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Multi-assets options

Multi-asset options are options on several underlying assets. Notable examples include rain-
bow options, basket options and quanto options.

In the following we discuss options on two stocks in a 2+1 dimensional Black-Scholes
market, i.e., a market with constant parameters. It follows that

dS, (t> = Si (t)dt + 01151(t)dW1 (t) + 01251 (t)dW2(7f) (13)
dSQ(t) = U2 Sg(t)dt + 0'2182 (t)dWl (t) + 0'2252 (t)de(t), (]_b)
where the volatility matrix
o ( 011 O12 )
g =
021 022

is invertible (so that the market is complete).

Integrating we obtain that (S;(t),S2(t)) is given by the 2-dimensional geometric
Brownian motion:

S1(t) = 51 (O)e(“l_%(Uf1+0f2))t+011W1 (D+o12Wa(t) (2a)

Sa(t) = 82(O)e(l‘?*%(U§1+U§2))t+U2IW1(t)+022W2(t)’ (2b)



or, more concisely,

loj 12
2

S; (t) = S; (O)G(Nj—i)t-Hfj'W(t) :

where 0; = (0j1,052), j = 1,2, W(t) = (Wy(t), Wa(t)) and - denotes the standard scalar
product of vectors.

Theorem 1. The random variables Sy(t), So(t) have the joint density
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where a; = p; — ‘Ué Jj = 1,2. Moreover log Si(t),log Sa(t) are jointly normally distributed

with mean m = (log S1(0) + at, log S2(0) + ast) and covariant matriz C = too™.

Proof. Letting X; = W;(t)/v/t € N(0,1), we write the stock prices as
Sl (t) = Sl (0)ea1t+Y17 Sg(t) _ SQ(O)BOQH_YQ’
where

Y, = 011\/7_5X1 + 012\/¥X2, Yy = 021\/1_5X1 + 022\/¥X2-

It follows that Yi,Y5 are jointly normally distributed with zero mean and covariant matrix
C = too™, which proves the second statement in the theorem. To compute the joint density
of the stock prices, we notice that

x Yy
St <ze Y <1 — | —aqt, S (t) <y Y, <l ——— | — ot
1()_95 1_0g(51(0)) a1, 2()_y 2_Og(52(0)> Qiat,
hence . Y
FSl(t),SQ(t) (1‘7 y) = FY1,Y2<10g m — aqt, log m - 04275)-
Hence
2 1 x Y
fsit),5:00 (T y) = Opy Fsy (1)) (T, y) = @le,Yz (log 50) ait, log 50 gt).
Using the joint normal density of Y7, Y, completes the proof. m



Exercise 1. Show that the process 15 equivalent, in distribution, to the process

dS;(t) = psSi(t) dt + 7S, ()dW P (1), i=1,2,

_|_
7, = /01’21_{_011227 p= 011021 1T 012022 € [-1,1]
V(0% + 01y)(03; + 035)

and where Wl(p) (1), W2(p) (t) are correlated Brownian motions with correlation p, i.e.,

where

AW P (£)dWP(t) = pdt.



Now let r(t) = r be the constant interest rate of the money market. The solution of the
market price of risk equations can be written as

_ 01 S B B ¥ 5 Rl A N 1 022 —O012 M1 =T
= =0 = — ,
) Ho — T deto \—021 o011 o — T
that is
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deta[am(’ul — 1) — o — 1)), b= ——=[—0u(t1 —7)+ o1 (p2 — )]
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! deto

Replacing dW;(t) = d/V\V/i(t) — 0, dt into (/1)) we find

dSy(t) = r Sy ()dt + 11 S1(t)dW (1) + 01251 (£)dWal(t), (62)

dSQ (t) =T 52 (t)dt + 0'2132 (t)devl (t) + O'QQSQ (t)dWQ (t) (6b)
Note that the discounted price of both stocks is a martingale in the risk-neutral probability
measure, as expected.

