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Financial derivatives and PDE’s
Lecture 8

Simone Calogero 1
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Notation
JC X

Given T > 0, we denote by Dy the open region in the (¢, x)-plane given by Tj\\

Dr={te(0.7),z € R} = (0.7) x R. //g*/
T /

The closure and the boundary of Dy are given respectively by
Dy=[0.T| xR, dDr={t=0zecR}U{t=T,zecR}. X
Similarly we denote D} the open region
Dy ={te(0.T).2 >0} =(0,T) x (0, 00),
whose closure and boundary are given by
/7%: [0,7] x [0,00), ODF ={t=0,2>0U{t=T.z>0}U{te0,T],z =0}
Moreover we shall employ the following notation for functions spaces: For D = 1_351 or P:,
e (OF(D) is the space of k-times continuously differentiable functions w : 1’_) — @
e C13(D) is the space of functions @D) such that 9>u € C(D); W= W (,‘h x )

7

e C*(D) is the space of functions u : D — R such that u € C’“S’D) and the partial
derivatives of u up to order k extend continuously on D.

o C*(R") is the space of k-times continnously differentiable functions u : R" — R with
compact-support. We also let C2(R") = MienC*(R™)

A function u : D — R is uniformly bounded if there exists Cp > 0 such that |u(t, z)| < Cy,
for all (¢, ) € D. Unless otherwise stated, all functions are real-valued.
—

1
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1 Kolmogorov PDE’s JXE) X ® = S-f G X ol

Consider the SDE

= X = alt. X () i+ B X(0) AW () s (1)

with initial value /M at time ¢ = s. Recall that we denote {X(t;s, x}i>s the
solution, which exists and is unique under the assumptions —

jo(t,2)| + 1862 < o1+ o), ¥ (20)
a(t.) — a(t9)| + 18(t2) — 8(t,9)] < Drlx ], (20)

Most financial variables are represented by stochastic processes solving (systems of) SDE’s.

u
In this context, a problem which recurs often is to find a function § such that the process
{Y () }=0 given by Y(t) Zb(t X( )) is a martingale, where { X (¢)},=¢ is the global solution

of (1) with initial value X (0] = . To this regard we have the following result. L

T
Theorem 1. Let T > 0 and u : Dy — R such that u C'l Z,D\I) and A1 is uniformly
bounded. Assume that u satisfies the partial d&f}wentm! equal e (-\~ 2 / //

—

—_—

()ru+0:(t &)+ = ‘i t ) 0Pu= (3)

«ﬁ)?/ o
in the region Dy. Assume also that a. B satisfy the conditions (2) and let {X(t)}i=0 be D T
the unique global solution of (1) with initial value X (0) = wx. The stochastic process

{ult, X (1)) b s a martingale and satisfics y)
Kb 2t CUs (97

(.' X(t) —u(O ) [@@ ydW (r), tel0,T). (4) o

dwlrx®) 5§y xE) AA\»’(ﬂ_/_/—
du(t, X (1)) = (D w(z,xu))g + (BOu)(t, X (1)) dW (t). C\(\*\X(Hﬁ

As u solves (3), then du(t. X (1)) = (83,u)(t, X (1)) dW (t), which is equivalent to (4) (bL(_d,u::;(_. ¢ L [?‘(‘D}
w(0,X(0)) = u(0,x)). As d,u is uniformly bounded, there exists a constant C'r > 0 such
that [d.u(t,z)] < Cr and so, due also to (2a), the process Y (t) = Bd.u(t, X(t)) satisfies
[Y(1)] < Cr(1+|X(1)]). Since {X () =0 € L2(F(t)), then {Y (1) }=0 € LA(F(1)) as well and
so the Ito integral in the right hand side of (4) is a martingale. This concludes the proof of
the theorem. O

Proof. By Itd’s formula we find v
/

MAERISRI RN S (Fa B! G, }ED) b D, KED) IX ()
e — — — —

+ 30 @ (KOG AXEN AXTEY . Qj‘l? e

@ x N~ ——

o xe)d b

td t —
R R D e i
=
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9",{ Definition 1. The partial differential equation (PDE) (3) is called the backward Kol- /

—_—
mogorov equation associated to the SDE (1). We say that u : Dy — R is a strong

¥ solution of (3) in the region Dy if u € CI?iDT) Do 1s uniformly bounded and u solves (3)

for all (t,2) € Dy. Similarly, replacing Dy with Dy, one defines strong solutions of (3) in

the region Dy )‘)(5[,\%: dydta (§HA2-§* ?4»2&‘“2 QW d W, = T°\{'

Exercise 5.6 Derive the backward Kolmogorov PDE associated to the system of SDE's

J=12

Xi(s)=my, i=1,2 KE‘Q (5b)

when the Brownian motions {IWy(¢)}i=0, {Wa(l)}i>0 have constant correlation p € [—1.1].
HINT: Remember that dW; (#)dWs(t) = pdi. - -

5 dX.a(t) = O:I'(t, X1 (t), Xg(t}] dt + Z .31'_-}'(“&. ){'L(t), Xg (t))d”}(t), (5&]

