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Local and Stochastic volatility models

In this lecture we present a method to compute the risk-neutral price of European derivatives
when the market parameters are not deterministic functions.

We first assume that the interest rate of the money market is constant, i, (r(t) = 7 which
is guite reasonable for derivatives with short maturity such as options; stochasfic interest
rate models are important for pricing derivatives with long time of maturity, e.g. coupon

bonds, \/ = < ($ Cij

Assuming that the derivative is the standard European derivative with pay-off function g
and maturity T, the risk-nentral price formula becomes

My (1) = e~ (Rlg(S(T)| P (0)]. 7=T (1)

Motivated by our earlier results on the Black-Scholes price and we attempt to re-write the
risk-nentral price formula in the form

for all + € [0, T, for all T = 0, (2)

for some function v, : D& — (0, 50), which we call the pricing funetion of the derivative.
0 T
[ —
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i.e., to the property that {S(t)},= is a Markov process in the risk-neutral probability measure

PP, relative to the filtration {Fu (t)}i=o.

At this point it remains to understand for which stochastic processes {o(f)}i=0 does the
generalized geometric Brownian motion satisfies this Markov property,  —
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At this point it remains to understand for which stochastic processes {o(f)}i=q does the
generalized geometric Brownian motion satisfies this Markov property.

We have seen that this holds in particular when {S(#)},-q satisfics a (system of) stochastic
differential equation(s). —

Next we discuss two examples which encompass most of the volatility models nsed in the
applications: Loeal volatility models and Stochastic volatility models,

Local volatility models

A local volatility model is a special case of the generalized geometric Brownian motion
in which the instantaneous volatility of the stock {a(#)},=p is assumed to be a deterministic
function of the stock price S(t). - -

in TIEE PHSACAC WeRLP,

Given HM]IH function 3 : [@gz} * [Ugr)c) — (0, 00), we then let rol) = D) At & ?“_‘ S(‘H\) dW (ﬂ

a(H)S(t) = 8(t. S(1)), *— (4)

(and r(t) = r) into the geometric Brownian motion, so that the stock pyice process {S(t)}0

satisfies the SDE L6 5w et (*\ SHOULD ST USTY TUE gy presHESS

L _w N Tueeeet g A
> dS(t) S B, SENAW (L),  S(0) = Sy = 0,/ (5)

We assume that this SDE admits a unique global solution. BhCe-StholE S - ?C—\ \>(7 = x

In the following we shall also assume that the solution {S(t)},p of (5) is non-negative a.s. 022 corpvtinit

for all + = 0. —_— =

Note however that the stochastic process solution of (5} will in general hit zero with positive (1A ?{
probability at any finite time, )

For example, letting J(. ) =/} the stock price (5) is a EI,EE process with b = 0 and so,
according to Th(:orcm@, A‘:! t] = 0 with positive probability for all + = (. CENERAL LR TPoEss
Theorem 1. Le@md assume that the Kolmogorov PDE Ay {‘5 .
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associated to (5) admits a (necessarily unique) strong solution in the region D} satisfiing
ron
ul(l,x) = glx). Let also
== vy(t,w) = e Tult, x). @\ = T-¢
e —» =

Then we have the following.

(i} v, satisfies

1
yvg +radyv, + =Bt x

P, (i) (4,2) € Df,

anid the terminal condition

(it} The price of the European derivative with pay-off ¥V = g(S[\T)) and maturity T = 0 i
given by (.2)_,—\_> -0\( (.’\'j . §% U_ ,S(—kﬁw
(iii) The portfolio given by ——— ————

Ve )
hs() = 0,0, (t.S(1). ha(t) < (I(0) ~FsSO)/Bltig=e REPLLLNTISE ConDITHIOD

= Ty (6
is U@Mﬂ@g &,@g portfolio. N 2\A$(}r\$ S )—\Ag L‘\'\)%({'\ W\{

Proof. (i) It is straightforward to verify that v, satisfies (7).

(ii) Let X(t) = v,(t, S(t)). By Itd's formula we find
S

dX (1)) = (Ghv,(t, S(H) + rS(t)d,(t. S(H) + rl,ﬁ’(t, S(t)) kv, (t, S(t)))dt
ARSI A L

+ Bt S(1))Drvg(t, S(E)AW (2). Ty (= '875 ] s
Hence 0 _ak L
=7 =% ’p‘\' W =¢ )5%(*{ 5
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)20, — rug)(t, S{:))dré o

As vy(t, ) satisfies (7), the drift term in the right hand side of the previous equation is zero.
Hence G

t e .
T\}{(\’\ = e Mlt, ‘?(ﬁ)) =@+ j; e 0" B, S(u)) vy, Su))dW (). \As[*" (9)
—_ . Y %E !
It follows that! the stochastic process {(.'_”1,',2(1‘_. S(#))} =0 is a P-martingale relative to G\fu-‘ (?‘)}9
Hence - —
vy (T, S(T))|&if}] {r?)?:ﬂ[t, S(t)), forallO<t ‘5@

"Recall that we assume that 1t6's integrals are martingales!
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Using the boundary condition (8), we find
vy (t, S(8) = e "Elg(S(T) | Fw(t)], €
which proves (2).
(ili) Replacing Iy (t) = v,(t. S(t)) into (9), we find
I3 () = Ty (0) + f € B, S (1)), v (. S(u) AW (u).
Hence the claim on the hedging portfolio follows.

(]

Example: The CEV model

For the constant elasticity variance (CEV) model, we have 3(t, S(t)) = aS(t)?, where
o =0, 4 >0 are constants.

The SDE for the stock price becomes
o dS(t) = rS(8)dt + oS(E AW (1), S(0) = Sy > 0. (10)

For 8 = 1 we recover the Black-Scholes model.
hor 0 = % we recover the Black-arholes mod

For 4 # 1, we can construet the solution of (10) using a CIR process, as shown in the
following exercise.
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Exercise 1. Given o,r and § # 1, define

(26— 1)

2
a=20(6~1), c=~2a(6—1), b=
~— R 2r

Let {X(t)}i=0 be the CIR process
—_—
_ dAX() = a(b— X () dt + e/ XOAV (1), X(0) = > 0.

Show that S(t) = X(t)7 solves (10) with Sy = 2.

S~

Feusy 5 wmror  =b

2z
b = 2 G-D 8 (25 5, kS0
n =
A
s

@
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It follows by Exercise 1, and by Feller's condition ab = ¢*/2 for the positivity of the CIR

process, that the solution of (10) remains strictly positive a.s if d = 1, while for 0 < d < 1,
the stock price hits zero in finite time with positive probability.

The Kolmogorov PDE {6) associated to the CEV model is

2
e+ rad.u + %.L'Mf)f.u =10, (t,x) € Dj.

Given a terminal value g at time 7" as in Theorem 1, the previous equation admits a unique
solution.

However a fundamental solution, in the sense of exists only for § = 1. as otherwise the
stochastic process {S(t) },>0 hits zero at any finite time with positive probability and therefore
the density of the random variable S(#) has a discrete part.

6
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