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1 Expectation

The expectation of a random variable X is denoted by E[X]. It represents an estimate on
the average value of X.

For simple random variables it is defined as

E[
N∑
k=1

akIAk
] =

∑
k

akP(Ak).

If X :→ R is a random variable with density fX , the expectation is given by

E[X] =

∫
R
fX(x) dx. (1)

For instance

X ∈ N (m,σ2)⇒ E[X] = m, X ∈ χ2(δ, β)⇒ E[X] = δ + β.

The set of all random variables with finite expectation is denoted by L1(Ω).

The expectation satisfies the following properties:
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Theorem 1 (Properties of the expectation). Let X, Y ∈ L1(Ω).

(i) Linearity: For all α, β ∈ R, E[αX + βY ] = αE[X] + βE[Y ];

(ii) If X ≤ Y a.s. then E[X] ≤ E[Y ];

(iii) If X ≥ 0 a.s., then E[X] = 0 if and only if X = 0 a.s.;

(iv) If X, Y are independent, then E[XY ] = E[X]E[Y ];

(v) If X has the density fX , then

E[g(X)] =

∫
R
g(x)fX(x) dx

for all measurable functions g such that g(X) ∈ L1(Ω);

(vi) If X, Y have the joint density fX,Y , then

E[g(X, Y )] =

∫
R2

g(x, y)fX,Y (x, y) dx dy

for all measurable functions g such that g(X, Y ) ∈ L1(Ω).

(vii) Jensen’s inequality: If f : R→ R is measurable and convex, then f(E[X]) ≤ E[f(X)].

The covariance and variance of two random variables is defined as

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])], Var[X] = Cov(X,X).

The set of random variables such that E[X2] is finite will be denoted by L2(Ω). By Jensen
inequality with f(x) = x2, L2(Ω) ⊂ L1(Ω).

Using (v) in Theorem 1 one can prove that

X ∈ N (m,σ2)⇒ Var[X] = σ2, X ∈ χ2(δ, β)⇒ Var[X] = 2(δ + 2β).

Moreover if X1, X2 are jointly normally distributed with covariant matrix C, then Cij =
Cov(Xi, Xj), i, j = 1, 2.
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Characteristic function

Let X be a random variable with finite expectation. The function θX : R→ C given by

θX(u) = E[eiuX ]

is called the characteristic function of X.

If the random variable X admits the density fX , then

θX(u) =

∫
R
eiuxfX(x) dx,

i.e., the characteristic function is the inverse Fourier transform of the density. For example:

X ∈ N (m,σ2)⇒ θX(u) = exp(ium− 1

2
σ2u2), (2)

X ∈ χ2(δ, β)⇒ θX(u) = (1− 2iu)−δ/2 exp

(
− βu

2u+ i

)
(3)

It can be shown that θX = θY if and only if FX = FY . In particular, if one wants to show
that X ∈ χ2(δ, β), it suffices to show that its characteristic function is given as in (3).

2 Stochastic processes. Brownian motion

A stochastic process is a one-parameter family of random variables, which we denote by
{X(t)}t≥0, or by {X(t)}t∈[0,T ] if the parameter t is restricted to the interval [0, T ], T > 0.

In most applications t is the time variable.

Hence, for each time t ≥ 0, X(t) : Ω→ R is a random variable.

We denote by X(t, ω) the value of X(t) on the sample point ω ∈ Ω, i.e., X(t, ω) = X(t)(ω).

For each ω ∈ Ω fixed, the curve γωX : R → R, γωX(t) = X(t, ω) is called the ω-path of the
stochastic process and is assumed to be a measurable function.

If the paths of a stochastic process are all equal, we say that the stochastic process is a
deterministic function of time.
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Two stochastic processes {X(t)}t≥0, {Y (t)}t≥0 are said to be independent if for all m,n ∈ N
and 0 ≤ t1 < t2 < · · · < tn, 0 ≤ s1 < s2 < · · · < sm, the σ-algebras σ(X(t1), . . . , X(tn)),
σ(Y (s1), . . . , Y (sm)) are independent.

