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The Asian option

The Asian call option with arithmetic average, strike K > 0 and maturity T = 0 is the
non-standard Enropean style derivative with pay-off -
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We study the Asian option in a Black-Scholes market, ie., assuming that the market pa-
rameters are deterministic constants,
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The risk-neutral price at time t < 7 of the Asian call is therefore given by
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Exercise 1. Prove the following put-call parity identity for Asian options:

_ = Taelt) — nl_\l.(x)@<T—aa + %U — Ty (T, (1) &
— _ \

o At bzo
SolyTlon:s Calr-d

Ty B =T, ) l L2 29, I5w@) - & [(x-90D) 1Y, m&
- g“”*>%iﬁ%2—ih-6-%2XM§mGﬂ

= 2[ (%—q_\"’b‘-"ﬂ_‘," x—w/%

= T E (29 -9 Fu )
:qu(‘( ﬂ&fi%—@%w@fx—\() )
- C/MTJ(j (ﬁ T%(S(?D w[%})xt - K} (*)

—
N .
Vs se@ e 3 LS\ 5] dy ;S&[smmmw
" \/_//
\-/\/

/ el
\[\HEEE S0 K“QE&MNE Ugg€ WE vo>© b T
. Witk Rpsten o fwlf) e bSO, e B
= S S(v) dr 4 ST giw' t/ "l \Y’wﬁ%}& e T — PHETUR6 ALS

L,_t’_,—~—/-4 t RELHT (NE To ?N(ﬂ
) ST

Lecture 13 Page 2



/{\ * ¥/— <« < t’
%W)V{E:iiiiﬂxpzﬁfﬁ*swbt@'ic ),

RCRLACING  iro Q@ Con=LETSS THE Sorvvio s .

Exercise 2@ Prove the following incqualities between the Black -Scholes price o

the Asian call and the E‘ump( an call options: //1/’_(_& s NLwAY LE )
TwhNS A Fo™ PO
Mae(0 < {0 Sp, K, T).

= Conelude from this that for r = 0 the Asian call s less valuable than Hu .‘m'rrpr*rm call.
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A simple closed formula for the price of the Asian option with arithmetic average is not
available.

In this lecture we disenss two munerical methods to price the Asian option with arithmetic

average, namely the finite difference method applied to the pricing PDE and the Monte
Carlo method applied to the risk-nentral pricing formula (at time ¢ = 0).
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To price the Asian option with arithmetic average using the PDE method we first observe ~
that the stochastic processes {Q(t) }iejor. {S(t) e, satisfy the system of SDE’s (ﬂ__l a") taq W (_'(‘)
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By the Markov property of SDE’s it follows that the risk-neutral price of the Asian call
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Theorem 1. Let ¢ : [0,7] x (0,501 — (0,00) be the strong solution to the terminal value
problem - [
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Then (2) holds. Moreover the number of shares of the stuck in the self-financing hedging
portfatio @ given by\hs(t) = S0, S(t), QF)). -
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of the Asian call satisfies
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hence the number of shares of the stock in the hedging portfolio is hg(t) = deelt, S(t), Q(t)). -
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Exercise 3. Use Theorem 1 to give an alternative proof of the put-call parity (1),
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A simple closed formula solution for the problem (3) is not available, henee one needs to rely
on numerical methods to find approximate solutions.

One such method is the finite difference method deseribed in Chapter 77, To apply this
method one needs to specify the boundary conditions for (3) at infinity and for {o =0,y =
0} {y=0.20=0}

Concerning the boundary condition at = = 0, let £(t, y) = o(t, 0, y).

Letting = = 0 in (3) we obtain that & satisfies d,¢ = r& and #(1.y) = (/T — K., from
which we derive the boundary condition

=
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As to the boundary condition when y — oo, we first observe that the Asian put becomes
clearly worthless if Q(t) reaches arbitrarily large values,

Hence the put-call parity (1) leads us to impose

as y —+ oo, forall r =0 (6)
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conditions at g = 0 and & — o0 are not so obvious. The next theorem shows
that one can avoid giving these boundary conditions by a suitable variable transformation.

[ Theorem 2. Let w: [0,0c) % B — [0.0c) be the strong solution to the problem
L

= au+ %2@1;:)26311 =0. te (n.]').@@ (7a)
w(T, z) = (2)4, ‘]i\m’uu[f. z) =10, \Iin;_‘(u(f. )—z)=0, tel0T), (Th)

Then the function

i
The Monte Carlo method
/——’——_’
A very popular method to compute numerically the price of non-standard derivatives is
the Monte Carlo method. In this section we describe briefly how the method works for
Asian options with arithmetic average and leave the generalization to other derivatives as
an exercise,
—=% The crude Monte Carlo method
The Monte Carlo method is, in its simplest form, a numerical method to compute the
expectation of a random variable, Its mathematical validation is based on the Law of
Large Numbers, which states the following: Suppose {;}:2) is a sequence of i.i.d. random
ariables with expectation E[Y;| = g. Then the sample average of the first n components of
the sequence, i.e., T——
P Ro G AL LTy
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converges {in probability) to poas n — oo, -
{in y) toy l—P(l\/u’;"\>‘&3—% Ol;.n->/,\-
The law of large numbers can be used to justify the fact that if we are given a large number N s oo
of independent trials ¥7,.... Y., of the random variable Y, then 7

