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Notation

Given T > 0, we denote by DT the open region in the (t, x)-plane given by

DT = {t ∈ (0, T ), x ∈ R} = (0, T )× R.

The closure and the boundary of DT are given respectively by

DT = [0, T ]× R, ∂DT = {t = 0, x ∈ R} ∪ {t = T, x ∈ R}.

Similarly we denote D+
T the open region

D+
T = {t ∈ (0, T ), x > 0} = (0, T )× (0,∞),

whose closure and boundary are given by

D+
T = [0, T ]× [0,∞), ∂D+

T = {t = 0, x ≥ 0} ∪ {t = T, x ≥ 0} ∪ {t ∈ [0, T ], x = 0}.

Moreover we shall employ the following notation for functions spaces: For D = DT or D+
T ,

� Ck(D) is the space of k-times continuously differentiable functions u : D → R;

� C1,2(D) is the space of functions u ∈ C1(D) such that ∂2xu ∈ C(D);

� Ck(D) is the space of functions u : D → R such that u ∈ Ck(D) and the partial
derivatives of u up to order k extend continuously on D.

� Ck
c (Rn) is the space of k-times continuously differentiable functions u : Rn → R with

compact support. We also let C∞c (Rn) = ∩k∈NCk
c (Rn)

A function u : D → R is uniformly bounded if there exists CT > 0 such that |u(t, x)| ≤ CT ,
for all (t, x) ∈ D. Unless otherwise stated, all functions are real-valued.
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1 Kolmogorov PDE’s

Consider the SDE

dX(t) = α(t,X(t)) dt+ β(t,X(t)) dW (t) (1)

with initial value X(s, ω) = x at time t = s. Recall that we denote {X(t; s, x}t≥s the
solution, which exists and is unique under the assumptions

|α(t, x)|+ |β(t, x)| ≤ CT (1 + |x|), (2a)

|α(t, x)− α(t, y)|+ |β(t, x)− β(t, y)| ≤ DT |x− y|, (2b)

Most financial variables are represented by stochastic processes solving (systems of) SDE’s.

In this context, a problem which recurs often is to find a function f such that the process
{Y (t)}t≥0 given by Y (t) = f(t,X(t)) is a martingale, where {X(t)}t≥0 is the global solution
of (1) with initial value X(0) = x. To this regard we have the following result.

Theorem 1. Let T > 0 and u : DT → R such that u ∈ C1,2(DT ) and ∂xu is uniformly
bounded. Assume that u satisfies the partial differential equation

∂tu+ α(t, x)∂xu+
1

2
β(t, x)2∂2xu = 0 (3)

in the region DT . Assume also that α, β satisfy the conditions (2) and let {X(t)}t≥0 be
the unique global solution of (1) with initial value X(0) = x. The stochastic process
{u(t,X(t))}t∈[0,T ] is a martingale and satisfies

u(t,X(t)) = u(0, x) +

∫ t

0

β(τ,X(τ))∂xu(τ,X(τ)) dW (τ), t ∈ [0, T ]. (4)

Proof. By Itô’s formula we find

du(t,X(t)) = (∂tu+ α∂xu+
β2

2
∂2xu)(t,X(t)) dt+ (β∂xu)(t,X(t)) dW (t).

As u solves (3), then du(t,X(t)) = (β∂xu)(t,X(t)) dW (t), which is equivalent to (4) (because
u(0, X(0)) = u(0, x)). As ∂xu is uniformly bounded, there exists a constant CT > 0 such
that |∂xu(t, x)| ≤ CT and so, due also to (2a), the process Y (t) = β∂xu(t,X(t)) satisfies
|Y (t)| ≤ CT (1 + |X(t)|). Since {X(t)}t≥0 ∈ L2(F(t)), then {Y (t)}t≥0 ∈ L2(F(t)) as well and
so the Itô integral in the right hand side of (4) is a martingale. This concludes the proof of
the theorem.
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Definition 1. The partial differential equation (PDE) (3) is called the backward Kol-
mogorov equation associated to the SDE (1). We say that u : DT → R is a strong
solution of (3) in the region DT if u ∈ C1,2(DT ), ∂xu is uniformly bounded and u solves (3)
for all (t, x) ∈ DT . Similarly, replacing DT with D+

