Financial derivatives and PDE's Lecture 1

Simone Calogero
January $18^{\text {th }}, 2021$

1 Probability space

Notation:

Ω non-empty set,
2^{Ω} power set of Ω (set of all subsets of Ω),
$\mathcal{F} \subseteq 2^{\Omega} \sigma$-algebra of subsets of Ω.

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a probability measure, i.e., a measure such that $\mathbb{P}(\Omega)=1$.
Ω is called sample space.
Two probability measures $\mathbb{P}, \widetilde{\mathbb{P}}: \mathcal{F} \rightarrow[0,1]$ are said to be equivalent if $\mathbb{P}(A)=0 \Leftrightarrow \widetilde{\mathbb{P}}(A)=$ 0 .

Case 1: Ω is countable

In this case $\Omega=\left\{\omega_{n}\right\}_{n \in \mathbb{N}}$ and $\mathcal{F}=2^{\Omega}$. Let $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of real numbers $p_{n} \in(0,1)$ such that $\sum_{n} p_{n}=1$. We set

$$
\mathbb{P}(A)=\sum_{n: \omega_{n} \in A} p_{n}, \quad A \in 2^{\Omega}, \quad \mathbb{P}(\emptyset)=0
$$

The empty set is the only set with zero probability. In particular, all probability measures in a countable sample space are equivalent.

Case 2: Ω is uncountable

In this case we pick $\mathcal{F} \subset 2^{\Omega}$ generated by a family $\mathcal{O} \subset 2^{\Omega}$ of subsets of Ω, i.e., $\mathcal{F}=\mathcal{F}_{\mathcal{O}}$, where

$$
\mathcal{F}_{\mathcal{O}}=\bigcap\{\sigma \text {-algebras } \mathcal{G}: \mathcal{O} \subseteq \mathcal{G}\}
$$

is the smallest σ-algebra containing \mathcal{O}.
Example: $\mathcal{O}=\{$ open real intervals $\}$, then $\mathcal{F}_{\mathcal{O}} \equiv \mathcal{B}(\mathbb{R})$ (Borel σ-algebra). Given f : $\mathbb{R} \rightarrow[0, \infty)$ measurable such that

$$
\int_{\mathbb{R}} f(x) d x=1 \quad \text { (Lebesgue integral), }
$$

then $\mathbb{P}(A)=\int_{A} f(x) d x$ defines a probability measure on $\mathcal{B}(\mathbb{R})$.
Given $A, B \in \mathcal{F}: \mathbb{P}(B)>0$, the quantity $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)$ is called probability of the event A conditional to the event B.

If $\mathbb{P}(A \mid B)=\mathbb{P}(A)$, i.e., $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$, then we say that A, B are independent.
Two sub- σ-algebras $\mathcal{H}, \mathcal{G} \subset \mathcal{F}$ are independent if every event in \mathcal{H} is independent of every event in \mathcal{G}.

A filtration is a one parameter family $\{\mathcal{F}(t)\}_{t \geq 0}$ of σ-algebras such that $\mathcal{F}(t) \subseteq \mathcal{F}$ for all $t \geq 0$ and $\mathcal{F}(s) \subseteq \mathcal{F}(t)$ for all $s \leq t$.

A quadruple $\left(\Omega, \mathcal{F},\{\mathcal{F}(t)\}_{t \geq 0}, \mathbb{P}\right)$ is called a filtered probability space.

2 Random Variables

$X: \Omega \rightarrow \mathbb{R}$ is a random variable if $\{X \in U\} \in \mathcal{F}$ for all $U \in \mathcal{B}(\mathbb{R})$, where $\{X \in U\}$ denotes the pre-image of the Borel set U.

Sets of the form $\{X \in U\}$ are events whose occurrence can be inferred by knowing the value of X, hence they form the so-called information carried by X, or σ-algebra generated by X :

$$
\sigma(X)=\{A \in \mathcal{F}: A=\{X \in U\}, \text { for some } U \in \mathcal{B}(\mathbb{R})\}
$$

If $X(\omega)=c$ for all $\omega \in \Omega$, we call X a deterministic constant. Clearly $\sigma(c)=\{\emptyset, \Omega\}$.
If X, Y are random variables we let $\sigma(X, Y)=\mathcal{F}_{\mathcal{O}}$, where $\mathcal{O}=\sigma(X) \cup \sigma(Y)$.
If $\Omega=\mathbb{R}$ and $\mathcal{F}=\mathcal{B}(\mathbb{R})$ then the random variable is denoted by a small Latin letter (e.g., $f: \mathbb{R} \rightarrow \mathbb{R}$) and called measurable function.

If X is a random variable and f is a measurable function, then $Y=f(X)$ is a random variable. In this case $\sigma(Y) \subseteq \sigma(X)$ (and thus $\sigma(X, Y)=\sigma(X)$). The opposite is also true: if $\sigma(Y) \subseteq \sigma(X)$ then there exists a measurable function f such that $Y=f(X)$.

Two random variables X, Y are independent if $\sigma(X), \sigma(Y)$ are independent σ-algebras. In this case $\sigma(X) \cap \sigma(Y)$ consists of trivial events only, i.e., events with probability zero or one.

