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1 Introduction to American derivatives caLL ©

Before giving the precise definition of fair price for American derivatives, we shall present
some general properties of these contracts.

American derivatives can be exercised at any time prior or including maturity 7. Let Y'(t)
be the pay-off resulting from exercising the derivative at time ¢ € (0, 7T7.

We call Y intrinsic value of th rivative. We consider only standard American

derivatives, for which we have Y (t) = ¢(S(t)), for some measurable function g : R — .
r~§< N -

For instance, g{r) = (r — K'); for American calls and g(z) = (K — x). for American puts.

N ~

_ H/\) _ () We denote by 11y () the rW&Wlw
\IY - _Y(#) and by Iy (#) the risk-neutral price of the European derivative with pay-off Y = Y/(T')
TN——— —

at maturity time T (given by (ZZ2)). — n~ @)
) aaw = E(REyip L) s
Even if we do not know yet how Ty (t) is deflled. two obvious properties of American deriva-

tives are the following:

(i) Ty t) = Iy (t), for all t € [0,T]. In fact an American derivative gives to its owner
/ tﬁﬁf the corresponding European derivative plus one: the option of early
exercise. Thus it is clear that the American derivative cannot be cheaper than the

European one.

(ii) gﬁl [y(t:\ = Y(t), for all t € [0,T]. If not, an arbitrage opportunity would arise by
purchasing the American derivative and exercising it immediately.
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Any reasonable definition of fair price for American derivatives must satisfy (i)-(ii). T&S d& ¥ wrle

IlDeﬁnltlon 1. A time t € (0,T] is said to be an optimal exercise time for the American

derivative with intrinsic value Y (t) if H}( 1 =Y(t).
&—et‘

Hence by exercising the derivative at an optimal exercise time f, the buver takes full advan-
tage of the derivative: the resulting pay-off equals the value of the derivative.

On the other hand, if IIy-(f) > ¥ () and the buyer wants to close the (long) position on the
American derivative, then the optimal strategy is to sell the derivative, thereby cashing the

amount ]'Iy( ). l(\)%‘%

Theorem 1. Assume (i) holds and I&t___L ) be the price of an American call at time t € [0,7T7.
4smme further that the underlying stock price follows a generalized geometric Brownian

e interest rate v(t) of the money market is strictly positive for all times.

for all t € [0,T). In particular it is never optimal to evercise the call

s pARTICVOR | CW) = el

Pmof For S(t) < K the claim becomes Ct) > 0fort € [0,T), which is obvious (since

{} >C _;TFOr SH‘J > K we write

Q(_} > C(0) = BIS(T) - K)L DD Fwl0)] > E((S(T) = K)D(T)/D(t) Fu (1)
%SET!DET!{D ?!}_n !]—K[ED TI;;E’D(?!U-'H ]>D. \
— K., e
=S K = (50 - K)o < yir) S PsO <L
where we used DE Ti :E’ D: tg < 1 (hy t.he positivity of the interest rate r(f)) and the martingale
property of the discounted price {S*(t)}icjo.r of the stock. O

1t follows that under the assumptions of the previous theorem the earlier exercise option
of the American call is worthless, hence American and European call options with the same
strike and maturity have the same value.

Remark. A notable exception to the assumed conditions in Them em 1 is when the under-
lving stock pays a dividend. In thls case it can be shown that it is imal to exercise the

American-call immediately bef he dividend is payed.—prov the price of the stock is

sulliciently high.

Definition 2. Let T € (0.00). A random variable 7 : €0 — [0, T is called a stopping time
Jor the filiration {Fy (t) b0 if {7 <1} € Ly (t), for allt € [0,T]. We denote by Qr the set
of all etoppmg times for the filtration {Fu-(t)}i=0.

Think of 7 as the time at which some random event takes place.
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Then 7 is a stopping time if the occurrence of the event before or at time t can be inferred
by the information available up to time ¢ (no future information is required).

For the applications that we have in mind, 7 will be the optimal exercise time of an American
derivative, which marks the event that the price of the derivative equals its intrinsic value.

From now on we assume that the market has constant parameters and r > 0. Hence the
price of the stock is given by the geometric Brownian motion

S{f) — S(O)e[:f]£+oﬁ’[t)‘

We recall that in this case the price l’[y![hﬂ at time { = 0 of the European derivative with

pay-oft ¥ = ¢(S(T")) at maturity time 7" = 0 is given by
YR = (S )

Now, if the writer of the American derivative were sure that the buver would exercise at the
time w € (0, T], then the fair price of the American derivative at time ¢ = 0 would be equal

toThy0.0) Ty(e) = gL ™ asu )&

As the writer cannot anticipate when the buyer will exercise, we would be tempted to define
the price of the American derivative at time zero as max{Tly{t-0-=u < T}.

However this definition would actually be unfair, as it does not take into account the fact
that the exercise time is a stopping time, i.e., it is random and it cannot be inferred using
uture informafion.

This leads us to the following definition.