Moreover the system @ can be integrated to give

2
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j(t) = 80yl H e T, @

where W(t) = (Wl (t),Wg(t)). As W, (t),Wg(t) are independent P-Brownian motions, the
joint distribution of the stock prices in the risk-neutral probability measure is given by
where now

oyl

, =1,2.
2 Y ? )

a; =T

Next consider a standard European style derivative on the two stocks with pay-off Y =
g(S1(T), S5(T)). The risk-neutral price of the derivative is

My () = e " T VE[g(Sy(T), S3(T))| Fw (1)]. (8)

By the Markov property for systems of stochastic differential equations, there exists a func-



tion v, : [0, 7] x (0,00)? — (0, 00) such that

Iy (1) = vy(t, S1(t), S2(1))- (9)

As in the case of options on one single stock, the pricing function can be computed in two
ways: using the joint probability density of the stocks or by solving a PDE.

Black-Scholes price for options on two stocks

We show first how to compute the function v, in @D using the joint probability density of
Si(t), Sa(t) derived in Theorem [I] We argue as in the one-dimensional case.

By we have

2
|,

ST = S;(t)er— 2 )mror (WO-WW) - - _y

Replacing into we obtain

loq1? loa|?

Iy (1) = e Elg(Sy (£)elr= 4o WD=W) g, (1)elr= Do (WD=W) 7y (1))

As (S1(t), S2(t)) is measurable with respect to Fyy (t) and W(T) - W(t) is independent of
Fw (t), the Independence Lemma gives

Iy () = vy(t, S1(t), Sa(1)),
where

v (t,2,y) = e Bg(zelr— Bt (TD-T0) 4 (155t (WD) -T(0)))

To compute the expectation in the right hand side of the latter equation we use that the
random variables

Yi=o-(W(T) =W(t), Ya=oy- (W(T)—W(t))

are jointly normally distributed with zero mean and covariance matrix C' = 7oo’. Hence



T (_é (& m) oo™ <7§;>>
ve(t,z,y) =e ' xe\"T T2 JTTVIS ge\TT T )TV dg& dn.
o(t,2,y) /R/Rg( y ) 2mJaei(oaT) £ dn

(10)

Definition 1. The stochastic process {Ily (t) }ieor given by (9)-(L0), is called the Black-
Scholes price of the standard 2-stocks European derivative with pay-off Y = g(S1(T), So(T))
and time of maturity T > 0.

Black-Scholes PDE for options on two stocks

Next we show how to derive the pricing function v, by solving a PDE.

Theorem 2. Let v, be the (unique) strong solution to the terminal value problem

1 1
Orvg + 1(20v4 + yOyvy) + 5(0% +0ty)2?0v, + 5(051 +03,)y" 0,

+ (011091 + 012092)xYOpyvg = 104, t € (0,T), x,y >0, (11a)
ve(T,2,y) = g(x,y), z,y>0. (11b)

Then @D holds. The PDE in 1s called the 2-dimensional Black-Scholes PDE.

Proof. By Itd’s formula in two dimensions,
d(e ""v,) :e’”< — 10y dt + Opvy dt + 0yvy dS:1(t) 4+ Oyvy dSa(t)
1 1
+ 02,0, dS) (DdSy(t) + 5020, dS1 (1) dSa (1) + 502, dSa(t) dSQ(t)>.

Moreover, using @ ,

dS,(t)dS,(t) = (o3, + 03y)S1(t)* dt
dSy(t)dSy(t) = (03, + 035)Sa(t)? dt
dSl (t)dSQ(t) = (0‘110‘21 + Ulgdgg)sl(t)SQ(t) dt.

It follows that

d(e "ty (t, 81 (1), Sa(t)) = alt) dt + e Sy (£)D,v, (£, Sy (1), Sa(t)) (011 WA () + o12dWa(t))
TS, (£)Dvy(t, Sy (1), Sa(t)) (021 AW () + Gaad Wi (1))



where the drift term 1is
a(t) :6_”( — vy + Oy + (20,04 + YO,v,)
1 1
+ 5(‘7%1 + ‘7%2)37283“9 + 5(‘751 + ng)?ﬁajvg
+ ((7110'21 + 012022>xy8xyvg) (t, Sl (t), SQ(t)) = O,

due to v, solving (11]). It follows that the stochastic process {e v (¢, S1(t), S2(t)) }repo,r) is

a P-martingale relative to {Fw (t)}i>0, hence, using the terminal condition v,(T) = g, we
have
e_TTE[g(SI(T)’ SQ<T))|'FW(t)] = e_rtvg(t7 Sl(t)7 SQ(t))a te [07 T]?

which proves @ O

Hedging portfolio

Finally we derive the formulas for the hedging portfolio for standard 2-stocks European
derivatives in Black-Scholes markets.

