Lecture 1

den 18 januari 2021 15:14

Lecture 1

Financial derivatives and PDE's Lecture 1

Simone Calogero

January 18^{th} , 2021

Probability space 1

Notation:

Q non-empty set, SAMPLE SPACE, WE ST SAMPLE POINTS 2^{Ω} power set of Ω (set of all subsets of Ω), A \in $\mathbb{Z}^{\mathcal{R}}$ \rightleftharpoons \mathbb{P} A \subset $\mathbb{S}^{\mathcal{L}}$ EVENT $\mathcal{F} \subseteq 2^{\Omega}$ σ -algebra of subsets of Ω .

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where $\mathbb{P} : \mathcal{F} \to [0, 1]$ is a probability measure, i.e., a measure such that $\mathbb{P}(\Omega) = 1$.

P($\bigcup_{\mathbf{k}} A_{\mathbf{k}}$) = $\sum_{\mathbf{k}} \mathbb{P}(A_{\mathbf{k}})$ | 1P $A_{\mathbf{k}} \cap A_{\mathbf{j}} = \emptyset$

Two probability measures $\mathbb{P}, \widetilde{\mathbb{P}}: \mathcal{F} \to [0,1]$ are said to be **equivalent** if $\mathbb{P}(A) = 0 \Leftrightarrow \widetilde{\mathbb{P}}(A) = 0$

P AND P AGREE ON WHICH EVENTS ARE IMPOSSIBLE

Case 1: Ω is countable

In this case $\Omega = \{\omega_n\}_{n\in\mathbb{N}}$ and $\mathcal{F} = 2^{\Omega}$. Let $\{p_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers $p_n \in (0,1)$ such that $\sum_n p_n = 1$. We set

$$\mathbb{P}(A) = \sum_{n:\omega_n \in A} p_n, \quad \underbrace{A \in 2^{\Omega}}_{n}, \quad \mathbb{P}(\emptyset) = 0.$$

The empty set is the only set with zero probability. In particular, all probability measures in a countable sample space are equivalent.

Case 2: Ω is uncountable

In this case we pick $\mathcal{F} \subset 2^{\Omega}$ generated by a family $\mathcal{O} \subset 2^{\Omega}$ of subsets of Ω , i.e., $\mathcal{F} = \mathcal{F}_{\mathcal{O}}$,

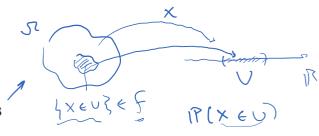
$$\mathcal{F}_{\mathcal{O}} = \bigcap \{ \sigma \text{-algebras } \mathcal{G} : \mathcal{O} \subseteq \mathcal{G} \}$$

is the smallest σ -algebra containing \mathcal{O} .

Example: $\mathcal{O} = \{\text{open real intervals}\}, \text{ then } \mathcal{F}_{\mathcal{O}} \equiv \mathcal{B}(\mathbb{R}) \text{ (Borel } \sigma\text{-algebra }). \text{ Given } f:$ $\mathbb{R} \to [0, \infty)$ measurable such that

$$\int_{\mathbb{R}} f(x) \, dx = 1 \quad \text{(Lebesgue integral)},$$

A & B (R)


then $\mathbb{P}(A) = \int_A f(x) dx$ defines a probability measure on $\mathcal{B}(\mathbb{R})$.

Given $A, B \in \mathcal{F} : \mathbb{P}(B) > 0$, the quantity $\mathbb{P}(A|B) = \mathbb{P}(A \cap B)/\mathbb{P}(B)$ is called probability of the event A conditional to the event B.

If $\mathbb{P}(A|B) = \mathbb{P}(A)$, i.e., $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, then we say that A, B are **independent**. Two sub- σ -algebras $\mathcal{H}, \mathcal{G} \subset \mathcal{F}$ are independent if every event in \mathcal{H} is independent of every

A filtration is a one parameter family $\{\mathcal{F}(t)\}_{t\geq 0}$ of σ -algebras such that $\mathcal{F}(t)\subseteq \mathcal{F}$ for all $t \ge 0$ and $\mathcal{F}(s) \subseteq \mathcal{F}(t)$ for all $s \le t$.

A quadruple $(\Omega, \mathcal{F}, \{\mathcal{F}(t)\}_{t\geq 0}, \mathbb{P})$ is called a **filtered probability space**.

