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Multi-assets options

Multi-asset options are options on several underlying assets. Notable examples include rain-
bow options, basket options and quanto options.

In the following we discuss options on two stocks in a 2+1 dimensional Black-Scholes
market, i.e., a market with constant parameters. It follows that

dS1(t) = µ1 S1(t)dt+ σ11S1(t)dW1(t) + σ12S1(t)dW2(t) (1a)

dS2(t) = µ2 S2(t)dt+ σ21S2(t)dW1(t) + σ22S2(t)dW2(t), (1b)

where the volatility matrix

σ =

(
σ11 σ12
σ21 σ22

)
is invertible (so that the market is complete).

Integrating (1) we obtain that (S1(t), S2(t)) is given by the 2-dimensional geometric
Brownian motion:

S1(t) = S1(0)e(µ1−
1
2
(σ2

11+σ
2
12))t+σ11W1(t)+σ12W2(t), (2a)

S2(t) = S2(0)e(µ2−
1
2
(σ2

21+σ
2
22))t+σ21W1(t)+σ22W2(t), (2b)
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or, more concisely,

Sj(t) = Sj(0)e(µj−
|σj |

2

2
)t+σj ·W (t),

where σj = (σj1, σj2), j = 1, 2, W (t) = (W1(t),W2(t)) and · denotes the standard scalar
product of vectors.

Theorem 1. The random variables S1(t), S2(t) have the joint density

fS1(t),S2(t)(x, y) =
e
− 1

2t

(
log x

S(0) − α1t log y
S(0) − α2t

)
(σσT )−1

log x
S(0) − α1t

log y
S(0) − α2t


txy
√

(2π)2 det(σσT )
, (3)

where αj = µj − |σj |
2

2
, j = 1, 2. Moreover logS1(t), logS2(t) are jointly normally distributed

with mean m = (logS1(0) + α1t, logS2(0) + α2t) and covariant matrix C = tσσT .

Proof. Letting Xi = Wi(t)/
√
t ∈ N (0, 1), we write the stock prices as

S1(t) = S1(0)eα1t+Y1 , S2(t) = S2(0)eα2t+Y2 ,

where
Y1 = σ11

√
tX1 + σ12

√
tX2, Y2 = σ21

√
tX1 + σ22

√
tX2.

It follows that Y1, Y2 are jointly normally distributed with zero mean and covariant matrix
C = tσσT , which proves the second statement in the theorem. To compute the joint density
of the stock prices, we notice that

S1(t) ≤ x⇔ Y1 ≤ log

(
x

S1(0)

)
− α1t, S2(t) ≤ y ⇔ Y2 ≤ log

(
y

S2(0)

)
− α2t,

hence
FS1(t),S2(t)(x, y) = FY1,Y2(log

x

S1(0)
− α1t, log

y

S2(0)
− α2t).

Hence

fS1(t),S2(t)(x, y) = ∂2xyFS1(t),S2(t)(x, y) =
1

xy
fY1,Y2(log

x

S1(0)
− α1t, log

y

S2(0)
− α2t).

Using the joint normal density of Y1, Y2 completes the proof.
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Exercise 1. Show that the process (1) is equivalent, in distribution, to the process

dSi(t) = µiSi(t) dt+ σiSi(t)dW
(ρ)
i (t), i = 1, 2, (4)

where

σi =
√
σ2
i1 + σ2

i2, ρ =
σ11σ21 + σ12σ22√

(σ2
11 + σ2

12)(σ
2
21 + σ2

22)
∈ [−1, 1] (5)

and where W
(ρ)
1 (t), W

(ρ)
2 (t) are correlated Brownian motions with correlation ρ, i.e.,

dW
(ρ)
1 (t)dW

(ρ)
2 (t) = ρ dt.
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Now let r(t) = r be the constant interest rate of the money market. The solution of the
market price of risk equations can be written as

θ =

(
θ1
θ2

)
= σ−1

(
µ1 − r
µ2 − r

)
=

1

detσ

(
σ22 −σ12
−σ21 σ11

)(
µ1 − r
µ2 − r

)
,

that is

θ1 =
1

detσ
[σ22(µ1 − r)− σ12(µ2 − r)], θ2 =

1

detσ
[−σ21(µ1 − r) + σ11(µ2 − r)].

Replacing dWi(t) = dW̃i(t)− θi dt into (1) we find

dS1(t) = r S1(t)dt+ σ11S1(t)dW̃1(t) + σ12S1(t)dW̃2(t), (6a)

dS2(t) = r S2(t)dt+ σ21S2(t)dW̃1(t) + σ22S2(t)dW̃2(t). (6b)

Note that the discounted price of both stocks is a martingale in the risk-neutral probability
measure, as expected.

Moreover the system (6) can be integrated to give

Sj(t) = Sj(0)e(r−
|σj |

2

2
)t+σj ·W̃ (t), (7)

where W̃ (t) = (W̃1(t), W̃2(t)). As W̃1(t), W̃2(t) are independent P̃-Brownian motions, the
joint distribution of the stock prices in the risk-neutral probability measure is given by (3)
where now

αi = r − |σj|
2

2
, i = 1, 2.

