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1 Multi-dimensional markets

In this section we consider N + 1 dimensional stock markets. We denote the stocks prices by

{S1(t)}t≥0, . . . , {SN(t)}t≥0

and assume the following dynamics

dSk(t) =

(
µk(t) dt+

N∑
j=1

σkj(t)dWj(t)

)
Sk(t), (1)

for some stochastic processes {µk(t)}t≥0, {σkj(t)}t≥0, j, k = 1, . . . , N in the class C0[FW (t)],
where in this section {FW (t)}t≥0 denotes the filtration generated by the Brownian motions
{W1(t)}t≥0, . . . {WN(t)}t≥0.

Moreover we assume that the Brownian motions are independent, in particular

dWj(t)dWk(t) = 0, for all j 6= k (2)

Finally {r(t)}t≥0 ∈ C0[FW (t)] is the interest rate of the money market.

Now, given stochastic processes {θk(t)}t≥0 ∈ C0[FW (t)], k = 1, . . . , N , satisfying the Novikov
condition (??), the stochastic process {Z(t)}t≥0 given by
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Z(t) = exp

(
−

N∑
k=1

(∫ t

0

1

2
θ2k(s) ds+

∫ t

0

θk(s) dWk(s)

))
(3)

is a martingale relative to the filtration {FW (t)}t≥0.

Since E[Z(t)] = E[Z(0)] = 1, for all t ≥ 0, we can use the stochastic process {Z(t)}t≥0 to
define a risk-neutral probability measure associated to the N + 1 dimensional stock market,
as we did in the one dimensional case.

Definition 1. Let T > 0 and assume that the market price of risk equations

µj(t)− r(t) =
N∑
k=1

σjk(t)θk(t), j = 1, . . . , N, (4)

admit a solution (θ1(t), . . . , θN(t)), for all t ≥ 0. Define the stochastic process {Z(t)}t≥0 as

in (3). Then the measure P̃ equivalent to P given by

P̃(A) = E[Z(T )IA]

is called the risk-neutral probability measure of the market at time T .

Note that, as opposed to the one dimensional case, the risk-neutral measure just defined
need not be unique, as the market price of risk equations may admit more than one solution.

For each risk-neutral probability measure P̃ we can apply the multidimensional Girsanov
theorem and conclude that the stochastic processes {W̃1(t)}t≥0, . . . {W̃N(t)}t≥0 given by

W̃k(t) = Wk(t) +

∫ t

0

θk(s) ds

are P̃-independent Brownian motions. Moreover these Brownian motions are P̃-martingales
relative to the filtration {FW (t)}t≥0.

Now let {hS1(t)}t≥0, . . . , {hSN
(t)}t≥0 ∈ C0[FW (t)] be stochastic processes representing the

number of shares on the stocks in a portfolio invested in the N+1 dimensional stock market.

Let {hB(t)}t≥0 be the number of shares on the risk-free asset. The portfolio value is

V (t) =
N∑
k=1

hSk
(t)Sk(t) + hB(t)B(t)
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and the portfolio process is self-financing if its value satisfies

dV (t) =
N∑
k=1

hSk
(t)dSk(t) + hB(t)dB(t),

that is

dV (t) =
N∑
k=1

hSk
(t)dSk(t) + r(t)

(
V (t)−

N∑
k=1

hSk
(t)Sk(t)

)
dt.

Theorem 1. Assume that a risk-neutral probability P̃ exists, i.e., the equations (4) admit
a solution. Then the discounted value of any self-financing portfolio invested in the N + 1
dimensional market is a P̃-martingale relative to the filtration {FW (t)}t≥0. In particular
(by Theorem ??) there exists no self-financing arbitrage portfolio invested in the N + 1
dimensional stock market.

Proof. The discounted value of the portfolio satisfies

dV ∗(t) = D(t)

(
N∑
j=1

hSj
(t)Sj(t)(αj(t)− r(t)) dt+

N∑
j,k=1

hSj
(t)Sj(t)σjk(t)dWk(t)

)

= D(t)

(
N∑
j=1

hSj
(t)Sj(t)

N∑
k=1

σjk(t)θk(t)dt+
N∑

j,k=1

hSj
(t)Sj(t)σjk(t)dWk(t)

)

= D(t)
N∑
j=1

hSj
(t)Sj(t)

N∑
k=1

σjk(t)dW̃k(t).

All Itô’s integrals in the last line are P̃-martingales relative to {FW (t)}t≥0. The result
follows.

Next we show that the existence of a risk-neutral probability measure is necessary for the
absence of self-financing arbitrage portfolios in N + 1 dimensional stock markets.

Let N = 3 and assume that the market parameters are constant.

Let r(t) = r > 0, (µ1, µ2, µ3) = (2, 3, 2) and let the volatility matrix be given by

σij =

 1 2 0
2 4 0
1 2 0

 .

