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Evaluating performance of a
statistical method



Goals

▶ Model selection: Choose a hyper-parameter or model structure, e.g. 𝑘 in
kNN regression/classification, or ‘Choose between logistic regression, LDA
and kNN’

▶ Model assessment: How well did a model do on a data set?
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UCI Breast Cancer Wisconsin (Diagnostic) Data Set

UCI Breast Cancer Wisconsin (Diagnostic) Data Set1

▶ Classification data set with binary response (malignant or benign cancer)
▶ 569 samples (357 benign, 212 malignant)
▶ 10 features (given as mean, standard error, and worst case)

▶ e.g. radius, symmetry, compactness, fractal dimension, . . .

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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Choosing the best method for prediction

kNN (k = 10) Logistic LDA
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Which method generalises best to new data, i.e. performs class prediction well?
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Conditional and total expected prediction error

Recall: To determine the optimal regression function or classifier minimize
expected prediction error

𝐽(𝑓) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱))]
with respect to arbitrary functions 𝑓 or a limited sub-class of functions.

▶ Estimate and fix 𝑓(𝐱|𝒯) from training data 𝒯 = {(𝑦𝑙, 𝐱𝑙) ∶ 𝑙 = 1,… , 𝑛}.
▶ Conditional expected prediction error for a fixed training set 𝒯

𝑅(𝒯) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱|𝒯)]
▶ Note: Training data is random too, i.e. 𝑝(𝒯) = ∏𝑛

𝑙=1 𝑝(𝐱𝑙, 𝑦𝑙)
▶ Total expected prediction error

𝑅 = 𝔼𝑝(𝒯) [𝑅(𝒯)] = 𝔼𝑝(𝒯) [𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱|𝒯))]]
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Common empirical error rates

▶ Training error

𝑅𝑡𝑟 = 1
𝑛

𝑛
∑
𝑙=1

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|𝒯))

where (𝑦𝑙, 𝐱𝑙) are the samples in 𝒯.
▶ Test error

𝑅𝑡𝑒 = 1
𝑚

𝑚
∑
𝑙=1

𝐿(𝑦′𝑙 , 𝑓(𝐱′𝑙|𝒯))

where (𝑦′𝑙 , 𝐱′𝑙) for 1 ≤ 𝑙 ≤ 𝑚 are new samples from 𝑝(𝐱, 𝑦).
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Common empirical error rates (II)

Can these empirical error rates be used to approximate total or conditional
expected prediction error?

Observations:

▶ 𝒯 has already been used to determine 𝑓(⋅|𝒯)
▶ Training error is often smaller for more complex models (so-called
optimism of the training error) since they can adjust better to the available
data (overfitting!)

▶ How do we get new samples from the data distribution 𝑝(𝒯)? What do we
do if all we have is one set of training samples?
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Splitting up the data

Holdout method
If we have a lot of samples, randomly split available data into training set and
test set (e.g. 75% to 25%)

𝑐-fold cross-validation (CV)
If we have few samples

1. Randomly split available data into 𝑐 equally large subsets ℱ1, … ,ℱ𝑐,
so-called folds.

2. For each 𝑗
▶ Use 𝑐 − 1 folds, denoted by ℱ−𝑗 = ∪𝑖≠𝑗ℱ𝑖 , as the training set
▶ Use fold ℱ𝑗 as the test set

Note: No training must be done on the test set or outside of CV (see
ESL Ch. 7.10.2) 7/31



Leave-one-out cross-validation

CV with 𝑐 = 𝑛 is called leave-one-out cross-validation (LOOCV).

▶ Popular because explicit formulas (or approximations) exist for many
special cases (see ESL End of Ch. 7.10.1)

▶ Uses the most data for training possible
▶ More variable than 𝑐-fold CV for 𝑐 < 𝑛 since only one data point is used for
testing and the training sets are very similar

▶ In praxis: Try out different values for 𝑐. Be cautious if results vary drastically
with 𝑐.
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Approximations of expected prediction error

▶ Use test error for hold-out method, i.e.

