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Local and Stochastic volatility models

In this lecture we present a method to compute the risk-neutral price of European derivatives
when the market parameters are not deterministic functions.

We first assume that the interest rate of the money market is constant, i.e., r(t) = r, which
is quite reasonable for derivatives with short maturity such as options; stochastic interest
rate models are important for pricing derivatives with long time of maturity, e.g. coupon
bonds.

Assuming that the derivative is the standard European derivative with pay-off function g
and maturity T , the risk-neutral price formula becomes

ΠY (t) = e−rτ Ẽ[g(S(T ))|FW (t)], τ = T − t. (1)

Motivated by our earlier results on the Black-Scholes price and we attempt to re-write the
risk-neutral price formula in the form

ΠY (t) = vg(t, S(t)) for all t ∈ [0, T ], for all T > 0, (2)

for some function vg : D+
T → (0,∞), which we call the pricing function of the derivative.

By (1), this is equivalent to

Ẽ[g(S(T ))|FW (t)] = erτvg(t, S(t)) (3)
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i.e., to the property that {S(t)}t≥0 is a Markov process in the risk-neutral probability measure

P̃, relative to the filtration {FW (t)}t≥0.

At this point it remains to understand for which stochastic processes {σ(t)}t≥0 does the
generalized geometric Brownian motion satisfies this Markov property.

We have seen that this holds in particular when {S(t)}t≥0 satisfies a (system of) stochastic
differential equation(s).

Next we discuss two examples which encompass most of the volatility models used in the
applications: Local volatility models and Stochastic volatility models.

Local volatility models

A local volatility model is a special case of the generalized geometric Brownian motion
in which the instantaneous volatility of the stock {σ(t)}t≥0 is assumed to be a deterministic
function of the stock price S(t).

Given a continuous function β : [0,∞)× [0,∞)→ (0,∞), we then let

σ(t)S(t) = β(t, S(t)), (4)

(and r(t) = r) into the geometric Brownian motion, so that the stock price process {S(t)}t≥0

satisfies the SDE

dS(t) = rS(t) dt+ β(t, S(t))dW̃ (t), S(0) = S0 > 0. (5)

We assume that this SDE admits a unique global solution.

In the following we shall also assume that the solution {S(t)}t≥0 of (5) is non-negative a.s.
for all t > 0.

Note however that the stochastic process solution of (5) will in general hit zero with positive
probability at any finite time.

For example, letting β(t, x) =
√
x, the stock price (5) is a CIR process with b = 0 and so,

according to Theorem ??, S(t) = 0 with positive probability for all t > 0.

Theorem 1. Let g ∈ G and assume that the Kolmogorov PDE

∂tu+ rx∂xu+
1

2
β(t, x)2∂2xu = 0 (t, x) ∈ D+

T , (6)
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associated to (5) admits a (necessarily unique) strong solution in the region D+
T satisfying

u(T, x) = g(x). Let also
vg(t, x) = e−rτu(t, x).

Then we have the following.

(i) vg satisfies

∂tvg + rx∂xvg +
1

2
β(t, x)2∂2xvg = rvg (t, x) ∈ D+

T , (7)

and the terminal condition
vg(T, x) = g(x). (8)

(ii) The price of the European derivative with pay-off Y = g(S(T )) and maturity T > 0 is
given by (2).

(iii) The portfolio given by

hS(t) = ∂xvg(t, S(t)), hB(t) = (ΠY (t)− hS(t)S(t))/B(t)

is a self-financing hedging portfolio.

Proof. (i) It is straightforward to verify that vg satisfies (7).

(ii) Let X(t) = vg(t, S(t)). By Itô’s formula we find

dX(t) = (∂tvg(t, S(t)) + rS(t)∂xvg(t, S(t)) +
1

2
β(t, S(t))2∂2xvg(t, S(t)))dt

+ β(t, S(t))∂xvg(t, S(t))dW̃ (t).

Hence

d(e−rtX(t)) = e−rt(∂tvg + rx∂xvg +
1

2
β(t, x)2∂2xvg − rvg)(t, S(t))dt

+ e−rtβ(t, S(t))∂xvg(t, S(t))dW̃ (t).

As vg(t, x) satisfies (7), the drift term in the right hand side of the previous equation is zero.
Hence

e−rtvg(t, S(t)) = vg(t, S0) +

∫ t

0

e−ruβ(u, S(u))∂xvg(u, S(u))dW̃ (u). (9)

It follows that1 the stochastic process {e−rtvg(t, S(t))}t≥0 is a P̃-martingale relative to {FW (t)}t≥0.
Hence

Ẽ[e−rTvg(T, S(T ))|FW (t)] = e−rtvg(t, S(t)), for all 0 ≤ t ≤ T .

1Recall that we assume that Itô’s integrals are martingales!
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Using the boundary condition (8), we find

vg(t, S(t)) = e−rτ Ẽ[g(S(T ))|FW (t)],

which proves (2).

(iii) Replacing ΠY (t) = vg(t, S(t)) into (9), we find

Π∗
Y (t) = ΠY (0) +

∫ t

0

e−ruβ(u, S(u))∂xvg(u, S(u))dW̃ (u).

Hence the claim on the hedging portfolio follows.

Example: The CEV model

For the constant elasticity variance (CEV) model, we have β(t, S(t)) = σS(t)δ, where
σ > 0, δ > 0 are constants.

The SDE for the stock price becomes

dS(t) = rS(t)dt+ σS(t)δdW̃ (t), S(0) = S0 > 0. (10)

For δ = 1 we recover the Black-Scholes model.

For δ 6= 1, we can construct the solution of (10) using a CIR process, as shown in the
following exercise.
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Exercise 1. Given σ, r and δ 6= 1, define

a = 2r(δ − 1), c = −2σ(δ − 1), b =
σ2

2r
(2δ − 1), θ = − 1

2(δ − 1)
.

Let {X(t)}t≥0 be the CIR process

dX(t) = a(b−X(t)) dt+ c
√
X(t)dW̃ (t), X(0) = x > 0.

Show that S(t) = X(t)θ solves (10) with S0 = xθ.
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It follows by Exercise 1, and by Feller’s condition ab ≥ c2/2 for the positivity of the CIR
process, that the solution of (10) remains strictly positive a.s. if δ ≥ 1, while for 0 < δ < 1,
the stock price hits zero in finite time with positive probability.

The Kolmogorov PDE (6) associated to the CEV model is

∂tu+ rx∂xu+
σ2

2
x2δ∂2xu = 0, (t, x) ∈ D+

T .

Given a terminal value g at time T as in Theorem 1, the previous equation admits a unique
solution.

However a fundamental solution, in the sense of exists only for δ > 1, as otherwise the
stochastic process {S(t)}t≥0 hits zero at any finite time with positive probability and therefore
the density of the random variable S(t) has a discrete part.
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