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Zero-coupon bonds

A zero-coupon bond (ZCB) with face (or nominal) value K and maturity T > 0 is a
contract that promises to pay to its owner the amount K at time T in the future.

Zero-coupon bonds, and related contracts described below, are issued by national govern-
ments and private companies as a way to borrow money and fund their activities.

In the following we assume that all ZCB’s are issued by one given institution, so that all
bonds differ merely by their face values and maturities.

Moreover without loss of generality we assume from now on that K = 1, as owning a ZCB
with face value K is clearly equivalent to own K shares of a ZCB with face value 1.

Once a debt is issued in the so-called primary market, it becomes a tradable asset in the
secondary bond market.

It is therefore natural to model the value at time t of the ZCB maturing at time T > t (and
face value 1) as a random variable, which we denote by B(t, T ).

We assume throughout the discussion that the institution issuing the bond bears no risk of
default, i.e., B(t, T ) > 0, for all t ∈ [0, T ].

Clearly B(T, T ) = 1 and, under normal market conditions, B(t, T ) < 1, for t < T , although
exceptions are not rare.

A zero-coupon bond market (ZCB market) is a market in which the objects of trading
are ZCB’s with different maturities. Our main goal is to introduce models for the prices of
ZCB’s observed in the market.
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For modeling purposes we assume that zero-coupon bonds are available with a continuum
range of maturities T ∈ [0, S], where S > 0 is sufficiently large so that all ZCB’s in the
market mature before the time S (e.g., S ≈ 50 years).

Mathematically this means that we model the prices of ZCB’s in the market as a stochastic
process depending on 2 parameters, namely

{B(t, T ), t ∈ [0, T ], T ∈ [0, S]}.

All processes {X(t, T ), t ∈ [0, T ], T ∈ [0, S]} introduced in this section are assumed to have
a.s. continuous paths in both variables t, T and to be adapted to the filtration {FW (t)}t≥0
generated by the given Brownian motion {W (t)}t≥0.

This means that for all given T ∈ [0, S], the stochastic process {X(t, T )}t∈[0,T ] is adapted to
{FW (t)}t≥0. By abuse of notation we continue to denote by C0[FW (t)] this class of processes.

Forward and spot rate

The difference in value of zero-coupon bonds with different maturities is expressed through
the implied forward rate of the bond.

To define this concept, suppose first that at the present time t we open a portfolio that
consists of −1 share of a zero-coupon bond with maturity T > t and B(t, T )/B(t, T + δ)
shares of a zero-coupon bond expiring at time T + δ.

Note that the value of this portfolio is V (t) = 0. This investment entails that we pay 1 at
time T and receive B(t, T )/B(t, T + δ) at time T + δ.

Hence our investment at time t is equivalent to an investment in the future time interval
[T, T + δ] with (annualized) return given by

Fδ(t, T ) =
1

δ
(B(t, T )/B(t, T + δ)− 1) =

B(t, T )−B(t, T + δ)

δB(t, T + δ)
. (1)

The quantity Fδ(t, T ) is also called the simply compounded forward rate in the interval
[T, T+δ] locked at time t (or forward LIBOR, as it is commonly applied to LIBOR interest
rate contracts).

The name is intended to emphasize that the return in the future interval [T, T + δ] is locked
at the time t ≤ T , that is to say, we know today which interest rate has to be charged to
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borrow in the future time interval [T, T + δ] (if a different rate were locked today, then an
arbitrage opportunity would arise).

In the limit δ → 0+ we obtain the so called continuously compounded T-forward rate
of the bond locked at time t:

F (t, T ) = lim
δ→0+

Fδ(t, T ) = − 1

B(t, T )
∂TB(t, T ) = −∂T logB(t, T ), (2)

where 0 ≤ t ≤ T and 0 ≤ T ≤ S.

Inverting (2) we obtain

B(t, T ) = exp

(
−
∫ T

t

F (t, v) dv

)
, 0 ≤ t ≤ T ≤ S. (3)

By (3), a model for the price B(t, T ) of the ZCB’s in the market can be obtained by a model
on the forward rate curve T → F (t, T ). This approach to the problem of ZCB pricing is
known as HJM approach, from Heath, Jarrow, Morton, who introduced this method in the
late 1980s.

Letting T → t+ in (1) we obtain the simply compounded spot rate,

Rδ(t) = lim
T→t+

Fδ(t, T ), (4)

that is to say, the interest rate locked “on the spot”, i.e., at the present time t, to borrow
in the interval [t, t + δ]. Letting δ → 0+ we obtain the instantaneous (or continuously
compounded) spot rate {r(t)}t∈[0,S] of the ZCB market:

r(t) = lim
δ→0+

Rδ(t) = lim
T→t+

F (t, T ), t ∈ [0, S]. (5)

Note that r(t) is the interest rate locked at time t to borrow in the “infinitesimal interval”
of time [t, t + dt]. Hence r(t) coincides with the risk-free rate of the money market used in
the previous sections.