Definition 3. In a market with constant parameters, the risk-neutral (or fair) price at time
t = 0 of the standard American derivative with intrinsic value Y (t) = g(S(t)) and maturity
— .  — . e -~
T =0 is given by

= Tiy(0) = max Ele~"g(S(m))], (1)
S e — 2 ~
. -<
whcrc.S(T) _ S(U}t{r—".'_, JrtaWir) S[ Z(wj—j - S (;o» e(q‘ z )'Z(W‘) L) w)

It is not possible in general to find an closec isk-neutral price of American

derivatives. A notable exception is the price UE perpetual American put options, which we

discuss next.
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Perpetual American put options

An American put option is cal etual if it never expires, i.e., T' = oc. This is of course
an idealization, but perpetual American puts are very useful to visualize the structure of

general American put options. ~
wite VALVC
L ,..T{P VAL

Definition 1 becomes the following,. N THE

Definition 4. Let @ be the st of all stopping times for the filtration {Fiy (t) }izo, ice., 7 € Q T, o, 0 ]
iff 72— [0,00] s a random variable and {7 < T} € Fye(t), for allt > 0. The risk-neutral
price at time t = 0 of the perpetual American put with strike K is

= 11(0) = maxEle (K~ S(r)),] % (> = w?z) q X
N V)

2 i
where S(7) = S(0)el"=F)THeWI(r) /

Theorem 2. There holds

f1(0)) 01,(S(0)) 4 3 &)

— 7T \! =
D<@ L €— OF T A GxE RC\SCT

T ED G D
and %

where

Before we prove the theorem, some remarks are in order:

(i) L<K:;

(ii) For S(0) < L we have ﬁ([}) = v (5(0)) = K = 5(0) = (K — 5(0)),+. Hence wh-e‘n
S(0) < L it is optimal to exercise the derivative. - S

(iii) We have TI(0) > (K — S(0)), for S(0) > L. In fact
——— —_—

L

o raN-5-1K L
'I-"L(;I‘} =-— ( ) L

(2

hence vy (L) = —1. Moreover
—_——

L

2r 2r -2 K — L
@)= S5+ (1) o

EXEecse vuwre
which is always positive. Thus the graph of vy (z) always lies above K — x for = > L.
It follows that it is not optimal to exercise the derivative if S(0) > L.
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(iv) In the Jm%casef any time is equivalent to £ = 0, as the time left to maturity is

always infinite. Hence
fi(t) =foys). \$— wakeprw T (21 T,

In conclusion the theorem is saying us that the buyer of the derivative should exercise as
soon as the stock price falls below the threshold L. In fact we can reformulate the theorem
in the following terms: )

_Theorem 3. The mmmum o ‘”{K = S(7))+Dover all possible T € Q is achieved at

T =1T,, where
— Crp=(min{t >0 S(t) = L}. ¥——
Moreover Ele="™ (K — S T, ="up (S0))N

(77 (K = 5(7),] = T4(S0), #—

For the proof of Theorem 2 we need the optional sampling theorem:
Theorem 4. Let {X(t)}=0 be an adapted process and 7 a stopping time. Let t AT

min(t, 7). If {X(t)}i>0 is @ martingale /mpermatmqat’e@%e then {@\0 is

also a mm“fm gnlr /supermartingale /submartingale.

We can now prove Theorem 2. We divide the proof in two steps, which correspond respec-
tively to Theorem 8.3.5 and Corollary 8.3.6 in [?].

Step 1: The stochastic process {e "o (S(tAT)) }imo 15 a super-martingale for all T € Q,é/
Moreover foré&z;ﬁ the stochastic process {e~ "7 ]u_,(S( AT ) hzo is @ martingale. By

It6's formula, e X2 L q-ﬂ ) s x ul,t'ﬁ*" %/’GQ\V n (K_x) _nYx
Kils st d(e"""f,'L{S{t))):@—NJL{.S )+ PSS (S(H) + = aas wrse)d = - e
+ GSAVE) +e 9{r):.-;_(5(f))dﬁ-’(r). ot S

The drift term is zero fof S(f) > I) and it is (‘ql]’l] tol —r KAt for S(t) < L. Hence

@ eur(S(0) < v (5(0)
Since the drift term is non-positiv {E

L optional sampling theorem, the proce‘-,s {P""[“\T)r.-'L(S (t A T} 1=0 is a also a supermar rmﬂralf-
for all 7 € Q. Now, if 5(0) > L, then, by continuity of the paths of the geometric Brownian
motion, S(u,w) > L as long as u < 7,(w). Hence by stopping the process at 7, the stock
price will never fall below L and therefore the drift term vanishes, that is

L R e e e —elles, Vdh

2) U‘ EMTe
W= 3 lWrosW o e Ty (S(EAT)) = v (S(0) + e~ o S (u)rr,(S(u)dW (u),
20z wdheisrld : 4SO+, )
net 5
~ [ *“Lfl\s 0 \? [,Dl = AN ('S(cﬁj - o\ ZE [’/ XB o (W) Qu \l ? [,’)3 /)
E Le " 8{stnliy =Ny EE LY oo W
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The Ito integral is a martingale and thus the Ito integral stopped at time 7, is also a
martingale by the optional sampling theorem. The claim follows.