2 Random Variables

X: 22 -> 12" | X = (X3, ..., Xm)

 $X: \Omega \to \mathbb{R}$ is a random variable if $\{X \in U\} \in \mathcal{F}$ for all $U \in \mathcal{B}(\mathbb{R})$, where $\{X \in U\}$ denotes the pre-image of the Borel set U.

Sets of the form $\{X \in U\}$ are events whose occurrence can be inferred by knowing the value of X, hence they form the so-called **information carried by** X, or σ -algebra generated by X:

 $\left\{ \begin{array}{l} \left\{ X \in \mathcal{V} \right\} \right\}_{\mathcal{V} \in \mathcal{B}(\mathbb{R}^{n})} = G\left(X\right) \\ \sigma(X) = \left\{ A \in \mathcal{F} : A = \left\{ X \in \underline{U} \right\}, \text{ for some } U \in \mathcal{B}(\mathbb{R}) \right\}. \end{array} \right.$

If $X(\omega) = c$ for all $\omega \in \Omega$, we call X a **deterministic constant**. Clearly $\sigma(c) = \{\emptyset, \Omega\}$.

If X, Y are random variables we let $\sigma(X, Y) = \mathcal{F}_{\mathcal{O}}$, where $\mathcal{O} = \sigma(X) \cup \underline{\sigma(Y)}$.

If $\Omega = \mathbb{R}$ and $\mathcal{F} = \mathcal{B}(\mathbb{R})$ then the random variable is denoted by a small Latin letter (e.g., $f: \mathbb{R} \to \mathbb{R}$) and called **measurable function**. $X: \mathcal{N} \to \mathbb{R}$

Y 13 X-WFASIRABE If X is a random variable and f is a measurable function, then Y = f(X) is a random variable. In this case $\sigma(Y) \subseteq \sigma(X)$ (and thus $\sigma(X,Y) = \sigma(X)$). The opposite is also true: if $\sigma(Y) \subseteq \sigma(X)$ then there exists a measurable function f such that Y = f(X).

Two random variables X, Y are <u>independent</u> if $\underline{\sigma}(X)$, $\sigma(Y)$ are independent σ -algebras. In this case $\underline{\sigma}(X) \cap \sigma(Y)$ consists of <u>trivial events</u> only, i.e., events with probability zero or one. $\underline{\sigma}(X) \cap \underline{\sigma}(Y) \cap$

If $A \in \mathcal{F}$ we denote \mathbb{I}_A the random variable

 $= \mathbb{P}(A) \mathbb{P}(A) = \mathbb{P}(A)^{2}$ $= \mathbb{P}(A) \mathbb{P}(A) = 0 \text{ or } 1$

INDICATOR FUNCTIONS OF A

 $\mathbb{I}_A(\omega) = \left\{ \begin{array}{ll} 1, & \omega \in A, \\ 0, & \omega \in A^c. \end{array} \right.$

Clearly $\sigma(\mathbb{I}_A) = \{\emptyset, \Omega, A, A^c\}.$

A . N A; = \$ x + 5

If $\{A_k\}_{k=1,\ldots,N} \subset \mathcal{F}$ is a **finite partition** of Ω (i.e., <u>disjoint sets</u> whose union equals Ω) and a_1,\ldots,a_N are distinct real numbers, the random variable

 $X = \sum_{k=1}^{N} a_k \mathbb{I}_{A_k}$

is called a-**simple random variable**. In this case $\sigma(X)$ consists of all the sets which can be written as union of the events in the partition (plus the empty set).

3 Distribution functions

The (cumulative) distribution function of the random variable $X: \Omega \to \mathbb{R}$ is the nonnegative function $F_X : \mathbb{R} \to [0,1]$ given by $F_X(x) = \mathbb{P}(X \le x)$.

Two random variables X, Y are said to be **identically distributed** if $F_X = F_Y$.

