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Black-Scholes price of standard European derivatives

In the particular case of a standard European derivative, i.e., when Y = g(S(T )), for some
measurable function g, the risk-neutral price formula becomes

ΠY (t) = Ẽ[g(S(T )) exp(−
∫ T

t

r(s) ds)|FW (t)].

Moreover

S(T ) = S(t) exp

(∫ T

t

(r(s)− 1

2
σ2(s))ds+

∫ T

t

σ(s)dW̃ (s)

)
,

hence the risk-neutral price of standard European derivatives takes the form

ΠY (t) = Ẽ[g(S(t)e
∫ T
t (r(s)− 1

2
σ2(s))ds+

∫ T
t σ(s)dW̃ (s)) exp(−

∫ T

t

r(s) ds)|FW (t)]. (1)

In this section we compute (1) in a Black-Scholes market, i.e., in the case when the market
parameters {µ(t)}t≥0, {σ(t)}t≥0, {r(t)}t≥0 are deterministic constants.
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Letting µ(t) = µ, r(t) = r, σ(t) = σ > 0 we obtain that the stock price satisfies

dS(t) = rS(t) dt+ σS(t) dW̃ (t), (2)

where W̃ (t) = W (t) + µ−r
σ
t is a Brownian motion in the risk-neutral probability measure.

The market price of risk θ = (µ − r)/σ is constant. Integrating (2) we obtain that, in the
risk-neutral probability, S(t) is given by the geometric Brownian motion

S(t) = S(0)e(r−
σ2

2
)t+σW̃ (t). (3)

By (1), the risk-neutral price of the standard European derivative is

ΠY (t) = e−rτ Ẽ[g(S(t)e(r−
1
2
σ2)τeσ(W̃ (T )−W̃ (t)))|FW (t)],

where τ = T − t is the time left to maturity.

As the increment W̃ (T )− W̃ (t) is independent of FW (t) and S(t) is FW (t)-measurable, the
conditional expectation above can be computed using the independence lemma, namely

ΠY (t) = vg(t, S(t)), (4a)

where the Black-Scholes price function vg : D+
T → R is given by

vg(t, x) = e−rτ Ẽ[g(xe(r−
1
2
σ2)τeσ(W̃ (T )−W̃ (t)))] =

e−rτ√
2π

∫
R
g(xe(r−

1
2
σ2)τeσ

√
τy)e−

y2

2 dy. (4b)

Of course we need some conditions on the function g in order for the integral in the right-
hand side of (4b) to converge to a smooth function. For our purposes it suffices to require
that g ∈ G, where

G = {g : [0,∞)→ R :
(i) g is almost everywhere twice differentiable
(ii) |g(z)| ≤ A+B|z| for some constants A,B > 0
(iii) g′, g′′ are uniformly bounded}

(5)

Conditions (i)-(iii) are satisfied by the typical pay-off functions used in the applications. It
is an easy exercise to show that g ∈ G ⇒ vg ∈ C1,2(D+

T ).
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Definition 1. Let g ∈ G. The stochastic process {ΠY (t)}t∈[0,T ] given by (4), is called the
Black-Scholes price of the standard European derivative with pay-off Y = g(S(T )) and
time of maturity T > 0.

Next we show that the formula (4) is equivalent to the Markov property of the geometric

Brownian motion (3) in the risk-neutral probability measure P̃.

To this purpose we rewrite the Black-Scholes price function as vg(t, x) = h(T − t, x), where,
by a change of variable in the integral on the right hand side of (4b),

h(τ, x) =

∫
R
g(y)q(τ, x, y) dy,

where

q(τ, x, y) =
e−rτ Iy>0

y
√

2πσ2τ
exp

[
− 1

2σ2τ

(
log

y

x
− (r − 1

2
σ2)τ

)2
]
.

Letting

p∗(τ, x, y) = erτq(τ, x, y),

we obtain that p∗, the risk-neutral pricing formula of standard European derivatives in a
market with constant parameters is equivalent to the identity

Ẽ[g(S(T ))|FW̃ (t)] =

∫
R
p∗(T − t, S(t), y)g(y) dy,

and thus, since 0 ≤ t ≤ T are arbitrary, it is equivalent to the Markov property of the
geometric Brownian motion (3) in the risk-neutral probability measure P̃, with p∗ being the
transition density of the geometric Brownian motion (3).

