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1 Expectation \ A K> (E
The expectation of a random variable X is denoted by E[X]. It represents an estimate on
the average value of X. '
\F = '
x=L = Aes

For simple random variables it is defined as

| gixV= ® ()
s E[Z agla,] = Za-kP(Ak)‘ = 2; by &LEA u./&
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If X :— R is a random variable with density fy, the expectation is given by
TN

BIX) = [xfx(a)dr 5/ 1)

For iné;tance
TS
R
%\ bh==,¢ N
X %6 The set of all random variables with finite expectation is denoted by L'(€2). o ® L (ﬂ \ (27
Ne——

X EN(ER,EFQ) = E[X] =m, XEe€ Xz({.s,b’) = E[X] =0+0

The expectation satisfies the following properties:
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Theorem 1 (Properties of the expectation). Let X, Y € L'((Q).
e

(i) Linearity: For all o, € R, E[aX + 8Y] = oE[X] + SE[Y]; &
(i) If X <Y a.s. then E[X] < E[Y];
(iii) If X =0 a.s., then B[ X] =0 if and only if X =0 a.s.; =~
x> T B

(iv) If X,Y are independent, then E[XY] = E[X|E[Y]; x pc
- NSe o eE LAED \F

. (1) If X has the density fx, then FIx) = EIX0 RN
= (Ra e (G Wﬁz Bly(X)] = [ g(a)fs(a) da
e S e E 3

for all measurable functions g such that g(X) € L'());
v (X, M) = O
(vi) If XY have the joint density fxy. then

—

B(X.Y)) = [ ote.s)fxs (o) dudy

~—
for all measurable functions g such that g(X,Y) € L'(Q). /
(vii) Jensen's inequality: If f: R — R is measurable and convez, then f(E[X]) < E[f(X)].

~—

The covariance and variance of two random variables is defined as
B0 - £ V]
= Cov(X,Y) =E[(X - E[X])(Y - E[Y])], Var[X]=Cov(X,X). = E [ (X - ﬁr_k
= s AtxT)-an);

The set of random variables such that E[X?] is finite will be denoted by L?(2). By Jensen
i lity, 13(Q) ¢ IE(Q = = —
inequality, ) < L¥(Q). vk *(& \ij

Using (v) in Theorem 1 one can prove that

\jpfv—fxs =o \¢F
x = BIXD A,

X € N(m,o0%) = Var[X] = ¢?, X € \*(4,8) = Var[X] = 2(d + 25). \.t., \FF
- Lo

e !
Moreover if X, X5 are jointly normally distributed with covariant matrix C', then Cj; = X ‘S
Cov(X;, Xj),i,j=1,2. —
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Characteristic function

Let X be a random variable with finite expectation. The function fyx : B — C given by

Ox(u) = IE[&’“‘:] & 6‘[ :}f (X)}
is called the characteristic function of X. 0& (y\ - 6-{“ X

If the random variable X admits the density fy, then

() = [ @ fe(o) o
e S |

i.e., the characteristic function is the inverse Fourier transform of the density. For example:

— X eN(m,o?) = th(H) = explium — %0%2) (2)

25 e[ Bu

2 — (1 — D50y —0/2 _ 9 =
% X ex™(8,8) = Ox(u) = (1 — 2iu) (.xp( ut ") (3)

— T

It can be shown thatl_b’,x:/ﬁyl if and only if ]F v = Fy[ In particular, if one wants to show
that X € \*(d, 3), it suffices to show that its characteristic function is givenmasin (3).

2 Stochastic processes. Brownian motion

A stochastic process is a one-parameter family of random variables, which we denote by
{X(#)}1=0. or by {X(t) }sefo.r if the parameter ¢ is restricted to the interval [0, 77, T > 0.
—_——— o

. . . , ro€
In most applications £ is the time variable. X ("\ N 2 rewt

Hence, for each time ¢ > 0, X (t) : Q2 — R is a random variable. >< [-'\:) (wﬁ x (L—] RN

—_—

We denote by X (¢,w) the value of X (t) on the sample point w € Q, i.e., X(t,w) = X(t)(w),‘\
L—

For each w € Q fixed, the curve/7¥§ : R = R, 7%(t) = X(f,w) is called the w-path of the
stochastic process and is assumed to be a measurable function.

If the paths of a stochastic process are all equal, we say that the stochastic process is a
deterministic function of time.

