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Recall: Statistical Learning (1)

Regression
» Theoretically best regression function for squared error loss

f(X) = [Ep(y|x)[y]

» Can be solved data-driven (1) or by making model-assumptions (2)
1. k-nearest neighbour regression

Z Vi

Xj ENk(x)

& =

Epymy] =

2. linear regression (with implied constant 8, and x, = 1)

[Ep(y|x)[y] ~ XTﬁ
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Learning in Statistical Learning

Learn a model from data by minimizing expected prediction error determined
by a loss function.

Expected prediction error

J(f) = Epexy) [LOs ] = Epx) [Epeyp) [LO FG]]

How is this solved in practice, given a training sample (y;,x;) forl =1,...,n?

1. Approximate E,« yy [L(y, f(x))] from the training sample,

n
e. J(f)~ %ZL(J’I,f(Xz)) — minimize w.rt. f
1=1
2. Find optimal theoretical solution (e.g. Ep,[y]) and approximate it instead,

1
eg Eppmly]~ % > Y
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A third alternative

» Theoretically best regression function for squared error loss

f(X) = [Ep(y|x)[y]

if we allow all functions!

» Instead of approximating the overall optimal solution, we can restrict the
class of allowed functions.

» Example: Restrict to class of linear functions, i.e.

fexmx'f: e RPH}

» Combined with squared error loss, the function minimizing (empirical)
expected prediction error for the class of linear functions uses the standard
least squares estimates g
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Recall: Statistical Learning (lI)

Classification

» Theoretically best classification rule for 0-1 loss and K possible classes

¢(x) = argmax p(i|x)
1<i<K

» Can be solved data-driven (1) or by making model-assumptions (2)
1. k-nearest neighbour classification

> G =)

x1ENk(x)

=

p(ix) ~

2. Instead of approximating p(i|x) from data, can we make sensible model
assumptions instead?
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Model-based classification




A model for binary classification

Consider binary classification withi =0ori = 1.

We want to model p(i|x) and since p(0|x) + p(1|x) = 1, it is enough to model one
of the probabilities.

Bernoulli model:

» Let p(1|x) =6 € (0,1), then p(0|x) =1 — 6.
» Given responses i; for [ = 1,...,n we can estimate the maximum likelihood
estimate of 6
» Specifies a model approximation for Bayes’ rule
1

c(x) = arg max p(i|x) = 2
i€{0,1} 1 otherwise

: : 5
How can we include predictors x;? 5/25



Logistic function and Normal Distribution CDF

1.00
0.75

Type Logistic Function Standard Normal CDF

Logistic (sigmoid) function Standard Normal CDF

exp(x) d(x) =

z? d
1 + exp(x) \/_exp( ) ‘

o(x) =

6/25



Logistic/probit models

Include a linear predictor after transformation, i.e.

logistic model

p(x) ~ o(x"B)
probit model

p([x)  @(x'p)

with corresponding Bayes’ rule

0 x'B<0

c(x) = _
1 otherwise

since o(x"B) < 1/2 for x"B < 0 and analogous for the probit model.
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How are the regression coefficients determined?

The maximum likelihood estimates of g in the logistic regression model can be
determined from the log-likelihood (with i} = 2i; — 1)

1B = Z ij log(a(x] B) + (1 — ip) log(1 — a(x/ B))
Z —log (1 + exp(ijx/ B))
The gradient is (with o(—x) = —o(x))
Vl(B) = Z ix; —o(ifx, .3)11 X) = Z x(if — U(Xl B)

which can be used in gradient ascent or leads to a iteratively reweighted least
squares problem via the Newton-Raphson algorithm. (Details in ESL Ch. 4.4.1)
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Example: Logistic regression

Decision boundary
(black line)

Bo+x"f=0
X, = (—fo — B1x1)/B2

S5 0.0 2.5 5.0
X1

How can logistic regression be extended to K > 2 classes?

9/25



Multi-class logistic regression (1)

» Assume there are K > 2 classes.
» Requirement: Probabilities need to be modelled, i.e. p(i|x) € (0,1) for each

class and ), p(ix) = 1, and dependence on predictors x; should be included

» Use a categorical/multinomial model with

p([x) =6,,..., p(K — 1|x) = g, p(K|x) = 6
where 6, € (0,1) and zjej = 1l

» Softmax function: o : RK » [0,1]X for j =1,..,K -1
er er—ZK K 1
z - . lo@]® = ———= :
DI B 2 DL 14, _, e#r 2
Note that K — 1 inputs are enough to determine the softmax function and
zg = 0 could be imposed without loss of generality.

[o(2)]Y =
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Multi-class logistic regression (Il)

» Use that only K — 1 parameters are necessary and modelfori=1,...,K —1

.
ex Fi 1
> p(K|X) =

px) = - kT .
1+, &' 1+, e'f

» This method has many names: multi-class logistic regression, softmax
regression, multinomial logistic regression, maximum entropy classifier, ...
» Note that foranyie{l,..,K —1}

pGx) _ 1,
o8 p k) =X A

the log-odds of class i vs K. Class K is called the reference class.
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Multi-class logistic regression (111)

Model fori=1,..,K -1

i=—2" (K[) !
p(x) = ——p—, PEX) = ——%5—
1+ Y0 e 1+ Y e
» Bayes rule
] ifx"g; <oforalli=1,..,K—1
c(x) = argmax p(i|x) = )
i=1,..,K argmax; X' B; otherwise

» Decision boundaries are found through x"; = x"§; and x"§; = 0 for all

i,j=1,..,K—1.

