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The CIR process $ (x) = @ ﬁ?r(_ $x

A CIR process is a stochastic process { X () }=, satisfving the SDE — %

e
AX(t) < a®— X (t)) dt + /X (0)dW (2), @ (1)
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where a, b, ¢ are constant (¢ # 0).

CIR processes are used in finance to model the stock volatility in the Heston model and the

spot interest rate of bonds in the CIR mmo N3ED AS M MePEC © v ‘:\}
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Note that the SDE (1) is not of the form considered so far, as the function §(t, r) = ¢y/r is
defined only for x = 0 and, more importantly, it is not Lipschitz continuous in a neighborhood

of # = 0. Nevertheless it can be shown that (1) admits a unique global solution for all = > 0.

Clearly the solution satisfies @ (t) > 0 as., for all ¢ zﬁothcrwisc the Ito integral in the
right hand side of (1) would not even be defined.

For future applications, it is important to LW r the solution can hit zero in finite

time with positive probability. This question is answered in the following theorem.

Theorem 1. Let {X(t)}i»0 be the CIR process with initial value X(0) = x > 0 at time
t =0. Define
7o =inf{t > 0: X(t) = 0}.

Then P(r < oo) = 0 if and only 'éfgab > /2, which is called Feller’s condition.
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The following theorem shows how to build a CIR process from a family of linear SDE’s.

Theorem 2. Let {Wi(t)}i0, ... {Wn(t)}e=o be “ = 2 independent Brownian motions and

assume that {X,(t)}iz0,.. ., {X-\ }wn solve
LANTAE 9 , .
e ———— dX;(t)= X(r)n'i—i-zdll i(t), j=1,....N, X;(0)=ux R, (2)
W -
(‘W-NT\f(p’
EnDELL where .0 are deterministic constant. There exists o Brownian motion {W (t)}i=o such that
/’_"__k_
wule the stochastic process { X (t)}i=o0 given by _
SoluTeN @ T
TS SDE
= - i
, §o2 dX )= o (b= X)) +© X&\f\;—")g)
solves (1) witha =60, c=0 and b =E4—£)/ =
- - oh - e ()

Proof. Let X(t) = Z X; ()2, Applying 1té’s formula we find, after straightforward cal-

culations, e (—ﬂ )/ q\(?( [‘\'j\ Lkzx (,-\—WJ\X (‘\-’) A M Q\’)J\)( (‘k’\}
dX(t _(@ OX (1)) dt @ij(t ) dW;(

Letting a =#, ¢ = o, h=2N ? and

AW (t) <

=

WANT
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o

we obtain that X (t) satisfies

dX(t) = alb— X(t)) dt + e/ X (t) dW(t).

Thus {X (1) }+=0 is a CIR process, provided we prove that {W(#)},~o is a Brownian motion.
We shall use the so-called Lévy characterization theorem:

Let {M(t)}i=0 be a WIP relative to a filtration {F(t)}i=0. Assume that (i) I M(0) =0
a.s., (ii) the paths t — M(t w) are a.s. continuous and (iti) dM(t)dM(t) = dt.” Then

{JI V}iso is a Brownian motion and {F(t)};>0 a non-anticipating filtration thereof. (OW [Lw Cﬂ‘\s
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Clearly, W(0) = 0 a.s. and the paths t — W(t,w) are a.s. continuous. Moreover {W(t)}s=9

is a martingale, as it is the sum of martingale It6 integrals. Hence to conclude that {1 (t) }i=0

is a Brownian motion we must show that dW (#)dW(t) = dt. We have - % Jt
T

AT = 75D Z X0 (VW) = 5 Zj X)X, (03t

=@z=: t)dt = dt,

where we used that dW;(t)dW;(t) = d;;dt, since the Brownian motions are independent. O

e

=2

Remark:

The process {X(f)}i>0 in Theorem 2 is said to be a weak solution of (1), because the

Brownian motion {W(t)};=q in the SDE is not given advance, but rather it depends on the p T
solution itself N > ->
e Yy — F ¥

Sine@ in the previous theorem implies the Feller condition@} c2/2, then (provided
x; # 0 for some j, so that X(0) > 0) the CIR process constructed in Theorem 2 does not N 72

hit zero, see Theorem 1.

Moreover, since the solution of (2) is SoLvTO N 2 v .
,  oR RSTEWR D KER
s» &
then the random variables X;(¢),..., Xx(#) are normally distributed with N .
L X ()= SN )
E[X;(t) = e 2%x;, Var[ X, ()] = (e 300 _ 1), )=
49\_,;7 ‘e tue suv of

It follows that the CIR process constructed Theorem 2 is non-central y? distributed.  SBN reg D
¢ }m W RV,

The following theorem shows that this is a general property of CIR processes.
(NSEPENDENT
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Theorem 3. Assume ab = 0. The CIR process starting at © = 0 at time t = s saotisfies

—

- X(t;s,2) =§?}’, Y(t;s,m)é@b

where

_ dab

o) = B = 2kze =),
8

Proof. As the CIR process is a time-homogeneous Markov process, it is enough to prove the
claim for s = 0.

Let X(t) = X(t;0,z) for short. The characteristic function of X(¢) is given by

Yit)

. - "
O (u) = Bl 0] = Ble™ 3] = Oy (5)

where Y'(t) = Y(¢,0,2). Thus the statement of the theorem is equivalent to

Au
exp ( ~ 3y aik])

hit,u) =46 )= ———— 3
8,20 = O (1) =~ Q
g S
where k = U_f_(:‘,_)c. L0 = % B = 2kxre ",
To prove this denote p(t, 0, x,y) = p.(t, x,y) the transition density of X (¢). Then
hit,u) = / e, (¢, x,y) dy. (4)
R
p. solves the Fokker-Planck equation
) . 1
A + 0y (alb — y)p.) — 59,(yp.) =0, (5)

with initial datum p.(0, z,y) = é(z — y).

After straightforward calculations we derive the following equation on h
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h — iabuh + (au — {Eiug)ﬁuh =0. (Ga)

The initial condition for equation (6Ga) is

R0, u) = ™, (6b)

which is equivalent to p, (0,2, y) = §(z — y).

Now the proof can be completed by showing that (3) satisfies the initial value problem (6a)-

(6b).
m

By Theorem 7 , for ab > 0, the density of the CIR process starting at x is fep(y:t — s, 2),
where

. q/2 . )
Fem{y: m.@) = k"2 exp(=h(y +xe ) (2)" L(2ke 2 /mm), q=F -1 ()

Finally we discuss briefly the question of existence of strong solutions to the Kolmogorov
equation for the CIR process, which is

2
du+ alb — x)0u + %xﬁiu =0, (tx)eD}, w(l x)=glx). (8)

Note carefully that the Kolmogorov PDE is now defined only for & > 0, as the initial value
x in (1) must be positive,

Now, if a strong solution of (8) exists, then it must be given by u(t, ) = E[g(X (T, x))].

Supposing ab > 0, then

Mtﬂ:EmX@mﬂN=£kamT—tﬂmw@,

where fomr(y; 7, 2) is given by (7). Using the asymptotic behavior of for(y; 7, 2) as @ — 07,
it can be shown d,u(t, z) is bounded near the axis x = 0 only if the Feller condition ab > ¢2/2
is satisfied.

Hence u is the (unique) strong solution of (8) if and only if ab > ¢?/2.
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