Lecture 2

den 20 januari 2021

Lecture 2

09:51

Financial derivatives and PDE's Lecture 2

Simone Calogero

January 20^{th} , 2021

(ST, F, P) X: ST -> IR Expectation

The **expectation** of a random variable X is denoted by $\mathbb{E}[X]$. It represents an estimate on the average value of X. FIXJ=P(A)

For simple random variables it is defined as

 $\mathbb{E}[\sum_{k=1}^{N} a_{k} \mathbb{I}_{A_{k}}] = \sum_{k} a_{k} \mathbb{P}(A_{k}). = \sum_{k} \mathbf{a}_{k} \mathbb{E}[\mathbf{I}_{A_{k}}]$

If $X :\to \mathbb{R}$ is a random variable with density f_X , the expectation is given by

 $\mathbb{E}[X] = \int_{\mathbb{R}} \mathbf{x} f_X(x) \, dx.$ (1)

For instance

1

 $X \in \mathcal{N}(\underline{m}, \underline{\sigma}^2) \Rightarrow \mathbb{E}[X] = \underline{m}, \quad X \in \chi^2(\underline{\delta}, \underline{\beta}) \Rightarrow \underline{\mathbb{E}}[X] = \underline{\delta} + \underline{\beta}.$

The set of all random variables with finite expectation is denoted by $L^1(\Omega)$. or $\mathbb{L}^1(\mathfrak{I}^{\mathfrak{I}})$

The expectation satisfies the following properties:

GENERAL DEPINITION OF #[X]: SEE LECTURE NOTES

IF P: f > [o, 1] WE WRITE B[X] FOR EXPECTATION OF IN THE PROB. MEASURE

Theorem 1 (Properties of the expectation). Let $X, Y \in L^1(\Omega)$. (i) Linearity: For all $\alpha, \beta \in \mathbb{R}$, $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$; (ii) If $X \leq Y$ a.s. then $\mathbb{E}[X] \leq \mathbb{E}[Y]$; (iii) If $X \ge 0$ a.s., then $\mathbb{E}[X] = 0$ if and only if X = 0 a.s.; (iv) If X, Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$; $X \in \mathbb{R}$ Are said that $\text{VAR}\{X\} = \begin{cases} (v) \text{ If } X \text{ has the density } f_X, \text{ then} \\ \int_{\mathbb{R}} x^2 \int_{\mathbb{R}} x^{(x)} dx - \left(\int_{\mathbb{R}} x \int_{\mathbb{R}} x^{(x)} dx \right)^2 \mathbb{E}[\underline{g}(X)] = \int_{\mathbb{R}} g(x) \underline{f}_X(x) \, dx$ for all measurable functions g such that $g(X) \in L^1(\Omega)$; (vi) If X, Y have the joint density $f_{X,Y}$, then $\mathbb{E}[g(X,Y)] = \int_{\mathbb{R}^2} g(x,y) f_{X,Y}(x,y) \, dx \, dy$ for all measurable functions g such that $g(X,Y) \in L^1(\Omega)$. (vii) Jensen's inequality: If $f: \mathbb{R} \to \mathbb{R}$ is measurable and convex, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$. The covariance and variance of two random variables is defined as The set of random variables such that $\mathbb{E}[X^2]$ is finite will be denoted by $L^2(\Omega)$. By Jensen inequality, $L^2(\Omega) \subset L^2(\Omega)$. t(xy) - t(x) = (OR 13 (JZ, R)) Using (v) in Theorem 1 one can prove that X = EEX) A.S. $X \in \mathcal{N}(m, \sigma^2) \Rightarrow \mathrm{Var}[X] = \sigma^2, \quad X \in \chi^2(\delta, \beta) \Rightarrow \mathrm{Var}[X] = 2(\delta + 2\beta).$ Moreover if X_1, X_2 are jointly normally distributed with covariant matrix C, then $C_{ij} = \text{Cov}(X_i, X_j), i, j = 1, 2.$ C= (VAR[X1) COV(X1,X2) A DETERMI (OV(X1,X2) VAR[X2]) NISTIC CONSTANT BY SENSEN'S INEQUALITY WITH $\frac{1}{2}(x) = x^2$, $\text{E[} \times \text{J}^2 = \text{E[} \times^2 \text{J} = \text{J} \times^2 \text{J} \text{I} \times \text{J} \times \text$

$$X: \mathcal{R} \rightarrow \mathcal{E}$$
 $X = A + iB$
 $A,B: \mathcal{R} \rightarrow \mathbb{R}$ $\text{d[X]} = \text{d[X]} + i\text{d[B]}$

Characteristic function

Let X be a random variable with finite expectation. The function $\theta_X : \mathbb{R} \to \mathbb{C}$ given by

$$\theta_X(u) = \mathbb{E}[e^{iuX}]$$
of $(x) = e^{iuX}$

is called the **characteristic function of** X.

