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Classical approach to ZCB pricing

In the so-called classical approach to the problem of pricing ZCB’s we interpret the ZCB as
a derivative on the spot rate.

Assume that a model for {r(t)}t∈[0,S] is given as a stochastic process in the space C0[FW (t)].
As the pay-off of the ZCB equals one, the risk-neutral price of the ZCB is given by

B(t, T ) = Ẽ[D(t)−1D(T )|FW (t)] = Ẽ
[

exp(−
∫ T

t

r(s) ds)|FW (t)
]

(1)

and thus the discounted price of the ZCB, B∗(t, T ) = D(t)B(t, T ), is a P̃-martingale relative
to {FW (t)}t≥0; in particular, self-financing portfolios invested in the ZCB market are not
arbitrage portfolios.

Note however that the risk-neutral probability measure in (1) cannot be determined solely by
the spot rate, and therefore models for the process {r(t)}t∈[0,S] must be given a priori in terms
of a risk-neutral probability measure. As the real world is not risk-neutral, the foundation of
the classical approach is questionable.

There are two ways to get around this problem. One is the HJM approach described below;
the other is by adding a risky asset (e.g. a stock) to the ZCB market, which would then be
used to determine the risk-neutral probability measure. The last procedure is referred to as
“completing the ZCB market” and will be discussed in Section ??.

As an application of the classical approach, assume that the spot rate is given by the Cox-
Ingersoll-Ross (CIR) model,
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dr(t) = a(b− r(t))dt+ c
√
r(t)dW̃ (t), r(0) = r0 > 0, (2)

where {W̃ (t)}t∈[0,T ] is a Brownian motion in the risk-neutral probability measure and R0, a, b, c
are positive constants.

To compute B(t, T ) under a CIR interest rate model, we make the ansatz

B(t, T ) = v(t, r(t)), (3)

for some smooth function v : [0, T ] × R → R, which we want to find. Note that we do not
require the Feller condition ab ≥ c2/2, hence we allow the spot rate to become zero with
positive probability, although negative values are excluded in the CIR model.

Theorem 1. When the interest rate {r(t)}t>0 follows the CIR model (2), the value B(t, T )
of the zero-coupon bond is given by

v(t, x) = e−xC(τ)−A(τ), τ = T − t, (4)

where C(τ), A(τ) satisfy the Cauchy problem

C ′(τ) = 1− aC(τ)− c2

2
C(τ)2, A′(τ) = abC(τ) (5a)

C(0) = 0, A(0) = 0. (5b)

Moreover the solution of the Cauchy problem (5) is given by

C(τ) =
sinh(γτ)

γ cosh(γτ) + 1
2
a sinh(γτ)

(6a)

A(τ) = −2ab

c2
log

[
γe

1
2
aτ

γ cosh(γτ) + 1
2
a sinh(γτ)

]
(6b)

and

γ =
1

2

√
a2 + 2c2. (6c)

Proof. Using Itô’s formula and the product rule, together with (2), we obtain

d(D(t)v(t, r(t)) = D(t)[∂tv(t, r(t)) + a(b− r(t))∂xv(t, r(t))

+
c2

2
r(t)∂2

xv(t, r(t))− r(t)v(t, r(t))]dt

+D(t)∂xv(t, r(t))c
√
r(t)dW̃ (t).
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Hence, imposing that v be a solution of the PDE

∂tv + a(b− x)∂xv +
c2

2
x∂2

xv = xv, (t, x) ∈ D+
T , (7a)

we obtain that the stochastic process {D(t)v(t, r(t))}t∈[0,T ] is a P̃-martingale relative to the
filtration {FW (t)}t∈[0,T ]. Imposing additionally the terminal condition

v(T, x) = 1, for all x > 0, (7b)

we obtain
D(t)v(t, r(t)) = Ẽ[D(T )v(T,R(T ))|FW (t)] = Ẽ[D(T )|FW (t)],

hence
v(t, r(t)) = Ẽ[D(T )/D(t)|FW (t)],

and thus (3) is verified. Replacing the ansatz (4) into (7) we find the following first order
polynomial equation

x(C ′(τ) + aC(τ) +
c2

2
C(τ)2 − 1) + A′(τ)− abC(τ) = 0.

The previous equation holds for all x if and only if (5a) hold, while the initial conditions (5b)
are equivalent to the terminal condition v(T, x) = 1. The proof of the claim that (6) is the
solution of the Cauchy problem (5) is left as an exercise.

The CIR model is an example of affine model, i.e., a model for the interest rate which entails
a price function for the ZCB of the form B(t, T ) = exp(−r(t)C(t) − A(t)) (or equivalently,
an yield which is a linear function of the spot rate).

The most general affine model has the form

dr(t) = a(t)(b(t)− r(t)) dt+ c(t)
√
r(t) + δ(t) dW̃ (t), (8)

where a, b, c, δ are deterministic functions of time.
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Exercise 1. Let B(t, T ) = v(t, r(t)) the price of the ZCB with face value 1 entailed by the
general affine model (8). Set v(t, x) = exp(−xC(T − t) − A(T − t)) and derive the ODE’s
verified by the functions A,C.
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Exercise 2. Assume that the interest rate of a zero-coupon bond is given by the Vasicek
model

dr(t) = a(b− r(t))dt+ c dW̃ (t), r(0) = r0 ∈ R,

where a, b, c are positive constants and {W̃ (t)}t≥0 is a Brownian motion in the risk-neutral

probability measure P̃. Show that r(t) is P̃-normally distributed and compute its expectation
and variance in the risk-neutral probability measure. Derive the PDE for the pricing function
v of the ZCB with face value 1 and maturity T > 0. Find v using the ansatz (4).
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Interest rate swap

An interest rate swap can be seen as a coupon bond with variable (random) coupons,
which can be positive or negative.

