Financial derivatives and PDE's Lecture 25

Simone Calogero

March $1^{\text {st }}, 2021$

Multi-assets options

Multi-asset options are options on several underlying assets. Notable examples include rainbow options, basket options and quanto options.

In the following we discuss options on two stocks in a $\mathbf{2 + 1}$ dimensional Black-Scholes market, i.e., a market with constant parameters. It follows that

$$
\begin{gather*}
d S_{1}(t)=\mu_{1} S_{1}(t) d t+\sigma_{11} S_{1}(t) d W_{1}(t)+\sigma_{12} S_{1}(t) d W_{2}(t) \tag{1a}\\
d S_{2}(t)=\mu_{2} S_{2}(t) d t+\sigma_{21} S_{2}(t) d W_{1}(t)+\sigma_{22} S_{2}(t) d W_{2}(t) \tag{1b}
\end{gather*}
$$

where the volatility matrix

$$
\sigma=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right)
$$

is invertible (so that the market is complete).
Integrating (1) we obtain that $\left(S_{1}(t), S_{2}(t)\right)$ is given by the 2-dimensional geometric Brownian motion:

$$
\begin{align*}
& S_{1}(t)=S_{1}(0) e^{\left(\mu_{1}-\frac{1}{2}\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right)\right) t+\sigma_{11} W_{1}(t)+\sigma_{12} W_{2}(t)} \tag{2a}\\
& S_{2}(t)=S_{2}(0) e^{\left(\mu_{2}-\frac{1}{2}\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right)\right) t+\sigma_{21} W_{1}(t)+\sigma_{22} W_{2}(t)} \tag{2b}
\end{align*}
$$

or, more concisely,

$$
S_{j}(t)=S_{j}(0) e^{\left(\mu_{j}-\frac{\left|\sigma_{j}\right|^{2}}{2}\right) t+\sigma_{j} \cdot W(t)}
$$

where $\sigma_{j}=\left(\sigma_{j 1}, \sigma_{j 2}\right), j=1,2, W(t)=\left(W_{1}(t), W_{2}(t)\right)$ and \cdot denotes the standard scalar product of vectors.

Theorem 1. The random variables $S_{1}(t), S_{2}(t)$ have the joint density

$$
\begin{equation*}
f_{S_{1}(t), S_{2}(t)}(x, y)=\frac{e^{-\frac{1}{2 t}\left(\log \frac{x}{S(0)}-\alpha_{1} t \quad \log \frac{y}{S(0)}-\alpha_{2} t\right)\left(\sigma \sigma^{T}\right)^{-1}\binom{\log \frac{x}{S(0)}-\alpha_{1} t}{\log \frac{y}{S(0)}-\alpha_{2} t}}}{t x y \sqrt{(2 \pi)^{2} \operatorname{det}\left(\sigma \sigma^{T}\right)}} \tag{3}
\end{equation*}
$$

where $\alpha_{j}=\mu_{j}-\frac{\left|\sigma_{j}\right|^{2}}{2}, j=1,2$. Moreover $\log S_{1}(t), \log S_{2}(t)$ are jointly normally distributed with mean $m=\left(\log S_{1}(0)+\alpha_{1} t, \log S_{2}(0)+\alpha_{2} t\right)$ and covariant matrix $C=t \sigma \sigma^{T}$.

Proof. Letting $X_{i}=W_{i}(t) / \sqrt{t} \in \mathcal{N}(0,1)$, we write the stock prices as

$$
S_{1}(t)=S_{1}(0) e^{\alpha_{1} t+Y_{1}}, \quad S_{2}(t)=S_{2}(0) e^{\alpha_{2} t+Y_{2}}
$$

where

$$
Y_{1}=\sigma_{11} \sqrt{t} X_{1}+\sigma_{12} \sqrt{t} X_{2}, \quad Y_{2}=\sigma_{21} \sqrt{t} X_{1}+\sigma_{22} \sqrt{t} X_{2}
$$

