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The CIR process

A CIR process is a stochastic process {X(t)}t≥s satisfying the SDE

dX(t) = a(b−X(t)) dt+ c
√
X(t) dW (t), X(s) = x > 0, (1)

where a, b, c are constant (c 6= 0).

CIR processes are used in finance to model the stock volatility in the Heston model and the
spot interest rate of bonds in the CIR model.

Note that the SDE (1) is not of the form considered so far, as the function β(t, x) = c
√
x is

defined only for x ≥ 0 and, more importantly, it is not Lipschitz continuous in a neighborhood
of x = 0. Nevertheless it can be shown that (1) admits a unique global solution for all x > 0.

Clearly the solution satisfies X(t) ≥ 0 a.s., for all t ≥ 0, otherwise the Itô integral in the
right hand side of (1) would not even be defined.

For future applications, it is important to know whether the solution can hit zero in finite
time with positive probability. This question is answered in the following theorem.

Theorem 1. Let {X(t)}t≥0 be the CIR process with initial value X(0) = x > 0 at time
t = 0. Define

τx0 = inf{t ≥ 0 : X(t) = 0}.

Then P(τx0 <∞) = 0 if and only if ab ≥ c2/2, which is called Feller’s condition.
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The following theorem shows how to build a CIR process from a family of linear SDE’s.

Theorem 2. Let {W1(t)}t≥0, . . . {WN(t)}t≥0 be N ≥ 2 independent Brownian motions and
assume that {X1(t)}t≥0, . . . , {XN(t)}t≥0 solve

dXj(t) = −θ
2
Xj(t) dt+

σ

2
dWj(t), j = 1, . . . , N, Xj(0) = xj ∈ R, (2)

where θ, σ are deterministic constant. There exists a Brownian motion {W (t)}t≥0 such that
the stochastic process {X(t)}t≥0 given by

X(t) =
N∑
j=1

Xj(t)
2

solves (1) with a = θ, c = σ and b = Nσ2

4θ
.

Proof. Let X(t) =
∑N

j=1Xj(t)
2. Applying Itô’s formula we find, after straightforward cal-

culations,

dX(t) = (
Nσ2

4
− θX(t)) dt+ σ

N∑
j=1

Xj(t) dWj(t).

Letting a = θ, c = σ, b = Nσ2

4θ
and

dW (t) =
N∑
j=1

Xj(t)√
X(t)

dWj(t),

we obtain that X(t) satisfies

dX(t) = a(b−X(t)) dt+ c
√
X(t) dW (t).

Thus {X(t)}t≥0 is a CIR process, provided we prove that {W (t)}t≥0 is a Brownian motion.
We shall use the so-called Lévy characterization theorem:

Let {M(t)}t≥0 be a martingale relative to a filtration {F(t)}t≥0. Assume that (i) M(0) = 0
a.s., (ii) the paths t → M(t, ω) are a.s. continuous and (iii) dM(t)dM(t) = dt. Then
{M(t)}t≥0 is a Brownian motion and {F(t)}t≥0 a non-anticipating filtration thereof.
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Clearly, W (0) = 0 a.s. and the paths t→ W (t, ω) are a.s. continuous. Moreover {W (t)}t≥0
is a martingale, as it is the sum of martingale Itô integrals. Hence to conclude that {W (t)}t≥0
is a Brownian motion we must show that dW (t)dW (t) = dt. We have

dW (t)dW (t) =
1

X(t)

N∑
i,j=1

Xi(t)Xj(t)dWi(t)dWj(t) =
1

X(t)

N∑
i,j=1

Xi(t)Xj(t)δijdt

=
1

X(t)

N∑
j=1

X2
j (t)dt = dt,

where we used that dWi(t)dWj(t) = δijdt, since the Brownian motions are independent.

