

Lecture 14

Financial derivatives and PDE's Lecture 14

Simone Calogero

February 10th, 2021

Local and Stochastic volatility models

In this lecture we present a method to compute the risk-neutral price of European derivatives when the market parameters are not deterministic functions.

We first assume that the interest rate of the money market is constant, i.e., r(t) = r which is quite reasonable for derivatives with short maturity such as options; stochastic interest rate models are important for pricing derivatives with long time of maturity, e.g. coupon bonds.

and maturity T, the risk-neutral price formula becomes

$$\Pi_Y(t) = e^{-\tau} \widetilde{\mathbb{E}}[g(S(T))|\mathcal{F}_W(t)], \quad \tau = T - t.$$
(1)

Motivated by our earlier results on the Black-Scholes price and we attempt to re-write the risk-neutral price formula in the form

$$\text{for all } t \in [0, T], \text{ for all } T > 0, \tag{2}$$

for some function $v_g:\overline{\mathcal{D}_T^+} \to (0,\infty),$ which we call the pricing function of the derivative.

By (1), this is equivalent to

$$\widetilde{\mathbb{E}}[g(S(T))|\mathcal{F}_W(t)] = e^{r\tau}v_g(t,S(t))$$

By (1), this is equivalent to $\mathbb{E}[y(S(T))|\mathcal{F}_{W}(t)] = e^{r\tau}v_{g}(t,S(t)) \qquad \text{PROPERTY} \qquad (3)$ $1 \qquad \qquad 0 \text{ P}\{S(t)\} \text{ in the }$ R PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROBABILITY PROPERTY IN GENERAL EWIGH SCH) A W(H) $1 \qquad \text{LENERAL EWIGH } \text{ RCH) is constant} \text{ AS(t)} = \mathbb{E}[S(t)]At + \mathbb{E}[A)[S(t)]AW(H)$ $S(0) = S_{0} > 0 \qquad \text{DETERMINISTIC } \text{ GINSTANT}$

i.e., to the property that $\{S(t)\}_{t\geq 0}$ is a Markov process in the risk-neutral probability measure $\widetilde{\mathbb{P}}$, relative to the filtration $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

At this point it remains to understand for which stochastic processes $\{\sigma(t)\}_{t\geq 0}$ does the generalized geometric Brownian motion satisfies this Markov property.

 \mathbb{F} , relative to the nitration $\{\mathcal{F}_W(t)\}_{t\geq 0}$.

At this point it remains to understand for which stochastic processes $\{\sigma(t)\}_{t\geq 0}$ does the generalized geometric Brownian motion satisfies this Markov property.

We have seen that this holds in particular when $\{S(t)\}_{t\geq 0}$ satisfies a (system of) stochastic differential equation(s).

Next we discuss two examples which encompass most of the volatility models used in the applications: Local volatility models and Stochastic volatility models.

Local volatility models

A local volatility model is a special case of the generalized geometric Brownian motion in which the instantaneous volatility of the stock $\{\sigma(t)\}_{t\geq 0}$ is assumed to be a deterministic

Given a continuous function $\beta: [0,\infty) \times [0,\infty) \to (0,\infty)$, we then let $\frac{\partial}{\partial s} (t) = \frac{\partial}{\partial s} (t) + \frac{\partial}{\partial$

$$\sigma(t)S(t) = \beta(t, S(t)), \qquad (4)$$

(and r(t) = r) into the geometric Brownian motion, so that the stock price process $\{S(t)\}_{t\geq 0}$

B(tx) SHOULD SHISF THE HYPHATESIS

We assume that this SDE admits a unique global solution. Butck-SCHOLES: $\beta(A_1 \times) = 0$

In the following we shall also assume that the solution $\{S(t)\}_{t\geq 0}$ of (5) is non-negative a.s. for all t > 0.

Note however that the stochastic process solution of (5) will in general hit zero with positive \(\) probability at any finite time.

For example, letting $\beta(t,x)=\sqrt{x}$ the stock price (5) is a CIR process with b=0 and so, according to Theorem (B, S(t) = 0) with positive probability for all t > 0. GENERAL CIA PROCESS

Theorem 1. Let $g \in \mathcal{G}$ and assume that the Kolmogorov PDE

DERIVATIVE ON THE STOCK WITH

1. Let $g \in \mathcal{G}$ and assume that the Kolmogorov PDE $(a) \quad \mathcal{F} : \qquad (b) \quad \mathcal{F} : \qquad (b) \quad \mathcal{F} : \qquad (c) \quad \mathcal{F} : \qquad (d) \quad \mathcal{F}$

PAY-OFF Y = g(S(T)) AND
MATURHY T. WE WANT TO PIND BO SUCH
THAT TY(+) = Nog(+,S(+))

associated to (5) admits a (necessarily unique) strong solution in the region \mathcal{D}_T^+ satisfying u(T,x)=g(x). Let also

$$v_g(t, x) = e^{-r\tau}u(t, x).$$

Then we have the following.