If the random variable X admits the density f_X , then

$$\theta_X(u) = \int_{\mathbb{R}} e^{iux} f_X(x) dx,$$

i.e., the characteristic function is the inverse Fourier transform of the density. For example:

$$X \in \mathcal{N}(m, \sigma^2) \Rightarrow \theta_X(u) = \exp(ium - \frac{1}{2}\sigma^2 u^2),$$
 (2)

$$X \in \chi^{2}(\delta, \beta) \Rightarrow \theta_{X}(u) = (1 - 2iu)^{-\delta/2} \exp\left(-\frac{\beta u}{2u + i}\right), \tag{3}$$

It can be shown that $\theta_X = \theta_Y$ if and only if $F_X = F_Y$. In particular, if one wants to show that $X \in \chi^2(\delta, \beta)$, it suffices to show that its characteristic function is given as in (3).

2 Stochastic processes. Brownian motion

A **stochastic process** is a one-parameter family of random variables, which we denote by $\{X(t)\}_{t\geq 0}$, or by $\{X(t)\}_{t\in [0,T]}$ if the parameter t is restricted to the interval [0,T], T>0.

In most applications t is the time variable.

Hence, for each time $t \geq 0$, $X(t): \Omega \to \mathbb{R}$ is a random variable. \times (1) (ω) \times (2) \mathbb{R} . \times (2)

We denote by $X(t,\omega)$ the value of X(t) on the sample point $\omega \in \Omega$, i.e., $X(t,\omega) = X(t)(\omega)$.

For each $\omega \in \Omega$ fixed, the curve $\gamma_X^{\omega} : \mathbb{R} \to \mathbb{R}$, $\gamma_X^{\omega}(t) = X(t, \omega)$ is called the ω -path of the stochastic process and is assumed to be a measurable function.

If the paths of a stochastic process are all equal, we say that the stochastic process is a **deterministic function of time**.

Two stochastic processes $\{X(t)\}_{t\geq 0}$, $\{Y(t)\}_{t\geq 0}$ are said to be independent if for all $m,n\in\mathbb{N}$ and $0 \le t_1 < t_2 < \cdots < t_n, 0 \le s_1 < s_2 < \cdots < s_m$, the σ -algebras $\sigma(X(t_1), \ldots, X(t_n))$, $\sigma(Y(s_1),\ldots,Y(s_m))$ are independent.

The filtration generated by the stochastic process $\{X(t)\}_{t\geq 0}$ is given by $\{\mathcal{F}_X(t)\}_{t\geq 0}$, where

$$\mathcal{F}_{X}(t) = \mathcal{F}_{\mathcal{O}(t)}, \quad \mathcal{O}(t) = \bigcup_{0 \leq s \leq t} \sigma(X(s)). \quad C \quad \mathcal{F}_{X}(t) = \mathcal{F}_{X}(t)$$

If $\{\mathcal{F}(t)\}_{t\geq 0}$ is a filtration and $\mathcal{F}_X(t)\subseteq \mathcal{F}(t)$, for all $t\geq 0$, we say that the stochastic process $\{X(t)\}_{t\geq 0}$ is adapted to the filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ ${X(t)}_{t\geq 0}$ is **adapted** to the filtration ${\mathcal{F}(t)}_{t\geq 0}$.

A Brownian motion (or Wiener process) is a stochastic process $\{\underline{W}(t)\}_{t\geq 0}$ such that

- (i) The paths are continuous and start from 0 almost surely, i.e., the sample points $\omega \in \Omega$ such that $\gamma_W^{\omega}(0) = 0$ and γ_W^{ω} is a continuous function comprise a set of probability 1;
- (ii) The increments over disjoint time intervals are independent, i.e., for all $0 = t_0 < t_1 < t_1$ $\cdots < t_m \in (0, \infty)$, the random variables

$$W(t_1) = W(t_1) - W(t_0), W(t_2) - W(t_1), \dots, W(t_m) - W(t_{m-1})$$
are independent;

(iii) For all s < t, the increment W(t) - W(s) belongs to $\mathcal{N}(0, t - s)$.

The properties defining a Brownian motion depend on the probability measure \mathbb{P} .

Thus a stochastic process may be a Brownian motion relative to a probability measure \mathbb{P} and not a Brownian motion with respect to another (possibly equivalent) probability measure $\widetilde{\mathbb{P}}$.

If we want to emphasize the probability measure \mathbb{P} with respect to which a stochastic process is a Brownian motion we shall say that it is a $\mathbb{P}\text{-}\textsc{Brownian}$ motion.

