Lecture 11 # Financial derivatives and PDE's Lecture 11 Simone Calogero February 4^{th} , 2021 # The risk-neutral pricing formula Consider the European derivative with pay-off Y and time of maturity T > 0. We assume that Y is $\mathcal{F}_{W_i}(\underline{T})$ -measurable. Suppose that the derivative is sold at time $\hat{t} < T$ for the price $\Pi_Y(t)$ The first concern of the seller is to hedge the derivative, that is to say, to invest the amount $\Pi_Y(t)$ in such a way that the value of the seller portfolio at $\underline{\underline{\text{time }}} T$ is enough to pay-off the buyer of the derivative. The purpose of this section is to define a theoretical price for the derivative which makes it possible for the seller to set-up an hedging portfolio. We argue under the following assumptions: - 1. the seller is only allowed to invest the amount $\Pi_Y(t)$ in the <u>1+1 dimensional market</u> consisting of the underlying stock and the <u>risk-free</u> asset (Δ -**hedging**); - 2. the investment strategy of the seller is self-financing. It follows that the sought hedging portfolio is not an arbitrage. We may interpret this fact as a "fairness" condition on the price of the derivative $\Pi_Y(t)$. In fact, if the seller can hedge the derivative and still be able to make a risk-less profit on the underlying stock, this may be considered unfair for the buyer. Consider the 1+1 dimensional market $$dS(t) = \underbrace{\mu(t)S(t)dt} + \underbrace{\sigma(t)S(t)dW(t)}, \quad dB(t) = B(t)\underbrace{r(t)dt},$$ where $\underline{\sigma(t)} > 0$ almost surely for all times. Let $\{h_S(t), h_B(t)\}_{t\geq 0}$ be a self-financing portfolio invested in this market and let $\{V(t)\}_{t\geq 0}$ be its value. The discounted value $\{V^*(t)\}_{t\geq 0}$ of the portfolio is a $\widetilde{\mathbb{P}}$ -martingale relative to the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$, hence $$D(t)V(t) = \widetilde{\mathbb{E}}[D(T)V(T)|\mathcal{F}_W(t)].$$ V*(+) = D(+) V(+) Requiring the hedging condition V(T) = Y gives $$\underbrace{V(t)} = \underbrace{\frac{1}{\mathcal{D}(t)}}_{\mathbb{E}[D(T)Y|\mathcal{F}_{W}(t)]}$$ Since D(t) is $\mathcal{F}_W(t)$ -measurable, we can move it inside the conditional expectation and write the latter equation as $$V(t) = \widetilde{\mathbb{E}}[Y \underbrace{D(T)}_{D(t)} \mathcal{F}_{W}(t)] = \widetilde{\mathbb{E}}[Y \exp(-\int_{t}^{T} r(s) \, ds) | \mathcal{F}_{W}(t)],$$ where we used the definition $D(t) = \exp(-\int_0^t r(s) ds)$ of the discount process. Assuming that the derivative is sold at time t for the price $(\Pi_{\underline{Y}}(t))$, then the value of the seller portfolio at this time is precisely equal to the premium $\Pi_Y(t)$, which leads to the following definition. **Definition 1.