Remark:

The process {X(t)}t≥0 in Theorem 2 is said to be a weak solution of (1), because the
Brownian motion {W (t)}t≥0 in the SDE is not given advance, but rather it depends on the
solution itself

Since N ≥ 2 in the previous theorem implies the Feller condition ab ≥ c2/2, then (provided
xj 6= 0 for some j, so that X(0) > 0) the CIR process constructed in Theorem 2 does not
hit zero, see Theorem 1.

Moreover, since the solution of (2) is

Xj(t) = e−
1
2
θt

(
xj +

σ

2

∫ t

0

e
1
2
θτdWj(τ)

)
,

then the random variables X1(t), . . . , XN(t) are normally distributed with

E[Xj(t)] = e−
1
2
θtxj, Var[Xj(t)] =

σ2

4θ
(e

1
2
θt − 1).

It follows that the CIR process constructed Theorem 2 is non-central χ2 distributed.

The following theorem shows that this is a general property of CIR processes.
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Theorem 3. Assume ab > 0. The CIR process starting at x > 0 at time t = s satisfies

X(t; s, x) =
1

2k
Y, Y (t; s, x) ∈ χ2(δ, β),

where

k =
2a

(1− e−a(t−s))c2
, δ =

4ab

c2
, β = 2kxe−a(t−s).

Proof. As the CIR process is a time-homogeneous Markov process, it is enough to prove the
claim for s = 0.

Let X(t) = X(t; 0, x) for short. The characteristic function of X(t) is given by

θX(t)(u) = E[eiuX(t)] = E[eiu
Y (t)
2k ] = θY (t)(

u

2k
)

where Y (t) = Y (t, 0, x). Thus the statement of the theorem is equivalent to

h(t, u) := θX(t)(u) =
exp

(
− βu

2(u+ik)

)
(1− iu/k)δ/2

, (3)

where k = 2a
(1−e−at)c2

, δ = 4ab
c2

, β = 2kxe−at.

To prove this denote p(t, 0, x, y) = p∗(t, x, y) the transition density of X(t). Then

h(t, u) =

∫
R
eiuyp∗(t, x, y) dy. (4)

p∗ solves the Fokker-Planck equation

∂tp∗ + ∂y(a(b− y)p∗)−
1

2
∂2y(c

2y p∗) = 0, (5)

with initial datum p∗(0, x, y) = δ(x− y).

After straightforward calculations we derive the following equation on h
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∂th− iabuh+ (au− c2

2
iu2)∂uh = 0. (6a)

The initial condition for equation (6a) is

h(0, u) = eiux, (6b)

which is equivalent to p∗(0, x, y) = δ(x− y).

Now the proof can be completed by showing that (3) satisfies the initial value problem (6a)-
(6b).

By Theorem 7 , for ab > 0, the density of the CIR process starting at x is fCIR(y; t− s, x),
where

fCIR(y; τ, x) = keaqτ/2 exp(−k(y + xe−aτ ))
(y
x

)q/2
Iq(2ke

−aτ/2√xy), q =
δ

2
− 1. (7)

Finally we discuss briefly the question of existence of strong solutions to the Kolmogorov
equation for the CIR process, which is

∂tu+ a(b− x)∂xu+
c2

2
x∂2xu = 0, (t, x) ∈ D+

T , u(T, x) = g(x). (8)

Note carefully that the Kolmogorov PDE is now defined only for x > 0, as the initial value
x in (1) must be positive.

Now, if a strong solution of (8) exists, then it must be given by u(t, x) = E[g(X(T ; t, x))].

Supposing ab > 0, then

u(t, x) = E[g(X(T ; t, x))] =

∫ ∞
0

fCIR(y;T − t, x)g(y) dy,

where fCIR(y; τ, x) is given by (7). Using the asymptotic behavior of fCIR(y; τ, x) as x→ 0+,
it can be shown ∂xu(t, x) is bounded near the axis x = 0 only if the Feller condition ab ≥ c2/2
is satisfied.

Hence u is the (unique) strong solution of (8) if and only if ab ≥ c2/2.
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