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1 Introduction to American derivatives caLL ©

Before giving the precise definition of fair price for American derivatives, we shall present
some general properties of these contracts.

American derivatives can be exercised at any time prior or including maturity 7. Let Y'(t)
be the pay-off resulting from exercising the derivative at time ¢ € (0, 7T7.

We call Y intrinsic value of th rivative. We consider only standard American

derivatives, for which we have Y (t) = ¢(S(t)), for some measurable function g : R — .
r~§< N -

For instance, g{r) = (r — K'); for American calls and g(z) = (K — x). for American puts.

N ~

_ H/\) _ () We denote by 11y () the rW&Wlw
\IY - _Y(#) and by Iy (#) the risk-neutral price of the European derivative with pay-off Y = Y/(T')
TN——— —

at maturity time T (given by (ZZ2)). — n~ @)
) aaw = E(REyip L) s
Even if we do not know yet how Ty (t) is deflled. two obvious properties of American deriva-

tives are the following:

(i) Ty t) = Iy (t), for all t € [0,T]. In fact an American derivative gives to its owner
/ tﬁﬁf the corresponding European derivative plus one: the option of early
exercise. Thus it is clear that the American derivative cannot be cheaper than the

European one.

(ii) gﬁl [y(t:\ = Y(t), for all t € [0,T]. If not, an arbitrage opportunity would arise by
purchasing the American derivative and exercising it immediately.
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Any reasonable definition of fair price for American derivatives must satisfy (i)-(ii). T&S d& ¥ wrle

IlDeﬁnltlon 1. A time t € (0,T] is said to be an optimal exercise time for the American

derivative with intrinsic value Y (t) if H}( 1 =Y(t).
&—et‘

Hence by exercising the derivative at an optimal exercise time f, the buver takes full advan-
tage of the derivative: the resulting pay-off equals the value of the derivative.

On the other hand, if IIy-(f) > ¥ () and the buyer wants to close the (long) position on the
American derivative, then the optimal strategy is to sell the derivative, thereby cashing the

amount ]'Iy( ). l(\)%‘%

Theorem 1. Assume (i) holds and I&t___L ) be the price of an American call at time t € [0,7T7.
4smme further that the underlying stock price follows a generalized geometric Brownian

e interest rate v(t) of the money market is strictly positive for all times.

for all t € [0,T). In particular it is never optimal to evercise the call

s pARTICVOR | CW) = el

Pmof For S(t) < K the claim becomes Ct) > 0fort € [0,T), which is obvious (since

{} >C _;TFOr SH‘J > K we write

Q(_} > C(0) = BIS(T) - K)L DD Fwl0)] > E((S(T) = K)D(T)/D(t) Fu (1)
%SET!DET!{D ?!}_n !]—K[ED TI;;E’D(?!U-'H ]>D. \
— K., e
=S K = (50 - K)o < yir) S PsO <L
where we used DE Ti :E’ D: tg < 1 (hy t.he positivity of the interest rate r(f)) and the martingale
property of the discounted price {S*(t)}icjo.r of the stock. O

1t follows that under the assumptions of the previous theorem the earlier exercise option
of the American call is worthless, hence American and European call options with the same
strike and maturity have the same value.

Remark. A notable exception to the assumed conditions in Them em 1 is when the under-
lving stock pays a dividend. In thls case it can be shown that it is imal to exercise the

American-call immediately bef he dividend is payed.—prov the price of the stock is

sulliciently high.

Definition 2. Let T € (0.00). A random variable 7 : €0 — [0, T is called a stopping time
Jor the filiration {Fy (t) b0 if {7 <1} € Ly (t), for allt € [0,T]. We denote by Qr the set
of all etoppmg times for the filtration {Fu-(t)}i=0.

Think of 7 as the time at which some random event takes place.
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Then 7 is a stopping time if the occurrence of the event before or at time t can be inferred
by the information available up to time ¢ (no future information is required).

For the applications that we have in mind, 7 will be the optimal exercise time of an American
derivative, which marks the event that the price of the derivative equals its intrinsic value.

From now on we assume that the market has constant parameters and r > 0. Hence the
price of the stock is given by the geometric Brownian motion

S{f) — S(O)e[:f]£+oﬁ’[t)‘

We recall that in this case the price l’[y![hﬂ at time { = 0 of the European derivative with

pay-oft ¥ = ¢(S(T")) at maturity time 7" = 0 is given by
YR = (S )

Now, if the writer of the American derivative were sure that the buver would exercise at the
time w € (0, T], then the fair price of the American derivative at time ¢ = 0 would be equal

toThy0.0) Ty(e) = gL ™ asu )&

As the writer cannot anticipate when the buyer will exercise, we would be tempted to define
the price of the American derivative at time zero as max{Tly{t-0-=u < T}.

However this definition would actually be unfair, as it does not take into account the fact
that the exercise time is a stopping time, i.e., it is random and it cannot be inferred using
uture informafion.