Multi-class logistic regression models can be estimated with a Newton-Raphson

algorithm, coordinate descent, neural networks, ..

pointers)

. (see ESL Ch. 4.41 for some
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The most over-used dataset in the world

Iris flower data set
Measurements on iris flowers’ collected by Edgar Anderson (published 1936)
» Three species: iris setosa, iris virginica, and iris versicolor

» 150 samples (50 for each species)

» Four features: Length and width of the sepals and petals in centimeters

Thttps://en.wikipedia.org/wiki/Iris_flower_data_set#/media/File:Iris_versicolor_3.jpg
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https://en.wikipedia.org/wiki/Iris_flower_data_set#/media/File:Iris_versicolor_3.jpg

Multi-class logistic regression: An example
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Notes on Logistic Regression

A warning: Problematic situation in two-class case (occurs seldom in practice)

» Assume two classes can be separated perfectly by a line/hyperplane in
predictor space. The classes are then called linearly separable.

» In this situation, logistic regression tries to fit a step-like function, which
forces the intercept to —co and the corresponding predictor coefficient to
+o00.
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Classification with focus on the
feature/predictor space




Motivation for a different viewpoint: Nearest centroids

Sepal Width

N

w

Species

Sepal Length

setosa

versicolor

virginica

Determine mean predictor
vector per class

where

and classify points to the class
whose mean is closest.
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A change of scenery

So far

Classification problems can be solved by approximating p(i|x) and applying
Bayes' rule

» in a data-driven way, such as kNN,

» by a transformed regression model, as in logistic/probit regression

Observation: Good predictors group by class in feature space

Change of focus: Let's model the density of x conditionally on i instead!

How? Bayes' law
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The setting of Discriminant Analysis

Apply Bayes’ law
p&x|)p()

>, P&IDPG)

p(ilx) =

Instead of specifying p(i|x) we can specify
p(x|i) and p(i)

The main assumption of Discriminant Analysis (DA) is
p(x[i) ~ N(u;, ;)

where u; € RP is the mean vector for class i and X; € RP*P the corresponding
covariance matrix.
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Finding the parameters of DA

» Notation: Write p(i) = 7; and consider them as unknown parameters
» Given data (i}, x;) the likelihood maximization problem is

n K
arg maXHN(Xl|/.Lil,Zil)7Til subject to Z m =1.
wET =1 i=1

» Can be solved using a Lagrange multiplier (try it!) and leads to

n
A~ n; . .
7T = #, with n; = ;]l(ll =1i)

~ 1
Mi=— 2, %
Li=i
P 1 Pl AN
%=1 D — @) — @)’
L

i=i
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Performing classification in DA

Bayes’ rule implies the classification rule

c(x) = arg max N(X|u;, Z;)7;

1<i<K

Note that since log is strictly increasing this is equivalent to

c(x) = arg max 6;(x)
1<i<K

where
0;(x) = log N(X|u;, Z;) + log r;

1 _ 1
= logm; — E(X — ) Z (- ) — 5 log || (+C)
This is a quadratic function in x.
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Different levels of complexity

» This method is called Quadratic Discriminant Analysis (QDA)
» Problem: Many parameters that grow quickly with dimension

» K—1forallx
» p-K forall y;
» p(p+1)/2-K for all Z; (most costly)

» Solution: Replace covariance matrices Z; by a pooled estimate
n;—1 1 K

A~ _ P l - _ A~ AN\T
= Zzin_K = n—KZ DG — @) — @)

i=1 i=lij=i

K

» Simpler correlation and variance structure: All classes are assumed to have
the same correlation structure between features
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Performing classification in the simplified case

As before, consider

c(x) = argmax 6;(x)
1<i<K

where 1
§i(x) =logm +x' =y, — Elv‘iTz_llv‘i +0)

This is a linear function in x. The method is therefore called Linear Discriminant
Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

» Ignore all correlations between features but allow different variances, i.e.

%, = A, for a diagonal matrix A; (Diagonal QDA or Naive Bayes’ Classifier)
» Ignore all correlations and make feature variances equal, i.e. ; = A for a
diagonal matrix A (Diagonal LDA)
» Ignore correlations and variances, i.e. Z; = o%I,,,, (Nearest Centroids
adjusted for class frequencies 7; )
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Examples of LDA and QDA

Nearest Centroids
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N(x|p;, Z)m; = NX|wy, Z)m - for i # j

and Z; = X for LDA and Z; = 0’1, for Nearest Centroids.
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Take-home message

» Classification can be achieved through transformed regression
» Modelling the conditional densities of features instead of classes leads to
Discriminant Analysis (DA)

» There is a range of assumptions in DA about the correlation structure in
feature space — trade-off between numerical stability and flexibility
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