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1 Introduction
In the course we have dealt with the framework of statistical learning. Given a loss
function L(y, f(x)) and some data T = {(yl,xl) ∶ l = 1,… , n} we are attempting to
estimate some function f(x). The goals of learning the function f(x) are (1) to de-
scribe the training data, but also,more importantly, (2) to predict future observations.
Formally, we would like to minimize the expected prediction error (EPE)

J(f) = Ep(x,y) [L(y, f(x))] = Ep(x)
[
Ep(y|x) [L(y, f(x)]

]
. (1.1)

However, as was mentioned in the lectures, this is usually not possible directly.
Instead, we learn the optimal solution (i.e. the optimal f) to an approximation of
J(f).

One such approximation is the training, or emperical EPE,

Rtr(f) = 1
n

n∑

i=1
L(yi , f(xi)). (1.2)

The optimal function f̂ is then found as

f̂ = argmin
f

Rtr(f). (1.3)

Often, the minimization is restricted to a subclass of functions. As an example, in
linear regression f is restricted to all linear functions.

The best solution is often connected to the selection of one ormultiple hyper-parameters
(for example the value of k in kNN) or we might want to compare the best model by
comparing di�erent classes of models such as LDA vs kNN. c-fold cross-validation
is often the method of choice for selection of hyperparameters or choice between
models.
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2 The variance of the cross-validation error
Given the training data T = {(yl,xl) ∶ l = 1,… , n}, we randomly split the data
into c folds ℱ1,… ,ℱc of about equal size. The cross-validation error can then be
calculated as

RCV(�) =
1
c

c∑

j=1

1
|ℱj|

∑

l∈ℱj
L(yl, f̂(xl;ℱ−j , �)) (2.1)

where |ℱj| is the number of elements in the set ℱj , � denotes a single or multiple
hyperparameters or is an indicator for the chosenmodel andℱ−j = {(y, x) ∶ (y, x) ∈
T, (y, x) ≠ ℱj} is the training data when fold j is used for testing. f̂(⋅;ℱ−j , �) is the
optimal function that was chosen after training on all folds except fold j subject to
the hyperparameters �.

Note that the cross validation error itself is random, since the folds have been
created randomly and the training data can be considered to be drawn randomly
from the data distribution. Once training data has been collected and the folds have
been created, the cross validation error acts as a point estimate for the EPE J(f) in
Eq. (1.1).

However, since the CV error is random and therefore varies, it is often of interest to
estimate the variance of the cross validation error as well. In other words, what we
would like to estimate is how much the point estimate of the EPE would vary if we
were to collect new training sets.

In the following, denote

Rj(�) =
1

|ℱj|
∑

l∈ℱj
L(yl, f̂(xl;ℱ−j , �)). (2.2)

This way, RCV(�) =
1
c
∑c

j=1 Rj(�) is the average of c random variables. Note that the
Rj are random variables with respect to the randomness in the training data and
the allocation of the folds. If the Rj(�)were independent and identically distributed
(iid), then

Var(RCV(�)) =
1
c2

c∑

j=1
Var(Rj(�)) =

Var(R1(�))
c (2.3)

using the formulas Var(aX) = a2 Var(X) for a random variable X and a constant
a, as well as Var(X1 + X2 +⋯ + XN) =

∑N
l=1 Var(Xl) for independent random

variables X1,… , XN . In addition, we used the fact that the Rj(�) are assumed to be
identically distributed. If we use the standard unbiased estimator for the sample
variance

Var(R1) ≈
1

c − 1

c∑

j=1
(Rj − RCV)2. (2.4)
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we then get

Var(RCV(�)) ≈
1
c
⎛
⎜
⎝

1
c − 1

c∑

j=1
(Rj(�) − RCV(�))2

⎞
⎟
⎠
, (2.5)

which is the standard variance estimator for means of iid random variables. To get
the sample standard error1, we can use

se(RCV(�)) ≈
1
√
c

√
√√√√ 1

c − 1

c∑

j=1
(Rj(�) − RCV(�))2. (2.6)

However, since the training data sets in cross validation overlap, the assumption
of independance is not always valid and the independence estimator will over- or
underestimate variance (most likely underestimate).

Assuming the Rj(�) are identically distributed but not independent leads to the
following decomposition of the variance

Var(RCV(�)) =
1
c2

c∑

j=1
Var(Rj(�)) +

1
c2

∑

j≠j′
Cov(Rj(�), Rj′(�))

= Var(R1(�))
c + 1

c2
∑

j≠j′
Cov(Rj(�), Rj′(�)),

(2.7)

where the second equality holds due to the Rj being identically distributed. The
amount of over- or underestimation is determined by the amount of correlation
between the Rj and whether it is positive or negative on average.

Usually it is not possible to reasonably estimate the correlation in Eq. 2.7. Some
more explicit but complicated attempts are Nadeau and Bengio (2003), Bengio and
Grandvalet (2004), and Markatou et al. (2005). Empirically however, the covariance
is typically considered small as long as c, the number of folds, is small. When c
approaches n, correlations (and thereby covariances) between folds grow larger and
the approximation of the standard error in Eq. (2.6) becomes worse.

Two other ways how the variance of RCV(�) can be computed in the independence
setting are basedon element-wise error (see also Jiang andWang (2017)). De�ne

el = L(yl, f̂(xl;ℱ−jl , �)) (2.8)

where jl is the index of the foldwhich the pair (yl,xl) belongs to.With this de�nition
and the assumption that all folds are equally large (i.e. the number of samples n is
divisible by the number of folds c), the cross-validation error can bewritten as

RCV(�) =
1
n

n∑

l=1
el. (2.9)

1Recall that the standard deviation of an estimator around its expected mean is called the standard
error. The cross-validation error is an estimator of the EPE in Eq. (1.1) and its estimated mean is the
value RCV(�).
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Assuming that the el are iid it then follows that

Var(RCV(�)) =
Var(e1)

n ≈ 1
n ( 1

n − 1

n∑

l=1
(el − RCV(�))2) . (2.10)

The estimate in Eq. (2.10) is just another way of writing Eq. (2.5) if all folds are
exactly the same size.

In the following, consider the special case where the loss function is the 0-1 loss.
In this case, the cross validation estimate in Eq. (2.9) is an estimate of the mis-
classi�cation rate or more formal, assuming that the el are identically distributed,
RCV(�) ≈ P(e1 = 1). Since el ∈ {0, 1}, the element-wise losses can be considered
Bernoulli distributed random variables with parameter p̂ = RCV(�). It then holds
that

Var(RCV(�)) =
Var(e1)

n ≈ p̂(1 − p̂)
n . (2.11)
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