It follows that Y_{1}, Y_{2} are jointly normally distributed with zero mean and covariant matrix $C=t \sigma \sigma^{T}$, which proves the second statement in the theorem. To compute the joint density of the stock prices, we notice that

$$
S_{1}(t) \leq x \Leftrightarrow Y_{1} \leq \log \left(\frac{x}{S_{1}(0)}\right)-\alpha_{1} t, \quad S_{2}(t) \leq y \Leftrightarrow Y_{2} \leq \log \left(\frac{y}{S_{2}(0)}\right)-\alpha_{2} t
$$

hence

$$
F_{S_{1}(t), S_{2}(t)}(x, y)=F_{Y_{1}, Y_{2}}\left(\log \frac{x}{S_{1}(0)}-\alpha_{1} t, \log \frac{y}{S_{2}(0)}-\alpha_{2} t\right)
$$

Hence

$$
f_{S_{1}(t), S_{2}(t)}(x, y)=\partial_{x y}^{2} F_{S_{1}(t), S_{2}(t)}(x, y)=\frac{1}{x y} f_{Y_{1}, Y_{2}}\left(\log \frac{x}{S_{1}(0)}-\alpha_{1} t, \log \frac{y}{S_{2}(0)}-\alpha_{2} t\right) .
$$

Using the joint normal density of Y_{1}, Y_{2} completes the proof.

Exercise 1. Show that the process (1) is equivalent, in distribution, to the process

$$
\begin{equation*}
d S_{i}(t)=\mu_{i} S_{i}(t) d t+\bar{\sigma}_{i} S_{i}(t) d W_{i}^{(\rho)}(t), \quad i=1,2 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\sigma}_{i}=\sqrt{\sigma_{i 1}^{2}+\sigma_{i 2}^{2}}, \quad \rho=\frac{\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}}{\sqrt{\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right)\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right)}} \in[-1,1] \tag{5}
\end{equation*}
$$

and where $W_{1}^{(\rho)}(t), W_{2}^{(\rho)}(t)$ are correlated Brownian motions with correlation ρ, i.e.,

$$
d W_{1}^{(\rho)}(t) d W_{2}^{(\rho)}(t)=\rho d t
$$

Now let $r(t)=r$ be the constant interest rate of the money market. The solution of the market price of risk equations can be written as

$$
\theta=\binom{\theta_{1}}{\theta_{2}}=\sigma^{-1}\binom{\mu_{1}-r}{\mu_{2}-r}=\frac{1}{\operatorname{det} \sigma}\left(\begin{array}{cc}
\sigma_{22} & -\sigma_{12} \\
-\sigma_{21} & \sigma_{11}
\end{array}\right)\binom{\mu_{1}-r}{\mu_{2}-r},
$$

that is

$$
\theta_{1}=\frac{1}{\operatorname{det} \sigma}\left[\sigma_{22}\left(\mu_{1}-r\right)-\sigma_{12}\left(\mu_{2}-r\right)\right], \quad \theta_{2}=\frac{1}{\operatorname{det} \sigma}\left[-\sigma_{21}\left(\mu_{1}-r\right)+\sigma_{11}\left(\mu_{2}-r\right)\right] .
$$

Replacing $d W_{i}(t)=d \widetilde{W}_{i}(t)-\theta_{i} d t$ into (1) we find

$$
\begin{align*}
& d S_{1}(t)=r S_{1}(t) d t+\sigma_{11} S_{1}(t) d \widetilde{W}_{1}(t)+\sigma_{12} S_{1}(t) d \widetilde{W}_{2}(t), \tag{6a}\\
& d S_{2}(t)=r S_{2}(t) d t+\sigma_{21} S_{2}(t) d \widetilde{W}_{1}(t)+\sigma_{22} S_{2}(t) d \widetilde{W}_{2}(t) . \tag{6b}
\end{align*}
$$

Note that the discounted price of both stocks is a martingale in the risk-neutral probability measure, as expected.

