Financial derivatives and PDE's Lecture 10

Simone Calogero

February 3^{rd} , 2021

1 Radon-Nikodým theorem

We shall need the following characterization of equivalent probability measures.

Theorem 1. Given a probability measure \mathbb{P} , the following are equivalent:

- (i) $\widetilde{\mathbb{P}}$ is a probability measure equivalent to \mathbb{P} ;
- (ii) There exists a random variable $Z : \Omega \to \mathbb{R}$ such that Z > 0 \mathbb{P} -almost surely, $\mathbb{E}[Z] = 1$ and $\widetilde{\mathbb{P}}(A) = \mathbb{E}[Z\mathbb{I}_A]$, for all $A \in \mathcal{F}$.

Moreover, assuming any of these two equivalent conditions, the random variable Z is unique (up to a \mathbb{P} -null set) and for all random variables X such that $XZ \in L^1(\Omega, \mathbb{P})$, we have $X \in L^1(\Omega, \widetilde{\mathbb{P}})$ and

$$\widetilde{\mathbb{E}}[X] = \mathbb{E}[ZX]. \tag{1}$$

Now assume that $\{Z(t)\}_{t\geq 0}$ is a martingale such that Z(t) > 0 a.s. and $\mathbb{E}[Z(0)] = 1$.

Since martingales have constant expectation, then $\mathbb{E}[Z(t)] = 1$ for all $t \ge 0$.

By Theorem 1, the map $\widetilde{\mathbb{P}}: \mathcal{F} \to [0, 1]$ given by

$$\mathbb{P}(A) = \mathbb{E}[Z(T)\mathbb{I}_A], \quad A \in \mathcal{F}$$
(2)

is a probability measure equivalent to \mathbb{P} , for all T > 0.

Note that $\widetilde{\mathbb{P}}$ depends on T > 0 and $\widetilde{\mathbb{P}} = \mathbb{P}$, for T = 0. The dependence on T is however not reflected in our notation.

As usual, the (conditional) expectation in the probability measure $\widetilde{\mathbb{P}}$ will be denoted $\widetilde{\mathbb{E}}$.

The relation between \mathbb{E} and \mathbb{E} is revealed in the following theorem.

Theorem 2. Let $\{Z(t)\}_{t\geq 0}$ be a \mathbb{P} -martingale relative to a filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ such that Z(t) > 0 a.s. and $\mathbb{E}[Z(0)] = 1$. Let T > 0 and let $\widetilde{\mathbb{P}}$ be the probability measure equivalent to \mathbb{P} defined by (2). Let $t \in [0,T]$ and let X be a $\mathcal{F}(t)$ -measurable random variable such that $Z(t)X \in L^1(\Omega,\mathbb{P})$. Then $X \in L^1(\Omega,\widetilde{\mathbb{P}})$ and

$$\widetilde{\mathbb{E}}[X] = \mathbb{E}[Z(t)X]. \tag{3}$$

Moreover, for all $0 \leq s \leq t$ and for all random variables Y such that $Z(t)Y \in L^1(\Omega, \mathbb{P})$, there holds

$$\widetilde{\mathbb{E}}[Y|\mathcal{F}(s)] = \frac{1}{Z(s)} \mathbb{E}[Z(t)Y|\mathcal{F}(s)].$$
(4)

2 Girsanov's theorem

In this section we assume that the non-anticipating filtration of the Brownian motion coincides with $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

Let $\{\theta(t)\}_{t\geq 0} \in \mathcal{C}^0[\mathcal{F}_W(t)]$ satisfy the Novikov condition. It follows that the positive stochastic process $\{Z(t)\}_{t\geq 0}$ given by

$$Z(t) = \exp\left(-\int_0^t \theta(s)dW(s) - \frac{1}{2}\int_0^t \theta^2(s)ds\right)$$
(5)

is a martingale relative to $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