Let $\{W(t)\}_{t\geq 0}$ be a Brownian motion and denote by $\sigma^+(W(t))$ the σ -algebra generated by the increments $\{W(s) - W(t); s \ge t\}$, that is

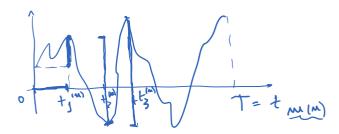
$$\sigma^+(W(t)) = \mathcal{F}_{O(t)}, \ \mathcal{O}(t) = \bigcup_{s \ge t} \sigma(W(s) - W(t)).$$

A filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ is said to be a **non-anticipating** filtration for the Brownian motion $\{W(t)\}_{t\geq 0}$ if $\{W(t)\}_{t\geq 0}$ is adapted to $\{\mathcal{F}(t)\}_{t\geq 0}$ and if the σ -algebras $\sigma^+(W(t))$, $\mathcal{F}(t)$ are independent for all $t \geq 0$.

EXAMPLE:

4 (fwt) } true is NON-ANTICIPATING

Quadratic variation 3



Let $n \in \mathbb{N}$ and $\Pi_n = \{t_0 = 0, t_1^{(n)}, t_2^{(n)}, \dots, t_{m(n)-1}^{(n)}, t_{\underline{m(n)}} = T\}$ be a partition of the interval

Hence $\{\Pi_n\}_{n\in\mathbb{N}}$ is sequence of partitions of the interval [0,T].

Assume that the size of the partitions in the sequence goes to zero as $n \to \infty$, i.e.,

$$\|\Pi_n\| \to 0 \text{ as } n \to \infty, \text{ where } \|\Pi_n\| = \max_j (t_{j+1}^{(n)} - t_j^{(n)}).$$

We say that the stochastic process $\{X(t)\}_{t\geq 0}$ has L^2 -quadratic variation [X,X](T) in the interval [0,T] along the sequence of partitions $\{\Pi_n\}_{n\in\mathbb{N}}$ if

$$\lim_{n \to \infty} \mathbb{E} \left[\left(\sum_{j=0}^{n(n)-1} (X(t_{j+1}^{(n)}) - X(t_{j}^{(n)}))^2 - [X,X](T) \right)^2 \right] = 0.$$

Note that [X, X](T) is a (non-negative) random variable.

If there exists a process $\{q(t)\}_{t\geq 0}$ such that

Exix3

$$[X,X](T) = \int_0^T q(t) dt$$
, along any sequence of partitions

then we write

$$dX(t)dX(t) = q(t) dt.$$

9(+) = d [x,x](+)

The process $\{q(t)\}_{t>0}$ is called **rate of quadratic variation** and measures how fast quadratic variation accumulates in time in the stochastic process $\{X(t)\}_{t\geq 0}$.

For example, it can be showthat (SEE THE LECTURE NOTES)

$$\frac{dW(t)dW(t) = dt}{dt dt = 0.}$$

$$\frac{dV(t)dW(t) = dt}{dt dt = 0.}$$

$$\frac{dV(t)dV(t) = dt}{dt dt = 0.}$$

Similarly, we say that two stochastic processes $\{X_1(t)\}_{t\geq 0}$ and $\{X_2(t)\}_{t\geq 0}$ have \underline{L}^2 -cross variation $[X_1,X_2](T)$ in the interval [0,T] along the sequence of partitions $\{\Pi_n\}_{n\in\mathbb{N}}$, if

$$\lim_{n\to\infty}\mathbb{E}\left[\left(\sum_{j=0}^{m(n)-1}\underbrace{(X_1(t_{j+1}^{(n)})-X_1(t_j^{(n)}))\underbrace{(X_2(t_{j+1}^{(n)})-X_2(t_j^{(n)}))}-[X_1,X_2](T)}\right)^2\right]=0,$$

and write

$$dX_1(t)dX_2(t) = \xi(t) dt$$

if

$$[X_1, X_2](T) = \int_0^T \underline{\xi(t)} \, dt \quad \text{along any sequence of partitions}$$

For instance it can be proved that

$$\underline{dW(t)}dt = 0. (5)$$

Moreover if $\{W_1(t)\}_{t\geq 0}$, $\{W_2(t)\}_{t\geq 0}$ are two independent Brownian motions then

$$dW_1(t)dW_2(t) = 0. (6)$$

$$T_{1} = \{t_{0}, t_{1}^{(a)}, t_{2}^{(i)}, t_{3}^{(i)}, t_{4}^{(i)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(a)}, t_{2}^{(i)}, t_{3}^{(i)}, t_{4}^{(i)} = T\}$$

$$M(2) = \{t_{0}, t_{2}^{(a)}, t_{2}^{(a)}, t_{3}^{(a)}, t_{4}^{(a)}, t_{5}^{(a)} = T\}$$

$$T_{2} = \{t_{0}, t_{2}^{(a)}, t_{2}^{(a)}, t_{2}^{(a)}, t_{4}^{(a)}, t_{5}^{(a)} = T\}$$

$$T_{M} = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(a)}, t_{5}^{(a)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{2}^{(M)}, t_{2}^{(M)}, t_{4}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{1}^{(M)}, t_{2}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)}, t_{5}^{(M)} = T\}$$

$$M(4) = \{t_{0}, t_{1}^{(M)}, t_{1}^{(M)},$$