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The Asian option

The Asian call option with arithmetic average, strike K > 0 and maturity T > 0 is the
non-standard European style derivative with pay-off

YAC =

(
1

T

∫ T

0

S(t) dt−K
)

+

,

while for the Asian put the pay-off is

YAP =

(
K − 1

T

∫ T

0

S(t) dt

)
+

.

We study the Asian option in a Black-Scholes market, i.e., assuming that the market pa-
rameters are deterministic constants.

The risk-neutral price at time t ≤ T of the Asian call is therefore given by

ΠAC(t) = e−r(T−t)Ẽ[(Q(T )/T −K)+|FW (t)],

where

Q(t) =

∫ t

0

S(τ) dτ, S(τ) = S(0)e(r−
σ2

2
)τ+σW̃ (τ).
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Exercise 1. Prove the following put-call parity identity for Asian options:

ΠAC(t)− ΠAP(t) =
Q(t)

T
e−r(T−t) +

S(t)

rT
(1− e−r(T−t))−Ke−r(T−t). (1)
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Exercise 2. Let r ≥ 0. Prove the following inequalities between the Black -Scholes price of
the Asian call and the European call options:

ΠAC(0) <
1− e−rT

rT
C(0, S0, K, T ).

Conclude from this that for r ≥ 0 the Asian call is less valuable than the European call.
HINT: You need the Jensen inequality for integrals: f( 1

b−a

∫ b
a
g(x) dx) ≤ 1

b−a

∫ b
a
f(g(x)) dx,

for all b > a and for all functions f, g such that f is convex.
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A simple closed formula for the price of the Asian option with arithmetic average is not
available.

In this lecture we discuss two numerical methods to price the Asian option with arithmetic
average, namely the finite difference method applied to the pricing PDE and the Monte
Carlo method applied to the risk-neutral pricing formula (at time t = 0).

The PDE method

To price the Asian option with arithmetic average using the PDE method we first observe
that the stochastic processes {Q(t)}t∈[0,T ], {S(t)}t∈[0,T ] satisfy the system of SDE’s

dQ(t) = S(t) dt, dS(t) = rS(t) dt+ σS(t) dW̃ (t).

By the Markov property of SDE’s it follows that the risk-neutral price of the Asian call
satisfies

ΠAC(t) = c(t, S(t), Q(t)). (2)

for some measurable function c.

Theorem 1. Let c : [0, T ] × (0,∞)2 → (0,∞) be the strong solution to the terminal value
problem

∂tc+ rx∂xc+ x∂yc+
σ2

2
x2∂2xc = rc, t ∈ (0, T ), x, y > 0 (3a)

c(T, x, y) = (y/T −K)+, x, y > 0. (3b)

Then (2) holds. Moreover the number of shares of the stock in the self-financing hedging
portfolio is given by hS(t) = ∂xc(t, S(t), Q(t)).

Proof. We have

d(e−rtc(t, S(t), Q(t)) = e−rt[∂tc+ rx∂xc+ x∂yc+
σ2

2
x2∂2xc− rc](t, S(t), Q(t)) dt

+ e−rt∂xc(t, S(t))σS(t)dW̃ (t).

As c satisfies (3), then

d(e−rtc(t, S(t), Q(t)) = e−rt∂xc(t, S(t), Q(t))σS(t)dW̃ (t). (4)

4



It follows that the process {e−rtc(t, S(t), Q(t))}t∈[0,T ] is a P̃-martingale relative to {FW (t)}t∈[0,T ].
In particular

e−rT Ẽ[c(T, S(T ), Q(T ))|FW (t)] = e−rtc(t, S(t), Q(t)), T ≥ t.

Using c(T, S(T ), Q(T )) = (Q(T )/T −K)+ proves (2). Moreover by (4) the discounted value
of the Asian call satisfies

Π∗AC(t) = ΠAC(0) +

∫ t

0

e−rτ∂xc(τ, S(τ), Q(τ))σS(t) dW̃ (τ),

hence the number of shares of the stock in the hedging portfolio is hS(t) = ∂xc(t, S(t), Q(t)).