Moreover u(τ, x) =
∫
R p∗(τ, x, y)g(y) dy satisfies the Kolmogorov PDE

−∂τu+ rx∂xu+
1

2
σ2x2∂2xu = 0, u(0, x) = h(0, x) = vg(T, x) = g(x).

Hence the function h(τ, x) = e−rτu(τ, x) satisfies
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−∂τh+ rx∂xh+
1

2
σ2x2∂2xh = rh, h(0, x) = g(x).

As vg(t, x) = h(T − t, x), we obtain the following result.

Theorem 1. Given g ∈ G, the Black-Scholes price function vg is the unique strong solution
of the Black-Scholes PDE

∂tvg + rx∂xvg +
1

2
σ2x2∂2xvg = rvg, (t, x) ∈ D+

T (6a)

with the terminal condition
vg(T, x) = g(x). (6b)

Next we consider the problem of constructing a replicating (and thus hedging) portfolio of
the derivative.

Theorem 2. Consider a standard European derivative priced according to Definition 1. The
portfolio {hS(t), hB(t)} given by

hS(t) = ∂xvg(t, S(t)), hB(t) = (ΠY (t)− hS(t)S(t))/B(t)

is a self-financing replicating portfolio for the derivative.

Proof. We have to show that the discounted value of the Black-Scholes price satisfies

dΠ∗Y (t) = D(t)S(t)σ∂xvg(t, S(t))dW̃ (t).

A straightforward calculation, using ΠY (t) = vg(t, S(t)), Itô’s formula and Itô’s product rule,
gives

d(D(t)ΠY (t)) =D(t)[∂tvg(t, x) + rx∂xvg(t, x) +
1

2
σ2x2∂2xvg(t, x)− rvg(t, x)]x=S(t)

+D(t)σS(t)∂xvg(t, S(t))dW̃ (t). (7)

Since vg solves the Black-Scholes PDE (6a), the result follows.
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Black-Scholes price of European vanilla options

In this section we focus the discussion on call/put options, which are also called vanilla
options. We thereby assume that the pay-off of the derivative is given by

Y = (S(T )−K)+, i.e., Y = g(S(T )), g(x) = (x−K)+, for a call option,

Y = (K − S(T ))+, i.e., Y = g(S(T )), g(x) = (K − x)+, for a put option.

The function vg given by (4b) will be denoted by C, for a call option, and by P , for a put
option.

Theorem 3. The Black-Scholes price at time t of a European call option with strike price
K > 0 and maturity T > 0 is given by C(t, S(t)), where

C(t, x) = xΦ(d1)−Ke−rτΦ(d2), (8a)

d2 =
log
(
x
K

)
+
(
r − 1

2
σ2
)
τ

σ
√
τ

, d1 = d2 + σ
√
τ , (8b)

and where Φ(x) = 1√
2π

∫ x
−∞ e

− 1
2
y2 dy is the standard normal distribution. The Black-Scholes

price of the corresponding put option is given by P (t, S(t)), where

P (t, x) = Φ(−d2)Ke−rτ − Φ(−d1)x. (8c)

Moreover the put-call parity identity holds:

C(t, S(t))− P (t, S(t)) = S(t)−Ke−rτ . (9)

Proof. We derive the Black-Scholes price of call options only, the argument for put options
being similar. We substitute g(z) = (z −K)+ into the right hand side of (4b) and obtain

C(t, x) =
e−rτ√

2π

∫
R

(
xe(r−

1
2
σ2)τeσ

√
τy −K

)
+
e−

y2

2 dy.

Now we use that xe(r−
1
2
σ2)τeσ

√
τy > K if and only if y > −d2. Hence

C(t, x) =
e−rτ√

2π

[∫ ∞
−d2

xe(r−
1
2
σ2)τeσ

√
τye−

y2

2 −K
∫ ∞
−d2

e−
y2

2 dy

]
.

Using −1
2
y2 +σ

√
τy = −1

2
(y−σ

√
τ)2 + σ2

2
τ and changing variable in the integrals we obtain

C(t, x) =
e−rτ√

2π

[
xerτ

∫ ∞
−d2

e−
1
2
(y−σ

√
τ)2 dy −K

∫ ∞
−d2

e−
y2

2 dy

]
=
e−rτ√

2π

[
xerτ

∫ d2+σ
√
τ

−∞
e−

1
2
y2 dy −K

∫ d2

−∞
e−

y2

2 dy

]
= sΦ(d1)−Ke−rτΦ(d2).