This leads us to the following definition.

Definition 3. In a market with constant parameters, the risk-neutral (or fair) price at time
t = 0 of the standard American derivative with intrinsic value Y (t) = g(S(t)) and maturity
— .  — . e -~
T =0 is given by

= Tiy(0) = max Ele~"g(S(m))], (1)
S e — 2 ~
. -<
whcrc.S(T) _ S(U}t{r—".'_, JrtaWir) S[ Z(wj—j - S (;o» e(q‘ z )'Z(W‘) L) w)

It is not possible in general to find an closec isk-neutral price of American

derivatives. A notable exception is the price UE perpetual American put options, which we

discuss next.
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Perpetual American put options

An American put option is cal etual if it never expires, i.e., T' = oc. This is of course
an idealization, but perpetual American puts are very useful to visualize the structure of

general American put options. ~
wite VALVC

) VAL
Definition 1 becomes the following. / N e wTER

Definition 4. Let @ be the st of all stopping times for the filtration {Fi (t) }izo, ice., 7 € Q T, °, 00 ]
iff 72— [0,00] s a random variable and {7 < T} € Fye(t), for allt > 0. The risk-neutral

price at time t = 0 of the perpetual American put with strike K is
x| = - X)B
))+] % ( ) K (2) X
. o AV,
where S(7) = S(0)el"=F)THeWI(r) J ¢ Q — (°( 90-)
Theorem 2. There holds

']E[e""’{[\' —5(r

11(0) =v3(S(0)). (3) @)

where =
K— 2 0<H<L §— OF T mAT SxE rC\SC
vplx) = (K—1) (%)_f,; I ) RS G\lo M
and

K

Before we prove the theorem, some remarks are in order:

VYTIMM

Ex€LcC\SC
R - Lged i £ L | ————aard
(i) L < K; O RSECN 4 e x
(ii) For S(0) < L we have ﬁ([}) = v (5(0)) = K = 5(0) = (K — 5(0))+. Hence w}:n
S(0) < L it is optimal to exercise the derivative. - SO

(iii) We have TI(0) > (K — S(0)), for S(0) > L. In fact
——— —_—

, % ra\-51K—L
- B

hence vy (L) = —1. Moreover
e

L

2r 2r -2 K — L
@)= S5+ (1) o
EXEecte vwae
which is always positive. Thus the graph of vy (z) always lies above K — x for = > L.

It follows that it is not optimal to exercise the derivative if S(0) > L.

) L @)
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(iv) In the J‘Ma\l}fﬁsﬁ_ any time is equivalent to £ = 0, as the time left to maturity is
always infinite. Hence

In conclusion the theorem is saying us that the buyer of the derivative should exercise as
soon as the stock price falls below the threshold L. In fact we can reformulate the theorem
)

in the following terms:
/\/-\

Theorem 3. The mazinum of[Ew} )] over all possible 7 € Q is achieved at
T =1T,, where

L= mil\l{t >0: Sit) =I}
Moreover Ele™™ (K — S(r.))4] = v(S(0)).
\

-

For the proof of Theorem 2 we need the optional sampling theorem:

Theorem 4. Let {X(t)},=g be an adapted process and 7 a stopping time. Let t AT =
min(t, 7). If {X(t)}i=0 is a martingale/supermatingale .5ubmm1mqale then { X (EAT) =g is

also a mm“fm gale/supermartingale /submartingale.

We can now prove Theorem 2. We divide the proof in two steps, which correspond respec-
tively to Theorem 8.3.5 and Corollary 8.3.6 in [?].

Step 1: The stochastic process {e """ uy (S(tAT)) }iso 15 a super-martingale for all 7 € Q.
Moreover for S(0) > L the stochastic process {e "™ o (S(t A7) }izo is a martingale. By
1t6's formula,

d(e ™Mo (S() = e [—rvn(S(H) + rS(HvL(S() + ;rf S(t)* ey (S(t))dE
+ e S (S(1)dW ().

The drift term is zero for S(t) > L and it is equal to —rK df for S(t) < L. Hence

t
e "Mup(S()) = v (S(0)) — rK f "sguy<r(u) du +/ “aS(u)vr (S )}dﬂ (u ).
0
Since the drift term is non-positive, then {e="vy(f)};>q is a supermartingale and thus by the
optional sampling theorem, the process {P""[f”)r.-'b(b(f A7) he=o 15 a also a supermartingale,
for all 7 € Q. Now, if S(0) > L, then, by continuity of the paths of the geometric Brownian
motion, S(u,w) > L as long as u < 7,(w). Hence by stopping the process at 7. the stock
price will never fall below L and therefore the drift term vanishes, that is

eIy (S(EAT)) = o (S(0)) + / " e S (), (S (u)dIV ().

J0

5
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The Ito integral is a martingale and thus the Ito integral stopped at time 7, is also a
martingale by the optional sampling theorem. The claim follows.