Moreover the system (6) can be integrated to give

$$
\begin{equation*}
S_{j}(t)=S_{j}(0) e^{\left(r-\frac{\left|\sigma_{j}\right|^{2}}{2}\right) t+\sigma_{j} \cdot \widetilde{W}(t)} \tag{7}
\end{equation*}
$$

where $\widetilde{W}(t)=\left(\widetilde{W}_{1}(t), \widetilde{W}_{2}(t)\right)$. As $\widetilde{W}_{1}(t), \widetilde{W}_{2}(t)$ are independent $\widetilde{\mathbb{P}}$-Brownian motions, the joint distribution of the stock prices in the risk-neutral probability measure is given by (3) where now

$$
\alpha_{i}=r-\frac{\left|\sigma_{j}\right|^{2}}{2}, \quad i=1,2
$$

Next consider a standard European style derivative on the two stocks with pay-off $Y=$ $g\left(S_{1}(T), S_{2}(T)\right)$. The risk-neutral price of the derivative is

$$
\begin{equation*}
\Pi_{Y}(t)=e^{-r(T-t)} \widetilde{\mathbb{E}}\left[g\left(S_{1}(T), S_{2}(T)\right) \mid \mathcal{F}_{W}(t)\right] \tag{8}
\end{equation*}
$$

By the Markov property for systems of stochastic differential equations, there exists a func-
tion $v_{g}:[0, T] \times(0, \infty)^{2} \rightarrow(0, \infty)$ such that

$$
\begin{equation*}
\Pi_{Y}(t)=v_{g}\left(t, S_{1}(t), S_{2}(t)\right) \tag{9}
\end{equation*}
$$

As in the case of options on one single stock, the pricing function can be computed in two ways: using the joint probability density of the stocks or by solving a PDE.

Black-Scholes price for options on two stocks

We show first how to compute the function v_{g} in (9) using the joint probability density of $S_{1}(t), S_{2}(t)$ derived in Theorem 11. We argue as in the one-dimensional case.

By (7) we have

$$
S_{i}(T)=S_{j}(t) e^{\left(r-\frac{\left|\sigma_{j}\right|^{2}}{2}\right) \tau+\sigma_{j} \cdot(\widetilde{W}(T)-\widetilde{W}(t))}, \quad \tau=T-t
$$

Replacing into (8) we obtain

$$
\Pi_{Y}(t)=e^{-r \tau} \widetilde{\mathbb{E}}\left[\left.g\left(S_{1}(t) e^{\left(r-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) \tau+\sigma_{1} \cdot(\widetilde{W}(T)-\widetilde{W}(t))}, S_{2}(t) e^{\left(r-\frac{\left|\sigma_{2}\right|^{2}}{2}\right) \tau+\sigma_{2} \cdot(\widetilde{W}(T)-\widetilde{W}(t))}\right) \right\rvert\, \mathcal{F}_{W}(t)\right]
$$

As $\left(S_{1}(t), S_{2}(t)\right)$ is measurable with respect to $\mathcal{F}_{W}(t)$ and $\widetilde{W}(T)-\widetilde{W}(t)$ is independent of $\mathcal{F}_{W}(t)$, the Independence Lemma gives

$$
\Pi_{Y}(t)=v_{g}\left(t, S_{1}(t), S_{2}(t)\right)
$$

where

$$
v_{g}(t, x, y)=e^{-r \tau} \widetilde{\mathbb{E}}\left[g\left(x e^{\left(r-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) \tau+\sigma_{1} \cdot(\widetilde{W}(T)-\widetilde{W}(t))}, y e^{\left(r-\frac{\left|\sigma_{2}\right|^{2}}{2}\right) \tau+\sigma_{2} \cdot(\widetilde{W}(T)-\widetilde{W}(t))}\right)\right] .
$$

To compute the expectation in the right hand side of the latter equation we use that the random variables

$$
Y_{1}=\sigma_{1} \cdot(\widetilde{W}(T)-\widetilde{W}(t)), \quad Y_{2}=\sigma_{2} \cdot(\widetilde{W}(T)-\widetilde{W}(t))
$$

are jointly normally distributed with zero mean and covariance matrix $C=\tau \sigma \sigma^{T}$. Hence

$$
v_{g}(t, x, y)=e^{-r \tau} \int_{\mathbb{R}} \int_{\mathbb{R}} g\left(x e^{\left(r-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) \tau+\sqrt{\tau} \xi}, y e^{\left(r-\frac{\left|\sigma_{2}\right|^{2}}{2}\right) \tau+\sqrt{\tau} \eta}\right) \frac{\exp \left(\begin{array}{cc}
-\frac{1}{2}\left(\begin{array}{ll}
\xi & \eta
\end{array}\right)\left(\sigma \sigma^{T}\right)^{-1} & \binom{\xi}{\eta} \tag{10}
\end{array}\right)}{2 \pi \sqrt{\operatorname{det}\left(\sigma \sigma^{T}\right)}} d \xi d \eta
$$

