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Remarks

� More information on the financial concepts introduced in this lecture can be found in
the text Basic financial concepts, available on the course homepage.

� Unless otherwise stated, it is assumed throughout the course that assets pay no divi-
dend.

Throughout the course we assume that the following is given:

� a probability space (Ω,F ,P),

� a P-Brownian motion {W (t)}t≥0 and

� a non-anticipating filtration {F(t)}t≥0.

Also, we are only interested on what happens in some finite time interval t ∈ [0, T ] and in
this case it is usually assumed (even if not always necessary) that

F(T ) = F = FW (T )

i.e., the full information is revealed at time T and it is contained in the Brownian motion.

All variables in financial mathematics are represented by stochastic processes. The most
obvious example is the price of financial assets.

All stochastic processes describing financial variables in this course are assumed to be in
C0[FW (t)].
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Stock price

The price per share a time t of a stock will be denoted by S(t).

Most commonly S(t) > 0, for all t ≥ 0, however in some models it is possible that S(t) = 0
with positive probability (risk of default).

{S(t)}t≥0 is a stochastic process. If we have several stocks, we shall denote their price by
{S1(t)}t≥0, {S2(t)}t≥0, etc.

In this course we assume that {S(t)}t≥0 is given by a generalized geometric Brownian motion,
defined as follows.

Generalized geometric Brownian motion

Given two stochastic processes {α(t)}t≥0, {σ(t)}t≥0 ∈ C0[FW (t)], the stochastic process
{S(t)}t≥0 ∈ C0[FW (t)] given by

S(t) = S(0) exp

(∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s)

)
(1)

is called generalized geometric Brownian motion with mean of log-return (or log-
drift) {α(t)}t≥0 and volatility {σ(t)}t≥0.

Since

d(logS(t)) = α(t) dt+ σ(t) dW (t),

then the log-price of the stock is a diffusion process with drift rate α(t) and diffusion rate
σ(t) (i.e., σ(t)2 is the rate of quadratic variation of logS(t)).

When α(t) = α ∈ R and σ(t) = σ > 0 are deterministic constant, the process (1) is called
geometric Brownian motion.

Since

S(t) = S(0)eX(t), dX(t) = α(t)dt+ σ(t)dW (t),

then Itô’s formula gives
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dS(t) = S(0)eX(t)dX(t) +
1

2
S(0)eX(t)dX(t)dX(t)

= S(t)α(t)dt+ S(t)σ(t)dW (s) +
1

2
σ2(t)S(t)dt

that is

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (2)

where

µ(t) = α(t) +
1

2
σ2(t)

Prescribing S(t) as in (1) with given {α(t)}t≥0, {σ(t)}t≥0 ∈ C0[FW (t)] is equivalent to pre-
scribing S(t) as in (2) with given {µ(t)}t≥0, {σ(t)}t≥0 ∈ C0[FW (t)]. The latter will be used
most commonly in this course.

In the presence of several stocks, it is reasonable to assume that each of them introduced a
new source of randomness in the market.

Thus, when dealing with N stocks, we assume the existence of N independent Brownian
motions {W1(t)}t≥0, . . . , {WN(t)}t≥0 and model the evolution of the stocks prices

{S1(t)}t≥0, . . . , {SN(t)}t≥0

by the following N-dimensional generalized geometric Brownian motion:

dSk(t) =

(
µk(t) +

N∑
j=1

σkj(t)dWj(t)

)
Sk(t) (3)

for some stochastic processes {µk(t)}t≥0, {σkj(t)}t≥0 ∈ C0[FW (t)], j, k = 1, . . . , N .
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Financial derivative

A financial derivative (or derivative security) is a contract whose value depends on the
performance of one (or more) other asset(s), which is called the underlying asset.

There exist various types of financial derivatives, the most common being options, futures,
forwards and swaps.

Financial derivatives can be traded over the counter (OTC), or in a regularized exchange
market.

In the former case, the contract is stipulated between two individual investors, who agree
upon the conditions and the price of the contract. In particular, the same derivative (on the
same asset, with the same parameters) can have two different prices over the counter.