Properties: F_X is (1) right-continuous, (2) non-decreasing, (3) $\lim_{x\to+\infty} F_X(x) = 1$ and $\lim_{x \to -\infty} F_X(x) = 0$

A random variable $X: \Omega \to \mathbb{R}$ is said to admit the **probability density function (pdf)** $f_X: \mathbb{R} \to [0, \infty)$ if f_X is integrable on \mathbb{R} and

$$F_X(x) = \int_{-\infty}^x f_X(y) \, dy. \qquad F_X \qquad \text{ABSOLUTELY}$$

$$\text{CONTINUOUS} \qquad (1)$$

$$f_X: \mathbb{R} \to [0, \infty)$$
 if f_X is integrable on \mathbb{R} and
$$F_X(x) = \int_{-\infty}^x f_X(y) \, dy.$$
ABSOLUTELY
CONTINUOUS

Note that if f_X is the pdf of a random variable, then necessarily
$$\begin{cases} \text{in particles of particles of a particles of a particles of a particles and in this case we have} \end{cases}$$
The density $f_X(x) = \int_{\mathbb{R}} f_X(x) \, dx = \lim_{x \to \infty} F_X(x) = 1.$
The density $f_X(x) = \int_{\mathbb{R}} f_X(x) \, dx = \lim_{x \to \infty} F_X(x) = 1.$
The density $f_X(x) = \lim_{x \to \infty} f_X(x) = 1$ is differentiable and in this case we have

The density f_X exists in particular when F_X is differentiable and in this case we have

$$\int \int f_X = \frac{dF_X}{dx}.$$

Examples.

1. A random variable $X:\Omega\to\mathbb{R}$ is said to be a **normal** (or **normally distributed**) random variable if it admits the density

for some $m \in \mathbb{R}$ and $\sigma > 0$, which are called respectively the **expectation** (or **mean**) and the **deviation** of the normal random variable X, while σ^2 is called the **variance** of X. We denote by $\mathcal{N}(m, \sigma^2)$ the set of all normal random variables with expectation m and variance σ^2 . If m=0 and $\sigma^2=1$, $X\in\mathcal{N}(0,1)$ is said to be a **standard** normal variable. The density function of standard normal random variables is denoted by \emptyset , while their distribution is denoted by Φ , i.e.,

NORWAL METER BUTION

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \left(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{y^2}{2}} dy. \right)$$

2. A random variable $X:\Omega\to\mathbb{R}$ is said to be **non-central chi-squared distributed** with **degree** $\delta > 0$ and **non-centrality parameter** $\beta > 0$ if it admits the density

$$f_X(x) = \frac{1}{2}e^{-\frac{x+\beta}{2}} \left(\frac{x}{\beta}\right)^{\frac{\delta}{4} - \frac{1}{2}} I_{\underline{\delta}/2 - 1}(\sqrt{\beta x}) \mathbb{I}_{x>0}, \tag{2}$$

where $I_{\nu}(y)$ denotes the modified Bessel function of the first kind. We denote by $\chi^{2}(\delta,\beta)$ the random variables with density (2). x & x 5 (8 'B)

The joint (cumulative) distribution $F_{X,Y}: \mathbb{R}^2 \to [0,1]$ of two random variables X,Y:

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y). \quad \Rightarrow \quad \widehat{\mathbb{P}}\left(\left\{\begin{array}{cc} X \le x \end{array}\right\} \bigcap \left\{\begin{array}{cc} Y \le 7 \end{array}\right\}\right)$$

The random variables X, Y are said to admit the joint (probability) density function $f_{X,Y}: \mathbb{R}^2 \to [0,\infty)$ if $f_{X,Y}$ is integrable in \mathbb{R}^2 and

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(\eta,\xi) \, d\eta \, d\xi.$$
ies
$$f_{X,Y} = \frac{\partial^{2} F_{X,Y}}{\partial x \, \partial y}, \quad \int_{\mathbb{R}^{2}} f_{X,Y}(x,y) \, dx \, dy = 1.$$

Note the formal identities

$$f_{X,Y} = \frac{\partial^2 F_{X,Y}}{\partial x \, \partial y}, \quad \int_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = 1.$$

As an example of joint pdf, let $m = (m_1, m_2) \in \mathbb{R}^2$ and $C = (C_{ij})_{i,j=1,2}$ be a 2×2 positive definite, symmetric matrix. Two random variables $X,Y:\Omega\to\mathbb{R}$ are said to be **jointly** normally distributed with mean m and covariance matrix C if they admit the joint density $(x'A): U \to U_{\varsigma}$

$$f_{X,Y}(x,y) = \frac{1}{\sqrt{(2\pi)^2 \det C}} \exp\left[-\frac{1}{2}(z-m) \cdot C^{-1} \cdot (z-m)^T\right],\tag{3}$$

where z = (x, y), " \cdot " denotes the row by column product, C^{-1} is the inverse matrix of Cand v^T is the transpose of the vector v.