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Multi-asset options are options on several underlying assets. Notable examples include rain-
bow options, basket options and quanto options.

In the following we discuss options on two stocks in a 2+1 dimensional Black-Scholes
market, i.e., a market with constant parameters. It follows that
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Integrating (1) we obtain that (5)(t). Sa(t)) is given by the 2-dimensional geometric
Brownian motion:
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or, more concisely,
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wlmrc@f Jo= 1,2, W(t) = (Wy(t), Wa(t)) and - denotes the standard scalar
product of vectors.

Theorem 1. The random variables S, (t), Sa(t) have the joint density
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where a; = i I%I: i =1,2. Moreover log Sy (t),log Sa(t) are jointly normally distributed
with mean m = (log 51(0) + a,t, log Sz(0) + ast) and covariant matriz C' = toa? .
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It follows that Y7, Y5 are jointly normally distributed with zero mean and covariant matrix
C = tao”, which proves the second statement in the theorem. To compute the joint density
7 of the stock prices, we notice that
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hence . y
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Hence -
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Using the joint normal density of ¥7,Y, completes the proof. O
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Exercise 1. Show that the process (1) is equivalent, in distribution, to the process

”~ ~ ~
o dSi(t) = wSi(t) dt + TS (HAW (), i=1.2,

where

T11021 + T12022
Vot + i) (03, + 03,)

J'\éls—’- t,‘nég J\— < '§A A\\b:?) -p> &&sv. BV

JEZ = r;zr)& x z GK\YJ-:Y) A

= ~ -~ — . — SURA Buﬁb
0 SA’ 32 Aac Solpoe C"{ Ns D,w\/ SAS

A 9%, 33 = (gt

Lecture 25 Page 3



Now let r(t) = r be the constant interest rate of the money market. The solution of the
market price of risk equations can be written as
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Replacing dW;(t) = ct'.ﬁf':,-(t) — B dt into (1) we find | \”4 (.‘\’\ = ')'W( ) “'%A,' it

él{t) =S, (t)dt (Ga)
dSy(1) <(DSo(1)dt/F 091 Sa()dW, (1) + o (6b)

Note that the discounted price of both stocks is a martingale in the risk-neutral probability
measure, as expected. ~ I ~ )
W= (W, 5, W O
Moreover the system (6) can be integrated to give W (' E / "“
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where IT’{?) = ('.Tl{f)lﬁ{z(t}) As Wit .ﬁ;z{f) are independent P-Brownian motions, the
joint distribution of the stock prices in the risk-neutral probability measure is given by (3)
where now

Next consider a standard European stvle derivative on the two stocks with pay-off ¥ =
g(S1(T), Sa(T)). The risk-neutral price of the derivative is

o Ty (t) = TR (1), SuT))|Fw(t)]. = Sy (1, S 6, SN

By the Markov property for systems of stochastic differential equations, there exists a func-

Lecture 25 Page 4



tion v, : [0, 7] x (0,00)? = (0, 00) such that

v

Iy () = vy(t, Si(t), Sa(t)). (9)

As in the case of options on one single stock, the pricing function can be computed in two
ways: using the joint probability density of the stocks or by solving a PDE.

Black-Scholes price for options on two stocks

We show first how to compute the function v, in (9) using the joint probability density of
S1(t), Sy(f) derived in Theorem 1. We argue as in the one-dimensional case.
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Replacing into (8) we obtain
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As (Si1(t), S5(t)) is measurable with respect to Fy(t) and 'IT’(T) — IT(?} is independent of
Fuw(t), the Independence Lemma gives

o Iy (1) = vyt S (2). Sul0)),
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where

~ I By T — T o2y (W (T)— T
vt .9) = ¢ Blg(ge s T, oo i (DT

To compute the expectation in the right hand side of the latter equation we use that the
random variables

Yi=o - (W(T) - W(t), Y=o (W(T) - W(t)

are jointly normally distributed with zero mean and covariance matrix C' = 7o0’. Hence
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Definition 1. The stochastic process {Ily(t) }icpr) given by (9)-(10), is called the Black-
Scholes price of the standard 2-stocks European derivative with pay-off(yY) = g( ¢
and time of maturity T = 0.