The filtration generated by the stochastic process {X(t)}t≥0 is given by {FX(t)}t≥0, where

FX(t) = FO(t), O(t) = ∪0≤s≤tσ(X(s)).

If {F(t)}t≥0 is a filtration and FX(t) ⊆ F(t), for all t ≥ 0, we say that the stochastic process
{X(t)}t≥0 is adapted to the filtration {F(t)}t≥0.

A Brownian motion (or Wiener process) is a stochastic process {W (t)}t≥0 such that

(i) The paths are continuous and start from 0 almost surely, i.e., the sample points ω ∈ Ω
such that γωW (0) = 0 and γωW is a continuous function comprise a set of probability 1;

(ii) The increments over disjoint time intervals are independent, i.e., for all 0 = t0 < t1 <
· · · < tm ∈ (0,∞), the random variables

W (t1)−W (t0), W (t2)−W (t1), . . . , W (tm)−W (tm−1)

are independent;

(iii) For all s < t, the increment W (t)−W (s) belongs to N (0, t− s).

The properties defining a Brownian motion depend on the probability measure P.

Thus a stochastic process may be a Brownian motion relative to a probability measure P and
not a Brownian motion with respect to another (possibly equivalent) probability measure P̃.

If we want to emphasize the probability measure P with respect to which a stochastic process
is a Brownian motion we shall say that it is a P-Brownian motion.

Let {W (t)}t≥0 be a Brownian motion and denote by σ+(W (t)) the σ-algebra generated by
the increments {W (s)−W (t); s ≥ t}, that is

σ+(W (t)) = FO(t), O(t) = ∪s≥tσ(W (s)−W (t)).

A filtration {F(t)}t≥0 is said to be a non-anticipating filtration for the Brownian motion
{W (t)}t≥0 if {W (t)}t≥0 is adapted to {F(t)}t≥0 and if the σ-algebras σ+(W (t)), F(t) are
independent for all t ≥ 0.
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3 Quadratic variation

Let n ∈ N and Πn = {t0 = 0, t
(n)
1 , t

(n)
2 , . . . , t

(n)
m(n)−1, tm(n) = T} be a partition of the interval

[0, T ].

Hence {Πn}n∈N is sequence of partitions of the interval [0, T ].

Assume that the size of the partitions in the sequence goes to zero as n→∞, i.e.,

‖Πn‖ → 0 as n→∞, where ‖Πn‖ = max
j

(t
(n)
j+1 − t

(n)
j ).

We say that the stochastic process {X(t)}t≥0 has L2-quadratic variation [X,X](T ) in the
interval [0, T ] along the sequence of partitions {Πn}n∈N if

lim
n→∞

E

m(n)−1∑
j=0

(X(t
(n)
j+1)−X(t

(n)
j ))2 − [X,X](T )

2 = 0.

Note that [X,X](T ) is a (non-negative) random variable.

If there exists a process {q(t)}t≥0 such that

[X,X](T ) =

∫ T

0

q(t) dt, along any sequence of partitions

then we write

dX(t)dX(t) = q(t) dt.

The process {q(t)}t≥0 is called rate of quadratic variation and measures how fast quadratic
variation accumulates in time in the stochastic process {X(t)}t≥0.

For example, it can be show that

dW (t)dW (t) = dt, dt dt = 0. (4)
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Similarly, we say that two stochastic processes {X1(t)}t≥0 and {X2(t)}t≥0 have L2-cross
variation [X1, X2](T ) in the interval [0, T ] along the sequence of partitions {Πn}n∈N, if

lim
n→∞

E

m(n)−1∑
j=0

(X1(t
(n)
j+1)−X1(t

(n)
j ))(X2(t

(n)
j+1)−X2(t

(n)
j ))− [X1, X2](T )

2 = 0,

and write
dX1(t)dX2(t) = ξ(t) dt

if

[X1, X2](T ) =

∫ T

0

ξ(t) dt along any sequence of partitions

For instance it can be proved that

dW (t)dt = 0. (5)

Moreover if {W1(t)}t≥0, {W2(t)}t≥0 are two independent Brownian motions then

dW1(t)dW2(t) = 0. (6)
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