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Stochastic volatility models

For local volatility models, the stock price and the instantaneous volatility are both stochastic
processes.

However there is only one source of randomness which drives both these processes, namely
a single Brownian motion {W (t)}t≥0.

The next level of generalization consists in assuming that the stock price and the volatility
are driven by two different sources of randomness.

Definition 1. Let {W1(t)}t≥0, {W2(t)}t≥0 be two independent Brownian motions and {FW (t)}t≥0
be their own generated filtration. Let ρ ∈ [−1, 1] be a deterministic constant and µ, η, β :
[0,∞)3 → R be continuous functions. A stochastic volatility model is a pair of (non-
negative) stochastic diffusion processes {S(t)}t≥0, {v(t)}t≥0 satisfying the following system
of SDE’s:

dS(t) = µ(t, S(t), v(t))S(t) dt+
√
v(t)S(t) dW1(t), (1)

dv(t) = η(t, S(t), v(t)) dt+ β(t, S(t), v(t))
√
v(t)(ρ dW1(t) +

√
1− ρ2 dW2(t)). (2)

We see from (1) that {v(t)}t≥0 is the instantaneous variance of the stock price {S(t)}t≥0.

Moreover the process {W (ρ)(t)}t≥0 given by

W (ρ)(t) = ρW1(t) +
√

1− ρ2W2(t)

is a Brownian motion satisfying

dW1(t)dW
(ρ)(t) = ρ dt;
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in particular the two Brownian motions {W1(t)}t≥0, {W (ρ)}t≥0 are not independent, as their
cross variation is not zero; in fact, by ρ is the correlation of the two Brownian motions.

Hence in a stochastic volatility model the stock price and the volatility are both stochastic
processes driven by two correlated Brownian motions. We assume that {S(t)}t≥0 is non-
negative and {v(t)}t≥0 is positive a.s. for all times, although we refrain from discussing
under which general conditions this is verified (we will present an example below).

Our next purpose is to introduce a risk-neutral probability measure such that the discounted
price of the stock is a martingale.

As we have two Brownian motions in this model, we shall apply the multi-dimensional
Girsanov Theorem to construct such a probability measure.

Let
{W1(t)}t≥0, . . . , {WN(t)}t≥0

be independent Brownian motions and let {FW (t)}t≥0 be their own generated filtration. Let
{θ1(t)}t≥0, . . . , {θN(t)}t≥0 ∈ C0[FW (t)] and set θ(t) = (θ1(t), . . . , θN(t)).

We assume that the Novikov condition (??) is satisfied (with θ(t)2 = ‖θ(t)‖2 = θ1(t)
2 + · · ·+

θN(t)2).

Then the stochastic process {Z(t)}t≥0 given by

Z(t) = exp

(
−

N∑
j=1

∫ t

0

θj(s)dWj(s)−
1

2

∫ t

0

‖θ(s)‖2ds

)

is a martingale relative to {FW (t)}t≥0. It follows as before that the map P̃ : F → [0, 1] given
by

P̃(A) = E[Z(T )IA], A ∈ F (3)

is a new probability measure equivalent to P and the following N -dimensional generalization
of Girsanov’s theorem holds.

Theorem 1. Define the stochastic processes {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0 by

W̃k(t) = Wk(t) +

∫ t

0

θk(s)ds, k = 1, . . . , N. (4)

Then {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0 are independent Brownian motions in the probability mea-

sure P̃. Moreover the filtration {FW (t)}t≥0 generated by {W1(t)}t≥0, . . . , {WN(t)}t≥0 is a

non-anticipating filtration for {W̃1(t)}t≥0, . . . , {W̃N(t)}t≥0.
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Now let r > 0 be the constant interest rate of the money market and γ : [0,∞)3 → R be a
continuous function We define

θ1(t) =
µ(t, S(t), v(t))− r√

v(t)
, θ2(t) = γ(t, S(t), v(t)), θ(t) = (θ1(t), θ2(t)).