** Let Y be a $\mathcal{F}_W(T)$ -measurable random variable with finite expectation. The risk-neutral price (or fair price, or arbitrage-free price) at time $t \in [0,T]$ of the European derivative with pay-off Y and time of maturity T > 0 is given by $$\Pi_{Y}(t) = \mathbb{E}[\hat{Y} \exp(-\int_{t}^{T} \underline{r(s) \, ds}) | \mathcal{F}_{\underline{W}}(t)], \qquad (1)$$ i.e., it is equal to the value at time t of any self-financing hedging portfolio invested in the underlying stock and the risk-free asset. **Theorem 1.** Consider the 1+1 dimensional market $$\Rightarrow dS(t) = \mu(t)S(t)dt + \sigma(t)S(t)dW(t), \quad dB(t) = B(t)r(t)dt,$$ where $\sigma(t) > 0$ almost surely for all times. Assume that the European derivative on the stock with pay-off Y and time of maturity T>0 is priced by (1) and let $\Pi_Y^*(t)=D(t)\Pi_Y(t)$ be the discounted price of the derivative. Then the following holds. (i) The process $\{\Pi_Y^*(t)\}_{t\in[0,T]}$ is a $\widetilde{\mathbb{P}}$ -martingale relative to $\{\mathcal{F}_W(t)\}_{t\supseteq0}$. (ii) There exists a stochastic process $\{\Delta(t)\}_{t\in[0,T]}$, adapted to $\{\mathcal{F}_W(t)\}_{t\geq0}$, such that schastic process $$\{\Delta(t)\}_{t\in[0,T]}$$, adapted to $\{\mathcal{F}_W(t)\}_{t\geq 0}$, such that $$(\Pi_Y^*(t) = \Pi_Y(0) + \int_0^t \Delta(s)d\widetilde{W}(s), \quad t \in [0,T].$$ $$(2)$$ $$(t), h_B(t)\}_{t\in[0,T]} \text{ given by } (t)$$ $$(2)$$ $$(L_S(t)) = (\Pi_Y(t) - h_S(t)S(t))/B(t)$$ $$(3)$$ (iii) The portfolio $\{h_S(t), h_B(t)\}_{t \in [0,T]}$ given by $$h_S(t) = \underbrace{\frac{\Delta(t)}{D(t)\sigma(t)S(t)}}, \quad h_B(t) = (\Pi_Y(t) - h_S(t)S(t))/B(t)$$ is self-financing and replicates the derivative at any time, i.e., its value V(t) is equal to $\Pi_Y(t)$ for all $t \in [0,T]$. In particular, $V(T) = \Pi_Y(T) = Y$, i.e., the portfolio is hedging the derivative. Proof. (i) We have have $$\Pi_{Y}^{*}(t) = \widetilde{\mathbb{E}}[\Pi_{Y}(T)D(T)|\mathcal{F}_{W}(t)] = \widetilde{\mathbb{E}}[\Pi_{Y}^{*}(T)|\mathcal{F}_{W}(t)],$$ where we used that $\Pi_Y(T) = Y$. Hence, for $s \leq t$, and using Theorem ??(v), $$\widetilde{\mathbb{E}}[\Pi_Y^*(t)|\mathcal{F}_W(s)] = \widetilde{\mathbb{E}}[\widetilde{\mathbb{E}}[\Pi_Y^*(T)|\mathcal{F}_W(t)]|\mathcal{F}_W(s)] = \widetilde{\mathbb{E}}[\Pi_Y^*(T)|\mathcal{F}_W(s)] = \Pi_Y^*(s))$$ This shows that the discounted price of the derivative is a P-martingale relative to the filtration $\{F_W(t)\}_{t>0}$. $$Z(t) = e^{-\int_0^t \phi(s) dw(s)} - 3\frac{1}{2} \int_0^t \phi(s)^2 ds$$ i.e., the stochastic process $\{Z(t)\Pi_Y^*(t)\}_{t\in[0,T]}$ is a \mathbb{P} martingale relative to the filtration Hence, by the <u>martingale</u> representation theorem, there exists a stochastic process $\{\Gamma(t)\}_{t\in[0,T]}$ adapted to $\{\mathcal{F}_W(t)\}_{t\geq 0}$ such that (0) YT = (0), T(0) S) $Z(t)\Pi_Y^*(t) = \Pi_Y(0) + \int_0^t \Gamma(s)d\underline{W}(s), \quad t \in [0,T],$ i.e., 11/2 (+) = (1/2 (+) S(+)) = (+) On the other hand, by Itô's product rule, $$d\Pi_{Y}^{*}(t) = d(Z(t)\Pi_{Y}^{*}(t)/Z(t)) = \underline{d(1/Z(t))Z(t)\Pi_{Y}^{*}(t) + 1/Z(t)}\underline{d(\underline{Z(t)\Pi_{Y}^{*}(t))}} + \underline{d(1/Z(t))d(\underline{Z(t)\Pi_{Y}^{*}(t))}}.