Xt @] =
/ 3
w = U-)‘_’
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AN AN
Two stochastic processes {X(#)}:>0, {Y () }¢0 are said to be independent if for all m,n € N
and 0 <% @ < e <ty 0< 8] < 89 < re <8y, the g-algebras J[)&l),.,.,X(t”)),
S—

a(Y(sy).....,Y(s ,,,)) are independent.
/_\,_’

The filtration generated by the stochastic process {X(t)}i=0 is given by {}-X( )}t=0, where
S~

<<
Kf) Fo)s /> Uuqqff(X( < g ?x[‘\'ﬂ—gx()

- _ &y € 3<‘2
I J:(t)/ou is a filtration and .7:5(( ) € F(t), for all t > 0, we say that the th

{X(f) t=0 is adapte ation {F{f)}rzo
AT

A Brownian motion (or Wiener process) is a stochastic process @20 such that

(i) The paths are continnous and start from 0 almost surely, i.e., the sample points w € Q
such that 7j;-(0) = 0 and 74, is a continuous function comprise a set of probability 1;

(11} The increments over disjoint time intervals are independent, i.e., for all 0=ty <t <

- < t,, € (0,00), the random variables  — N
Wit
\NH,) = W(t) = W(to)) W(ta) = W(tr), ., W(tm) — W (tm 1)
1 ' . ¢ L= S “C—
3 “are independent; o v

(iii) For all s < t, the increment W (t) — W (s) belongs to N'(0,t — s).
° T~ —

—_——

7 (Wi -WE) ¢ V)

The properties defining a Brownian motion depend on the probability measure P.

(ﬂ X
Thus a stochastic process may be a Brownian motion relative to a probability measure I’ and S
not a Brownian motion with respect to another (possibly equivalent) probability measure P. W -
L =
If we want to emphasize the probability measure P with respect to which a stochastic process . - L 5
is a Brownian motion we shall say that it is a P-Brownian motion. e

— Qv

Let {W(#)}i=0 be a Brownian motion and denote by a*(W(t)) the g-algebra generated by
the increments {W(s) — W(t);s = t}, that is
e é‘ = S

o (W (1) = Fou, O1) = \L@y(ms) — W(t).

A filtration {F(t)};=0 is said to be a non-anticipating filtration for the Browman motion

{W(t) im0 if {W(#)}i50 is adapted to {J—‘!H}:;n and if the og-algebras o (W (t
’_/___*—

independent for all ¢t = 0.~

—

EXAMPLE -
4 qgwaﬂg Yo, Man - ANTULOWRASW G

‘77/0

Lecture 2 Page 5



)

3 Quadratic variation

Let n € N and 11, = {f; = 0, nes tgn)_, .. ,tf:()_”_}_l._ tmmy = T} be a partition of the interval

Hence {II, } i is sequence of partitions of the interval [0, 7.
AN

Assume that the size of the partitions in the sequence goes to zero as n — oo, i.e.,
B —

t(n}

[T1,]] = 0 as n — oo, where |[IT,,|| = max(¢;};, — tfr-n))‘

S ~ _— 4

We say that the stochastic process {X () },-0 has L*-quadratic variation [X, X|(T) in the
interval [0, T] along the sequence of partitions {IT,, J,cx 1f = 1

" X \= FLXZB
H T‘MEMN

Note that [X, X](T) is a (non-negative) random variable.

—_—

If there exists a process {q(f)}+=0 such that

T
[X, X](T) f q(t)dt, along any sequence of partitions
0 —
L;_’___/&—" v

then we write \ s VN i i % \>< /S L‘\—w

: o [ﬂ/ =
)rdxmdxu) - M (A

The process {q(t) }+>¢ is called rate of quadratic variation and measures how fast quadratic
variation accumulates in time in the stochastic process {X (t)}=0.

For example, it can be showythat [55& THhe (ECcivte Moy 54;)
X (HN=

{
—d \ awaw(t) = dt, <(ztd®/° A € A (@@

/ /\ - J\{'J\t =0
[WwdE) = § =T rone Ay ~
—_9 5 LERweN s oF

< pea TN <
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Similarly, we say that two stochastic processes {_&_{t)}zzo and {X5(t)};5p have L’-cross
variation [X, X5](7") in the interval [0, 7] along the sequence of partitions {II,, },en, 1

min)—1 2
lim E [( ST ) = X)), —Xﬂtf,-’”n—[xl..xzu-r)) ] =0,
w

T30
=0 ————

and write
dX, () dXs(t) = &(t) dt

if - H . [*\%(—7 o

T To (W AT
(X1, X )(T) = / E(t)dt  along any sequence of partitions 1
[ — 0o 7

?(\,o(,ch >

For instance it can be proved that

\ dW (t)dt = 0.

Moreover if {W; () }iz0, {Wa(t) }iz0 are two independent Brownian motions then
Al —

v

AW, (£)dWs(t) = 0. (6)
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