SoLLTION 2

oL ’
W GEOX ) = YY) T owms QYR e e

A MACTINGALE . THES MEMNS  TUAT o\\[ (&) = (,-,’)q)\y\)i(j‘}"
¢ AW )

o\\((_\,\ < Q.L\_l H,X»(‘v‘.&@ dt + D:_QH‘,X&W K 6) g\f;((*\
NN RO I I CMT NS M) PRI GG

——

e A0, e AGOIKE 9, R ) I OLy )

\

ML 00t e gt mu sy i) v, [ R s s B i)

b ) (P ARD + Pt + ugue ) 3
v 3 71 w Ch 't x2) (%ZL(’—]-IXL xa?‘\"?zw(+lxt\k?)t "' ?u?zz (Jr‘kt\kzw ¥ FS
2z xz \ 1
+ , XZ\L (—‘( }KA."D Q%“ 2\ 4’?12?2\ ‘;?u ?ZZT * %a?n) (‘H Ky grz) 3)(1' : ><46')

+ (—’—‘5 cl\xbiﬁ“(\ X C'”BA\%? &‘V’B ’Cz:KZ(—Q

RREPIR) =(PudWt e W) (R0, + ppd W) = B Padl + pioPa TAE
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—\—? u ?zz ?&\:— A %&z%"? ul{_
So THe WillelopoNn TP VS E_,_ l Y
s 1N 9T PRI &1
The statement of Theorem 1 rises the question of whether the backward Kolmogorov PDE
admits in general strong solutions.

This problem is discussed, with different degrees of generality, in any textbook on PDE’s.

LHere we are particularly interested in which conditions ensure the unigueness of the strong

solution. To this regard we have the following theorem.
sofution

x
Theorem 2. Assume that o, 3 € CUE 0, t:)o) x R) satisfy (2a)-(2b) for all T > 0 and (t,z) €
(0. 7] xR and let { X ({1, ;)f;m be the unique global solution of (1) with initial value X (s) =
x. Let g € ("EQ]R resp. g € C*([0,00)) such that@es‘ uniformly bounded. The backward
Kolmogorov PDE

-
i i 1 .
@u(t, x)deu+ §,B(t, 2)?Pu=0, (t,x)e ﬂ, resp. (t,x) € Df,

x>

with the terminal condition /
— N < v =
w (7 ,3(7 :j()ﬂ,,cyé limu(t,z) = g(x), forallz € R, resp. x >0, / (7) K K
~ ¢ Wi
- == )

admits at most one strong solution. Moreover, when it exists, the strong solution is given by
A —
the Feynman-Kac formula:

ﬁdt{'rX(TtJ, dW(T). (9)

%
t!@XT t x)) —ul(t, M

x) = % (x)
Moreover v(T, X(T; ! x)) @(&i}/ o(f, X(t: 1, x)) = v(t,x) and in addition, by (2a)
and the fact thMb uniformly bounded, the Ito 111t(,gml 'in the right hand side of (9)isa
martingale. Hence taking the expectation we find v(t. ) = E[g(T. X( T t.x))] =ult,z). O

e LKA 86 € [ P e mad AW
/;t&[mcrxc«mﬂ/ ELSCE ) + e[s* \.\\m@ﬂ = K@)

e The function (8) is indeed the strong solution of the Kolmogorov PDE in the whole X
space x € R under quite general conditions on the terminal value g and the coefficients b
a, 3. The case when the problem is posed on the half-space x > 0 is however more T

subtle, as we shall see later for the Kolmogorov PDE associated to the CIR process.

e The conditions on the function g in Theorem 2 can be considerably weakened. In
particular the theorem still holds if one chooses g to be the pay-off function of call (or
put) options, i.e.. g(x) = (x — K),, although of course in this case the solution does
not have a smooth extension on the terminal time boundary t = 7.

4
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e It is often convenient to study the backward Kolmogorov PDE with an initial, rather
than terminal, condition. To this purpose it suffices to make the change of variable
t — T —1in (6). Letting @(t,z) = u(T —t, ), we now see that @ satisfies the PDE
————

with initial condition @(0,x) = g(ﬁ
—~—

e [t is possible to define other concepts of solution to the backward Kolmogorov PDE

than the strong one, e.g.. weak solution, entropy solution, ete. In general these solutions

are not uniquely characterized by their terminal value. In these notes we only consider

strong solutions, which, as proved in Theorem 2, are uniquely determined by (7).

oMW Al b L YT W o e qug Feldk (L)
Exercise 5.7 o x z AN . am (1)
-'D{,u ¥ (o rbxe™ & -\rzj D,E =o s v Fo

Derive the backwird Kolmogorov PDE in the form (10) associated to the linear SDE

dX(1) = (a+bX (D)) dl +ydW (1), t>s X(s)==x (11)
oo T and| verify that the—transid.&(#ensity of this process, namely
LE (y—mit,x))2 2
Yoo Pt =€ 07 :

1 bt @ b 2 2bt
———— m(l,x) =xe” + —(e" — 1), A(t) = —(e —1). (12
JEE M= D, a0 =T . 02
is a solution for all@) Find also the strong solution of the Kolmogorov PDE (in the

form (10)) in the region D;. and with initial condition -u-(O_,:r:! :fe‘}. HINT: For the second

part use the ansatz u(t. x) = e *AO+50),

—_—
As suggested by the previous exercise, the study of the backward Kolmogorov equation is
also important to derive the transition density for stochastic processes solutions of SDE’s.

