
Financial derivatives and PDE’s
Lecture 15

Simone Calogero

February 11th, 2021

Finite different solutions of PDE’s

The finite difference methods are techniques to find (numerically) approximate solutions to
ordinary differential equations (ODE’s), stochastic differential equations (SDE’s) and partial
differential equations (PDE’s).

They are based on the idea to replace the ordinary/partial derivatives with a finite difference
quotient, e.g., y′(x) ≈ (y(x + h) − y(x))/h. The various methods differ by the choice of
the finite difference used in the approximation. We shall present a number of methods by
examples.

ODE’s

Consider the first order ODE

dy

dt
= ay + bt, y(0) = y0, t ∈ [0, T ], (1)

for some constants a, b ∈ R and T > 0. The solution is given by

y(t) = y0e
at +

b

a2
(eat − at− 1). (2)

We shall apply three different finite difference methods to approximate the solution of (1).

1



In all cases we divide the time interval [0, T ] into a uniform partition,

0 = t0 < t1 < · · · < tn = T, tj = j
T

n
, ∆t = tj+1 − tj =

T

n

and define

y(tj) = yj, j = 0, . . . , n.

Forward Euler method

In this method we introduce the following approximation of dy/dt at time t:

dy

dt
(t) =

y(t+ ∆t)− y(t)

∆t
+O(∆t),

i.e.,

y(t+ ∆t) = y(t) +
dy

dt
(t)∆t+O(∆t2). (3)

For Equation (1) this becomes

y(t+ ∆t) = y(t) + (ay(t) + bt)∆t+O(∆t2).

Setting t = tj, ∆t = T/n, t + ∆t = tj + T/n = tj+1 and neglecting second order terms we
obtain

yj+1 = yj + (ayj + btj)
T

n
, j = 0, . . . , n− 1. (4)

As y0 is known, the previous iterative equation can be solved at any step j.

This method is called explicit, because the solution at the step j + 1 is given explicitly in
terms of the solution at the step j.

It is a simple matter to implement this method numerically, for instance using the following
Matlab function:

2



function [time,sol]=exampleODEexp(T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

a=1; b=1;

sol(1)=y0;

for j=2:n+1

sol(j)=sol(j-1)+(a*sol(j-1)+b*time(j-1))*dt;

time(j)=time(j-1)+dt;

end

Backward Euler method

This method consists in approximating dy/dt at time t as

dy

dt
(t) =

y(t)− y(t−∆t)

∆t
+O(∆t),

hence

y(t+ ∆t) = y(t) +
dy

dt
(t+ ∆t)∆t+O(∆t2). (5)

The iterative equation for (1) now is

yj+1 = yj + (ayj+1 + btj+1)
T

n
, j = 0, . . . , n− 1. (6)

This method is called implicit, because the solution at the step j+1 depends on the solution
at both the step j and the step j + 1 itself.

Therefore implicit methods involve an extra computation, which is to find yj+1 in terms of
yj only.

For the present example this is a trivial step, as we have

yj+1 =
(
1− aT

n

)−1(
yj + btj+1

T

n

)
, (7)

3



provided n 6= aT . Here is a Matlab function implementing the backward Euler method for
the ODE (1):

function [time,sol]=exampleODEimp(T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

a=1; b=1;

sol(1)=y0;

for j=2:n+1

time(j)=time(j-1)+dt;

sol(j)=1/(1-a*dt)*(sol(j-1)+b*time(j)*dt);

end

Central difference method

By a Taylor expansion,

y(t+ ∆t) = y(t) +
dy

dt
(t)∆t+

1

2

d2y

dt2
(t)∆t2 +O(∆t3), (8)

and replacing ∆t with −∆t,

y(t−∆t) = y(t)− dy

dt
(t)∆t+

1

2

d2y

dt2
(t)∆t2 +O(∆t3). (9)

Subtracting the two equations we obtain the following approximation for dy/dt at time t:

dy

dt
(t) =

y(t+ ∆t)− y(t−∆t)

2∆t
+O(∆t2),

which is called central difference approximation. Hence

y(t+ ∆t) = y(t−∆t) + 2
dy

dt
(t)∆t+O(∆t3). (10)

Note that, compared to (3) and (5), we have gained one order in accuracy.

The iterative equation for (1) becomes

4



yj+1 = yj−1 − 2(ayj + btj)
T

n
, j = 0, . . . , n− 1. (11)

The first step j = 0 requires y−1. This is fixed by the backward method

y−1 = y0 −
T

n
ay0, (12)

which is (6) for j = −1.

A second order ODE

Consider the second order ODE for the harmonic oscillator:

d2y

dt2
= −ω2y, y(0) = y0, ẏ(0) = ỹ0. (13)

The solution to this problem is given by

y(t) = y0 cos(ωt) +
ỹ0
ω

sin(ωt). (14)

One can define forward/backward/central difference approximations for second derivatives
in a way similar as for first derivatives.