As Z(0) = 1, then $\mathbb{E}[Z(t)] = 1$ for all $t \ge 0$. Thus we can use the stochastic process $\{Z(t)\}_{t\ge 0}$ to generate a measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} , namely $\widetilde{\mathbb{P}} : \mathcal{F} \to [0, 1]$ is given by

$$\mathbb{P}(A) = \mathbb{E}[Z(T)\mathbb{I}_A], \quad A \in \mathcal{F},$$
(6)

for some given T > 0, see Theorem 2. The relation between \mathbb{E} and $\widetilde{\mathbb{E}}$ is

$$\widetilde{\mathbb{E}}[X] = \mathbb{E}[Z(t)X],\tag{7}$$

for all $t \geq 0$ and $\mathcal{F}_W(t)$ -measurable random variables X, and

$$\widetilde{\mathbb{E}}[Y|\mathcal{F}_W(s)] = \frac{1}{Z(s)} \mathbb{E}[Z(t)Y|\mathcal{F}_W(s)]$$
(8)

for all $0 \le s \le t$ and random variables Y.

We can now state and sketch the proof of **Girsanov**'s theorem, which is a fundamental result with deep applications in mathematical finance.

Theorem 3. Define the stochastic process $\{\widetilde{W}(t)\}_{t\geq 0}$ by

$$\widetilde{W}(t) = W(t) + \int_0^t \theta(s) ds, \tag{9}$$

i.e., $d\widetilde{W}(t) = dW(t) + \theta(t)dt$. Then $\{\widetilde{W}(t)\}_{t\geq 0}$ is a $\widetilde{\mathbb{P}}$ -Brownian motion with non-anticipating filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

Sketch of the proof. We prove only that $\{\widetilde{W}(t)\}_{t\geq 0}$ is a \mathbb{P} -Brownian motion using the Lévy characterization of Brownian motions. Clearly, $\{\widetilde{W}(t)\}_{t\geq 0}$ starts from zero and has continuous paths a.s. Moreover we (formally) have $d\widetilde{W}(t)d\widetilde{W}(t) = dW(t)dW(t) = dt$. Hence it remains to show that the Brownian motion $\{\widetilde{W}(t)\}_{t\geq 0}$ is \mathbb{P} -martingale relative to the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$. By Itô's product rule we have

$$d(\widetilde{W}(t)Z(t)) = \widetilde{W}(t)dZ(t) + Z(t)d\widetilde{W}(s) + d\widetilde{W}(t)dZ(t)$$
$$= (1 - \theta(t)\widetilde{W}(t))Z(t)dW(t),$$

that is to say,

$$\widetilde{W}(t)Z(t) = \int_0^t (1 - \widetilde{W}(u)\theta(u))Z(u)dW(u)$$

It follows that the stochastic process $\{Z(t)\widetilde{W}(t)\}_{t\geq 0}$ is a \mathbb{P} -martingale relative to $\{\mathcal{F}_W(t)\}_{t\geq 0}$, i.e.,

$$\mathbb{E}[Z(t)\overline{W}(t)|\mathcal{F}_W(s)] = Z(s)\overline{W}(s).$$

But according to (8),

$$\mathbb{E}[Z(t)\widetilde{W}(t)|\mathcal{F}_W(s)] = Z(s)\widetilde{\mathbb{E}}[\widetilde{W}(t)|\mathcal{F}_W(s)].$$

Hence $\widetilde{\mathbb{E}}[\widetilde{W}(t)|\mathcal{F}_W(s)] = \widetilde{W}(s)$, as claimed.

Conventions

From now on we assume that the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and the Brownian motion $\{W(t)\}_{t\geq 0}$ are given. Moreover, in order to avoid the need of repeatedly specifying technical assumptions, we stipulate the following conventions:

- All stochastic processes in this chapter are assumed to belong to the space $C^0[\mathcal{F}_W(t)]$, i.e., they are adapted to $\{\mathcal{F}_W(t)\}_{t\geq 0}$ and have a.s. continuous paths. This assumption may be relaxed, but for our applications it is general enough.
- All Itô integrals in this chapter are assumed to be martingales, which holds for instance when the integrand stochastic process is in the space $\mathbb{L}^2[\mathcal{F}_W(t)]$.