In fact, it can be shown that when {X(f)};>s admits a smooth transition density, then the
latter coincides with the fundamental solution of the backwm‘f equation.
fundaimental solut

To state the result, let us denote by d(x —;y)) the d-distribution centered in mi.c., the

distribution satisfying —
— .

- /R\-i_f-'{a:)d(a: —y)dr = -¢'}(y\)1 for all v € CF(R).

A sequence of measurable functions @R)n r is said to converge to(d"(.r. — y))in the sense of
distributions i B f
lim h(y).) asn — oo, for all ¢ € C°(R).
n—+oc _—

T )= S0-7)

W TwE sepse 2F
DUASTE\RYTL DS
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= AR x (DAL
dx = 3 KD AW

\ . / X ) =x

Theorem 3. . Let { X(l:s. @)}, be the global solution of (1) with initial value X (s) = x;

recall that this solution is a Markov stochastic process.

(i) If {X(t;s,2)}i=s admits a transition density p(t, s, x,y) which is C' in the variable s
and C? in the variable x, then pll, s, . y) solves the backward Kolmogorov PDE

T o 0 \{)

~ ng+a(s':r)8,,p+ B(s:r 82p 0. 0<s<t z€R, (13) ?[ L

1S THC TupSh
o enTAC sol. 2F
limp(t, s, 2,y) = é(x — y). (14)
st # 1_% BA*C%UU)«—O'D
(i) If {X(l;s,x) = admits a transition dens.f'h; plt, s, x,y) which is C' in the variable t €0 Lo kore"
and C? in the variable y then p(t, s, T.] ) solves the forward Kolmogorov (or Fokker- PO E
Planck) PDE: —

Ntz ¢

with terminal value

o Oopt+0 (rr(! yp) — 1()3 (! y)p) =0, 9> s, € R, (15)
with initial value R
limp(t, s.x,y) = d(x —y). (16)
- V(oD i e
Example. EORDAMENT AC S 28 %E

Recall that when the functions «, 8 in (1) are time-independent, then the Markovian stochas- Aaxd) el ®”
tic process {X(t; s, )} is homogeneous and therefore the transition density, when it exists, & pAnCY
has the form p(t, s, x,y) = p.(t — s, x,y).

| | &£os-

By the change of variable s — t — s = 7 in (13), and by (15), we find that p.(7, z. y) satisfies

-

= AC e g AP

1
— 0, p. + (B 0ps + —o(2)?0%p. =0, Yo Mo Guld) (17)

as well as

$ -
d.p. + 0y /g{p*) - —dg (e(y)*p.) = 0. Fo W s (18)

NLH«GO?-P\-'

with the initial condition p,(0,z,y) = é(x — y).
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B bow NN porop 3 A =0 %(kw =

v process with transition density
We AN
—) _ wg"
e (19)

For example the Brownian motion is a M:

In this case, (17) and (18) both reduce to the heat eqnatiml(\—‘@ﬂ)‘ + 30%p. = @

It is straightforward to verify that (19) satisfies the heat equation for (7.2) € (0.00) x R.

0.1,y) = d(x —y)is

also verified, that is A/—’_\J

; V(s — il or all ¥ € CC(R) and
llz}fl) ./r:z po(m o, y)0(y) dy = ¢¥(x), forall ¥ € CF(R) and x € R.

Now we show that, as claimed in Theorem 3, the initial condition p,

Indeed with the change of variable y = x + /Tz, we have

s X
[pvway=— [ 24 _ )
0.2, ) (y) dy = —= e 3 = (@),

z
as claimed. L - S Q)

(
@ﬁ-\‘ e == {\i/(,‘ﬁw 0\“) -
(< L”‘(=Y*'\Qv.2
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Exercise 5.7

den 1 februari 2021 15:40

—

? —_—
- . w _\,(g «\’\b;apb?&\k +l “() Dx“ “;0> X>o0 , ¢ b &\
—t — 2 ot

-

’r

Mo s
@,,\ - e—x}\(P) \a\\ -

W = u(-xALﬂ-%m)é—
o= w (= A &=
Dw o= WA

oy Ale) = 4 B0 =

er “
- N xe £ bx)ocu “’% %zb?x“ =W i"‘ AU’W ¥ %tﬂ - (o ¥5x) A{Y)
- S Lo

=0
AR + o - (= +b )N ) 2 MY = o

Tob ALL &,@ eg—r
X (A -—\>Aw = % -a N 4»32\\6270(2

=0
L] &t
q=v A= SA [AQ'W: ce
= Q.,A - f\—\élf\’z
’ t
UWSIRG  Mo) = 3 HNE  FInND C = A = A—C’\’\?— (G
t bt
S = evcb —A;/ﬁte '\,/ }>"e “ 2 z\p’t QR
) D M) = S(me e > G
=1
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