Derivatives traded in the market, on the contrary, are standardized contracts. Anyone, after
a proper authorization, can make offers to buy or sell derivatives in the market, in a way
much similar to how stocks are traded. Let us see some examples of financial derivatives (we
shall introduce more examples later).

Call and put options

A call option is a contract between two parties, the buyer (or owner) of the call and the
seller (or writer) of the call.

The contract gives to the buyer the right, but not the obligation, to buy the underlying asset
at some future time for a price agreed upon today, which is called strike price of the call.

If the buyer can exercise this option only at some given time t = T > 0 (where t = 0
corresponds to the time at which the contract is stipulated) then the call option is called
European, while if the option can be exercised at any time in the interval (0, T ], then the
option is called American.

The time T > 0 is called maturity time, or expiration date of the call.

The seller of the call is obliged to sell the asset to the buyer (at the strike price) if the latter
decides to exercise the option.

If the option to buy in the definition of a call is replaced by the option to sell, then the
option is called a put option.

In exchange for the option, the buyer must pay a premium to the seller.

Suppose that the option is a European option with strike price K, maturity time T and
premium Π0 on a stock with price S(t) at time t. In which case is it then convenient for the

4



buyer to exercise the call? Let us define the payoff of a European call as

Y = (S(T )−K)+ := max(0, S(T )−K) (call);

similarly for a European put we set

Y = (K − S(T ))+ (put).

Note that Y is a random variable, because it depends on the random variable S(T ).

Clearly, if Y > 0 it is more convenient for the buyer to exercise the option rather than
buying/selling the asset on the market.

A call (resp. put) is said to be in the money at time t if S(t) > K (resp. S(t) < K).

The call (resp. put) is said to be out of the money if S(t) < K (resp. S(t) > K).

If S(t) = K, the (call or put) option is said to be at the money at time t.

European derivatives

European call and put options are examples of more general contracts called European
derivatives.

Given a function g : (0,∞) → R, a standard European derivative with pay-off Y =
g(S(T )) and maturity time T > 0 is a contract that pays to its owner the amount Y at time
T > 0.

Here S(T ) is the price of the underlying asset (which we take to be a stock) at time T .

The function g is called pay-off function of the derivative, while Y (t) = g(S(t)) is called
intrinsic value of the derivative.

The term “European” refers to the fact that the contract cannot be exercised before time
T , while the term “standard” refers to the fact that the pay-off depends only on the price
of the underlying at time T .

The pay-off of non-standard (or exotic) European derivatives depends on the path of the
asset price during the interval [0, T ]. For example, the pay-off of an Asian call is given by

Y = (
1

T

∫ T

0

S(t) dt−K)+.
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The price at time t of a European derivative (standard or not) with pay-off Y and expiration
date T will be denoted by ΠY (t).

Hence {ΠY (t)}t∈[0,T ] is a stochastic process.

A standard American derivative with pay-off function g is a contract which can be
exercised at any time t ∈ (0, T ] prior or equal to its maturity and that, upon exercise, pays
the amount g(S(t)) (i.e., the intrinsic value) to the holder of the derivative.

Non-standard American derivatives are defined similarly as the European ones but with the
further option of earlier exercise. In this course we are mostly concerned with European
derivatives, but in the laset we also discuss briefly some properties of American call/put
options.

Zero-coupon bonds

A zero-coupon bond (ZCB) with maturity T and face value 1 is the European derivative
that pays the constant pay-off Y = 1 at time T .

Let B(t, T ), or simply B(t), denote the value at time t of the ZCB.

The continuously compounded, or short, interest rate of the ZCB is defined as

r(t) =
d

dt
logB(t),

hence, integrating in the interval [t, T ], we can write the value of the ZCB as

B(t) = e−
∫ T
t r(s) ds.

Thus, given a model for the interest rate, i.e., given a stochastic process {r(t)}t≥0 ∈ C0[FW (t)],
the value of the ZCB satisfies

dB(t) = −B(t)r(t)dt,

If the institution issuing the ZCB bears no risk of default, the ZCB is called a risk-free
asset.

