Financial derivatives and PDE's Lecture 2

Simone Calogero

January $20^{\text {th }}, 2021$

1 Expectation

The expectation of a random variable X is denoted by $\mathbb{E}[X]$. It represents an estimate on the average value of X.

For simple random variables it is defined as

$$
\mathbb{E}\left[\sum_{k=1}^{N} a_{k} \mathbb{I}_{A_{k}}\right]=\sum_{k} a_{k} \mathbb{P}\left(A_{k}\right) .
$$

If $X: \rightarrow \mathbb{R}$ is a random variable with density f_{X}, the expectation is given by

$$
\begin{equation*}
\mathbb{E}[X]=\int_{\mathbb{R}} f_{X}(x) d x \tag{1}
\end{equation*}
$$

For instance

$$
X \in \mathcal{N}\left(m, \sigma^{2}\right) \Rightarrow \mathbb{E}[X]=m, \quad X \in \chi^{2}(\delta, \beta) \Rightarrow \mathbb{E}[X]=\delta+\beta
$$

The set of all random variables with finite expectation is denoted by $L^{1}(\Omega)$. The expectation satisfies the following properties:

Theorem 1 (Properties of the expectation). Let $X, Y \in L^{1}(\Omega)$.
(i) Linearity: For all $\alpha, \beta \in \mathbb{R}, \mathbb{E}[\alpha X+\beta Y]=\alpha \mathbb{E}[X]+\beta \mathbb{E}[Y]$;
(ii) If $X \leq Y$ a.s. then $\mathbb{E}[X] \leq \mathbb{E}[Y]$;
(iii) If $X \geq 0$ a.s., then $\mathbb{E}[X]=0$ if and only if $X=0$ a.s.;
(iv) If X, Y are independent, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$;
(v) If X has the density f_{X}, then

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}} g(x) f_{X}(x) d x
$$

for all measurable functions g such that $g(X) \in L^{1}(\Omega)$;
(vi) If X, Y have the joint density $f_{X, Y}$, then

$$
\mathbb{E}[g(X, Y)]=\int_{\mathbb{R}^{2}} g(x, y) f_{X, Y}(x, y) d x d y
$$

for all measurable functions g such that $g(X, Y) \in L^{1}(\Omega)$.
(vii) Jensen's inequality: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and convex, then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.

The covariance and variance of two random variables is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])], \quad \operatorname{Var}[X]=\operatorname{Cov}(X, X)
$$

The set of random variables such that $\mathbb{E}\left[X^{2}\right]$ is finite will be denoted by $L^{2}(\Omega)$. By Jensen inequality with $f(x)=x^{2}, L^{2}(\Omega) \subset L^{1}(\Omega)$.

Using (v) in Theorem 1 one can prove that

$$
X \in \mathcal{N}\left(m, \sigma^{2}\right) \Rightarrow \operatorname{Var}[X]=\sigma^{2}, \quad X \in \chi^{2}(\delta, \beta) \Rightarrow \operatorname{Var}[X]=2(\delta+2 \beta)
$$

Moreover if X_{1}, X_{2} are jointly normally distributed with covariant matrix C, then $C_{i j}=$ $\operatorname{Cov}\left(X_{i}, X_{j}\right), i, j=1,2$.

Characteristic function

Let X be a random variable with finite expectation. The function $\theta_{X}: \mathbb{R} \rightarrow \mathbb{C}$ given by

$$
\theta_{X}(u)=\mathbb{E}\left[e^{i u X}\right]
$$

is called the characteristic function of X.
If the random variable X admits the density f_{X}, then

$$
\theta_{X}(u)=\int_{\mathbb{R}} e^{i u x} f_{X}(x) d x
$$

i.e., the characteristic function is the inverse Fourier transform of the density. For example:

$$
\begin{align*}
& X \in \mathcal{N}\left(m, \sigma^{2}\right) \Rightarrow \theta_{X}(u)=\exp \left(i u m-\frac{1}{2} \sigma^{2} u^{2}\right) \tag{2}\\
& X \in \chi^{2}(\delta, \beta) \Rightarrow \theta_{X}(u)=(1-2 i u)^{-\delta / 2} \exp \left(-\frac{\beta u}{2 u+i}\right) \tag{3}
\end{align*}
$$

It can be shown that $\theta_{X}=\theta_{Y}$ if and only if $F_{X}=F_{Y}$. In particular, if one wants to show that $X \in \chi^{2}(\delta, \beta)$, it suffices to show that its characteristic function is given as in (3).