Theorem 3. The numbers of shares hg,(t), hs,(t) in the self-financing hedging portfolio for
the European derivative with pay-off Y = g(S1(T), Se(T)) and maturity T' are given by

h, (1) = Oxvg(t, 51(1), S2(t)), D, (1) = Byug(t, S1(t), S2(t)).
Proof. The discounted value of the derivative satisfies dIT; (£) = A1 (£)dW; (£) + Ao (t)dW(t),
where

Al(t) = 6_”(51(25)0'11311)9 + S2<t)0'218y7}g>(t, Sl (t), Sg(t))
Ag(t) = e (Sy (£) 0120505 + Sa(t)0a20,0,) (t, Si(2), Salt))

Letting A = (A; Ay)”, we have A/e™™ = o7V, where

_ Sl(t)axvg(tvsl(t)’SQ(t))
Y= (Sa(t)ayvg(t51(75)752(0)) '

Hence the number of stock shares in the hedging portfolio is hg, (t) = Y1/S1(t) = 0,v,(t, S1(t), S2(t)),
hs,(t) = Ya/S2(t) = Oyvy(t, S1(t), S2(t)), which concludes the proof of the theorem. O

An example of option on two stocks (outperformance option)

Let K,T > 0 and consider a standard European derivative with pay-off



S1(T
-
So(T) N
at time of maturity 7. This is an example of outperformance option, i.e., an option that
allows investors to benefit from the relative performance of two underslying assets.

Using , we can write the risk-neutral price of the derivative as

My(t) = ¢ {(Slm _ K) ].Fw(t)}

e(\ag\ By (01 —02)-(W(T)-W (1) _ K) |fw(t)} ‘
+

Now we write

(01 - 02) : (W(T) - W(t)) = \/F[(Un - 021)G1 + (012 - 022)G2] = \/F(X1 + X2)7

where Gj = (W;(T)_W;<t)>/ﬁ S N(07 1)7 J= 1,2, hence Xj < N(07 (Ulj_02j>2)7 J= 1,2

In addition, X7, X5 are independent random variables, hence, as shown in Section 77, X+ X5
is normally distributed with zero mean and variance (o1; — 091)? + (012 — 092)* = |01 — 03|%.
It follows that

Ty (t) = e ""E Ksl_(t)e("%'z—'”;ﬁ)ﬂrﬁal—aza) _ K) } 7
Sa(t) N

where G € N/(0,1). Hence, letting

p om0l (ol onl?
2 2 2

F—r)T

and a = e , we have

—7 Sl<t) i lor—ogl? _
I (t) = ae™ ™ E _6(7’ 52— )T+\/Tlo1—02|G _ K) :|
v KSN) .



Up to the multiplicative parameter a, this is the Black-Scholes price of a call on a stock with
price Si(t)/Sa(t), volatility |01 — 09| and for an interest rate of the money market given by
7. Hence

() = a (ﬁ;g@(dn - Ke-f%b(d_)) — o(t, 51 (8), Su(t)) = u(t, gﬁj@ (12)

where

S ~ o1—03|?
B log Kéit&) + (r £ lov=oa? 5 2| )T

do —
* loy — oa|\/T

As to the self-financing hedging portfolio, we have hg, (t) = 9,v(t, S1(t), Sa2(t)), hs,(t) =
Oyv(t, S1(t), S2(t)), j = 1,2. Therefore, recalling the delta function of the standard European
call, we obtain

a aS(t)

h51 (t) = %Cb(dﬂ-)’ hSZ (t) == 52<t)2

O(d,).

The same result can be obtained by solving the terminal value problem ([11).

Indeed, the form of the pay-off function of the derivative suggests to look for solutions of
of the form v, (¢, z,y) = u(t, x/y). The function u(t, z) satisfies a standard Black-Scholes PDE
in 141 dimension, whose solution is given as in .