In this course it is assumed that all risk-free assets have the same interest rate r(t), which
is called risk-free rate.
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The discount process

Let {r(t)}t≥0 be a stochastic process modeling the risk-free rate. Denote by B(t) the value
at time t of a risk-free asset (e.g., a risk-free ZCB). The stochastic process {D(t)}t≥0 given
by

D(t) =
B(0)

B(t)
= exp

(
−
∫ t

0

r(s) ds

)
(4)

is called the discount process.

If τ < t and X(t) denotes the price of an asset at time t, the quantity D(t)X(t)/D(τ), is
called the t-price of the asset discounted at time τ .

When τ = 0 we refer to D(t)X(t)/D(0) = D(t)X(t) = X∗(t) simply as the discounted
price of the asset.

For instance, the discounted (at time t = 0) price of a stock with price S(t) at time t is given
by S∗(t) = D(t)S(t) and has the following meaning:

S∗(t) is the amount that should be invested on the money market at time t = 0 in order
that the value of this investment at time t replicates the value of the stock at time t. Notice
that S∗(t) < S(t) when r(t) > 0.

The discounted price of the stock measures, roughly speaking, the loss in the stock value
due to the “time-devaluation” of money expressed by the ratio B(0)/B(t).

Portfolio

The portfolio of an investor is the set of all assets in which the investor is trading. Mathe-
matically it is described by a collection of N stochastic processes

{h1(t)}t≥0, {h2(t)}t≥0, . . . , {hN(t)}t≥0 ∈ C0[FW (t)],

where hk(t) represents the number of shares of the asset k at time t in the investor portfolio.

If hk(t) is positive, resp. negative, the investor has a long, resp. short, position on the asset
k at time t.

If Πk(t) denotes the value of the asset k at time t, then {Πk(t)}t≥0 is a stochastic process;
the portfolio value is the stochastic process {V (t)}t≥0 given by
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V (t) =
N∑
k=1

hk(t)Πk(t).

For modeling purposes, it is convenient to assume that an investor can trade any fraction of
shares of the assets, i.e., hk(t) : Ω→ R, rather than hk(t) : Ω→ Z

Markets

A market in which the objects of trading are N risky assets (e.g., stocks) and M risk-free
assets is said to be “N +M dimensional”.

In Most of this course we shall focus on the case of 1+1 dimensional markets in which
the risky asset is, typically, a stock.

We assume that the price of the stock follows the generalized geometric Brownian motion

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (5)

while the value of the risk-free asset is given by

dB(t) = B(t)r(t)dt, (6)

where {r(t)}t≥0 is the risk-free rate of the money market.

Moreover we assume that the market parameters {µ(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 have
continuous paths a.s. and are adapted to the filtration {FW (t)}t≥0, i.e., they belong to
C0[FW (t)].

A portfolio process invested in this market is a stochastic process {hS(t), hB(t)}t≥0 ∈ C0[FW (t)],
where hS(t) is the number of shares of the stock and hB(t) the number of shares of the risk-
free asset in the portfolio at time t.

The value of the portfolio is given by

V (t) = hS(t)S(t) + hB(t)B(t). (7)
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Self-financing portfolio

Consider a portfolio {hS(t), hB(t)}t≥0 ∈ C0[FW (t)] invested in a 1+1-dimensional market.

We say that the portfolio is self-financing if purchasing more shares of one asset is possible
only by selling shares of the other asset for an equivalent value (and not by infusing new cash
into the portfolio), and, conversely, if any cash obtained by selling one asset is immediately
re-invested to buy shares of the other asset (and not withdrawn from the portfolio).

To translate this condition into a mathematical formula, assume that (hS, hB) is the investor
position on the stock and the risk-free asset during the “infinitesimal” time interval [t, t+δt).