3 Arbitrage-free markets

Consider the 1+1 dimensional market

$$dS(t) = \mu(t)S(t) dt + \sigma(t)S(t) dW(t), \quad dB(t) = -B(t)r(t) dt.$$

The ultimate purpose of this section is to prove that any self-financing portfolio $\{h_S(t), h_B(t)\}_{t\geq 0}$ invested in this market is not an arbitrage. To this purpose we shall use the following simple result:

Theorem 4. Let a portfolio be given with value $\{V(t)\}_{t\geq 0}$. If there exists a measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} and a filtration $\{\mathcal{F}(t)\}_{t\geq 0}$ such that the discounted value of the portfolio $\{V^*(t)\}_{t\geq 0}$ is a martingale, then for all T > 0 the portfolio is not an arbitrage in the interval [0, T].

Proof. The assumption is that

$$\mathbb{E}[D(t)V(t)|\mathcal{F}(s)] = D(s)V(s), \text{ for all } 0 \le s \le t.$$

Since martingales have constant expectation, then $\widetilde{\mathbb{E}}[D(t)V(t)] = \widetilde{\mathbb{E}}[D(0)V(0)] = \widetilde{\mathbb{E}}[V(0)].$

Assume that the portfolio is an arbitrage in some interval [0, T]. Then V(0) = 0 almost surely in both probabilities \mathbb{P} and \tilde{p} ; as $V^*(0) = V(0)$, then

$$\widetilde{\mathbb{E}}[V^*(t)] = 0, \quad \text{for all } t \ge 0.$$
(10)

Moreover $\mathbb{P}(V(T) \ge 0) = 1$ and $\mathbb{P}(V(T) > 0) > 0$. Since \mathbb{P} and $\mathbb{\widetilde{P}}$ are equivalent, we also have $\mathbb{\widetilde{P}}(V(T) \ge 0) = 1$ and $\mathbb{\widetilde{P}}(V(T) > 0) > 0$. Since the discount process is positive, we also

have $\widetilde{\mathbb{P}}(V^*(T) \ge 0) = 1$ and $\widetilde{\mathbb{P}}(V^*(T) > 0) > 0$. However this contradicts (10). Hence our original hypothesis that the portfolio is an arbitrage portfolio is false.

In view of the previous theorem, to show that self-financing portfolios invested in a 1+1 dimensional market are not arbitrage portfolios we may show that there exists a probability measure $\tilde{\mathbb{P}}$, equivalent to \mathbb{P} , with respect to which the discounted value of such portfolios is a martingale.

We first define such a measure. We have seen that given a stochastic process $\{\theta(t)\}_{t\geq 0}$ satisfying the Novikov condition, the stochastic process $\{Z(t)\}_{t\geq 0}$ defined by

$$Z(t) = \exp\left(-\int_0^t \theta(s) \, dW(s) - \frac{1}{2} \int_0^t \theta(s)^2 \, ds\right) \tag{11}$$

is a \mathbb{P} -martingale relative to the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$ and that the map $\widetilde{\mathbb{P}}: \mathcal{F} \to [0,1]$ given by

$$\mathbb{P}(A) = \mathbb{E}[Z(T)\mathbb{I}_A] \tag{12}$$

is a probability measure equivalent to \mathbb{P} , for all given T > 0.

Definition 1. Consider the 1+1 dimensional market

$$dS(t) = \mu(t)S(t)dt + \sigma(t)S(t)dW(t), \quad dB(t) = B(t)r(t)dt.$$

Assume that $\sigma(t) > 0$ almost surely for all times. Let $\{\theta(t)\}_{t\geq 0}$ be the stochastic process given by

$$\theta(t) = \frac{\mu(t) - r(t)}{\sigma(t)},\tag{13}$$

and define $\{Z(t)\}_{t\geq 0}$ by (11). Assume that $\{\theta(t)\}_{t\geq 0}$ satisfies the Novikov condition, so that $\{Z(t)\}_{t\geq 0}$ is a martingale.

The probability measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} given by (12) is called the **risk-neutral probability measure** of the market at time T, while the process $\{\theta(t)\}_{t\geq 0}$ is called the **market** price of risk.