Next consider a standard European style derivative on the two stocks with pay-off Y =
g(S1(T ), S2(T )). The risk-neutral price of the derivative is

ΠY (t) = e−r(T−t)Ẽ[g(S1(T ), S2(T ))|FW (t)]. (8)

By the Markov property for systems of stochastic differential equations, there exists a func-
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tion vg : [0, T ]× (0,∞)2 → (0,∞) such that

ΠY (t) = vg(t, S1(t), S2(t)). (9)

As in the case of options on one single stock, the pricing function can be computed in two
ways: using the joint probability density of the stocks or by solving a PDE.

Black-Scholes price for options on two stocks

We show first how to compute the function vg in (9) using the joint probability density of
S1(t), S2(t) derived in Theorem 1. We argue as in the one-dimensional case.

By (7) we have

Si(T ) = Sj(t)e
(r−

|σj |
2

2
)τ+σj ·(W̃ (T )−W̃ (t)), τ = T − t.

Replacing into (8) we obtain

ΠY (t) = e−rτ Ẽ[g(S1(t)e
(r− |σ1|

2

2
)τ+σ1·(W̃ (T )−W̃ (t)), S2(t)e

(r− |σ2|
2

2
)τ+σ2·(W̃ (T )−W̃ (t)))|FW (t)].

As (S1(t), S2(t)) is measurable with respect to FW (t) and W̃ (T ) − W̃ (t) is independent of
FW (t), the Independence Lemma gives

ΠY (t) = vg(t, S1(t), S2(t)),

where

vg(t, x, y) = e−rτ Ẽ[g(xe(r−
|σ1|

2

2
)τ+σ1·(W̃ (T )−W̃ (t)), ye(r−

|σ2|
2

2
)τ+σ2·(W̃ (T )−W̃ (t)))].

To compute the expectation in the right hand side of the latter equation we use that the
random variables

Y1 = σ1 · (W̃ (T )− W̃ (t)), Y2 = σ2 · (W̃ (T )− W̃ (t))

are jointly normally distributed with zero mean and covariance matrix C = τσσT . Hence
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vg(t, x, y) = e−rτ
∫
R

∫
R
g(xe(r−

|σ1|
2

2
)τ+
√
τξ, ye(r−

|σ2|
2

2
)τ+
√
τη)

exp

(
−1

2

(
ξ η

)
(σσT )−1

(
ξ
η

))
2π
√

det(σσT )
dξ dη.

(10)

Definition 1. The stochastic process {ΠY (t)}t∈[0,T ] given by (9)-(10), is called the Black-
Scholes price of the standard 2-stocks European derivative with pay-off Y = g(S1(T ), S2(T ))
and time of maturity T > 0.

Black-Scholes PDE for options on two stocks

Next we show how to derive the pricing function vg by solving a PDE.

Theorem 2. Let vg be the (unique) strong solution to the terminal value problem

∂tvg + r(x∂xvg + y∂yvg) +
1

2
(σ2

11 + σ2
12)x

2∂2xvg +
1

2
(σ2

21 + σ2
22)y

2∂2yvg

+ (σ11σ21 + σ12σ22)xy∂xyvg = r vg, t ∈ (0, T ), x, y > 0, (11a)

vg(T, x, y) = g(x, y), x, y > 0. (11b)

Then (9) holds. The PDE in (11) is called the 2-dimensional Black-Scholes PDE.

Proof. By Itô’s formula in two dimensions,

d(e−rtvg) =e−rt
(
− rvg dt+ ∂tvg dt+ ∂xvg dS1(t) + ∂yvg dS2(t)

+ ∂2xyvg dS1(t)dS2(t) +
1

2
∂2xvg dS1(t) dS1(t) +

1

2
∂2yvg dS2(t) dS2(t)

)
.

Moreover, using (6),

dS1(t)dS1(t) = (σ2
11 + σ2

12)S1(t)
2 dt

dS2(t)dS2(t) = (σ2
21 + σ2

22)S2(t)
2 dt

dS1(t)dS2(t) = (σ11σ21 + σ12σ22)S1(t)S2(t) dt.

It follows that

d(e−rtvg(t, S1(t), S2(t)) = α(t) dt+ e−rtS1(t)∂xvg(t, S1(t), S2(t)) (σ11 dW̃1(t) + σ12dW̃2(t))

+ e−rtS2(t)∂yvg(t, S1(t), S2(t)) (σ21 dW̃1(t) + σ22dW̃2(t))
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where the drift term is

α(t) =e−rt
(
− rvg + ∂tvg + r(x∂xvg + y∂yvg)

+
1

2
(σ2

11 + σ2
12)x

2∂2xvg +
1

2
(σ2

21 + σ2
22)y

2∂2yvg

+ (σ11σ21 + σ12σ22)xy∂xyvg
)
(t, S1(t), S2(t)) = 0,

due to vg solving (11). It follows that the stochastic process {e−rtvg(t, S1(t), S2(t))}t∈[0,T ] is

a P̃-martingale relative to {FW (t)}t≥0, hence, using the terminal condition vg(T ) = g, we
have

e−rT Ẽ[g(S1(T ), S2(T ))|FW (t)] = e−rtvg(t, S1(t), S2(t)), t ∈ [0, T ],

which proves (9).