Definition 1. The stochastic process $\left\{\Pi_{Y}(t)\right\}_{t \in[0, T]}$ given by (9)-(10), is called the BlackScholes price of the standard 2-stocks European derivative with pay-off $Y=g\left(S_{1}(T), S_{2}(T)\right)$ and time of maturity $T>0$.

Black-Scholes PDE for options on two stocks

Next we show how to derive the pricing function v_{g} by solving a PDE.
Theorem 2. Let v_{g} be the (unique) strong solution to the terminal value problem

$$
\begin{align*}
& \partial_{t} v_{g}+r\left(x \partial_{x} v_{g}+y \partial_{y} v_{g}\right)+\frac{1}{2}\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right) x^{2} \partial_{x}^{2} v_{g}+\frac{1}{2}\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right) y^{2} \partial_{y}^{2} v_{g} \\
& \quad+\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}\right) x y \partial_{x y} v_{g}=r v_{g}, \quad t \in(0, T), \quad x, y>0 \tag{11a}\\
& v_{g}(T, x, y)=g(x, y), \quad x, y>0 . \tag{11b}
\end{align*}
$$

Then (9) holds. The PDE in (11) is called the 2-dimensional Black-Scholes PDE.

Proof. By Itô's formula in two dimensions,

$$
\begin{aligned}
d\left(e^{-r t} v_{g}\right)= & e^{-r t}\left(-r v_{g} d t+\partial_{t} v_{g} d t+\partial_{x} v_{g} d S_{1}(t)+\partial_{y} v_{g} d S_{2}(t)\right. \\
& \left.+\partial_{x y}^{2} v_{g} d S_{1}(t) d S_{2}(t)+\frac{1}{2} \partial_{x}^{2} v_{g} d S_{1}(t) d S_{1}(t)+\frac{1}{2} \partial_{y}^{2} v_{g} d S_{2}(t) d S_{2}(t)\right) .
\end{aligned}
$$

Moreover, using (6),

$$
\begin{aligned}
d S_{1}(t) d S_{1}(t) & =\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right) S_{1}(t)^{2} d t \\
d S_{2}(t) d S_{2}(t) & =\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right) S_{2}(t)^{2} d t \\
d S_{1}(t) d S_{2}(t) & =\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}\right) S_{1}(t) S_{2}(t) d t .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
d\left(e^{-r t} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)=\alpha(t) d t\right. & +e^{-r t} S_{1}(t) \partial_{x} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)\left(\sigma_{11} d \widetilde{W}_{1}(t)+\sigma_{12} d \widetilde{W}_{2}(t)\right) \\
& +e^{-r t} S_{2}(t) \partial_{y} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)\left(\sigma_{21} d \widetilde{W}_{1}(t)+\sigma_{22} d \widetilde{W}_{2}(t)\right)
\end{aligned}
$$

where the drift term is

$$
\begin{aligned}
\alpha(t)= & e^{-r t}\left(-r v_{g}+\partial_{t} v_{g}+r\left(x \partial_{x} v_{g}+y \partial_{y} v_{g}\right)\right. \\
& +\frac{1}{2}\left(\sigma_{11}^{2}+\sigma_{12}^{2}\right) x^{2} \partial_{x}^{2} v_{g}+\frac{1}{2}\left(\sigma_{21}^{2}+\sigma_{22}^{2}\right) y^{2} \partial_{y}^{2} v_{g} \\
& \left.+\left(\sigma_{11} \sigma_{21}+\sigma_{12} \sigma_{22}\right) x y \partial_{x y} v_{g}\right)\left(t, S_{1}(t), S_{2}(t)\right)=0
\end{aligned}
$$

due to v_{g} solving (11). It follows that the stochastic process $\left\{e^{-r t} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)\right\}_{t \in[0, T]}$ is a $\widetilde{\mathbb{P}}$-martingale relative to $\left\{\mathcal{F}_{W}(t)\right\}_{t \geq 0}$, hence, using the terminal condition $v_{g}(T)=g$, we have

$$
e^{-r T} \widetilde{\mathbb{E}}\left[g\left(S_{1}(T), S_{2}(T)\right) \mid \mathcal{F}_{W}(t)\right]=e^{-r t} v_{g}\left(t, S_{1}(t), S_{2}(t)\right), \quad t \in[0, T],
$$

which proves (9).