Step 2: The identity (3) holds. The supermartingale property of the process {‘M (tn
7)) }e=o implies that its expectation is non-increasing, hence

. _ ~r -altaw)

X, - B hiSean) < opso). & (€ ,60r2)) \ &
A SWReR- pNNGHE =

THEN As vr(r) is bounded and continuous, the limit { —+ 4+oc gives

= - N o
EixE) & EX61) Bl (S(2) < (S(0) ARG

As vp(x) = (K — z)4 we also have z ﬁmuh— = IGL (-s [o—)')

t=o

Oz Ele (K =5(r))] < vr(S(0)).

Taking the maximum over all 7 € () we obtain /

11(0) =maxE[e™" (K — S(7))4] & v.(S(0)).

— ”EQ

Now we prove the reverse inequality 11{0) > v, (S(0)). This is obvious for 8(0) < L. In fact,
lettmg\'rﬁ_ min{f > 0: S(f) < L}, we have 7 = 0, for S(0) < L and so rnaxreqlEe‘” K —
S(r)+] = [E[::{B;ﬁr )+ = (K — (W= S(0))y = v (S(0), for S(0) < L For S0) = L

we use the martingale property of the stoch th(’ stochastic process Je "!""Ty (STt !\ 7)) =0, which
implies

Ele "™y (S(t AT,

Hence in the limit # — +oc we obtain 'Z* = A l]u 2,0 $ﬁ =L %

5(0)).

—

vL(S(0)) = Ele "™ v (S(7.)]-

Moreover e™" v (S(7)) = e "™ vL(L) = e”" (K = S(7.))4, hence S [' 2’) =L
\__’_‘_A_‘_’_\_’

ouSO) =Bl K -Sm)) AT k-1 o k- See,)

It follows that - _
11(0) = mas Ble (K = §(7)).) 2 0,(5(0)). (k- 5t2)),
\_}—<\_//>{/

—_—

which completes the proof. [}

> 1) = Alsts)) = E[€" Uc - s, )
Next we discuss the problem of hedging the perpetual American put with a portfolio invested
in the underlying stock and the risk-free asset.

Definition 5. A portfolio pmc( ss {hs(t), hip(t) }iso is said to be replicating the perpetual
American put if its value {V(t)}i=o equals II(t) for all > 0.

G
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Thus by setting-up a replicating portfolio, the writer of the perpetual American put is sure
to always be able to afford to pay-off the buver.

Note that in the European case a self-financing hedging portfolio is trivially replicating, as
the price of European derivatives has been defined as the value of such portfolios.

However in the American case a replicating portfolio need not be self-financing: if the buyer
does not exercise at an optimal exercise time, the writer must withdraw cash from the
portfolio in order to replicate the derivative.

This leads to the definition of portfolio ating a cash flow.
Definition 6. A portfolio {hs(t), hg(t)}izo with value {V(t)}i=0 is said to generate a cash
flow with rate c(t) if {c(t)}iso is adapted to {Fiy(t) b= and

& (4)

Remark 1. Note that the cash flow has been defined so that e(t) = 0 when the investor
withdraws cash from the portfolio (causing a decrease of its value).
VILICATaWs casi o e potth

dv(t)

Fg LWiLespt TO Ve
REPU AN G @ pdTON

o NI = g @) SE 4\, ) B0
TIOY < A (5()
)\

Theorem 5. The portfolio given by

ha(t) = '*-'L(S(fg[a}i.:{x}su)

I wIS i '

: NI _
is replicating the perpetual America
(i.e., cash is withdrawn at the rate 1K
not exercise the derivative).

et earitiat RE R

(t) = hs(t)S(t)

Proof. By definition, V{t
—

+ hg(t)B(t) = vi(S(t)) = Ti(t), hence the portfolio
is replicating. Moreover -

A znstdb4
() € SEAW

LSS

rR sy <pdt
7 (VR -WeD sED AL

O
- n e, %@ .Lt
= \A%Cﬂ 0\3&5
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Remarks on American put options with finite maturity T :)*
R Re PR BPRAUES WO E ey -
The pricing function vy (z) of perpetual American puts satisfies T L’
— \—’_/_/X
%\ —ry +F‘JIL+;JZ.L2U" =0 WheanL&/ (6)
L ETTL T T Y e
,/6“7 vple) = (K —xz), fora<L] v} (L)=—-T (7)
A T —

It can be shown that the pricing function of American put options with finite maturity
satisfies a similar problem. Namely. letting P(f) be tlloMt time t Of the American

put with strike A and maturity T > £, it can be shown that P = 1'Q . where v (}‘ x)
satisfies -
0 WA
- 7 ¢ eI |
) dt? +?rdr‘+ —o?r? v = rv, i =,(1) Ereccne Seo (8)
e g e

-i.'[,..,} (K — r} for = < @,(t), 2 . (9
{(ﬂ e n (T) = K, - (10)
which is a free-boundary value problem. While a numerical solution of the previous

problem can be found using the finite difference method, the price of the American put
option is most commonly computed nsing hinomial tree-approximations, see for instance [?].
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