Lecture 13 Page 6
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The law of large numbers can be used to justify the fact that if we are given a large number N s oo

of independent trials ¥ Y, of the random variable l’ . then
b Y 4 \/ ( l"’_D

A
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To measure how reliable is the approximation of E[Y] given by the sample average, consider
the standard deviation of the trials ¥7,. .. ¥,: -
of the trials 1y,..

o~ !
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In the applications to options pricing, the random variable Y is the pay-off of a European
derivative. Using the Monte Carlo method and the risk-neutral pricing formula, we can
approximate the Black-Scholes price at time ¢ = 0 of the European derivative with pay-off
Y and maturity 7' = 00 with the sample averag:

|RRIED!

where ¥7,..., Y, 15 a E@LHMWM Each trial Y} is
determined by a path of the stock price. Letting 0 =#; < ¢; < -+ <ty = T be a partition
of the interval [0, T] with size ; — #;_; = h, we may construct a sample of n paths of the

geometric Brownian motion on the given partition with the following simple Matlab function:

(10)

function Path=5r.ockPath(s,aig;lna,r,T,N,r_l)

h=T/N;

W=randn(n,N};

gq=ones(n,N};
Path=s*exp((r-sigma2/2)*h.*cumsum(q’) +sigma*sqrt (h)*cumsum(W')) ;
Path=[s*ones(1,n);Path];

Note carefully that the stock price is modeled as a geometric Brownian motion with mean of
log return o = + — a* /2, which means that the geometric Brownian motion is risk-neutral,
This is of course correct, since the expectation in (10) that we want to compute is in the risk-
neutral probability measure. In the case of the Asian call option with arithmetic average,
strike A and maturity T° the pay-off is given by

. (% fursu}d:— .r\') ~ (%igjuf) . K)
LL___;AI—L i=1 4+

The following function computes the approximate price of the Asian option using the Monte
Carlo method:

function [price, conf95]=MonteCarlo AC(s,sigma,r,K,T,N,n)

Q;%ck_Pat.IFSuack_P igma,r, T Myd); @Qf—\i{*h ) - - — — S_F(E

Eagﬂff=3§x (0 émea.n@.ockli’ath ?—K) e — ‘——‘\—‘—%—/—F—-\?\—E—Kﬁ//
price=exp(-r+T)+mean(pay0ff); Q "& L ‘\’:‘\'N
conng=T§6?std(%ﬁ??)Tﬁt@ ; i \ T

7 ?gb St ¥

The function also return the 95% confidence interval of the result. For example, by running
the command

N

- )
Qtﬂ';o

[price, conf95]=MonteCarle AC(100,0.5,0.05,100,1/2,100,1000000) /
Y /A
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we get price=/8.5799, conf85=(.0283, which means that the Black-Scholes price of the Asian
option with the given parmuc‘tt‘mms 95% probability to be in the interval 8.5799 + (],[JZS‘I
The calenlation took about 4 seconds. Note that the 95% confidence is 0.07 ;()\;,-‘8 57005 100 =

0.66% of the price. Ya——o

Control variate Monte Carlo method

The erude Monte Carlo method just deseribed can be improved in a munber of wavs. For
instance, it follows by (9} that in order to shrink the confidence interval of the Monte Carlo
price one can try to reduce the standard derivation s. There exist several methods to decrease
the standard deviation of a Monte Carlo computation, which are collectively called variance
. . . . —
reduction technigques. Here we describe the control variate method.
-

Suppose we want to (011][)11(‘(‘ ) The idea of the control variate method is to introduce

OHirol var

a second random variable( Z) for which E] d] can be computed eractly and then write
o ——

@+]F[7] where X =Y = Z.

Hence the Monte Carl OXi lmtluu of E[Y] can now be written as

-@

where Xp...., X, are independent trials ui th('. random variable X This approximation
improves the crude Monte Carlo estimate (without control variate) if the sample average
estimator of E[LX] is better than the sample average estimator of E[Y]. Because of (9}, this

CEAY O will be the case if (sx)? < (sy)% It will now be shown that the latter inequality holds
it Y. Z have a positive large correlation. Letting Y, ..., Y., be independent trials of ¥ and
‘(oUWﬁE & AT Z,, be independent trials of Z, we compute
. 1 o~ ;
Y — X2 -7 — Z)2
()" = — ;(X X)) =— Zm - (Yi-2))

= (sy)* + (s2)" — 20(Y. Z)‘

where C'Y, Z) is the sample covariance of the trials (Y, ..., ¥,), (Z1...., Z.), namely

cY,z) = Z(Y YIIZ - 7).

i=1

Hence (sx)? < (sy)? holds provided C(Y, Z) is sufficiently large and positive (precisely,
ClY,Z) = sz/v2). As C(Y, Z) is an unhiased estimator of Cov(Y, Z), then the use of the
control variate & will improve the performance of the erude Monte Carlo method if Y, 2
have a positive large correlation.
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