Given T > 0, we introduce the new probability measure P̃(γ) equivalent to P by P̃(γ)(A) =
E[Z(T )IA], for all A ∈ F , where

Z(t) = exp

(
−
∫ t

0

θ1(s) dW1(s)−
∫ t

0

θ2(s) dW2(s)−
1

2

∫ t

0

‖θ(s)‖2 ds
)
.

Then by Theorem 1, the stochastic processes

W̃1(t) = W1(t) +

∫ t

0

θ1(s) ds, W̃
(γ)
2 (t) = W2(t) +

∫ t

0

γ(s) ds

are two P̃(γ)-independent Brownian motions. Moreover (1)-(2) can be rewritten as

dS(t) = rS(t)dt+
√
v(t)S(t)dW̃1(t), (5a)

dv(t) = [η(t, S(t), v(t))−
√
v(t)ψ(t, S(t), v(t))β(t, S(t), v(t))]dt

+ β(t, S(t), v(t))
√
v(t)dW̃ (ρ,γ), (5b)

where {ψ(t, S(t), v(t))}t≥0 is the {FW (t)}t≥0-adapted stochastic process given by

ψ(t, S(t), v(t)) =
µ(t, S(t), v(t))− r√

v(t)
ρ+ γ(t, S(t), v(t))

√
1− ρ2 (6)

and where

W̃ (ρ,γ)(t) = ρW̃1(t) +
√

1− ρ2W̃ (γ)
2 (t).

Note that the P̃(γ)-Brownian motions {W̃1(t)}t≥0, {W̃ (ρ,γ)(t)}t≥0 satisfy

dW̃1(t)dW̃
(ρ,γ)(t) = ρdt, for ρ ∈ [−1, 1]. (7)
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It follows immediately that the discounted price {e−rtS(t)}t≥0 is a P̃(γ)-martingale relative

to the filtration {FW (t)}t≥0. Hence all probability measures P̃(γ) are equivalent risk-neutral
probability measures.

Remark (Incomplete markets).

As the risk-neutral probability measure is not uniquely defined, the market under discussion
is said to be incomplete. Within incomplete markets there is no unique value for the price
of derivatives (it depends on which specific risk-neutral probability measure is used to price
the derivative). The stochastic process {ψ(t)}t≥0 is called the market price of volatility
risk and reduces to θ(t) = (µ(t)− r(t))/σ(t) for γ ≡ 0 (or ρ = 1).

Consider now the standard European derivative with pay-off Y = g(S(T )) at time of maturity
T .

For stochastic volatility models it is reasonable to assume that the risk-neutral price ΠY (t)
of the derivative is a local function of the stock price and of the instantaneous variance, i.e.,
we make the following ansatz which generalizes (??):

ΠY (t) = e−r(T−t)Ẽ[g(S(T ))|FW (t)] = vg(t, S(t), v(t)) (8)

for all t ∈ [0, T ], for all T > 0 and for some measurable pricing vg.

As in the case of local volatility models, (8) is motivated by the Markov property of solutions
to systems of SDE’s.

In fact, it is useful to consider a more general European derivative with pay-off Y given by

Y = h(S(T ), v(T )),

for some function h : [0,∞)2 → R, i.e., the pay-off of the derivative depends on the stock
value and on the instantaneous variance of the stock at the time of maturity.

Theorem 2. Assume that the functions η(t, x, y), β(t, x, y), ψ(t, x, y) in (5) are such that
the PDE

∂tu+ rx∂xu+ A∂yu+
1

2
yx2∂2xu+

1

2
β2y∂2yu+ ρβxy∂2xyu = 0, (9a)

A = η −√yβψ, (t, x, y) ∈ (0, T )× (0,∞)2 (9b)

admits a unique strong solution u satisfying u(T, x, y) = h(x, y). Then the risk-neutral price
of the derivative with pay-off Y = h(S(T ), v(T )) and maturity T is given by

ΠY (t) = fh(t, S(t), v(t))
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where the pricing function fh is given by fh(t, x, y) = e−rτu(t, x, y), τ = T − t.