For instance, adding (8) and (9) we obtain the following central difference approximation for
d2y/dt2 at time t:

d2y

dt2
(t) =

y(t+ ∆t)− 2y(t) + y(t−∆t)

∆t2
+O(∆t),

which leads to the following iterative equation for (13):

yj+1 = 2yj − yj−1 −
(
T

n

)2

ω2yj, j = 1, . . . , n− 1, (15)

y1 = y0 + ỹ0
T

n
. (16)

5



The approximate solution y1 at the first node is computed using the forward method and
the initial datum ẏ(0) = ỹ0. The Matlab function solving this iteration is the following.

function [time,sol]=harmonic(w,T,y0,n)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

sol(1)=y0(1);

sol(2)=sol(1)+y0(2)*dt;

for j=3:n+1

sol(j)=2*sol(j-1)-sol(j-2)-dt^2*w^2*sol(j-1);

time(j)=time(j-1)+dt;

end

SDE’s

The Euler method can be straightforwardly generalized to SDE’s, see [?]. In this section we
present briefly the so-called Euler-Maruyama method, which is the generalization to SDE’s
of the forward Euler method for ODE’s.

Consider the SDE

dX(t) = α(t,X(t)) dt+ β(t,X(t)) dW (t), (17)

where we assumed that the assumptions in Theorem ?? are satisfied. Given the uniform
partition

0 = t0 < t1 < · · · < tn = T, tj = j
T

n
, ∆t = tj+1 − tj =

T

n

of the interval [0, T ], we define

X(tj) = Xj, j = 0, . . . , n, Wj = W (tj).

Note that Xj,Wj are random variables and that

Gj =
Wj −Wj−1√

∆t

6



are independent standard normal random variables for j = 1, . . . , n.

The (explicit) finite difference approximation of (17) is

Xj = Xj−1 + α(tj−1, Xj−1)
T

n
+ β(tj−1, Xj−1)

√
T

n
Gj. (18)

The following Matlab function applies the iterative equation (18) to the linear SDE (??), for
which (18) becomes

Xj = Xj−1 + (a+ bXj−1)(T/n) + γ
√
T/nGj, X0 = x0,

where x0 is the (constant) initial datum. The output sol contains one path of the stochas-
tic process X(t) along the time partition {t0 = 0, t1, . . . , tn = T}, that is, a path (X0 =
x0, X(t1), . . . , X(tn) = X(T )).

function [time,sol] = linearSDEexample(T,x0,n,a,b,gamma)

dt=T/n;

sol=zeros(1,n+1);

time=zeros(1,n+1);

G=randn(1,n);

sol(1)=x0;

for j=2:n+1

sol(j)=sol(j-1)+(a+b*sol(j-1))*dt+gamma*sqrt(dt)*G(j-1);

time(j)=time(j-1)+dt;

end

7



PDE’s

In this section we present three finite difference methods to find approximate solutions to
the one-dimensional heat equation

∂tu = ∂2xu, u(0, x) = u0(x), (19)

where u0 is continuous.

We refer to t as the time variable and to x as the spatial variable, since this is what they
typically represent in the applications of the heat equation.

As before, we let t ∈ [0, T ]. As to the domain of the spatial variable x, we distinguish two
cases

(i) x runs over the whole real line, i.e., x ∈ (−∞,∞), and we are interested in finding an
approximation to the solution u ∈ C1,2(DT ).

(ii) x runs over a finite interval, say x ∈ (xmin, xmax), and we want to find an approximation
of the solution u ∈ C1,2(D), where D = (0, T ) × (xmin, xmax), which satisfies the
boundary conditions1

u(t, xmin) = uL(t), u(t, xmax) = ur(t), t ∈ [0, T ],

for some given continuous functions uL, uR. We also require uL(0) = u0(xmin), uR(0) =
u0(xmax), so that the solution is continuous on the boundary.

In fact, for numerical purposes, problem (i) is a special case of problem (ii), for the domain
(−∞,∞) must be approximated by (−A,A) for A >> 1 when we solve problem (i) in a
computer.

Note however that in the finite domain approximation of problem (i), the boundary con-
ditions at x = ±A cannot be prescribed freely! Rather they have to be given by suitable
approximations of the limit values at x = ±∞ of the solution to the heat equation on the
real line.

By what we have just said we can focus on problem (ii). To simplify the discussion we
assume that the domain of the x variable is given by x ∈ (0, X) and we assign zero boundary
conditions, i.e., uL = uR = 0. Hence we want to study the problem

1These are called Dirichlet type boundary conditions. Other types of boundary conditions can be imposed,
but the Dirichlet type is sufficient for our forthcoming applications to financial problems.