For the options pricing problem studied ibefore we assumed that r(t) was equal to a constant
r, which is reasonable for short maturity contracts (T . 1 year).

However when large maturity assets such as ZCB’s are considered, we have to relax this
assumption and promote {r(t)}t∈[0,S] to a stochastic process.
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In the so-called classical approach to the problem of ZCB’s pricing, the fair value of B(t, T )
is derived from a model on the spot rate process.

Yield to maturity of ZCB’s

If a ZCB is bought at time t and kept until its maturity T > t, the annualized log-return of
the investment is

Y (t, T ) = − 1

T − t
logB(t, T ) =

1

T − t

∫ T

t

F (t, v) dv, (6)

which is called the (continuously compounded) yield to maturity of the zero-coupon
bond, while T → Y (t, T ) is called the yield curve.

Inverting (6) we find

B(t, T ) = e−Y (t,T )(T−t) =
DY (T )

DY (t)
, where DY (s) = e−Y (t,T )s. (7)

Hence we may interpret the yield also as the constant interest rate which entails that the
value of the ZCB at time t equals the discounted value of the future payment 1 at time T .

Coupon bonds

Let 0 < t1 < t2 < · · · < tM = T be a partition of the interval [0, T ].

A coupon bond with maturity T , face value 1 and coupons c1, c2, . . . , cM ∈ [0, 1) is a
contract that promises to pay the amount ck at time tk and the amount 1 + cM at maturity
T = tM .

Note that some ck may be zero, which means that no coupon is actually paid at that time.

We set c = (c1, . . . , cM) and denote by Bc(t, T ) the value at time t of the bond paying the
coupons c1, . . . , cM and maturing at time T .

Now, let t ∈ [0, T ] and k(t) ∈ {1, . . . ,M} be the smallest index such that tk(t) > t, that is to
say, tk(t) is the first time after t at which a coupon is paid.

Holding the coupon bond at time t is clearly equivalent to holding a portfolio containing ck(t)
shares of the ZCB expiring at time tk(t), ck(t)+1 shares of the ZCB expiring at time tk(t)+1,
and so on, hence
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Bc(t, T ) =
M−1∑
j=k(t)

cjB(t, tj) + (1 + cM)B(t, T ), (8)

the sum being zero when k(t) = M .

The yield to maturity of a coupon bond is the quantity Yc(t, T ) defined implicitly by the
equation

Bc(t, T ) =
M−1∑
j=k(t)

cje
−Yc(t,T )(tj−t) + (1 + cM)e−Yc(t,T )(T−t). (9)

It follows that the yield of the coupon bond is the constant interest rate used to discount the
total future payments of the coupon bond.

Example. Consider a 3 year maturity coupon bond with face value 1 which pays 2% coupon
semiannually. Suppose that the bond is listed with an yield of 1%. What is the value of the
bond at time zero? The coupon dates are

(t1, t2, t3, t4, t5, t6) = (1/2, 1, 3/2, 2, 5/2, 3),

and c1 = c2 = · · · = c6 = 0.02. Hence

Bc(0, T ) = 0.02e−0.01∗
1
2 + 0.02e−0.01∗1 + 0.02e−0.01∗

3
2 + 0.02e−0.01∗2 + 0.02e−0.01∗

5
2

+ (1 + 0.02)e−0.01∗3 = 1.08837.

Remark. As in the previous example, the coupons of a coupon bond are typically all equal,
i.e., c1 = c2 = · · · = cM = c ∈ (0, 1).

In the example above, the yield was given and Bc(0, T ) was computed.

However one is most commonly faced with the opposite problem, i.e., computing the yield
of the coupon bond with given initial value Bc(0, T ).

We can easily solve this problem numerically inverting (9).

For instance, assume that the bond is issued at time t = 0 with maturity T = M years (M
integer) and that the coupons are paid annually, that is t1 = 1, t2 = 2, . . . , tM = M .
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Then x = exp(−Yc(0, T )) solves p(x) = 0, where p is the M -order polynomial given by

p(x) = c1x+ c2x
2 + · · ·+ (1 + cM)xM −Bc(0, T ). (10)

The roots of this polynomial can easily be computed numerically.

Yield curve

The curve T → yc(t, T ) is called the yield curve of the bond market at time t.

Figure 1: Yield curve for Swedish bonds. Note that the yield is negative for maturities
shorter than 5 years.
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Figure 2: Yield curve for US bonds (10 December 2020).
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