More precisely, consider a partition 0 = T0 < T1 < · · · < Tn = T with Ti − Ti−1 = δ, for all
i = 1, . . . , n.

Let Rδ(Ti) = Fδ(Ti, Ti) be the simply compounded spot rate in the interval [Ti, Ti+1]. Recall
that this quantity is known at time Ti (but not at time t = 0).

An interest rate swap is a contract between two parties which at each time Ti+1, i = 1, . . . , n−
1, entails the exchange of cash N(Rδ(Ti)δ − rδ), where r is a fixed interest rate and N > 0
is the notional amount converting units of interest rates into units of currency.

Without loss of generality, we assume N = 1 in the following.

The party that receives this cash flow when it is positive is called the receiver, while the
opposite party is called the payer.

Hence the receiver has a long position on the spot rate, while the payer has a short position
on the spot rate.

The risk-neutral value at time t = 0 of the interest rate swap is the expectation, in the
risk-neutral probability measure, of the discounted cash-flow entailed by the contract, that
is

Πirs(0) = δ
n−1∑
i=1

Ẽ[(Rδ(Ti)− r)D(Ti+1)], (9)

where D(t) is the discount process.

Being a forward type contract (see later), the fair value of the interest rate swap is zero:
neither the receiver nor the payer has a privileged position in the contract and thus none of
them needs to pay a premium.

The value of r for which Πirs(0) = 0 is called the (fair) swap rate of the interest rate swap.

Theorem 2. The swap rate of an interest rate swap stipulated at time t = 0 and with
maturity T is given by

rswap =

∑n−1
i=1 B(0, Ti+1)Fδ(0, Ti)∑n−1

i=1 B(0, Ti+1)
. (10)

6



Proof. We show below that, for all T > 0 and δ > 0, the following identity holds:

Ẽ[D(T + δ)Fδ(T, T )] = B(0, T + δ)Fδ(0, T ). (11)

Using (11) in (9) we obtain

Πirs(0) = δ
n−1∑
i=1

Ẽ[Fδ(Ti, Ti)D(Ti + δ)]− δr
n−1∑
i=1

Ẽ[D(Ti+1)]

= δ

(
n−1∑
i=1

B(0, Ti+1)Fδ(0, Ti)− r
n−1∑
i=1

B(0, Ti+1)

)
, (12)

hence Πirs(0) = 0 if and only if r = rswap. It remains to prove (11). As B(t, T ) =

Ẽ[D(T )/D(t)|FW (t)], we have

Ẽ[D(T + δ)Fδ(T, T )] = Ẽ[D(T + δ)(
1−B(T, T + δ)

δB(T, T + δ)
)]

=
1

δ
Ẽ[D(T + δ)B(T, T + δ)−1]− 1

δ
Ẽ[D(T + δ)]

=
1

δ
Ẽ[Ẽ[

D(T + δ)

D(T )

D(T )

B(T, T + δ)
|FW (T )]]− 1

δ
B(0, T + δ)

=
1

δ
Ẽ[

D(T )

B(T, T + δ)
B(T, T + δ)]− 1

δ
B(0, T + δ)

=
1

δ

B(0, T )−B(0, T + δ)

B(0, T + δ)
B(0, T + δ) = B(0, T + δ)Fδ(0, T ).

Remark. Note carefully that all quantities in the right hand side of (10) are known at time
t = 0, hence the swap rate is fixed by information available at the time when the interest
rate swap is stipulated.

Caps and Floors

An interest rate cap is a contract that caps (i.e., put a maximum limit on) the spot rate.
More precisely, consider, as before, a uniform partition 0 = T0 < T1 < · · · < Tn = T of the
interval [0, T ] with Ti − Ti−1 = δ, for all i = 1, . . . , n.

Let Rδ(Ti) = Fδ(Ti, Ti) be the simply compounded spot rate in the interval [Ti, Ti+1].

An interest rate cap with strike rate r and notional amount N = 1 pays to its owner the
amount (Rδ(Ti)δ − rδ)+ at time Ti+1, i = 1, . . . , n− 1.
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Hence the spot rate for the owner of the interest rate cap is no higher than r: any excess to
the strike rate is paid by the seller of the interest rate cap.

Similarly, an interest rate floor put a minimum on the spot rate and pays to its owner the
amount (rδ −Rδ(Ti)δ)+ at every time Ti+1, i = 1, . . . , n− 1.

The risk-neutral price of the interest rate cap/floor at time t = 0 is given by

Πcap(0) = δ

n−1∑
i=1

Ẽ[(Rδ(Ti)− r)+D(Ti+1)], (13)

Πfloor(0) = δ

n−1∑
i=1

Ẽ[(r −Rδ(Ti))+D(Ti+1)]. (14)

As (Rδ(Ti)− r)+ − (r −Rδ(Ti))+ = (Rδ(Ti)− r), the cap-floor parity identity holds:

Πcap(0)− Πfloor(0) = Πirs(0).

In particular if the strike rate coincides with the swap rate then the cap and the floor have
the same initial price. An interest rate cap (resp. floor) on one time period (i.e., n = 1) is
called a caplet (resp. floorlet).
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