Hedging portfolio

Finally we derive the formulas for the hedging portfolio for standard 2-stocks European
derivatives in Black-Scholes markets.

Theorem 3. The numbers of shares hS1(t), hS2(t) in the self-financing hedging portfolio for
the European derivative with pay-off Y = g(S1(T ), S2(T )) and maturity T are given by

hS1(t) = ∂xvg(t, S1(t), S2(t)), hS2(t) = ∂yvg(t, S1(t), S2(t)).

Proof. The discounted value of the derivative satisfies dΠ∗Y (t) = ∆1(t)dW̃1(t)+∆2(t)dW̃2(t),
where

∆1(t) = e−rt(S1(t)σ11∂xvg + S2(t)σ21∂yvg)(t, S1(t), S2(t))

∆2(t) = e−rt(S1(t)σ12∂xvg + S2(t)σ22∂yvg)(t, S1(t), S2(t))

Letting ∆ = (∆1 ∆2)
T , we have ∆/e−rt = σTY , where

Y =

(
S1(t)∂xvg(t, S1(t), S2(t))
S2(t)∂yvg(t, S1(t), S2(t))

)
.

Hence the number of stock shares in the hedging portfolio is hS1(t) = Y1/S1(t) = ∂xvg(t, S1(t), S2(t)),
hS2(t) = Y2/S2(t) = ∂yvg(t, S1(t), S2(t)), which concludes the proof of the theorem.

An example of option on two stocks (outperformance option)

Let K,T > 0 and consider a standard European derivative with pay-off
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Y =

(
S1(T )

S2(T )
−K

)
+

at time of maturity T . This is an example of outperformance option, i.e., an option that
allows investors to benefit from the relative performance of two underslying assets.

Using (7), we can write the risk-neutral price of the derivative as

ΠY (t) = e−rτ Ẽ
[(

S1(T )

S2(T )
−K

)
+

|FW (t)

]
= e−rτ Ẽ

[(
S1(t)

S2(t)
e(
|σ2|

2

2
− |σ1|

2

2
)τ+(σ1−σ2)·(W̃ (T )−W̃ (t)) −K

)
+

|FW (t)

]
.

Now we write

(σ1 − σ2) · (W̃ (T )− W̃ (t)) =
√
τ [(σ11 − σ21)G1 + (σ12 − σ22)G2] =

√
τ(X1 +X2),

where Gj = (W̃j(T )−W̃j(t))/
√
τ ∈ N (0, 1), j = 1, 2, hence Xj ∈ N (0, (σ1j−σ2j)2), j = 1, 2.

In addition, X1, X2 are independent random variables, hence, as shown in Section ??, X1+X2

is normally distributed with zero mean and variance (σ11− σ21)2 + (σ12− σ22)2 = |σ1− σ2|2.
It follows that

ΠY (t) = e−rτ Ẽ
[(

S1(t)

S2(t)
e(
|σ2|

2

2
− |σ1|

2

2
)τ+
√
τ |σ1−σ2|G) −K

)
+

]
,

where G ∈ N (0, 1). Hence, letting

r̂ =
|σ1 − σ2|2

2
+

(
|σ2|2

2
− |σ1|

2

2

)

and a = e(r̂−r)τ , we have

ΠY (t) = ae−r̂τE
[(

S1(t)

S2(t)
e(r̂−

|σ1−σ2|
2

2
)τ+
√
τ |σ1−σ2|G −K

)
+

]
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Up to the multiplicative parameter a, this is the Black-Scholes price of a call on a stock with
price S1(t)/S2(t), volatility |σ1 − σ2| and for an interest rate of the money market given by
r̂. Hence

ΠY (t) = a

(
S1(t)

S2(t)
Φ(d+)−Ke−r̂τΦ(d−)

)
:= v(t, S1(t), S2(t)) = u(t,

S1(t)

S2(t)
) (12)

where

d± =
log S1(t)

KS2(t)
+ (r̂ ± |σ1−σ2|

2

2
)τ

|σ1 − σ2|
√
τ

.

As to the self-financing hedging portfolio, we have hS1(t) = ∂xv(t, S1(t), S2(t)), hS2(t) =
∂yv(t, S1(t), S2(t)), j = 1, 2. Therefore, recalling the delta function of the standard European
call, we obtain

hS1(t) =
a

S2(t)
Φ(d+), hS2(t) = −aS1(t)

S2(t)2
Φ(d+).

The same result can be obtained by solving the terminal value problem (11).

Indeed, the form of the pay-off function of the derivative suggests to look for solutions of (11)
of the form vg(t, x, y) = u(t, x/y). The function u(t, z) satisfies a standard Black-Scholes PDE
in 1+1 dimension, whose solution is given as in (12).
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