Hedging portfolio

Finally we derive the formulas for the hedging portfolio for standard 2-stocks European derivatives in Black-Scholes markets.

Theorem 3. The numbers of shares $h_{S_{1}}(t), h_{S_{2}}(t)$ in the self-financing hedging portfolio for the European derivative with pay-off $Y=g\left(S_{1}(T), S_{2}(T)\right)$ and maturity T are given by

$$
h_{S_{1}}(t)=\partial_{x} v_{g}\left(t, S_{1}(t), S_{2}(t)\right), \quad h_{S_{2}}(t)=\partial_{y} v_{g}\left(t, S_{1}(t), S_{2}(t)\right) .
$$

Proof. The discounted value of the derivative satisfies $d \Pi_{Y}^{*}(t)=\Delta_{1}(t) d \widetilde{W}_{1}(t)+\Delta_{2}(t) d \widetilde{W}_{2}(t)$, where

$$
\begin{aligned}
& \Delta_{1}(t)=e^{-r t}\left(S_{1}(t) \sigma_{11} \partial_{x} v_{g}+S_{2}(t) \sigma_{21} \partial_{y} v_{g}\right)\left(t, S_{1}(t), S_{2}(t)\right) \\
& \Delta_{2}(t)=e^{-r t}\left(S_{1}(t) \sigma_{12} \partial_{x} v_{g}+S_{2}(t) \sigma_{22} \partial_{y} v_{g}\right)\left(t, S_{1}(t), S_{2}(t)\right)
\end{aligned}
$$

Letting $\Delta=\left(\Delta_{1} \Delta_{2}\right)^{T}$, we have $\Delta / e^{-r t}=\sigma^{T} Y$, where

$$
Y=\binom{S_{1}(t) \partial_{x} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)}{S_{2}(t) \partial_{y} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)}
$$

Hence the number of stock shares in the hedging portfolio is $h_{S_{1}}(t)=Y_{1} / S_{1}(t)=\partial_{x} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)$, $h_{S_{2}}(t)=Y_{2} / S_{2}(t)=\partial_{y} v_{g}\left(t, S_{1}(t), S_{2}(t)\right)$, which concludes the proof of the theorem.

An example of option on two stocks (outperformance option)

Let $K, T>0$ and consider a standard European derivative with pay-off

$$
Y=\left(\frac{S_{1}(T)}{S_{2}(T)}-K\right)_{+}
$$

at time of maturity T. This is an example of outperformance option, i.e., an option that allows investors to benefit from the relative performance of two underslying assets.

Using (7), we can write the risk-neutral price of the derivative as

$$
\begin{aligned}
\Pi_{Y}(t) & =e^{-r \tau} \widetilde{\mathbb{E}}\left[\left.\left(\frac{S_{1}(T)}{S_{2}(T)}-K\right)_{+} \right\rvert\, \mathcal{F}_{W}(t)\right] \\
& =e^{-r \tau} \widetilde{\mathbb{E}}\left[\left.\left(\frac{S_{1}(t)}{S_{2}(t)} e^{\left(\frac{\left|\sigma_{2}\right|^{2}}{2}-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) \tau+\left(\sigma_{1}-\sigma_{2}\right) \cdot(\widetilde{W}(T)-\widetilde{W}(t))}-K\right)_{+} \right\rvert\, \mathcal{F}_{W}(t)\right]
\end{aligned}
$$