𝑅𝑡𝑒 = 1
𝑚

𝑚
∑
𝑙=1

𝐿(𝑦′𝑙 , 𝑓(𝐱′𝑙|𝒯))

where (𝑦′𝑙 , 𝐱′𝑙) for 𝑙 = 1, … ,𝑚 are the elements in the test set.
▶ Use average test error for c-fold CV, i.e.

𝑅𝑐𝑣 = 1
𝑐

𝑐
∑
𝑗=1

1
|ℱ𝑗|

∑
(𝑦𝑙,𝐱𝑙)∈ℱ𝑗

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|ℱ−𝑗))

where ℱ𝑗 is the 𝑗-th fold and ℱ−𝑗 is all data except fold 𝑗.

Note: For the approximations to be justifiable, test and training sets need to be
identically distributed
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Stratification

If data is unbalanced, then stratification is necessary.

Examples
▶ Class imbalance in a classification problem
Solution: Sample so that each fold has the same class proportions as the
original data

▶ Localised continuous outcome: Outcome is observed more often in some
intervals than others (e.g. more high values than low values)
Solution:
1. Stratify outcome (divide into intervals)
2. Sample such that the relative frequency of samples from each strata (interval)
in each fold is the same as in the original data
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Error estimation and tuning parameters

The holdout method and CV can be used to determine tuning parameters.

1. For a sequence of tuning parameters 𝜆1, … , 𝜆𝑆 calculate

𝑅𝑐𝑣(𝜆𝑠) =
1
𝑐

𝑐
∑
𝑗=1

1
|ℱ𝑗|

∑
(𝑦𝑙,𝐱𝑙)∈ℱ𝑗

𝐿(𝑦𝑙, 𝑓(𝐱𝑙|𝜆𝑠, ℱ−𝑗))

2. Choose
̂𝜆 = arg min

𝜆𝑠
𝑅𝑐𝑣(𝜆𝑠)

Also works for a sequence of methods𝑀1, … ,𝑀𝑆 (e.g. kNN, QDA, Logistic
Regression)
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Motivating example for method selection

kNN (k = 10) Logistic LDA
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Table 1: Mean test error from 10-fold CV (standard deviation in parantheses)

kNN Logistic LDA

0.214 (0.017) 0.198 (0.017) 0.218 (0.017) 12/31



Bias-Variance Tradeoff



Global rule & Simple boundary
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▶ The red line is the true boundary.
▶ Each grey line represents a fit to
randomly chosen 20% of all data.

▶ The black line is the average of the
grey lines.

▶ Here: low variance and low bias
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Local rule & Simple boundary
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kNN (k = 3)

▶ Here: high variance but on average
low bias
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Global rule & Complex boundary
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▶ Here: low variance but also large
bias

15/31



Local rule & Complex boundary
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▶ Here: high variance but on average
low bias
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Global vs local rules

Observations

▶ Local rules are built using data in a local neighbourhood, can capture
complex boundaries, but have high variance

▶ Global rules are built using all data, are usually less flexible, but have low
variance

▶ Bias-Variance Trade-off: It can be theoretically motivated that bias and
variance affect the expected prediction error. The goal is to find a balance.
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Bias-Variance Tradeoff

If 𝑦 = 𝑓(𝐱) + 𝜀 where 𝜀 ∼ 𝑁(0, 𝜎2), then
𝑅 = 𝔼𝑝(𝒯,𝐱,𝑦) [(𝑦 − 𝑓(𝐱))2] Total expected prediction error

= 𝜎2 Irreducible Error
+ 𝔼𝑝(𝐱) [(𝑓(𝐱) − 𝔼𝑝(𝒯) [𝑓(𝐱)])

2
] Bias2 averaged over 𝐱

+ 𝔼𝑝(𝐱) [Var𝑝(𝒯) [𝑓(𝐱)]] Variance of 𝑓 averaged over 𝐱

𝑅
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Observations

▶ Irreducible error cannot be changed
▶ Bias and variance of 𝑓 are sample-size dependent

▶ For a consistent estimator 𝑓

𝔼𝑝(𝒯)[𝑓(𝑥)] → 𝑓(𝑥)

for increasing sample size
▶ In many cases:

Var𝑝(𝒯)(𝑓(𝑥)) → 0

for increasing sample size
▶ Caution: Theoretical guarantees are often dependent on the number of
variables 𝑝 staying fixed and increasing 𝑛. Might not be fulfilled in reality.
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Performance of LDA vs KNN

Table 2: Mean test error from 10-fold CV (standard deviation in parantheses)

Boundary

simple complex

LDA 0.013 (0.004) 0.091 (0.01)
kNN (𝑘 = 3) 0.021 (0.005) 0.023 (0.005)

▶ LDA estimates have lower variance but higher bias for complex domains
▶ kNN estimates can adapt locally and have low bias, but are often highly
variable
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Evaluation metrics for classification



What are evaluation metrics?

So far, we used the loss function to determine the quality of the test result.

▶ For regression: Mean squared error (MSE)
▶ Low MSE ensures that the model is correct on average (given that model
assumptions are correct)

▶ For classification: Rate of misclassification
▶ Penalises wrong predictions across all classes, but problematic for unbalanced
datasets
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Confusion matrix
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Accuracy

Accuracy is defined as

TP + TN
T

▶ Measures fraction of correct predictions
▶ Symmetric: Useful if costs of false negatives
and false positives are equally high

▶ Weakness: If one class is highly prevalent
(unbalanced dataset), then predicting
everything as the majority class can still
achieve good accuracy.
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Sensitivity/Recall/True positive rate (TPR)

Sensitivity is defined as

TP
TP + FN

▶ Measures fraction of correct positive
predictions to all actual positive outcomes

▶ Strength: Useful if costs of false negatives
are high

▶ Be aware: A predictor trained on sensitivity
is likely to overpredict positive cases.

▶ Typical example: Medical test
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Specificity/True negative rate

Specificity is defined as

TN
TN + FP

▶ Measures fraction of correct negative
predictions to all actual negative outcomes

▶ Strength: Useful to make classifier recognize
negative cases

▶ Typical example: Medical test, in balance
with training on sensitivity

▶ False positive rate (FPR) = 1 − Specificity
25/31
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Precision

Precision is defined as
TP

TP + FP

▶ Measures fraction of correct positive
predictions to all positively predicted
outcomes

▶ Strength: Useful if costs of false positives
are high

▶ Be aware: A predictor trained on precision is
likely to overpredict negative cases.

▶ Typical example: Spam filter 26/31
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Combined measures (I)

▶ 𝐹1 score
2 ⋅ Precision ⋅ RecallPrecision + Recall ∈ [0, 1]

▶ Matthew’s correlation coefficient

MCC = TP ⋅ TN − FP ⋅ FN
√(TP + FP)(TP + FN)(TN + FP)(TN + FN)

∈ (−1, 1)

where
▶ MCC = 0 for a random classifier
▶ MCC < 0 if worse than random and MCC > 0 if better than random.
▶ Takes both classes into account.
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Combined measures (II)

▶ Receiver Operating Characteristic (ROC) curve
▶ Given a test sample and the respective estimated probabilities for the positive
class, plot the trade-off between FPR and TPR.

▶ Diagonal line from (0, 0) to (1, 1) for a random classifier
▶ TPR < FPR for a worse than random classifier and TPR > FPR if better than
random

▶ Area under the ROC curve (AUC)
▶ Integral over the ROC curve
▶ 0.5 for a random classifier and > 0.5 for better classifiers.
▶ AUC ∈ [0, 1]

28/31



Choose 𝑘 in kNN

k = 1 k = 3 k = 5
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Best 𝑘 for kNN
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Table 3: Mean training and testing
5-fold CV errors (standard
deviation in parantheses)

𝑘 𝑅𝑡𝑟 𝑅𝑐𝑣

1 0 (0) 0.26 (0.018)
2 0.147 (0.007) 0.246 (0.018)
3 0.14 (0.007) 0.23 (0.018)
5 0.163 (0.008) 0.207 (0.017)
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Take-home message

▶ Cross-validation or splitting data into a training and test set are valuable
approaches for model selection and model assessment

▶ Method complexity and global/local rules exhibit a bias-variance trade-off
▶ There is no single best measurement of classification quality, use multiple!
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