Lecture 3

den 21 januari 2021 15:08

@ Lecture 3

Lecture 3 Page 1



Financial derivatives and PDE’s
Lecture 3

Simone Calogero

January 21, 2021

(ﬂ\%wﬁ

1 Conditional expectation % ¢S a4

The conditional expectation of a random variable X is an estimate on X based on some
information given, for instance, in terms of a sub-g-algebra G.
—_— s

Assume first that X is the simple random variable N
A
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Let A € F be an event with P(A) > 0. The conditional expectation of the simple random
variable X given the event to A is given by
given the event to . !

E[X|A] = Zukpmkm). &~ T

k=1
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the identity| E[X|A] = %%)holds, The latter can be used to define the conditional expec-

tation of any random variable given an event:
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for any X : Q2 = R random variable with finite expectation, the conditional expectation of
X given the event to A is defined as -

C
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The conditional expectation of X given a g-algebra G C F is denoted by ]E[X |G] and is
defined axiomatically by requiring that L» A oM

~" Al P‘&\ As ==
—% E[E[X|G]|A] = E[X|4], forall A€ G such that P(A) = 0. (1)
L [V — ——

It can be shown that there exists a unique (up to null sets) random variable E[X|G] that
/ satisfies (1). Moreover it satisfies the properties in the following theorem:

Theorem 1 (Properties of the conditional expectation). Let X, Y € LY(2) and G be
a sub-o-algebra of F. The following properties hold almost surely:

) E[x\ chg S Ca - MENNRASLE
/ (1) Linearity: ElaX + 8Y|G] = aE[X|G] + BE[Y|G], for all o, 3 € R;

d

(i) E[E[X|G]] = E[X];
7 — —_— ') c “_
(i) If X is G-measurable, then E[X|G] = X: Y O/( - %

=
= (v) Tower property: If H C g is a sub-o-algebra, then E[E[X|G]|H] = ]E[X|?-L]
(vi) If G consists of trivial events only, then E[X|G] = E[X];

(vii) IfX is independent @ then E[X|G] = E[X];

—

N
(viii) Take it out what is known: If X is G-measurable, then E[XY|G] = XE[Y|g];

(ii) Monotonicity: If X <Y then E[X|G] < E[Y|G]. A

-

(ix) Jensen's inequality: Given ¢ : R — R convex there holds E[o(X)|G] = ¢(E[X|G]);

7

(x) Independence Lemma: If X is G-measurable and is independent of G, then for any
measurable function g 9 RZ - LU///e’o) the function f: R — [Q%o) defined by
= \

f(x) = Elg(z,Y)]

2=y % (5,

Elg(X.Y)|g] = f(X).
[

@?—
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is measurable and moreover
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Martingale processes — Tio

A stochastic process { M (t)}:=0 is called a martingale relative to t Lﬁltr@}‘ (t)}eso if
/@ it is adapted to {F(t)}i=0, M(t) € LY(§2) for all ¢ > 0, and
v

Fulls o)

w] = ﬂﬂf), forall0 < s <t, (2)
for all ¢ > 0. £1--) N = EIN&] FI’Q

Hence a stochastic process is martingale if the information available up to time s does not
/‘7 help to predict whether the stochastic process will raise or fall after time s. If we want to

emphasize that the martingale property is satisfied with respect to the probability measure
P, we shall say that {M(t)};=0 is a ]P—martingalo. RELATINE To Ll > C—\-)g

~

2, v
Note that, by (iii) in Theorem 1, the expectation of a martingale is constant, i.e.,
=

- ]E[’LI )] = [EZ[M([])] for all t > 0. (3)
Example.
The Brownian motion is a martingale relative to any non-anticipating filtration. In fact
—_—

m\}@

et P E[W ()| F(s)] = E[(L() — W(s))|ELs)] + B[V ()| F(s)]

=EW(H) — W(s)] +W(s ) W(s), llw H—)})
g _— 7/0
where we used that W (t) — W(s) is independent of F(s), and so A W - M.
E((W () — W(s))|F(s)] = E[(W(t) - W(s))] LR s
and the fact that W(s) is F(s)-measurable and so Y0

A NoN-— Aol PATING
E[W(s)|F(s)] = W(s). e < Lo

(F.6- SYW[H% \

Lecture 3 Page 4



—+— —4
%/‘@ T—— ¢

\g-c/a t /(/ )((.“_W\
>< LL/ B ‘3(//‘
Markov processes

A stochastic process {X(t)}izo is called a Markov process with respect to the filtration

