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What is Big Data?



Just a buzz word?

Harvard
Business
Review

GETTING
CONTROL
OF

The

The data deluge‘ |

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT
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The cure for everything?

Cancer treatment is on the brink of a data revolution

How big data aget

IS C g_q.mg
.cancer research \

Business Insider’

https://www.businessinsider.com/big-data-and-cancer-2015-9?r=US§IR=T&IR=T 2/29


https://www.businessinsider.com/big-data-and-cancer-2015-9?r=US&IR=T&IR=T

Big Data - Big Problems?

BIG DATA

The Parable of Google Flu:
Traps in Big Data Analysis

David Lazer,"?* Ryan Kennedy,"** Gary King,? Alessandro Vespignanis®?

Scientific discussion article’

1 Lazer et al. (2014) The Parable of Google Flu: Traps in Big Data Analysis. Science 343 (6176):1203-1205. Dol 10.1126/science: 1248506
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https://doi.org/10.1126/science.1248506

Big Data - Big Problems?

Big data: are we making a big mistake?

Big data is a vague term for a massive phenomenon that has rapidly become an obsession
with entrepreneurs, scientists, governments and the media

Tim Harford MARCH 28, 2014 s =

Financial Times'

€he New Hork Eimes

THE STONE

How Democracy Can
Survive Big Data

By Colin Koopman

March 22, 2018

New York Times?

Thttps://www.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdcO#axzz2yQ2QQfQx
2 https://www.nytimes.com/2018/63/22/opinion/democracy-survive-data.html
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https://www.ft.com/content/21a6e7d8-b479-11e3-a09a-00144feabdc0#axzz2yQ2QQfQX
https://www.nytimes.com/2018/03/22/opinion/democracy-survive-data.html

It's a huge topic in science!

= Google Scholar  big data n

4 Articles About 5 350 000 results (0,04 sec)

Over 5 million hits on Google Scholar
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So Big Data is about size?

Yes and no.

Note that size is a flexible term. Here mostly:

» Size as in: Number of observations
Big-n setting
» Size as in: Number of variables
Big-p setting
» Size as in: Number of observations and variables
Big-n / Big-p setting

Is this all?
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The Four Vs of Big Data

A5.0f 2011, the global sze of By2014, s ancipted
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http://web.archive.org/web/20210506042232/https://www.ibmbigdatahub.com/infographic/four-vs-big-data 7/29


http://web.archive.org/web/20210506042232/https://www.ibmbigdatahub.com/infographic/four-vs-big-data

How does statistics come into play?

Statistics as a science has always been concerned with...

» experimental design or ‘how to collect the data’
» modelling of data and underlying assumptions
» inference of parameters

» uncertainty quantification in estimated parameters/predictions

Focus is on the last three in this course.
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Statistical challenges in Big Data

» Increase in sample size often leads to increase in complexity and variety of
data (p grows with n)

» More data # less uncertainty
> A lot of classical theory is for fixed p and growing n
» Exploration and visualisation of Big Data can already require statistics

» Probability of extreme values: Unlikely results become much more likely
with an increase in n

» Curse of dimensionality: Lot's of space between data points in
high-dimensional space
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Statistical Learning




Basics about random variables

» We will consider discrete and continuous random quantities

» Probability mass function (pmf) p(k) for a discrete variable
Example: Bernoulli distribution with parameter 6 € (0, 1)

p(0)=6, p(1)=1-6

» Probability density function (pdf) p(x) for a continuous variables
Example: Multivariate normal distribution with mean vector u € RP and
covariance matrix £ € RP*P

PO = 27|72 exp (3 (x— TEx - )
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Two important rules (and a consequence)

Marginalisation
For a joint density p(x,y) it holds that

p0) =Y pCr,y) or p(x)= f e e
Yy

Conditioning
For a joint density p(x,y) it holds that

p(x,y) = p(x|y)p(y) = p(y|x)p(x)

Both rules together imply Bayes’ law

p(y[x)p(x)

p(xly) = )
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Expectation and variance

Expectations and variance depend on an underlying pdf/pmf.

Notation:
> Epolf(0)] = f F)p(x)dx
> Vary[f(0] = Epeay [(70) =~ Epio S )])]
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What is Statistical Learning?

Learn a model from data by minimizing expected prediction error determined
by a loss function.