2 Stochastic processes. Brownian motion

A stochastic process is a one-parameter family of random variables, which we denote by $\{X(t)\}_{t \geq 0}$, or by $\{X(t)\}_{t \in[0, T]}$ if the parameter t is restricted to the interval $[0, T], T>0$.

In most applications t is the time variable.
Hence, for each time $t \geq 0, X(t): \Omega \rightarrow \mathbb{R}$ is a random variable.
We denote by $X(t, \omega)$ the value of $X(t)$ on the sample point $\omega \in \Omega$, i.e., $X(t, \omega)=X(t)(\omega)$.
For each $\omega \in \Omega$ fixed, the curve $\gamma_{X}^{\omega}: \mathbb{R} \rightarrow \mathbb{R}, \gamma_{X}^{\omega}(t)=X(t, \omega)$ is called the ω-path of the stochastic process and is assumed to be a measurable function.

If the paths of a stochastic process are all equal, we say that the stochastic process is a deterministic function of time.

Two stochastic processes $\{X(t)\}_{t \geq 0},\{Y(t)\}_{t \geq 0}$ are said to be independent if for all $m, n \in \mathbb{N}$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}, 0 \leq s_{1}<s_{2}<\cdots<s_{m}$, the σ-algebras $\sigma\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$, $\sigma\left(Y\left(s_{1}\right), \ldots, Y\left(s_{m}\right)\right)$ are independent.

The filtration generated by the stochastic process $\{X(t)\}_{t \geq 0}$ is given by $\left\{\mathcal{F}_{X}(t)\right\}_{t \geq 0}$, where

$$
\mathcal{F}_{X}(t)=\mathcal{F}_{\mathcal{O}(t)}, \quad \mathcal{O}(t)=\cup_{0 \leq s \leq t} \sigma(X(s))
$$

If $\{\mathcal{F}(t)\}_{t \geq 0}$ is a filtration and $\mathcal{F}_{X}(t) \subseteq \mathcal{F}(t)$, for all $t \geq 0$, we say that the stochastic process $\{X(t)\}_{t \geq 0}$ is adapted to the filtration $\{\mathcal{F}(t)\}_{t \geq 0}$.

A Brownian motion (or Wiener process) is a stochastic process $\{W(t)\}_{t \geq 0}$ such that
(i) The paths are continuous and start from 0 almost surely, i.e., the sample points $\omega \in \Omega$ such that $\gamma_{W}^{\omega}(0)=0$ and γ_{W}^{ω} is a continuous function comprise a set of probability 1 ;
(ii) The increments over disjoint time intervals are independent, i.e., for all $0=t_{0}<t_{1}<$ $\cdots<t_{m} \in(0, \infty)$, the random variables

$$
W\left(t_{1}\right)-W\left(t_{0}\right), W\left(t_{2}\right)-W\left(t_{1}\right), \ldots, W\left(t_{m}\right)-W\left(t_{m-1}\right)
$$

are independent;
(iii) For all $s<t$, the increment $W(t)-W(s)$ belongs to $\mathcal{N}(0, t-s)$.

The properties defining a Brownian motion depend on the probability measure \mathbb{P}.
Thus a stochastic process may be a Brownian motion relative to a probability measure \mathbb{P} and not a Brownian motion with respect to another (possibly equivalent) probability measure $\widetilde{\mathbb{P}}$.

If we want to emphasize the probability measure \mathbb{P} with respect to which a stochastic process is a Brownian motion we shall say that it is a \mathbb{P}-Brownian motion.

