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Stochastic differential equations

Definition 1. Given s ≥ 0, α, β ∈ C0([s,∞)× R), and a deterministic constant x ∈ R, we
say that a stochastic process {X(t)}t≥s is a global (strong) solution to the stochastic
differential equation (SDE)

dX(t) = α(t,X(t)) dt+ β(t,X(t)) dW (t) (1)

with initial value X(s, ω) = x at time t = s, if {X(t)}t≥s ∈ C0[F(t)] and

X(t) = x+

∫ t

s

α(τ,X(τ)) dτ +

∫ t

s

β(τ,X(τ)) dW (τ), t ≥ s. (2)

Remarks

� The initial value of a SDE can be a random variable instead of a deterministic constant,
but we shall not need this more general case.

� The integrals in the right hand side of (2) are well-defined, as the integrand functions
have continuous paths a.s.

Of course one needs suitable assumptions on the functions α, β to ensure that there is a
(unique) process {X(t)}t≥s satisfying (2).

The precise statement is contained in the following global existence and uniqueness theorem
for SDE’s, which is reminiscent of the analogous result for ordinary differential equations
(Picard’s theorem).
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Theorem 1. Assume that for each T > s there exist constants CT , DT > 0 such that α, β
satisfy

|α(t, x)|+ |β(t, x)| ≤ CT (1 + |x|), (3)

|α(t, x)− α(t, y)|+ |β(t, x)− β(t, y)| ≤ DT |x− y|, (4)

for all t ∈ [s, T ], x, y ∈ R. Then there exists a unique global solution {X(t)}t≥s of the
SDE (1) with initial value X(s) = x. Moreover {X(t)}t≥s ∈ L2[F(t)].

The solution of (1) with initial initial value x at time t = s will be also denoted by
{X(t; s, x)}t≥s.

It can be shown that, under the assumptions of Theorem 1, the random variable X(t; s, x)
depends (a.s.) continuously on the initial conditions (s, x).

Remarks

� The uniqueness statement in Theorem 1 is to be understood “up to null sets”. Precisely,
if {Xi(t)}t≥s, i = 1, 2 are two solutions with the same initial value x, then

P( sup
t∈[s,T ]

|X1(t)−X2(t)| > 0) = 0, for all T > s.

� If the assumptions of Theorem 1 are satisfied only up to a fixed time T > 0, then the
solution of (1) could explode at some finite time in the future of T . For example, the
stochastic process given by X(t) = log(W (t) + ex) solves (1) with α = − exp(−2x)/2
and β = exp(−x), but only up to the time T∗ = inf{t : W (t) = −ex} > 0. Note that
T∗ is a random variable in this example (more precisely, a stopping time). In these
notes we are only interested in global solutions of SDE’s, hence we require (3)-(4) to
hold for all T > 0.

� The growth condition (3) alone is sufficient to prove the existence of a global solution
to (1). The Lipschitz condition (4) is used to ensure uniqueness

� A weak solution of (1) is a stochastic process {X(t)}t≥s that satisfy (2) for some
Brownian motion {W (t)}t≥0 (not necessarily equal to the given one).
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Exercise 5.1

Within many applications in finance, the drift term α(t, x) is linear, an so it can be written
in the form

α(t, x) = a(b− x), a, b constant. (5)

A stochastic process {X(t)}t≥0 is called mean reverting if there exists a constant c such
that E[X(t)] → c as t → +∞. Most financial variables are required to satisfy the mean
reversion property. Assume that β satisfies the assumptions in Theorem 1. Prove that the
solution {X(t; s, x)}t≥0 of (1) with linear drift (5) satisfies

E[X(t; s, x)] = xe−a(t−s) + b(1− e−a(t−s)). (6)

Hence the process {X(t; s, x)}t≥0 is mean reverting if and only if a > 0 and in this case the
long time mean is given by c = b.
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Linear SDE’s

A SDE of the form

dX(t) = (a(t) + b(t)X(t)) dt+ (γ(t) + σ(t)X(t)) dW (t), X(s) = x, (7)

where a, b, γ, σ are deterministic functions of time, is called a linear stochastic differential
equation.

We assume that for all T > 0 there exists a constant CT such that

sup
t∈[s,T ]

(|a(t)|+ |b(t)|+ |γ(t)|+ |σ(t)|) < CT ,

and so by Theorem 1 there exists a unique global solution of (7).

For example, the geometric Brownian motion solves the linear SDE

dS(t) = µS(t) dt+ σS(t) dW (t),

where µ = α + σ2/2.