Let V −(t+ δt) be the value of this portfolio immediately before the time t+ δt at which the
position is changed, i.e.,

V −(t+ δt) = lim
u→t+δt

hSS(u) + hBB(u) = hSS(t+ δt) + hBB(t+ δt),

where we used the continuity in time of the assets price.

At the time t + δt, the investor sells/buys shares of the assets. Let (h′S, h
′
B) be the new

position on the stock and the risk-free asset.

Then the value of the portfolio at time t+ δt is given by

V (t+ δt) = h′SS(t+ δt) + h′BB(t+ δt).

The difference V (t + δt)− V −(t + δt), if not zero, corresponds to cash withdrawn or added
to the portfolio as a result of the change in the position on the assets. In a self-financing
portfolio, however, this difference must be zero. We obtain

V (t+ δt)− V −(t+ δt) = 0⇔ (hS − h′S)S(t+ δt) + (hB − h′B)B(t+ δt) = 0.

Hence, the change of the portfolio value in the interval [t, t+ δt] is given by

δV = V (t+ δt)− V (t) = h′SS(t+ δt) + h′BB(t+ δt)− (hSS(t) + hBB(t)) = hSδS + hBδB,

where δS = S(t+ δt)− S(t), and δB = B(t+ δt)−B(t) are the changes of the assets value
in the interval [t, t+ δt]. This discussion leads to the following definition.
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Definition 1. A portfolio process {hS(t), hB(t)}t≥0 ∈ C0[FW (t)] invested in the 1 + 1-
dimensional market (5)-(6) is said to be self-financing if its value process {V (t)}t≥0 satisfies

dV (t) = hS(t)dS(t) + hB(t)dB(t). (8)

The owner of a self-financing portfolio makes a profit in the time interval [0, T ] if V (T ) >
V (0), while if V (T ) < V (0) the investor incurs in a loss.

Exercise 4.10

Show that given a diffusion process {hS(t)}t≥0, it is always possible to find a diffusion process
{hB(t)}t≥0 such that the portfolio process {hS(t), hB(t)}t≥0 is self-financing.

Arbitrage portfolio

We now introduce the important definition of arbitrage portfolio.

Definition 2. A self-financing portfolio process in the interval [0, T ] is said to be an arbi-
trage portfolio if its value {V (t)}t∈[0,T ] satisfies the following properties:

(i) V (0) = 0 almost surely;

(ii) V (T ) ≥ 0 almost surely;

(iii) P(V (T ) > 0) > 0.

Hence a self-financing arbitrage portfolio is a risk-free investment in the interval [0, T ] which
requires no initial wealth and with a positive probability to give profit.

We remark that the arbitrage property depends on the probability measure P. However, it
is clear that if two measures P and P̃ are equivalent, then the arbitrage property is satisfied
with respect to P if and only if it is satisfied with respect to P̃.

The guiding principle to devise theoretical models for asset prices in financial mathematics
is to ensure that one cannot set-up an arbitrage portfolio by investing on these assets, in
which case the market is said to be arbitrage-free.
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Hedging portfolio

Suppose that at time t a European derivative with pay-off Y at the time of maturity T > t
is sold for the price ΠY (t).

An important problem in financial mathematics is to find a strategy for how the seller should
invest the premium ΠY (t) of the derivative in order to hedge the derivative, i.e., in order to
ensure that the portfolio value of the seller at time T is enough to pay-off the buyer of the
derivative.

We assume that the seller invests the premium of the derivative only on the 1+1 dimensional
market consisting of the underlying stock and the risk-free asset (∆-hedging).

Definition 3. Consider the European derivative with pay-off Y and time of maturity T ,
where we assume that Y is FW (T )-measurable. A portfolio process {hS(t), hB(t)}t≥0 ∈
C0[FW (t)] invested in the underlying stock and the risk-free asset is said to be an hedg-
ing portfolio if its value of the portfolio satisfies V (T ) = Y .

The main questions that we want to answer are:

1) What is a reasonable “fair” price for the European derivative at time t ∈ [0, T ] ?

2) What investment strategy (on the underlying stock and the risk-free asset) should the
seller undertake in order to hedge the derivative?

11