T , one defines strong solutions of (3) in
the region D+

T

Exercise 5.6 Derive the backward Kolmogorov PDE associated to the system of SDE’s

dXi(t) = αi(t,X1(t), X2(t)) dt+
∑
j=1,2

βij(t,X1(t), X2(t))dWj(t), (5a)

Xi(s) = xi, i = 1, 2 (5b)

when the Brownian motions {W1(t)}t≥0, {W2(t)}t≥0 have constant correlation ρ ∈ [−1, 1].
HINT: Remember that dW1(t)dW2(t) = ρ dt.
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The statement of Theorem 1 rises the question of whether the backward Kolmogorov PDE
admits in general strong solutions.

This problem is discussed, with different degrees of generality, in any textbook on PDE’s.

Here we are particularly interested in which conditions ensure the uniqueness of the strong
solution. To this regard we have the following theorem.

Theorem 2. Assume that α, β ∈ C0([0,∞)×R) satisfy (2a)-(2b) for all T > 0 and (t, x) ∈
[0, T ]×R and let {X(t;x, s)}t≥s be the unique global solution of (1) with initial value X(s) =
x. Let g ∈ C2(R), resp. g ∈ C2([0,∞)) such that g′ is uniformly bounded. The backward
Kolmogorov PDE

∂tu+ α(t, x)∂xu+
1

2
β(t, x)2∂2xu = 0, (t, x) ∈ DT , resp. (t, x) ∈ D+

T , (6)

with the terminal condition

lim
t→T

u(t, x) = g(x), for all x ∈ R, resp. x > 0, (7)

admits at most one strong solution. Moreover, when it exists, the strong solution is given by
the Feynman-Kac formula:

uT (t, x) = E[g(X(T ; t, x))], 0 ≤ t ≤ T. (8)

Proof. Let v be a strong solution and set Y (τ) = v(τ,X(τ ; t, x)), for t ≤ τ ≤ T . By Itô’s
formula and using that v solves (6) we find dY (τ) = β∂xv(τ,X(τ ; t, x))dW (τ). Hence

v(T,X(T ; t, x))− v(t,X(t; t, x)) =

∫ T

t

β∂xv(τ,X(τ ; t, x))dW (τ). (9)

Moreover v(T,X(T ; t, x)) = g(X(T ; t, x)), v(t,X(t; t, x)) = v(t, x) and in addition, by (2a)
and the fact that of ∂xv is uniformly bounded, the Itô integral in the right hand side of (9) is a
martingale. Hence taking the expectation we find v(t, x) = E[g(T,X(T ; t, x))] = u(t, x).

Remarks

� The function (8) is indeed the strong solution of the Kolmogorov PDE in the whole
space x ∈ R under quite general conditions on the terminal value g and the coefficients
α, β. The case when the problem is posed on the half-space x > 0 is however more
subtle, as we shall see later for the Kolmogorov PDE associated to the CIR process.

� The conditions on the function g in Theorem 2 can be considerably weakened. In
particular the theorem still holds if one chooses g to be the pay-off function of call (or
put) options, i.e., g(x) = (x −K)+, although of course in this case the solution does
not have a smooth extension on the terminal time boundary t = T .
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� It is often convenient to study the backward Kolmogorov PDE with an initial, rather
than terminal, condition. To this purpose it suffices to make the change of variable
t→ T − t in (6). Letting ū(t, x) = u(T − t, x), we now see that ū satisfies the PDE

− ∂tū+ α(T − t, x)∂xū+
1

2
β(T − t, x)2∂2xū = 0, (10)

with initial condition ū(0, x) = g(x)

� It is possible to define other concepts of solution to the backward Kolmogorov PDE
than the strong one, e.g., weak solution, entropy solution, etc. In general these solutions
are not uniquely characterized by their terminal value. In these notes we only consider
strong solutions, which, as proved in Theorem 2, are uniquely determined by (7).