As for the local volatility models, a closed formula solution of (9) is rarely available and the
use numerical methods to price the derivative becomes essential.

Heston model

A popular stochastic volatility model is the Heston model, which is obtained by the following
substitutions in (1)-(2):

µ(t, S(t), v(t)) = µ0, β(t, x, y) = c, η(t, x, y) = a(b− y),

where µ0, a, b, c are constant. Hence the stock price and the volatility dynamics in the Heston
model are given by the following stochastic differential equations:

dS(t) = µ0S(t) dt+
√
v(t)S(t)dW1(t), (10a)

dv(t) = a(b− v(t))dt+ c
√
v(t)dW (ρ)(t). (10b)

Note in particular that the variance in the Heston model is a CIR process in the physical
probability P.

The condition 2ab ≥ c2 ensures that v(t) is strictly positive almost surely.

To pass to the risk neutral world we need to fix a risk-neutral probability measure, that is,
we need to fix the market price of volatility risk function ψ in (6).

In the Heston model it is assumed that

ψ(t, x, y) = λ
√
y, (11)

for some constant λ ∈ R, which leads to the following form of the pricing PDE (9):

∂tu+ rx∂xu+ (k −my)∂yu+
1

2
yx2∂2xu+

c2

2
y∂2yu+ ρcxy∂2xyu = 0, (12)

where the constant k,m are given by k = ab, m = (a+cλ). Note that the choice (11) implies
that the variance of the stock remains a CIR process in the risk-neutral probability measure.

The general solution of (12) with terminal datum u(T, x, y) = h(x, y) is not known.
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However in the case of a call option (i.e., h(x, y) = g(x) = (x−K)+) an explicit formula for
the Fourier transform of the solution is available, see [?].

With this formula at hand one can compute the price of call options by very efficient numer-
ical methods, which is one of the main reasons for the popularity of the Heston model.

Variance swaps

Variance swaps are financial derivatives on the realized annual variance of an asset (or index).

We first describe how the realized annual variance is computed from the historical data of
the asset price. Let T > 0 be measured in days and consider the partition

0 = t0 < t1 < · · · < tn = T, tj+1 − tj = h > 0,

of the interval [0, T ].

Assume for instance that the asset is a stock and let S(tj) = Sj be the stock price at time
tj.

Here S1, . . . Sn are historical data for the stock price and not random variables (i.e., the
interval [0, T ] lies in the past of the present time).

The realized annual variance of the stock in the interval [0, T ] along this partition is
defined as

σ2
1year(n, T ) =

κ

T

n−1∑
j=0

(
log

Sj+1

Sj
− 1

n
log

S(T )

S(0)

)2

, (13)

where κ is the number of trading days in one year (typically, κ = 252).

Using T = nh we see that, up to a normalization factor, (13) coincides with the sample
variance of the log-returns of the stock in the intervals [tj, tj+1], j = 0, . . . , n− 1.

A variance swap stipulated at time t = 0, with maturity T and strike variance K is a
contract between two parties which, at the expiration date, entails the exchange of cash
given by N(σ2

1year − K), where N (called variance notional) is a conversion factor from
units of variance to units of currency.

In particular, the holder of the long position on the swap is the party who receives the cash
in the case that the realized annual variance at the expiration date is larger than the strike
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variance.

Variance swaps are traded over the counter and they are used by investors to protect their
exposure to the volatility of the asset.

For instance, suppose that an investor has a position on an asset which is profitable if the
volatility of the stock price increases (e.g., the investor owns call options on the stock).

Then it is clearly important for the investor to secure such position against a possible decrease
of the volatility.

To this purpose the investor opens a short position on a variance swap with another investor
who is exposed to the opposite risk.

Let us now discuss variance swaps from a mathematical modeling point of view.