8



∂tu = ∂2xu, (t, x) ∈ (0, T )× (0, X), (20a)

u(0, x) = u0(x), u(t, 0) = u(t,X) = 0, x ∈ [0, X], t ∈ [0, T ]; u0(0) = u0(X) = 0.
(20b)

We introduce the partition of the interval (0, X) given by

0 = x0 < x1 < · · · < xm = X, ∆jx = xj+1 − xj, j = 0, . . . ,m− 1,

and the partition of the time interval [0, T ] given by

0 = t0 < t1 < · · · < tn = T, ti = i
T

n
, ∆t = ti+1 − ti =

T

n
.

Note that we use a uniform partition for the time interval while the partition for the spatial
domain is in general not uniform. Of course

∆0x+ ∆1x+ · · ·+ ∆m−1x = X

and the spatial partition is uniform if and only if

∆0x = ∆1x = · · · = ∆m−1x = ∆x =
X

m
, xj = j∆x. (21)

Using non-uniform partitions is important when one needs more accuracy in some region.
For instance, when computing the price of options with the finite difference methods, a
more refine partition is recommended in the “nearly at the money” region. In the rest of
this section we assume that the spatial partition is uniform and leave the generalization to
non-uniform partitions as an exercise.

We denote

ui,j = u(ti, xj), i = 0, . . . , n, j = 0, . . . ,m.

Hence ui,j is a n+ 1×m+ 1 matrix.

The ith row contains the value of the approximate solution at each point of the spatial mesh
at the fixed time ti.

9



For instance, the zeroth row is the initial datum: u0,j = u0(xj), i = 0, . . .m.

The columns of the matrix ui,j contain the values of the approximate solution at one spatial
point for different times.

For instance, the column ui,0 are the values of the approximate solution at x0 = 0 for different
times ti, while ui,m contains the values at xm = X.

By the given boundary conditions we then have

ui,0 = ui,m = 0, i = 0, . . . , n.

We define (for a uniform spatial partition)

d =
∆t

∆x2
=

T

X2

m2

n
. (22)

Method 1: Forward in time, centered in space

In this method we use a forward difference approximation for the time derivative and a
centered difference approximation for the second spatial derivative:

∂tu(t, x) =
u(t+ ∆t, x)− u(t, x)

∆t
+O(∆t),

∂2xu(t, x) =
u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

∆x2
+O(∆x).

We find

u(t+ ∆t, x) = u(t, x) + d(u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)).

Hence we obtain the following iterative equation

ui+1,j = ui,j + d(ui,j+1 − 2ui,j + ui,j−1), i = 0, . . . , n− 1, j = 1, . . . ,m− 1, (23)

where we recall that u0,j = u0(xj), ui,0 = ui,m+1 = 0, i = 0, . . . , n, j = 0, . . .m. Let

10



ui = (ui,1 ui,1 . . . ui,m−1)
T

be the column vector containing the approximate solution at time ti; note that we do not
need to include ui,0, ui,m in the vector ui, as these components are fixed equal to zero by the
boundary conditions.

We can rewrite (23) in matrix form as follows:

ui+1 = A(d)ui, (24)

where A(z) is the (m− 1)× (m− 1) matrix with non-zero entries given by

Ak,k(z) = 1−2z, k = 1, . . . ,m−1, Aq,q+1(z) = Aq+1,q(z) = z, q = 1, . . . ,m−2. (25)

This method is completely explicit, as the solution at the time step i + 1 is explicitly given
in terms of the solution at the time step i.

A Matlab function solving the iteration (24) with the initial datum u0(x) = exp(X2/4) −
exp((x−X/2)2) is the following.

function [time,space,sol]=heatexp(T,X,n,m)

dt=T/n; dx=X/m;

d=dt/dx^2;

sol=zeros(n+1,m+1);

time=zeros(1,n+1);

space=zeros(1,m+1);

for i=2:n+1

time(i)=time(i-1)+dt;

end

for j=2:m+1

space(j)=space(j-1)+dx;

end

for j=1:m+1

sol(1,j)=exp(X^2/4)-exp((space(j)-X/2)^2);

end

sol(:,1)=0; sol(:,m+1)=0;

A=zeros(m-1,m-1);

for k=1:m-1

A(k,k)=1-2*d;

11



end

for q=1:m-2

A(q,q+1)=d;

A(q+1,q)=d;

end

for i=2:n+1

sol(i,2:m)=sol(i-1,2:m)*transpose(A);

end

To visualize the result it is convenient to employ an animation which plots the approximate
solution at each point on the spatial mesh for some increasing sequence of times in the
partition {t0, t1, . . . , tn}. This visualization can be achieved with the following simple Matlab
function:

function anim(r,F)

N=length(F(:,1));

Max=max(max(F));

for i=1:N

plot(r,F(i,:));

axis([0 1 0 Max]);

drawnow;

pause(0.01);

end

Upon running the command anim(space,sol), the previous function will plot the approxi-
mate solutions at different increasing times.