Thus the stocks prices satisfy
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dS1(t) = (2dt+ dW1(t) + 2dW2(t))S1(t),

dS2(t) = (3dt+ 2dW1(t) + 4dW2(t))S2(t),

dS3(t) = (2dt+ dW1(t) + 2dW2(t))S3(t).

The market price of risk equations are

θ1 + 2θ2 = 2− r
2θ1 + 4θ2 = 3− r
θ1 + 2θ2 = 2− r.

This system is solvable if and only if r = 1, in which case there exist infinitely many solutions
given by

θ1 ∈ R, θ2 =
1

2
(1− θ1).

Hence for r = 1 there exists at least one (in fact, infinitely many) risk-neutral probability
measures, and thus the market is free of arbitrage.

To construct an arbitrage portfolio when 0 < r < 1, let

hS1(t) =
1

S1(t)
, hS2(t) = − 1

S2(t)
, hS3(t) =

1

S3(t)

and choose hB(t) such that the portfolio process is self-financing (see Exercise ??).

The value {V (t)}t≥0 of this portfolio satisfies

dV (t) = hS1(t)dS1(t) + hS2(t)dS2(t) + hS3(t)dS3(t)

+ r(V (t)− hS1(t)S1(t)− hS2(t)S2(t)− hS3(t)S3(t))dt

= rV (t)dt+ (1− r)dt.

Hence

V (t) = V (0)ert +
1

r
(1− r)(ert − 1)
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and this portfolio is an arbitrage, because for V (0) = 0 we have V (t) > 0, for all t > 0.
Similarly one can find an arbitrage portfolio for r > 1.

Next we address the question of completeness of N +1 dimensional stock markets, i.e., the
question of whether any European derivative can be hedged in this market.

Consider a European derivative on the stocks with pay-off Y and time of maturity T .

For instance, for a standard European derivative, Y = g(S1(T ), . . . SN(T )), for some mea-
surable function g.

The risk-neutral price of the derivative is

ΠY (t) = Ẽ[Y exp(−
∫ T

t

r(s) ds)|FW (t)],

and coincides with the value at time t of any self-financing portfolio invested in the N + 1
dimensional market. The question of existence of an hedging portfolio is answered by the
following theorem.

Theorem 2. Assume that the volatility matrix (σjk(t))j,k=1,...N is invertible, for all t ≥ 0.
There exist stochastic processes {∆1(t)}t∈[0,T ], . . . {∆N(t)}t∈[0,T ], adapted to {FW (t)}t≥0, such
that

D(t)ΠY (t) = ΠY (0) +
N∑
k=1

∫ t

0

∆k(s)dW̃k(s), t ∈ [0, T ]. (5)

Let (Y1(t), . . . , YN(t)) be the solution of

N∑
k=1

σjk(t)Yj(t) =
∆k(t)

D(t)
. (6)

Then the portfolio {hS1(t), . . . , hSN
(t), hB(t)}t∈[0,T ] given by

hSj
(t) =

Yj(t)

Sj(t)
, hB(t) = (ΠY (t)−

N∑
j=1

hSj
(t)Sj(t))/B(t) (7)

is self-financing and replicates the derivative at any time, i.e., its value V (t) is equal to
ΠY (t) for all t ∈ [0, T ]. In particular, V (T ) = ΠY (T ) = Y , i.e., the portfolio is hedging the
derivative.

The proof of this theorem is conceptually very similar to the one dimensional case and is
therefore omitted (it makes use of the multidimensional version of the martingale represen-
tation theorem).
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Notice that, having assumed that the volatility matrix is invertible, the risk-neutral proba-
bility measure of the market is unique.

We now show that the uniqueness of the risk-neutral probability measure is necessary to
guarantee completeness.

In fact, let r = 1 in the example considered before and pick the following solutions of the
market price of risk equations:

(θ1, θ2) = (0, 1/2), and (θ1, θ2) = (1, 0)

(any other pair of solutions would work).

The two corresponding risk-neutral probability measures, denoted respectively by P̃ and P̂,
are given by

P̃(A) = E[Z̃IA] P̂(A) = E[ẐIA], for all A ∈ F ,

where

Z̃ = e−
1
8
T− 1

2
W2(T ), Ẑ = e−

1
2
T−W1(T ).

Let A = {ω : 1
2
W2(T, ω)−W1(T, ω) < 3

8
T}. Hence

Ẑ(ω) < Z̃(ω), for ω ∈ A

and thus P̂(A) < P̃(A).

Consider a financial derivative with pay-off Q = IA/D(T ). If there existed an hedging, self-
financing portfolio for such derivative, then, since the discounted value of such portfolio is a
martingale in both risk-neutral probability measures, we would have

V (0) = Ẽ[QD(T )], and V (0) = Ê[QD(T )]. (8)

But

Ê[QD(T )] = Ê(IA) = P̂(A) < P̃(A) = Ẽ(IA) = Ẽ[QD(T )]

and thus (8) cannot be verified.
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