Black-Scholes PDE for options on two stocks

Next we show how to derive the pricing function v, by solving a PDE. o~ 6[+ \"\‘(\ =w A I )é, )

Theorem 2. Let v, be the (unique) strong solution to the terminal value problem
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Then (9) holds. The PDE in (11) is called the 2-dimensional Black-Scholes PDE.
STy = G IS S0 s g (5400, S,(TY)

Proof. By Itd’s formula in two dimensions,
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where the drift term is
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due to v, solving (11). It follows that the stochastic process {e v, (t, Si(t). Sa(t)) hepp.r is
a P-martingale relative to {Fy(t)}i=0, hence, using the terminal condition v, (T) = g. we

have /ﬁ

e TE[g(S1(T), So(T))| Fw (¢ . (L. Si(t). Sx(t)).  t€[0,T] =T
which proves (9). - ?
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Finally we derive the formulas for the hedging portfolio for standard 2-stocks European
derivatives in Black-Scholes markets.

Theorem 3. The numbers of shares hg, (1), hs_,{ ) in the self-financing hedging portfolio for
the European derivative with pay-off ¥ = g(S\(T), So(T)) and maturity T are given by

2 hg,(t) = Auu,(t, Si(t), Sa(t)), h‘,_i() 6‘,1"‘,{3‘ S {) Sa(t)).
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" Proof. The discounted value of the derivative satisfies dII3. (1) = A (¢ )(HI (t )+A2(r)dﬂ (1),
where

A(t) = e (S (t)a11 vy + Salt)on Dy, ) (L, Si(t), S2(t))
Dg(t) = e( Sy (Hoiadsvg + Sa(t)ozadvg) (L. Si(t), Sa(t))

Letting A = (A; Ag)T, we have Afe " = o7V, where

_ (‘S'l (t)a:r:l"_q{t Sl{f‘)f SZ“}))
Sa(£)Dyy(t, S (t), Sa(t)) )

Hence the number of stock shares in the hedging portfolio is hg, () = Y1/51(t) = d,v,(t, Si(t). Sa(t)),
hg, (t) = Yo/ Sa(t) = Oyuy(t, S1(t). Sa(t)), which concludes the proof of the theorem. O

An example of option on two stocks (outperformance option)

Let K,T > 0 and consider a standard European derivative with pav-off
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at time of maturity 7. This is an example of outperformance option, i.e., an option that
allows investors to benefit from the relative performance of two underslying assets.

Using (7), we can write the risk-neutral price of the derivative as
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where G; = (W;(T)—W;(t))/vT € N(0,1), j = 1,2, hence X; € N(0, (01 —02)%), 7 =1,2.

In addition, X, X5 are independent random variables, hence, as shown in Section @’ Xi1+Xs
is normally distributed with zero mean and variance (a1, — 74, )% + (012 — 092)* = |0 — 0u]*.
It follows that
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Up to the multiplicative parameter a, this is the Black-Scholes price of a call on a stock with
price 51(t)/Sa(t). volatility |o) — o3| and for an interest rate of the money market given by
7. Hence

—a (5O iy ke od ) = v 5 (8 = . 210
ny(z)_LMm Ke 4(43)). (.50 8:0) = ult. ) (12)

where

5(t) + (7 + 61—2-73"*]1_

de — 08 K5,(0)
* |oy — aal /T

As to the self-financing hedging portfolio, we have hg (t) = d.v(f, Si(f), Sa2(t)), he,(t) =
yu(t, Sy(t), S2(t)), = 1,2. Therefore, recalling the delta function of the standard European
call, we obtain

_a ~aS(t)
- %‘D(d+) hS:{f) - _-5'2(”2

he (1) ®(d,).

The same result can be obtained by solving the terminal value problem (11).

Indeed, the form of the pay-off function of the derivative suggests to look for solutions of (11)
of the form v, (¢, x, y) = u(t, z/y). The function u(t, z) satisfies a standard Black-Scholes PDE
in 141 dimension, whose solution is given as in (12).
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