» Model: Find a model that is suitable for the data
» Data: Data with known outcomes is needed

» Expected prediction error: Focus on quality of prediction (predictive
modelling)

» Loss function: Quantifies the discrepancy between observed data and
predictions
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Linear regression - An old friend

2.5

2.0

15
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Statistical Learning and Linear Regression

» Data: Training data consists of independent pairs
(yi’Xi)’ = 1,...,n

Observed response y; € R for predictors x; € RP

» Model:
Vi=x{f+e

where ¢; ~ N(0,02) independent
» Loss function: Squared error loss

L(y’y) = (y_j})z
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Statistical decision theory for regression (1)

» Squared error loss between outcome y and a prediction f(x) dependent on
the variable(s) x

Ly, fx) = (y — f()?
» Assume we want to find the ‘best’ f that can be learned from training data

» When a new pair of data (y, x) from the same distribution (population) as
the training data arrives, expected prediction loss for a given f is

J(f) = Epgey) [LOs FGN] = Epxy [Epym [LO FGN]]

» Define ‘best’ by:

~

f =argminJ(f)
f
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Statistical decision theory for regression (lI)

Can we determine f? Focus on inner expectation
Epm [0 = F00P] = [0 =Epools] + Epomlb] = SPpGRIOy
= f O — EpupyD*p(1x) dy
+2 [0~ Bl D Epomlb] - SIGHRIOy

+ f([Ep(y|x) [y] - f®)*p(y|x)dy
= VarP(J’lx)[y] + ([Ep(y|x) [y]— f(x))2

Minimal for f(x) = E vl
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Statistical decision theory for regression (lll)

» We just derived that
fx) = Epwy]
the expectation of y given that x is fixed (conditional mean)
» Regression methods approximate the conditional mean
» For many observations y with identical x we could use

1
[Ep(ylx)[Y] R mxz Yi

» Probably more realistic to look for the k closest neighbours of x in the
training data Ni(x) = {x;,, ..., Xy, }. Then

Epmly] =

Z Yy

i ENk(x)

& =
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Average of k neighbours

2.5

2.0

15

k — 2 — 5
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Back to linear regression

Linear regression is a model-based approach and assumes that the dependence
of y on x can be written as a weighted sum, i.e.

y=xB+e¢
where ¢ ~ N(0,52). The mean of y given x is therefore
E [yl =x"8
pILY :

Note that in practice this equality will only hold approximately.
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Classification




A simple example of classification

5.0
% o
[}
2.5 ° [ ‘ °
[

" f‘:’" . o Class
<00 2887 . e 1

o oo
« f"\ .‘Q * 2

L °
-25 ";» :;1‘.

How do we classify a pair of new coordinates x = (x;, x,)?
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k-nearest neighbour classifier (KNN)

» Find the k predictors
Ni(x) = {x;,, ., X3, }
in the training sample, that are closest to x in the Euclidean norm.

» Majority vote: Assign x to the class that most predictors in Ny (x) belong to
(highest frequency)
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kNN and its decision boundaries
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Classification and Statistical Learning

Classification
Learn a rule ¢(x) from data which maps observed features x to classes {1, ..., K}.

Remember:

Statistical Learning

Learn a model from data by minimizing expected prediction error determined
by a loss function.

Here: rule ~ model, and observed classes give us the required outcomes for
learning.
What is a suitable loss?
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Statistical decision theory for classification

» 0-1misclassification loss: Let i be the actual class of an object and ¢(x) is a
rule that returns the class for the variable(s) x, then

) 0 i=c(x), ]
L(i,c(x)) = _ =10 # c(x))
1 i#c(x)
» Expected prediction error
J(c) = Ep) [Epcim[1G # e(x)]]
» Minimizing expected prediction error leads to the rule

é(x) = argmax p(i|x)
1<i<K

This is called Bayes' rule.
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Deriving Bayes' rule

Again, focus on inner expectation

Emmma¢dwn=2ﬂo¢dmmmm
Ejpmm

i#c(x)
=1 - p(e()|x)

Minimal for é(x) = arg max, ; _, p(i[x)
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Back to kNN

» kNN solves the classification problem by approximating p(i|x) with the
frequency of class i among the k closest neighbours of x.

» Given data (i}, x;) for I = 1,...,n it holds that

1
é(x) = argmax — Z 134, =1)
1<i<K X[ENK(x)
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A note on kNN

There are two choices to make when implementing a kNN method

1. The metric to determine a neighbourhood
» e.g. Euclidean/¢, norm, Manhattan/#; norm, max norm, ...

2. The number of neighbours, i.e. k

The choice of metric changes the underlying local model of the method while k
determines the size of this local model.
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Take-home message

» Big Data is complex and is multi-faceted

» Regression and classification can be formulated in the framework of
Statistical Learning

» In both cases, focus is on prediction
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