If $A \in \mathcal{F}$ we denote \mathbb{I}_{A} the random variable

$$
\mathbb{I}_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \in A^{c}\end{cases}
$$

Clearly $\sigma\left(\mathbb{I}_{A}\right)=\left\{\emptyset, \Omega, A, A^{c}\right\}$.
If $\left\{A_{k}\right\}_{k=1 \ldots, N} \subset \mathcal{F}$ is a finite partition of Ω (i.e., disjoint sets whose union equals Ω) and a_{1}, \ldots, a_{N} are distinct real numbers, the random variable

$$
X=\sum_{k=1}^{N} a_{k} \mathbb{I}_{A_{k}}
$$

is called a simple random variable. In this case $\sigma(X)$ consists of all the sets which can be written as union of the events in the partition (plus the empty set).

3 Distribution functions

The (cumulative) distribution function of the random variable $X: \Omega \rightarrow \mathbb{R}$ is the nonnegative function $F_{X}: \mathbb{R} \rightarrow[0,1]$ given by $F_{X}(x)=\mathbb{P}(X \leq x)$.

Two random variables X, Y are said to be identically distributed if $F_{X}=F_{Y}$.
Properties: F_{X} is (1) right-continuous, (2) non-decreasing, (3) $\lim _{x \rightarrow+\infty} F_{X}(x)=1$ and $\lim _{x \rightarrow-\infty} F_{X}(x)=0$

A random variable $X: \Omega \rightarrow \mathbb{R}$ is said to admit the probability density function (pdf) $f_{X}: \mathbb{R} \rightarrow[0, \infty)$ if f_{X} is integrable on \mathbb{R} and

$$
\begin{equation*}
F_{X}(x)=\int_{-\infty}^{x} f_{X}(y) d y \tag{1}
\end{equation*}
$$

Note that if f_{X} is the pdf of a random variable, then necessarily

$$
\int_{\mathbb{R}} f_{X}(x) d x=\lim _{x \rightarrow \infty} F_{X}(x)=1
$$

The density f_{X} exists in particular when F_{X} is differentiable and in this case we have

$$
f_{X}=\frac{d F_{X}}{d x}
$$

Examples.

1. A random variable $X: \Omega \rightarrow \mathbb{R}$ is said to be a normal (or normally distributed) random variable if it admits the density

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}
$$

for some $m \in \mathbb{R}$ and $\sigma>0$, which are called respectively the expectation (or mean) and the deviation of the normal random variable X, while σ^{2} is called the variance of X. We denote by $\mathcal{N}\left(m, \sigma^{2}\right)$ the set of all normal random variables with expectation m and variance σ^{2}. If $m=0$ and $\sigma^{2}=1, X \in \mathcal{N}(0,1)$ is said to be a standard normal variable. The density function of standard normal random variables is denoted by ϕ, while their distribution is denoted by Φ, i.e.,

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad \Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y
$$

2. A random variable $X: \Omega \rightarrow \mathbb{R}$ is said to be non-central chi-squared distributed with degree $\delta>0$ and non-centrality parameter $\beta>0$ if it admits the density

$$
\begin{equation*}
f_{X}(x)=\frac{1}{2} e^{-\frac{x+\beta}{2}}\left(\frac{x}{\beta}\right)^{\frac{\delta}{4}-\frac{1}{2}} I_{\delta / 2-1}(\sqrt{\beta x}) \mathbb{I}_{x>0} \tag{2}
\end{equation*}
$$

where $I_{\nu}(y)$ denotes the modified Bessel function of the first kind. We denote by $\chi^{2}(\delta, \beta)$ the random variables with density (2).

The joint (cumulative) distribution $F_{X, Y}: \mathbb{R}^{2} \rightarrow[0,1]$ of two random variables X, Y : $\Omega \rightarrow \mathbb{R}$ is defined as

$$
F_{X, Y}(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

The random variables X, Y are said to admit the joint (probability) density function $f_{X, Y}: \mathbb{R}^{2} \rightarrow[0, \infty)$ if $f_{X, Y}$ is integrable in \mathbb{R}^{2} and

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(\eta, \xi) d \eta d \xi
$$

Note the formal identities

$$
f_{X, Y}=\frac{\partial^{2} F_{X, Y}}{\partial x \partial y}, \quad \int_{\mathbb{R}^{2}} f_{X, Y}(x, y) d x d y=1
$$

As an example of joint pdf, let $m=\left(m_{1}, m_{2}\right) \in \mathbb{R}^{2}$ and $C=\left(C_{i j}\right)_{i, j=1,2}$ be a 2×2 positive definite, symmetric matrix. Two random variables $X, Y: \Omega \rightarrow \mathbb{R}$ are said to be jointly normally distributed with mean m and covariance matrix C if they admit the joint density

$$
\begin{equation*}
f_{X, Y}(x, y)=\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C}} \exp \left[-\frac{1}{2}(z-m) \cdot C^{-1} \cdot(z-m)^{T}\right] \tag{3}
\end{equation*}
$$

where $z=(x, y)$, "." denotes the row by column product, C^{-1} is the inverse matrix of C and v^{T} is the transpose of the vector v.