We assume that the stock price follows the generalized geometric Brownian motion

S(t) = S(0) exp

(∫ t

0

α(s)ds+

∫ t

0

σ(s)dW (s)

)
.

Next we show that, as n→∞, the realized annual variance in the future time interval [0, T ]
converges in L2 to the random variable

QT =
κ

T
[logS, logS](T ) =

κ

T

∫ T

0

σ2(t) dt.

To see this we first rewrite the definition of realized annual variance as

σ2
1year(n, T ) =

κ

T

n−1∑
j=0

(
log

Sj+1

Sj

)2

− κ

nT

(
log

S(T )

S(0)

)2

. (14)

Hence

lim
n→∞

σ2
1year(n, T ) = lim

n→∞

κ

T

n−1∑
j=0

(
log

Sj+1

Sj

)2

in L2.
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Moreover, by the definition of quadratic variation, it follows that

E

( κ
T

n−1∑
j=0

(
log

Sj+1

Sj

)2

−QT

)2
→ 0, as n→∞.

A variance swap can thus be defined as the (non-standard) European derivative with pay-off
Y = QT −K.

Assuming that the interest rate of the money market is the constant r ∈ R, the risk-neutral
value of a variance swap is given by

ΠY (t) = e−rτ Ẽ[QT −K|FW (t)]. (15)

In particular, at time t = 0, i.e., when the contract is stipulated, we have

ΠY (0) = e−rT Ẽ[QT −K], (16)

where we used that FW (0) is a trivial σ-algebra, and therefore the conditional expectation
with respect to FW (0) is a pure expectation.

As none of the two parties in a variance swap has a privileged position on the contract, there
is no premium associated to variance swaps, that is to say, the fair value of a variance swap
is zero (his is a general property of forward contracts).

The value K∗ of the variance strike which makes the risk-neutral price of a variance swap
equal to zero at time t = 0, i.e., ΠY (0) = 0, is called the fair variance strike.

By (16) we find

K∗ =
κ

T

∫ T

0

Ẽ[σ2(t)] dt. (17)

To computeK∗ explicitly, we need to fix a stochastic model for the variance process {σ2(t)}t≥0.

Let us consider the Heston model

dσ2(t) = a(b− σ2(t))dt+ cσ(t)dW̃ (t), (18)

where a, b, c are positive constants satisfying 2ab ≥ c2 and where {W̃ (t)}t≥0 is a Brownian
motion in the risk-neutral probability measure.
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To compute the fair variance strike of the swap using the Heston model we use that

Ẽ[σ2(t)] = abt− a
∫ t

0

Ẽ[σ2(s)] ds,

which implies d
dt
Ẽ[σ2(t)] = ab− aẼ[σ2(t)] and so

Ẽ[σ2(t)] = b+ (σ2
0 − b)e−at, σ2

0 = Ẽ[σ2(0)] = σ2(0). (19)

Replacing into (17) we obtain

K∗ = κ

[
b+

σ2
0 − b
aT

(1− e−aT )

]
.
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Exercise 1. Given σ0 > 0, let σ(t) = σ0
√
S(t), which is an example of CEV model. Compute

the fair strike of the variance swap.
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Exercise 2. Assume that the price S(t) of a stock follows a generalized geometric Brownian
motion with instantaneous volatility {σ(t)}t≥0 given by the Heston model dσ2(t) = a(b −
σ2(t)) dt+cσ(t) dW̃ (t), where {W̃ (t)}t≥0 is a Brownian motion in the risk-neutral probability
measure and a, b, c are constants such that 2ab ≥ c2 > 0. The volatility call option with strike
K and maturity T is the financial derivative with pay-off

Y = N

√ κ

T

∫ T

0

σ2(t) dt−K


+

,

where κ is the number of trading days in one year and N is a dimensional constant that con-
verts units of volatility into units of currency. Assuming that the interest rate of the money
market is constant, find the partial differential equation and the terminal value satisfied by
the pricing function of the volatility option.
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