Exercise 3. Use Theorem 1 to give an alternative proof of the put-call parity (1).
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A simple closed formula solution for the problem (3) is not available, hence one needs to rely
on numerical methods to find approximate solutions.

One such method is the finite difference method described in Chapter ??. To apply this
method one needs to specify the boundary conditions for (3) at infinity and for {x = 0, y >
0}, {y = 0, x > 0}.

Concerning the boundary condition at x = 0, let c̄(t, y) = c(t, 0, y).

Letting x = 0 in (3) we obtain that c̄ satisfies ∂tc̄ = rc̄ and c̄(T, y) = (y/T − K)+, from
which we derive the boundary condition

c(t, 0, y) = e−r(T−t)
( y
T
−K

)
+
. (5)

As to the boundary condition when y → ∞, we first observe that the Asian put becomes
clearly worthless if Q(t) reaches arbitrarily large values.

Hence the put-call parity (1) leads us to impose

c(t, x, y) ∼ y

T
e−r(T−t), as y →∞, for all x > 0 (6)

The boundary conditions at y = 0 and x→∞ are not so obvious. The next theorem shows
that one can avoid giving these boundary conditions by a suitable variable transformation.

Theorem 2. Let u : [0,∞)× R→ [0,∞) be the strong solution to the problem

∂tu+
σ2

2
(γ(t)− z)2∂2zu = 0, t ∈ (0, T ), z ∈ R (7a)

u(T, z) = (z)+, lim
z→−∞

u(t, z) = 0, lim
z→∞

(u(t, z)− z) = 0, t ∈ [0, T ), (7b)

where γ(t) = 1−e−r(T−t)

rT
. Then the function

c(t, x, y) = xu

(
t,

1

rT
(1− e−r(T−t)) +

e−r(T−t)

x

( y
T
−K

))
(8)

solves (3) as well as (5)-(6)
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The Monte Carlo method

A very popular method to compute numerically the price of non-standard derivatives is
the Monte Carlo method. In this section we describe briefly how the method works for
Asian options with arithmetic average and leave the generalization to other derivatives as
an exercise.

The crude Monte Carlo method

The Monte Carlo method is, in its simplest form, a numerical method to compute the
expectation of a random variable. Its mathematical validation is based on the Law of
Large Numbers, which states the following: Suppose {Yi}i≥1 is a sequence of i.i.d. random
variables with expectation E[Yi] = µ. Then the sample average of the first n components of
the sequence, i.e.,

Y =
1

n
(Y1 + Y2 + · · ·+ Yn),

converges (in probability) to µ as n→∞.

The law of large numbers can be used to justify the fact that if we are given a large number
of independent trials Y1, . . . , Yn of the random variable Y , then

E[Y ] ≈ 1

n
(Y1 + Y2 + · · ·+ Yn).

To measure how reliable is the approximation of E[Y ] given by the sample average, consider
the standard deviation of the trials Y1, . . . , Yn:

sY =

√√√√ 1

n− 1

n∑
i=1

(Y − Yi)2.

A simple application of the Central Limit Theorem proves that the random variable

µ− Y
sY /
√
n

converges in distribution to a standard normal random variable. We use this result to show
that the true value µ of E[Y ] has about 95% probability to be in the interval

[Y − 1.96
sY√
n
, Y + 1.96

sY√
n

]. (9)

Indeed, for n large,

P
(
−1.96 ≤ µ− Y

sY /
√
n
≤ 1.96

)
≈
∫ 1.96

−1.96
e−x

2/2 dx√
2π
≈ 0.95.
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In the applications to options pricing, the random variable Y is the pay-off of a European
derivative. Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time t = 0 of the European derivative with pay-off
Y and maturity T > 0 with the sample average