(i) v_g satisfies

$$\partial_t v_g + rx \partial_x v_g + \frac{1}{2}\beta(t, x)^2 \partial_x^2 v_g = rv_g \quad (t, x) \in \mathcal{D}_T^+,$$
 (7)

and the terminal condition

$$v_g(T,\underline{x}) = g(x).$$
 (8)

- (ii) The price of the European derivative with pay-off $Y=g(\widehat{S(T)})$ and maturity T>0 is given by (2) \longrightarrow Ty (+) = (+, +)
- (iii) The portfolio given by

$$h_{S}(t) = \partial_{x}v_{g}(t,S(t)), \quad h_{B}(t) = \underbrace{(\Pi_{Y}(t) - \widehat{h_{S}(t)}S(t))/B(t)}_{\text{Cing hedging portfolio}} \\ \text{V(L)} = \underbrace{V(L) > U_{S}(L) > U_{S}(L)}_{\text{Cing hedging portfolio}} \\ \text{V(L)} = \underbrace{(\Pi_{Y}(t) - \widehat{h_{S}(t)}S(t))/B(t)}_{\text{Cing hedging portfolio)}} \\ \text{V(L)} = \underbrace$$

is a self-financing hedging portfolio.

Proof. (i) It is straightforward to verify that v_g satisfies (7).

(ii) Let $X(t) = v_g(t, S(t))$. By Itô's formula we find

$$\underbrace{dX(t)} = \underbrace{(\partial_t v_g(t,S(t)) + rS(t)\partial_x v_g(t,S(t)) + \frac{1}{2}\beta(t,S(t))^2\partial_x^2 v_g(t,S(t))})dt \\ + \underbrace{\beta(t,S(t))\partial_x v_g(t,S(t))d\widetilde{W}(t)}.$$

Hence

$$d\underbrace{(e^{-rt}X(t))} = e^{-rt}\underbrace{(\partial_t v_g + rx\partial_x v_g + \frac{1}{2}\beta(t,x)^2\partial_x^2 v_g - rv_g)(t,S(t))dt}_{=} \left. \left. \left. \left. \left. \left. \left(\frac{e^{-rt}X(t)}{2} \right) - \frac{1}{2}\beta(t,x)^2\partial_x^2 v_g - rv_g \right)(t,S(t))dt \right. \right. \right\}$$

Try (+) = & (+ sct))

=0 Try (+) = e - e + 2 (+, sct))

As $v_g(t,x)$ satisfies (7), the drift term in the right hand side of the previous equation is zero. Hence

$$\begin{array}{ccc}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

It follows that the stochastic process $\{e^{-rt}v_g(t,S(t))\}_{t\geq 0}$ is a $\widetilde{\mathbb{P}}$ -martingale relative to $\{\mathcal{F}_W(t)\}_{t\geq 0}$. Hence

$$\widetilde{\mathbb{E}}[e^{-T}(v_g(T,S(T))|\mathcal{F}_W(t)] = e^{-rt}v_g(t,S(t)), \quad \text{for all } 0 \leq t \leq T)$$

¹Recall that we assume that Itô's integrals are martingales!

Using the boundary condition (8), we find

$$v_g(t, S(t)) = e^{-r\tau} \widetilde{\mathbb{E}}[g(S(T))|\mathcal{F}_W(t)], \ \checkmark$$

which proves (2).

(iii) Replacing $\Pi_Y(t) = v_g(t, S(t))$ into (9), we find

$$\Pi_Y^*(t) = \Pi_Y(0) + \int_0^t e^{-ru} \beta(u,S(u)) \partial_x v_g(u,S(u)) d\widetilde{W}(u).$$

Hence the claim on the hedging portfolio follows.

Example: The CEV model $\beta(t,x) = \beta(x) = \sigma(x)$ For the constant elasticity variance (CEV) model, we have $\beta(t,S(t)) = \sigma(t)^{\delta}$, where $\sigma > 0$, $\delta > 0$ are constants.

The SDE for the stock price becomes

$$dS(t) = rS(t)dt + \sigma S(t)^{\delta} d\widetilde{W}(t), \quad S(0) = S_0 > 0.$$
(10)

For $\delta=1$ we recover the Black-Scholes model.

For $\delta \neq 1$, we can construct the solution of (10) using a CIR process, as shown in the following exercise.

Exercise 1. Given σ, r and $\delta \neq 1$, define

$$a = 2r(\delta - 1), \ c = -2\sigma(\delta - 1), \ b = \frac{\sigma^2}{2r}(2\delta - 1), \ \theta = -\frac{1}{2(\delta - 1)}.$$

Let $\{X(t)\}_{t\geq 0}$ be the CIR process

$$dX(t) = a(b-X(t))\,dt + c\sqrt{X(t)}d\widetilde{W}(t), \quad X(0) = x > 0.$$

Show that $S(t) = X(t)^{\theta}$ solves (10) with $S_0 = x^{\theta}$.

FEUEN'S CONDITION ab
$$3\frac{c^2}{2}$$
 $6b = 27(6-1)\frac{6^2}{27}(28-1) 7,46^2(8-1)^2$

It follows by Exercise 1, and by Feller's condition $ab \ge c^2/2$ for the positivity of the CIR process, that the solution of (10) remains strictly positive a.s. if $\delta \ge 1$, while for $0 < \delta < 1$, the stock price hits zero in finite time with positive probability.

The Kolmogorov PDE (6) associated to the CEV model is

$$\partial_t u + rx \partial_x u + \frac{\sigma^2}{2} x^{2\delta} \partial_x^2 u = 0, \ (t, x) \in \mathcal{D}_T^+.$$

Given a terminal value g at time T as in Theorem 1, the previous equation admits a unique solution.

However a fundamental solution, in the sense of exists only for $\delta > 1$, as otherwise the stochastic process $\{S(t)\}_{t \geq 0}$ hits zero at any finite time with positive probability and therefore the density of the random variable S(t) has a discrete part.