Now we write

$$
\left(\sigma_{1}-\sigma_{2}\right) \cdot(\widetilde{W}(T)-\widetilde{W}(t))=\sqrt{\tau}\left[\left(\sigma_{11}-\sigma_{21}\right) G_{1}+\left(\sigma_{12}-\sigma_{22}\right) G_{2}\right]=\sqrt{\tau}\left(X_{1}+X_{2}\right)
$$

where $G_{j}=\left(\widetilde{W}_{j}(T)-\widetilde{W}_{j}(t)\right) / \sqrt{\tau} \in \mathcal{N}(0,1), j=1,2$, hence $X_{j} \in \mathcal{N}\left(0,\left(\sigma_{1 j}-\sigma_{2 j}\right)^{2}\right), j=1,2$. In addition, X_{1}, X_{2} are independent random variables, hence, as shown in Section ??, $X_{1}+X_{2}$ is normally distributed with zero mean and variance $\left(\sigma_{11}-\sigma_{21}\right)^{2}+\left(\sigma_{12}-\sigma_{22}\right)^{2}=\left|\sigma_{1}-\sigma_{2}\right|^{2}$. It follows that

$$
\Pi_{Y}(t)=e^{-r \tau} \widetilde{\mathbb{E}}\left[\left(\frac{S_{1}(t)}{S_{2}(t)} e^{\left.\left(\frac{\left|\sigma_{2}\right|^{2}}{2}-\frac{\left|\sigma_{1}\right|^{2}}{2}\right) \tau+\sqrt{\tau}\left|\sigma_{1}-\sigma_{2}\right| G\right)}-K\right)_{+}\right]
$$

where $G \in \mathcal{N}(0,1)$. Hence, letting

$$
\hat{r}=\frac{\left|\sigma_{1}-\sigma_{2}\right|^{2}}{2}+\left(\frac{\left|\sigma_{2}\right|^{2}}{2}-\frac{\left|\sigma_{1}\right|^{2}}{2}\right)
$$

and $a=e^{(\hat{r}-r) \tau}$, we have

$$
\Pi_{Y}(t)=a e^{-\hat{r} \tau} \mathbb{E}\left[\left(\frac{S_{1}(t)}{S_{2}(t)} e^{\left(\hat{r}-\frac{\left|\sigma_{1}-\sigma_{2}\right|^{2}}{2}\right) \tau+\sqrt{\tau}\left|\sigma_{1}-\sigma_{2}\right| G}-K\right)_{+}\right]
$$

Up to the multiplicative parameter a, this is the Black-Scholes price of a call on a stock with price $S_{1}(t) / S_{2}(t)$, volatility $\left|\sigma_{1}-\sigma_{2}\right|$ and for an interest rate of the money market given by \hat{r}. Hence

$$
\begin{equation*}
\Pi_{Y}(t)=a\left(\frac{S_{1}(t)}{S_{2}(t)} \Phi\left(d_{+}\right)-K e^{-\hat{r} \tau} \Phi\left(d_{-}\right)\right):=v\left(t, S_{1}(t), S_{2}(t)\right)=u\left(t, \frac{S_{1}(t)}{S_{2}(t)}\right) \tag{12}
\end{equation*}
$$

where

$$
d_{ \pm}=\frac{\log \frac{S_{1}(t)}{K S_{2}(t)}+\left(\hat{r} \pm \frac{\left|\sigma_{1}-\sigma_{2}\right|^{2}}{2}\right) \tau}{\left|\sigma_{1}-\sigma_{2}\right| \sqrt{\tau}} .
$$

As to the self-financing hedging portfolio, we have $h_{S_{1}}(t)=\partial_{x} v\left(t, S_{1}(t), S_{2}(t)\right), h_{S_{2}}(t)=$ $\partial_{y} v\left(t, S_{1}(t), S_{2}(t)\right), j=1,2$. Therefore, recalling the delta function of the standard European call, we obtain

$$
h_{S_{1}}(t)=\frac{a}{S_{2}(t)} \Phi\left(d_{+}\right), \quad h_{S_{2}}(t)=-\frac{a S_{1}(t)}{S_{2}(t)^{2}} \Phi\left(d_{+}\right) .
$$

The same result can be obtained by solving the terminal value problem (11).
Indeed, the form of the pay-off function of the derivative suggests to look for solutions of (11) of the form $v_{g}(t, x, y)=u(t, x / y)$. The function $u(t, z)$ satisfies a standard Black-Scholes PDE in $1+1$ dimension, whose solution is given as in (12).