Step 2: The identity (3) holds. The supermartingale property of the process {e=" 7oy (S(tA
7)) }i=0 implies that its expectation is non-increasing, hence

Ele™ "o (S(t A7) < vr.(S(0)).
As vr(x) is bounded and continuous, the limit { —+ 4+oc gives
Ele™70.(S(r))] < vi(S(0)).

As vp(x) = (K — z)4 we also have

Ele (K — S())] < vi(S(0)).

Taking the maximum over all 7 € () we obtain

II(0) = max ]E[er“’"(h' = S(7))4] < vr(S(0)).

TEQ

Now we prove the reverse inequality ﬁ({l} = v (S(0)). This is obvious for S(0) < L. In fact,
letting 7 = min{t > 0: S(t) < L}, we have T = 0 for S(0) < L and so max, ]E[e‘”(h’ -
()] = Ble (K — 87)4] = (K — 5(0)) = 0,(S(0)), for S(0) < L. For 5(0) > L
we use the martingale property of the stochastic process {e """l (S(t A 7.)) hi=p, which
implies

Ele™ ™ vy (S(t A T.))] = v1(S(0)),

Hence in the limit £ — 4-oc we obtain
v (5(0)) = Efe™™ v (S(n.))]
Moreover ¢ "™ v (S(7.)) = ¢ "™on(L) = ¢ "™ (K — S(7.)) 4, hence
v (5(0)) = Ele™™ (K = S(n.))s .

It follows that N 5
11(0) = max Ble ™" (K = S(7)).] > (S(0),

which completes the proof. [}

Next we discuss the problem of hedging the perpetual American put with a portfolio invested
in the underlying stock and the risk-free asset.

Definition 5. A portfolio process {hs(t), hip(t)}iso is said to be replicating the perpetual
American put if its value {V(t)}i=o equals II(t) for all > 0.

G
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Thus by setting-up a replicating portfolio, the writer of the perpetual American put is sure
to always be able to afford to pay-off the buver.

Note that in the European case a self-financing hedging portfolio is trivially replicating, as
the price of European derivatives has been defined as the value of such portfolios.

However in the American case a replicating portfolio need not be self-financing: if the buyer
does not exercise at an optimal exercise time, the writer must withdraw cash from the
portfolio in order to replicate the derivative.

This leads to the definition of portfolio generating a cash flow.

Definition 6. A portfolio {hs(t), hp(t)}izo with value {V ()} is said to generate a cash
flow with rate c(t) if {c(t)}iso is adapted to {Fy(t) }sp and

AV (t) = hg(t)dS(t) + hp(t)dB(t) — c(t)dt (4)

Remark 1. Note that the cash flow has been defined so that e(t) > 0 when the investor
withdraws cash from the portfolio (causing a decrease of its value).

Theorem 5. The portfolio given by

) — LS0) = hs(S ()

h.‘i(t) = 1"1(‘5'“))\ B(0)ert

is replicating the perpetual American put while generating the case flow ¢(t) = rKTgp<r,
(i.e., cash is withdrawn at the rate r K whenever S(t) < L, provided of course the buyer does
not exercise the derivative).

Proof. By definition, V(1) = hs(1)S(t) + hg(t)B(t) = v,(S(t)) = I1(t). hence the portfolio
is replicating. Moreover

dV(t) = d(vr(S(t))) = hs(t)dS(t) + %'ﬂ’}f{S{tJ)a?S(t}gdt. (5)
Now, a straightforward caleulation shows that vy (x) satisfies
! 1 2, -
—rug + revy + Emf v = —rKl <y,

a relation which was already used in step 1 in the proof of Theorem 2. It follows that

%u’;(.sm)a?smgdt = r(0n(S(t)) — S(t)hs(t))dt — rKlsq<pdt
= !ig{t}(ﬂB(t} - ‘.I"K'Hs{g}sfldt.

Hence (5) reduces to (4) with e(t) = rKlsyy<p, and the proof is complete. O

7
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Remarks on American put options with finite maturity

The pricing function vy (z) of perpetual American puts satisfies

—rug + ravy + %021;211}1 =0 whenz> L, (6)
vple) = (K —xz), fora <L, v (L)=-1 (7)

It can be shown that the pricing function of American put options with finite maturity
satisfies a similar problem. Namely. letting P(t) be the fair price at time ¢ of the American
put with strike K and maturity T > £, it can be shown that P(t) = v(t, 5(t)), where v(f, x)
satisfies

v +rady + %02;1:233_-:.! =rv, if x> z.(t), (8)
vt r) = (K —x), foraz<uax(t), Ow(t.r(t)=-1, (9
(T 2) =(k—x)y, x.(T)=K, (10)

which is a free-boundary value problem. While a numerical solution of the previous
problem can be found using the finite difference method, the price of the American put
option is most commonly computed nsing hinomial tree-approximations, see for instance [?].
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