By the definition (13) of the stochastic process $\{\theta(t)\}_{t\geq 0}$, we can rewrite dS(t) as

$$dS(t) = r(t)S(t)dt + \sigma(t)S(t)dW(t),$$
(14)

where

$$d\widetilde{W}(t) = dW(t) + \theta(t)dt.$$
(15)

By Girsanov theorem, the stochastic process $\{\widetilde{W}(t)\}_{t\geq 0}$ is a \mathbb{P} -Brownian motion. Moreover, $\{\mathcal{F}_W(t)\}_{t\geq 0}$ is a non-anticipating filtration for $\{\widetilde{W}(t)\}_{t\geq 0}$.

We also recall that a portfolio $\{h_S(t), h_B(t)\}_{t\geq 0}$ is self-financing if its value $\{V(t)\}_{t\geq 0}$ satisfies

$$dV(t) = h_S(t)dS(t) + h_B(t)dB(t),$$
(16)

Moreover $S^*(t) = D(t)S(t)$ is the discounted price (at time t = 0) of the stock, where $D(t) = \exp(-\int_0^t r(s) \, ds)$ is the discount process.

Theorem 5. Consider the 1+1 dimensional market

$$dS(t) = \mu(t)S(t)dt + \sigma(t)S(t)dW(t), \quad dB(t) = B(t)r(t)dt,$$
(17)

where $\sigma(t) > 0$ almost surely for all times.

- (i) The discounted stock price $\{S^*(t)\}_{t\geq 0}$ is a $\widetilde{\mathbb{P}}$ -martingale in the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$.
- (ii) A portfolio process $\{h_S(t), h_B(t)\}_{t\geq 0}$ is self-financing if and only if its discounted value satisfies

$$V^*(t) = V(0) + \int_0^t D(s)h_S(s)\sigma(s)S(s)d\widetilde{W}(s).$$
(18)

In particular the discounted value of self-financing portfolios is a $\widetilde{\mathbb{P}}$ -martingale in the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

(iii) If $\{h_S(t), h_B(t)\}_{t\geq 0}$ is a self-financing portfolio, then $\{h_S(t), h_B(t)\}_{t\geq 0}$ is not an arbitrage.

Proof. (i) By (14) and dD(t) = -D(t)r(t)dt we have

$$dS^*(t) = S(t)dD(t) + D(t)dS(t) + dD(t)dS(t)$$

= $-S(t)r(t)D(t) dt + D(t)(r(t)S(t) dt + \sigma(t)S(t) d\widetilde{W}(t))$
= $D(t)\sigma(t)S(t)d\widetilde{W}(t)$,

and so the discounted price $\{S^*(t)\}_{t\geq 0}$ of the stock is a $\widetilde{\mathbb{P}}$ -martingale relative to $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

(ii) By (14) and $h_S(t)S(t) + h_B(t)B(t) = V(t)$, the definition (16) of self-financing portfolio is equivalent to

$$dV(t) = h_S(t)S(t)[(\mu(t) - r(t))dt + \sigma(t)dW(t)] + V(t)r(t)dt.$$
(19)

Hence

$$dV(t) = h_S(t)S(t)\sigma(t)d\widetilde{W}(t) + V(t)r(t)dt.$$

In terms of the discounted portfolio value $V^*(t) = D(t)V(t)$ the previous equation reads

$$dV^*(t) = V(t)dD(t) + D(t)dV(t) + dD(t)dV(t)$$

= $-D(t)V(t)r(t) dt + D(t)h_S(t)S(t)\sigma(t)d\widetilde{W}(t) + D(t)V(t)r(t)dt$
= $D(t)h_S(t)S(t)\sigma(t)d\widetilde{W}(t)$,

which proves (18).

(iii) By (18), the discounted value of self-financing portfolios is a $\widetilde{\mathbb{P}}$ -martingale relative to the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$. As $\widetilde{\mathbb{P}}$ and \mathbb{P} are equivalent, (iii) follows by Theorem 4. \Box