(θ + σ(T − t)) dt+ σdW (t),

where θ(t), the market price of risk, is any adapted process (chosen by calibrating the model).

46. Solution to Exercise 6.39. The last claim follows directly by (6.124). In fact, when
the interest rate of the bond is deterministic, the discount process is also deterministic and
thus in particular D(T ) is FW (t)-measurable. Hence, the term in curl brackets in (6.124)
satisfies {

. . .
}

= D(T )Ẽ[Π(T )|FW (t)]−D(T )Ẽ[Π(T )|FW (t)] = 0.
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As to (6.124), we compute

Π(t)

B(t, T )
− Ẽ[Π(T )|FW (t)] =

D(t)Π(t)

Ẽ[D(T )|FW (t)]
− Ẽ[Π(T )|FW (t)]

=
Ẽ[D(T )Π(T )|FW (t)]

Ẽ[D(T )|FW (t)]
− Ẽ[Π(T )|FW (t)],

where for the last equality we used that {Π∗(t)}t∈[0,T ] is a P̃-martingale relative to {FW (t)}t≥0.
The result follows.
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