5



The put-call parity (9) follows by replacing r(t) = r in (??), or directly by (8):

C(t, x)− P (t, x) = sΦ(d1)−Ke−rτΦ(d2)− Φ(−d2)Ke−rτ + sΦ(−d1)
= x(Φ(d1) + Φ(−d1))−Ke−rτ (Φ(d2) + Φ(−d2)).

As Φ(z) + Φ(−z) = 1, the claim follows.

The greeks. Implied volatility and volatility curve

The Black-Scholes price of a call (or put) option derived in Theorem 3 depends on the price
of the underlying stock, the time to maturity, the strike price, as well as on the (constant)
market parameters r, σ (it does not depend on α).

The partial derivatives of the price function C with respect to these variables are called
greeks.

We collect the most important ones (for call options) in the following theorem.

Theorem 4. The price function C of call options satisfies the following:

∆ := ∂xC = Φ(d1), (10)

Γ := ∂2xC =
φ(d1)

xσ
√
τ
, (11)

ρ := ∂rC = Kτe−rτΦ(d2), (12)

Θ := ∂tC = −xφ(d1)σ

2
√
τ
− rKe−rτΦ(d2), (13)

ν := ∂σC = xφ(d1)
√
τ (called “vega”). (14)

In particular:

� ∆ > 0, i.e., the price of a call is increasing on the price of the underlying stock;

� Γ > 0, i.e., the price of a call is convex on the price of the underlying stock;

� ρ > 0, i.e., the price of the call is increasing on the risk-free interest rate;

� Θ < 0, i.e., the price of the call is decreasing in time;

� ν > 0, i.e., the price of the call is increasing on the volatility of the stock.
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Implied volatility

Let us temporarily re-denote the Black-Scholes price of the call as

C(t, S(t), K, T, σ),

which reflects the dependence of the price on the parameters K,T, σ (we disregard the
dependence on r).

As shown in Theorem 4,

∂σC(t, S(t), K, T, σ) = vega =
S(t)√

2π
e−

d21
2
√
τ > 0.

Hence the Black-Scholes price of the option is an increasing function of the volatility. Fur-
thermore, it can be shown that

lim
σ→0+

C(t, S(t), K, T ) = (S(t)−Ke−rτ )+, lim
σ→+∞

C(t, S(t), K, T ) = S(t).

Therefore the function C(t, S(t), K, T, ·) is a one-to-one map from (0,∞) into the interval
I = ((S(t)−Ke−rτ )+, S(t)).

Now suppose that at some given fixed time t the real market price of the call is C̃(t) ∈ I.

Then there exists a unique value of σ, which depends on the fixed parameters T,K and
which we denote by σimp(T,K), such that

C(t, S(t), K, T, σimp(T,K)) = C̃(t).

σimp(T,K) is called the implied volatility of the option.

The implied volatility must be computed numerically (for instance using Newton’s method),
since there is no close formula for it.

The implied volatility of an option (in this example of a call option) is a very important
parameter and it is often quoted together with the price of the option.

If the market followed exactly the assumptions in the Black-Scholes theory, then the im-
plied volatility would be a constant, independent of T,K and equal to the volatility of the
underlying asset.
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In this respect, σimp(T,K) may be viewed as a quantitative measure of how real markets
deviate from ideal Black-Scholes markets.

Volatility curve

As mentioned before, the implied volatility depends on the parameters T,K. Here we are
particularly interested in the dependence on the strike price, hence we re-denote the implied
volatility as σimp(K).

If the market behaved exactly as in the Black-Scholes theory, then σimp(K) = σ for all values
of K, hence the graph of K → σimp(K) would be just a straight horizontal line.

Given that real markets do not satisfy exactly the assumptions in the Black-Scholes theory,
what can we say about the graph of the volatility curve K → σimp(K)?

Remarkably, it has been found that there exists recurrent convex shapes for the graph of
volatility curves, which are known as volatility smile and volatility skew.

In the case of a volatility smile, the minimum of the graph is reached at the strike price
K ≈ S(t), i.e., when the call is at the money. This behavior indicates that the more the call
is far from being at the money, the more it will be overpriced.

Volatility smiles have been common in the market since after the crash in October 19th, 1987
(Black Monday), indicating that this event led investors to be more cautious when trading
on options that are in or out of the money.
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