Let $\{W(t)\}_{t \geq 0}$ be a Brownian motion and denote by $\sigma^{+}(W(t))$ the σ-algebra generated by the increments $\{W(s)-W(t) ; s \geq t\}$, that is

$$
\sigma^{+}(W(t))=\mathcal{F}_{O(t)}, \mathcal{O}(t)=\cup_{s \geq t} \sigma(W(s)-W(t))
$$

A filtration $\{\mathcal{F}(t)\}_{t \geq 0}$ is said to be a non-anticipating filtration for the Brownian motion $\{W(t)\}_{t \geq 0}$ if $\{W(t)\}_{t \geq 0}$ is adapted to $\{\mathcal{F}(t)\}_{t \geq 0}$ and if the σ-algebras $\sigma^{+}(W(t)), \mathcal{F}(t)$ are independent for all $t \geq 0$.

3 Quadratic variation

Let $n \in \mathbb{N}$ and $\Pi_{n}=\left\{t_{0}=0, t_{1}^{(n)}, t_{2}^{(n)}, \ldots, t_{m(n)-1}^{(n)}, t_{m(n)}=T\right\}$ be a partition of the interval $[0, T]$.

Hence $\left\{\Pi_{n}\right\}_{n \in \mathbb{N}}$ is sequence of partitions of the interval $[0, T]$.
Assume that the size of the partitions in the sequence goes to zero as $n \rightarrow \infty$, i.e.,

$$
\left\|\Pi_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty, \text { where }\left\|\Pi_{n}\right\|=\max _{j}\left(t_{j+1}^{(n)}-t_{j}^{(n)}\right)
$$

We say that the stochastic process $\{X(t)\}_{t \geq 0}$ has L^{2}-quadratic variation $[X, X](T)$ in the interval $[0, T]$ along the sequence of partitions $\left\{\Pi_{n}\right\}_{n \in \mathbb{N}}$ if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\sum_{j=0}^{m(n)-1}\left(X\left(t_{j+1}^{(n)}\right)-X\left(t_{j}^{(n)}\right)\right)^{2}-[X, X](T)\right)^{2}\right]=0
$$

Note that $[X, X](T)$ is a (non-negative) random variable.
If there exists a process $\{q(t)\}_{t \geq 0}$ such that

$$
[X, X](T)=\int_{0}^{T} q(t) d t, \quad \text { along any sequence of partitions }
$$

then we write

$$
d X(t) d X(t)=q(t) d t
$$

The process $\{q(t)\}_{t \geq 0}$ is called rate of quadratic variation and measures how fast quadratic variation accumulates in time in the stochastic process $\{X(t)\}_{t \geq 0}$.

For example, it can be show that

$$
\begin{equation*}
d W(t) d W(t)=d t, \quad d t d t=0 \tag{4}
\end{equation*}
$$

Similarly, we say that two stochastic processes $\left\{X_{1}(t)\right\}_{t \geq 0}$ and $\left\{X_{2}(t)\right\}_{t \geq 0}$ have L^{2}-cross variation $\left[X_{1}, X_{2}\right](T)$ in the interval $[0, T]$ along the sequence of partitions $\left\{\Pi_{n}\right\}_{n \in \mathbb{N}}$, if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\sum_{j=0}^{m(n)-1}\left(X_{1}\left(t_{j+1}^{(n)}\right)-X_{1}\left(t_{j}^{(n)}\right)\right)\left(X_{2}\left(t_{j+1}^{(n)}\right)-X_{2}\left(t_{j}^{(n)}\right)\right)-\left[X_{1}, X_{2}\right](T)\right)^{2}\right]=0
$$

and write

$$
d X_{1}(t) d X_{2}(t)=\xi(t) d t
$$

if

$$
\left[X_{1}, X_{2}\right](T)=\int_{0}^{T} \xi(t) d t \quad \text { along any sequence of partitions }
$$

For instance it can be proved that

$$
\begin{equation*}
d W(t) d t=0 \tag{5}
\end{equation*}
$$

Moreover if $\left\{W_{1}(t)\right\}_{t \geq 0},\left\{W_{2}(t)\right\}_{t \geq 0}$ are two independent Brownian motions then

$$
\begin{equation*}
d W_{1}(t) d W_{2}(t)=0 \tag{6}
\end{equation*}
$$