/ {F(t) }izo if it is adapted to {F(t)}i=0 and if for every measurable function g : R — R ::uch

that g(X(t)) € L'(Q), for all ¢ > 0, there exists a measurable function fg [O oc) x [0,00) x
[R — R such that -

7

]E[g(X(t |f )| = £yt s, X( 1), forall0<s<t. (4)

X(J—W MEAS, €.V,
The function fy(t,s,-) is called the transition probability of {X ()} from time s to
time £. — —

4
If fy(f,s5,2) = fylt — 5,0,2), for all t > s and 2 € R, we say that the Markov process is
time-homogeneous.

Remark: f,(t.t,z) = g(x), because E[g(X (t)|F(t)] = g(X(t)).

The interpretation is the following: for a Markov process, the conditional expectation of
g(X(t)) at the future time ¢ depends only on the random variable )i( ;) at time s, and not
on the behavior of the process before or after time s.

For a time-homogeneous Markov process the transition between any two different times is
- . . —
equivalent to a transition starting at s = 0.

If there exists a mma.umb]{, function p : [0, oc) x[0, c) xRXR — R such that y — plt, s, x, g‘;)
is integrable for all (¢, s, x) € [0,00) x [0, oo) x R and L——=

&(t, s,x) = /#E(h plt,s,x.y)dy, for0<s<t, (5)
IR

holds for all bounded measurable fllll(‘tl()ll‘@ then we call p the transition probability
density of the Markov process. TTTT—————
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Theorem 2. Let {X(t)}i>0 be a Markov process with transition density p(t.s, r.y) relative »8/
to the filtration {F(t)}iz0. Assume XLglazx € R is a deterministic constant and that ELs)
is the trivial o-algebra. Assume also that, for all t = s, X(t) admits the density fx). Then

i —_ : =

Fxw(y) = plt, Ssi_{;’_)

Proof. By definition of density

P(X(t) <z) = /_:_(fxu)(@‘y‘ 7
Letting X (s) = x into (4)-(5) we obtain &E %(XCﬂ\/S < % ("\’ » >
— — > DL
Elg(X(1)] = f g(y)p(t. s,z y) dy.
e~ T

»"‘?,o—e-c\_)
Choosing g = I{_« .}, we obtain é
L—n— .
P(X(t) < z) = / @y
for all z € R, hence fxu(y) = p(t,s.x,y). ]
< JXGV T

Theorem 3. Let {};(Lﬂgu@n\hm_\tzﬂtw&mtmn for the Brownian motion {W(t)},=o.

Then {W ()} is (:W larkov process relative to {F(t) Y=o with transition den-

/ 5”%&_&_;}) where BEAT wERNEL X
’) 2 1 _wao? : (o% EunDA TENT
?C‘k » )‘\\( (* - )<“( p*{r._;c.y) = \/2?6 T, ((j) ~
QL7 x ) ¥ o — SoluTwe of TUT
T camATW)
Proof. The statement holds for s = ¢, with f,(t.t,x) = g(x). For s < ¢ we write wem RN W
Elg(W (1) ()] = Elg(IV (1) = W(s) + W () |F(s)) = EGLS). W (o) = W) ELs)l

where g(x, y) = g(x +y). Since W(t) — W(s) is independent of F[ ) and W(s) is F(s)

Illt‘dbllrd,ble then we can apply Theorem 1(x). Precisely, letting J
%)= W)

folt, s, 2) = Elg(e, W(t) — W {5
we have / \Dt W C‘\q - \N ($)

—_— Eg(W ()| F(s)] = f,(t.s W (s)),
A AR A
which proves that the Brownian motion is a Markov process relative to {F(¢) };=o. To derive
the transition density we use that ¥ = W(t) — W(s) € N(0,t — s), so that

Et% (> \/ﬂ' Sl \/ﬁfﬁ glo+ )" dy = ﬁfmg(we‘% dy,
¥—9’

5 S YD y=x
i ( Q < —\/ B ‘\(1\:1)'7

y c
[ g“:(*'—”j = T (r-> >r,\(>
1.0 = § 2 4w
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= N al) Rl Dds
" /

Elg(W ()| F(s)] = [ [ sttt s,z d-y} |

a=W(s)

hence

where p, is given by (6). This concludes the proof of the theorem. O

When p is given by (6), the function

u(t, z) = /M iﬁ;)fuf) dy (7)

solves the heat equation with initial datum g at time ¢ = s, namely

AT 185'“, u(s,z) =g(r), t>s zeck (8)
(Eaf—s“' -
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