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Local and Stochastic volatility models

In this lecture we present a method to compute the risk-neutral price of European derivatives
when the market parameters are not deterministic functions.

We first assume that the interest rate of the money market is constant, i.e., r(¢) = r, which
is quite reasonable for derivatives with short maturity such as options; stochastic interest
rate models are important for pricing derivatives with long time of maturity, e.g. coupon
bonds.

Assuming that the derivative is the standard European derivative with pay-off function ¢
and maturity 7', the risk-neutral price formula becomes

Iy (t) = e "E[g(S(D)Fw (@), 7=T—t. (1)

Motivated by our earlier results on the Black-Scholes price and we attempt to re-write the
risk-neutral price formula in the form

Iy (t) = vy(t, S(t)) forall t € [0,T7, for all T > 0, (2)

for some function v : D_;C — (0, 00), which we call the pricing function of the derivative.

By , this is equivalent to

E[g(S(T))|Fw ()] = ¢ v, (£, S(1)) (3)
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i.e., to the property that {S(t)}+>0 is a Markov process in the risk-neutral probability measure

P, relative to the filtration {Fy (¢)}i>o.

At this point it remains to understand for which stochastic processes {o(t)};>0 does the
generalized geometric Brownian motion satisfies this Markov property.

We have seen that this holds in particular when {S()};>0 satisfies a (system of) stochastic
differential equation(s).

Next we discuss two examples which encompass most of the volatility models used in the
applications: Local volatility models and Stochastic volatility models.

Local volatility models

A local volatility model is a special case of the generalized geometric Brownian motion
in which the instantaneous volatility of the stock {o(t)}>0 is assumed to be a deterministic
function of the stock price S().

Given a continuous function § : [0,00) x [0,00) — (0,00), we then let

o(t)S(t) = B(t, S(t)), (4)

(and r(t) = r) into the geometric Brownian motion, so that the stock price process {S(t) }+>0
satisfies the SDE

dS(t) = rS(t)dt + B(t, S(t))dW (t), S(0) =S, > 0. (5)

We assume that this SDE admits a unique global solution.

In the following we shall also assume that the solution {S(¢)}:>0 of (5)) is non-negative a.s.
for all t > 0.

Note however that the stochastic process solution of will in general hit zero with positive
probability at any finite time.

For example, letting §(¢,z) = y/x, the stock price is a CIR process with b = 0 and so,
according to Theorem ??, S(t) = 0 with positive probability for all ¢ > 0.

Theorem 1. Let g € G and assume that the Kolmogorov PDE
1
Oyu + red,u + §B(t, z)?Pu=0 (t,z)€ D, (6)
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associated to (B) admits a (necessarily unique) strong solution in the region Df satisfying
u(T,z) = g(x). Let also
vy(t,z) = e Tult, x).

Then we have the following.

(1) v, satisfies X
Oy + rroyv, + 55(1&, :c)2a§vg =rv, (t,z)€ Dj, (7)

and the terminal condition
vg(T, ) = g(). (8)

(ii) The price of the European derivative with pay-off Y = g(S(T)) and maturity T > 0 is
given by (2).

(iii) The portfolio given by
hs(t) = Ouvg(t, S(t)),  hp(t) = (y(t) — hs(t)S(t))/B(t)

1s a self-financing hedging portfolio.

Proof. (i) 1t is straightforward to verify that v, satisfies (7).

(ii) Let X () = v,(t, S(t)). By It0’s formula we find

dX (t) = (Opuy(t, S(t)) + rS(t)duvy(t, S(1)) + %5(@ S(t))*07v,(t, S(t)))dt
+ B(t, S(£))Buuy (¢, S(£))dW ().
Hence
d(e X (1)) = e (D, + radyv, + %B(t, V2P0, — 1v,)(t, S()dt
e B, S(1)) Dy (t, S(E))dW ().

As v,(t, x) satisfies , the drift term in the right hand side of the previous equation is zero.
Hence

e " (t, S(t)) = vy(t, So) +/0 e "B (u, S(u))0,vy(u, S(u))dW (u). (9)

It follows that! the stochastic process {e v, (¢, S(t)) }io is a P-martingale relative to { Fyy (£) }iso.
Hence

Ele ™" Tv, (T, S(T))|Fw (t)] = e u,(t, S(t)), forall0<t<T.

'Recall that we assume that Ito’s integrals are martingales!



Using the boundary condition , we find

vy(t, S(t)) = e E[g(S(T))| Fw (1)),
which proves .
(iii) Replacing Iy () = v,y(¢, S(t)) into (9)), we find

I3 (£) = Ty (0) + /0 e B(u, S(w))Byv, (u, S(w))dW (w).

Hence the claim on the hedging portfolio follows.

Example: The CEV model

For the constant elasticity variance (CEV) model, we have 3(t,S(t)) = 0S(t)°, where
o >0, 0 > 0 are constants.

The SDE for the stock price becomes

dS(t) = rS(t)dt + oS’ dW (L), S(0) = Sy > 0. (10)

For 6 = 1 we recover the Black-Scholes model.

For 9 # 1, we can construct the solution of using a CIR process, as shown in the
following exercise.



Exercise 1. Given o,7 and § # 1, define

o2 1
0 =2 1), e= =200~ 1), b= @8~ 1), 6= e

Let {X (t)}+>0 be the CIR process
dX(t) = a(b — X (1)) dt + e/ X (O)dW (1), X(0) =z > 0.

Show that S(t) = X (t)? solves with Sy = 2°.



It follows by Exercise , and by Feller’s condition ab > ¢*/2 for the positivity of the CIR
process, that the solution of remains strictly positive a.s. if 6 > 1, while for 0 < ¢ < 1,
the stock price hits zero in finite time with positive probability.

The Kolmogorov PDE @ associated to the CEV model is

2
Opu + rrd,u + %x%aiu =0, (t,r) € Di.

Given a terminal value ¢ at time 7" as in Theorem [I] the previous equation admits a unique
solution.

However a fundamental solution, in the sense of exists only for 6 > 1, as otherwise the
stochastic process {S(t) }+>0 hits zero at any finite time with positive probability and therefore
the density of the random variable S(¢) has a discrete part.