Linear SDE’s can be solved explicitly, as shown in the following theorem.

Theorem 2. The solution {X(t)}t≥s of (7) is given by X(t) = Y (t)Z(t), where

Z(t) = exp

(∫ t

s

σ(τ)dW (τ) +

∫ t

s

(b(τ)− σ(τ)2

2
)dτ

)
,

Y (t) = x+

∫ t

s

a(τ)− σ(τ)γ(τ)

Z(τ)
dτ +

∫ t

s

γ(τ)

Z(τ)
dW (τ).

For example, in the special case in which the functions a, b, γ, σ are constant (independent
of time), the solution of (7) with initial value X(0) = x at time t = 0 is

X(t) = eσW (t)+(b−σ
2

2
)t
(
x+ (a− γσ)

∫ t

0

e−σW (τ)−(b−σ
2

2
)τdτ + γ

∫ t

0

e−σW (τ)−(b−σ
2

2
)τdW (τ)

)
.
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Exercise 5.3

Consider the linear SDE (7) with constant coefficients a, b, γ and σ = 0, namely

dX(t) = (a+ bX(t)) dt+ γdW (t), t ≥ s, X(s) = x. (8)

Find the solution and show that X(t; s, x) ∈ N (m(t− s, x),∆(t− s)2), where

m(τ, x) = xebτ +
a

b
(ebτ − 1), ∆(τ)2 =

γ2

2b
(e2bτ − 1). (9)
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Exercise 5.4

Find the solution {X(t)}t≥0 of the linear SDE

dX(t) = tX(t) dt+ dW (t), t ≥ 0

with initial value X(0) = 1. Find Cov(X(s), X(t)).
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Markov property

It can be shown that, under the assumptions of Theorem 1, the solution {X(t; s, x)}t≥s of (1)
is a Markov process.

Moreover when α, β in (1) are time-independent, {X(t; s, x)}t≥s is a homogeneous Markov
process.

The fact that solutions of SDE’s should satisfy the Markov property is quite intuitive, for,
as shown in Theorem 1, the solution at time t is uniquely characterized by the initial value
at time s < t. Consider for example the linear SDE (8).

As shown in Exercise 5.3, the solution satisfies X(t; s, x) ∈ N (m(t− s, x),∆(t− s)2), where
m(τ, x) and ∆(τ) are given by (9).

The transition density of the Markov process {X(t; s, x)}t≥0 is given by the pdf of the random
variable X(t; s, x), namely p(t, s, x, y) = p∗(t− s, x, y), where

p∗(τ, x, y) = e
(y−m(τ,x))2

2∆(τ)2
1√

2π∆(τ)2
. (10)

This example rises the question of how one can find the transition density of the solution
to a SDE (assuming that such density exists). This problem will be discussed in the next
lecture.
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Systems of SDE’s

Occasionally in the course we need to consider systems of several SDE’s.

All the results presented in this section extend mutatis mutandis to systems of SDE’s, the
difference being merely notational.

For example, given two Brownian motions {W1(t)}t≥0, {W2(t)}t≥0 and continuous functions
α1, α2, β11, β12, β21, β22 : [s,∞)× R2 → R, the relations

dXi(t) = αi(t,X1(t), X2(t)) dt+
∑
j=1,2

βij(t,X1(t), X2(t))dWj(t), (11a)

Xi(s) = xi, i = 1, 2 (11b)

define a system of two SDE’s on the stochastic processes {X1(t)}t≥0, {X2(t)}t≥0 with initial
values X1(s) = x1, X2(s) = x2 at time s. As usual, the correct way to interpret the relations
above is in the integral form:

Xi(t) = xi +

∫ t

s

αi(τ,X1(τ), X2(τ)) dτ +
∑
j=1,2

∫ t

s

βij(τ,X1(τ), X2(τ))dWj(τ) i = 1, 2.

Upon defining the vector and matrix valued functions α = (α1, α2)
T , β = (βij)i,j=1,2, and

letting X(t) = (X1(t), X2(t)), x = (x1, x2), W (t) = (W1(t),W2(t)), we can rewrite (11) as

dX(t) = α(t,X(t)) dt+ β(t,X(t)) · dW (t), X(s) = x, (12)

where · denotes the row by column matrix product.

In fact, every system of any arbitrary number of SDE’s can be written in the form (12).

Theorem 1 continues to be valid for systems of SDE’s, the only difference being that |α|, |β|
in (3)-(4) stand now for the vector norm of α and for the matrix norm of β.
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