ΠY (0) = e−rT
Y1 + . . . Yn

n
, (10)

where Y1, . . . , Yn is a large number of independent trials of the pay-off. Each trial Yi is
determined by a path of the stock price. Letting 0 = t0 < t1 < · · · < tN = T be a partition
of the interval [0, T ] with size ti − ti−1 = h, we may construct a sample of n paths of the
geometric Brownian motion on the given partition with the following simple Matlab function:

function Path=StockPath(s,sigma,r,T,N,n)

h=T/N;

W=randn(n,N);

q=ones(n,N);

Path=s*exp((r-sigma^2/2)*h.*cumsum(q’)+sigma*sqrt(h)*cumsum(W’));

Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian motion with mean of
log return α = r − σ2/2, which means that the geometric Brownian motion is risk-neutral.
This is of course correct, since the expectation in (10) that we want to compute is in the risk-
neutral probability measure. In the case of the Asian call option with arithmetic average,
strike K and maturity T the pay-off is given by

Y =

(
1

T

∫ T

0

S(t) dt−K
)

+

≈

(
1

N

N∑
i=1

S(ti)−K

)
+

.

The following function computes the approximate price of the Asian option using the Monte
Carlo method:

function [price, conf95]=MonteCarlo AC(s,sigma,r,K,T,N,n)

tic

stockPath=StockPath(s,sigma,r,T,N,n);

payOff=max(0,mean(stockPath)-K);

price=exp(-r*T)*mean(payOff);

conf95=1.96*std(payOff)/sqrt(n);

toc

The function also return the 95% confidence interval of the result. For example, by running
the command

[price, conf95]=MonteCarlo AC(100,0.5,0.05,100,1/2,100,1000000)
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we get price=8.5799, conf95=0.0283, which means that the Black-Scholes price of the Asian
option with the given parameters has 95% probability to be in the interval 8.5799± 0.0283.
The calculation took about 4 seconds. Note that the 95% confidence is 0.0565/8.5799∗100 ≈
0.66% of the price.

Control variate Monte Carlo method

The crude Monte Carlo method just described can be improved in a number of ways. For
instance, it follows by (9) that in order to shrink the confidence interval of the Monte Carlo
price one can try to reduce the standard derivation s. There exist several methods to decrease
the standard deviation of a Monte Carlo computation, which are collectively called variance
reduction techniques. Here we describe the control variate method.

Suppose we want to compute E[Y ]. The idea of the control variate method is to introduce
a second random variable Z for which E[Z] can be computed exactly and then write

E[Y ] = E[X] + E[Z], where X = Y − Z.

Hence the Monte Carlo approximation of E[Y ] can now be written as

E[Y ] ≈ X1 + · · ·+Xn

n
+ E[Z],

where X1, . . . , Xn are independent trials of the random variable X. This approximation
improves the crude Monte Carlo estimate (without control variate) if the sample average
estimator of E[X] is better than the sample average estimator of E[Y ]. Because of (9), this
will be the case if (sX)2 < (sY )2. It will now be shown that the latter inequality holds
if Y, Z have a positive large correlation. Letting Y1, . . . , Yn be independent trials of Y and
Z1, . . . , Zn be independent trials of Z, we compute

(sX)2 =
1

n− 1

n∑
i=1

(X −Xi)
2 =

1

n− 1

n∑
i=1

((Y − Z)− (Yi − Zi))2

= (sY )2 + (sZ)2 − 2C(Y, Z),

where C(Y, Z) is the sample covariance of the trials (Y1, . . . , Yn), (Z1, . . . , Zn), namely

C(Y, Z) =
n∑
i=1

(Y − Yi)(Z − Zi).

Hence (sX)2 < (sY )2 holds provided C(Y, Z) is sufficiently large and positive (precisely,
C(Y, Z) > sZ/

√
2). As C(Y, Z) is an unbiased estimator of Cov(Y, Z), then the use of the

control variate Z will improve the performance of the crude Monte Carlo method if Y, Z
have a positive large correlation.
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