Let us try the following: [time,space,sol]=heatexp(1,1,2500,50). Hence we solve the
problem on the unit square (t, x) ∈ (0, 1)2 on a mesh of (n,m) = 2500 × 50 points. The
value of the parameter (22) is

d = 1.

If we now try to visualize the solution by running anim(space,sol,0.1), we find that the
approximate solution behaves very strangely (it produces just random oscillations). However
by increasing the number of time steps with [time,space,sol]=heatexp(1,1,5000,50),
so that

d = 0.5,

and visualize the solution, we shall find that the approximate solution converges quickly
and smoothly to u ≡ 0, which is the equilibrium of our problem (i.e., the time independent
solution of (20)). In fact, this is not a coincidence, as it can be shown that the forward-
centered method for the heat equation is unstable if d > 0.5 and stable for d ≤ 0.5. The term
unstable here refers to the fact that numerical errors, due for instance to the truncation

12



and round-off of the initial datum on the spatial grid, will increase in time. On the other
hand, stability of a finite difference method means that the error will remain small at all
times. The stability condition d ≤ 0.5 for the forward-centered method applied to the heat
equation is very restrictive: it forces us to choose a very high number of points on the time
partition. To avoid such a restriction, which could be very costly in terms of computation
time, implicit methods are preferred, such as the one we present next.

Method 2: Backward in time, centered in space

In this method we employ the backward finite difference approximation for the time derivative
and the central difference for the second spatial derivative (same as before). This results in
the following iterative equation:

ui+1,j = ui,j + d(ui+1,j+1 − 2ui+1,j + ui+1,j−1), i = 0, . . . , n− 1, j = 1, . . . ,m− 1, (26)

where we recall that u0,j = u0(xj), ui,0 = ui,m+1 = 0, i = 0, . . . , n, j = 0, . . .m. This method
is implicit and we need therefore to solve for the solution at time i+1 in terms of the solution
at time i. To this purpose we let, as before,

ui = (ui,1 ui,1 . . . ui,m−1)
T

and rewrite (26) in matrix form as follows:

A(−d)ui+1 = ui, (27)

where A(z) is the matrix with non-zero entries (25). The matrix A is invertible, hence we
can express ui+1 in terms of ui as

ui+1 = A(−d)−1ui. (28)

This method is unconditionally stable, i.e., it is stable for all values of the parameter d.
We can test this property by using the following Matlab function, which solves the iterative
equation (28):

function [time,space,sol]=heatimp(T,X,n,m)

dt=T/n; dx=X/m;

d=dt/dx^2;

sol=zeros(n+1,m+1);

time=zeros(1,n+1);

space=zeros(1,m+1);

for i=2:n+1

time(i)=time(i-1)+dt;

end

13



for j=2:m+1

space(j)=space(j-1)+dx;

end

for j=1:m+1

sol(1,j)=exp(X^2/4)-exp((space(j)-X/2)^2);

end

sol(:,1)=0; sol(:,m+1)=0;

A=zeros(m-1,m-1);

for k=1:m-1

A(k,k)=1+2*d;

end

for q=1:m-2

A(q,q+1)=-d;

A(q+1,q)=-d;

end

for i=2:n+1

sol(i,2:m)=sol(i-1,2:m)*transpose(inv(A));

end

If we now run [time,space,sol]=heatexp(1,1,500,50), for which d = 5, and visualize
the solution we shall obtain that the approximate solution behaves smoothly as expected,
indicating that the instability problem of the forward-centered method has been solved.

0.0.1 Method 3: The θ-method

This is an implicit method with higher order of accuracy than the backward-centered method.
It is obtained by simply averaging between methods 1 and 2 above, as follows

ui+1,j = θubacki+1,j + (1− θ)uforwi+1,j, θ ∈ (0, 1),

where the first term in the right hand side is computed with method 1 and the second term
with method 2. Thus we obtain the following iterative equation

ui+1,j = ui,j + d[(1− θ)(ui,j+1 − 2ui,j + ui,j−1) + θ(ui+1,j+1 − 2ui+1,j + ui+1,j−1)], (29)

or, in matrix form
A(−dθ)ui+1 = A(d(1− θ))ui

Remark 1. Note carefully that the solution obtained with the θ-method is not the average of
the solutions obtained with methods 1 and 2, but rather the solution obtained by averaging
the two methods.

Remark 2. For θ = 1/2, the θ-method is also called Crank-Nicolson method.

14


	Method 3: The -method