$$ (5b) By Itô's formula and $dZ(t) = -\theta(t)Z(t)dW(t)$, we obtain $$\underline{d(1/Z(t))} = -\frac{1}{Z(t)^2} \underline{dZ(t)} + \frac{1}{Z(t)^3} \underline{dZ(t)} \underline{dZ(t)} \underline{dZ(t)} = \frac{\theta(t)}{Z(t)} d\widetilde{W}(t). \tag{5c}$$ Hence $$d(1/Z(t))d(Z(t)\Pi_Y^*(t)) = \frac{\theta(t)\Gamma(t)}{Z(t)}dt. \tag{5d}$$ Combining Equations (5) we have $$d\Pi_Y^*(t) = \Delta(t)d\widetilde{W}(t), \quad \text{where} \quad \Delta(t) = \theta(t)\Pi_Y^*(t) + \frac{\Gamma(t)}{Z(t)},$$ which proves (2) (iii) It is clear that the portfolio $\{h_S(t), h_B(t)\}_{t\in[0,T]}$ given by (3) is adapted to $\{\mathcal{F}_W(t)\}_{t\geq0}$. By the definition of $h_B(t)$ we have $V(t) = h_S(t)S(t) + h_B(t)B(t) = \Pi_Y(t)$, hence the portfolio replicates the derivative. Furthermore (2) entails that $V^*(t) = \Pi_Y^*(t)$ satisfies the assumption in Theorem 6.1(ii) (see previous lecture), hence $\{h_S(t), h_B(t)\}_{t \in [0,T]}$ is a self-financing portfolio, and the proof is completed. I WE WANT TO SHOW THAT $V^*(t) = V(0) \in \int_0^t D(s) h_s(s) e(s) S(s) dW(s)$ SINCE V(t) = Tiy(t), THEN WE WANT TO SHOW THAT TIY(t) = Tiy(0) + $\int_0^t D(s) h_s(s) e(s) S(s) dW(s)$ THEN THIS FORMALL IS ESUIVALENT TO THE PART (ie) #### Put-call parity Being defined as a conditional expectation, the risk-neutral price (1) can be computed exnlicitly only for simple models on the market narameters ## Put-call parity Being defined as a conditional expectation, the risk-neutral price (1) can be computed explicitly only for simple models on the market parameters. However the formula (1) can be used to derive a number of general qualitative properties on YCALL = (SCT) - KE)+ the fair price of options. The most important is the put-call parity relation. Ypur = (k-S(T)) + **Theorem 2.** Let $\Pi_{call}(t)$ be the fair price at time t of the European call option on the stock with maturity T > t and strike K > 0. Let $\Pi_{put}(t)$ be the price of the European put option with the same strike and maturity. Then the put-call parity identity holds: $$\Pi_{\text{call}}(t) - \Pi_{\text{put}}(t) = S(t) - KB(t,T)$$ $$Pok \text{ which is the point of th$$ where $B(t,T) = \widetilde{\mathbb{E}}[D(T)/D(t)|\mathcal{F}_W(t)]$ is the fair value at time t of the ZCB with face value=1 and maturity T. and maturity T. *Proof.* The pay-off of the call/put option is $$Y_{\rm call} = (S(T)-K)_+, \quad Y_{\rm put} = (K-S(T))_+.$$ Using $(x - K)_+ - (K - x)_+ = (x - K)$, for all $x \in \mathbb{R}$, we obtain $$\Pi_{\text{call}}(t) - \Pi_{\text{put}}(t) = \widetilde{\mathbb{E}}\underbrace{D(t)^{-1}D(T)(S(T) - K)_{+}|\mathcal{F}_{W}(t)]}_{= \widetilde{\mathbb{E}}[D(t)^{-1}D(T)(K - S(T))_{+}|\mathcal{F}_{W}(t)]}_{= D(t)^{-1}\widetilde{\mathbb{E}}[D(T)S(T)|\mathcal{F}_{W}(t)] - K\widetilde{\mathbb{E}}[D(t)^{-1}D(T)|\mathcal{F}_{W}(t)]}$$ $$= S(t) - KB(t, T),$$ where in the last step we use that the discounted stock price process is a martingale in the risk-neutral probability measure. >> DHT + E[S*(T)| FW(t)] = DH) + S*(+) = S(t)