Exercise 5.7

Derive the backward Kolmogorov PDE in the form (10) associated to the linear SDE

dX(t) = (a+ bX(t)) dt+ γdW (t), t ≥ s, X(s) = x (11)

and verify that the transition density of this process, namely

p∗(t, x, y) = e
(y−m(t,x))2

2∆(t)2
1√

2π∆(t)2
, m(t, x) = xebt +

a

b
(ebt − 1), ∆(t)2 =

γ2

2b
(e2bt − 1). (12)

is a solution for all y ∈ R. Find also the strong solution of the Kolmogorov PDE (in the
form (10)) in the region D+

T and with initial condition u(0, x) = e−x. HINT: For the second
part use the ansatz u(t, x) = e−xA(t)+B(t).

As suggested by the previous exercise, the study of the backward Kolmogorov equation is
also important to derive the transition density for stochastic processes solutions of SDE’s.

In fact, it can be shown that when {X(t)}t≥s admits a smooth transition density, then the
latter coincides with the fundamental solution of the backward Kolmogorov equation.

To state the result, let us denote by δ(x− y) the δ-distribution centered in y ∈ R, i.e., the
distribution satisfying

∫
R
ψ(x)δ(x− y) dx = ψ(y), for all ψ ∈ C∞c (R).

A sequence of measurable functions (gn)n∈N is said to converge to δ(x − y) in the sense of
distributions if

lim
n→∞

∫
R
gn(x)ψ(x) dx→ ψ(y), as n→∞, for all ψ ∈ C∞c (R).
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Theorem 3. . Let {X(t; s, x)}t≥s be the global solution of (1) with initial value X(s) = x;
recall that this solution is a Markov stochastic process.

(i) If {X(t; s, x)}t≥s admits a transition density p(t, s, x, y) which is C1 in the variable s
and C2 in the variable x, then p(t, s, x, y) solves the backward Kolmogorov PDE

∂sp+ α(s, x)∂xp+
1

2
β(s, x)2∂2xp = 0, 0 < s < t, x ∈ R, (13)

with terminal value
lim
s→t

p(t, s, x, y) = δ(x− y). (14)

(ii) If {X(t; s, x)}t≥s admits a transition density p(t, s, x, y) which is C1 in the variable t
and C2 in the variable y then p(t, s, x, y) solves the forward Kolmogorov (or Fokker-
Planck) PDE:

∂tp+ ∂y(α(t, y)p)− 1

2
∂2y(β(t, y)2p) = 0, t > s, x ∈ R, (15)

with initial value
lim
t→s

p(t, s, x, y) = δ(x− y). (16)

Example.

Recall that when the functions α, β in (1) are time-independent, then the Markovian stochas-
tic process {X(t; s, x)}t≥s is homogeneous and therefore the transition density, when it exists,
has the form p(t, s, x, y) = p∗(t− s, x, y).

By the change of variable s→ t− s = τ in (13), and by (15), we find that p∗(τ, x, y) satisfies

− ∂τp∗ + α(x)∂xp∗ +
1

2
σ(x)2∂2xp∗ = 0, (17)

as well as

∂τp∗ + ∂y(α(y)p∗)−
1

2
∂2y(σ(y)2p∗) = 0, (18)

with the initial condition p∗(0, x, y) = δ(x− y).
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For example the Brownian motion is a Markov process with transition density

p∗(τ, x, y) =
1√
2πτ

e−
(y−x)2

2τ . (19)

In this case, (17) and (18) both reduce to the heat equation −∂τp∗ + 1
2
∂2xp∗ = 0.

It is straightforward to verify that (19) satisfies the heat equation for (τ, x) ∈ (0,∞)× R.

Now we show that, as claimed in Theorem 3, the initial condition p∗(0, x, y) = δ(x − y) is
also verified, that is

lim
τ→0

∫
R
p∗(τ, x, y)ψ(y) dy = ψ(x), for all ψ ∈ C∞c (R) and x ∈ R.

Indeed with the change of variable y = x+
√
τz, we have

∫
R
p∗(τ, x, y)ψ(y) dy =

1√
2π

∫
R
e−

z2

2 ψ(x+
√
τz) dz → ψ(0)

∫
R
e−

z2

2
dz√
2π

= ψ(0),

as claimed.
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