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Recall: Statistical Learning (I)

Regression
▶ Theoretically best regression function for squared error loss

𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]
▶ Can be solved data-driven (1) or by making model-assumptions (2)

1. k-nearest neighbour regression

𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1
𝑘 ∑

𝐱𝑖𝑙∈𝑁𝑘(𝐱)
𝑦𝑖𝑙

2. linear regression (with implied constant 𝛽0 and 𝑥0 = 1)

𝔼𝑝(𝑦|𝐱)[𝑦] ≈ 𝐱⊤𝜷
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Learning in Statistical Learning

Learn a model from data by minimizing expected prediction error determined
by a loss function.

Expected prediction error
𝐽(𝑓) = 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱))] = 𝔼𝑝(𝐱) [𝔼𝑝(𝑦|𝐱) [𝐿(𝑦, 𝑓(𝐱))]]

How is this solved in practice, given a training sample (𝑦𝑙, 𝐱𝑙) for 𝑙 = 1, … , 𝑛?

1. Approximate 𝔼𝑝(𝐱,𝑦) [𝐿(𝑦, 𝑓(𝐱))] from the training sample,

i.e. 𝐽(𝑓) ≈ 1
𝑛

𝑛
∑
𝑙=1

𝐿(𝑦𝑙, 𝑓(𝐱𝑙)) → minimize w.r.t. 𝑓

2. Find optimal theoretical solution (e.g. 𝔼𝑝(𝑦|𝐱)[𝑦]) and approximate it instead,

e.g. 𝔼𝑝(𝑦|𝐱)[𝑦] ≈
1
𝑘 ∑
𝐱𝑖𝑙∈𝑁𝑘(𝐱)

𝑦𝑖𝑙
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A third alternative

▶ Theoretically best regression function for squared error loss

𝑓(𝐱) = 𝔼𝑝(𝑦|𝐱)[𝑦]

if we allow all functions!
▶ Instead of approximating the overall optimal solution, we can restrict the
class of allowed functions.

▶ Example: Restrict to class of linear functions, i.e.

𝑓 ∈ {𝐱 ↦ 𝐱⊤𝜷 ∶ 𝜷 ∈ ℝ𝑝+1}
▶ Combined with squared error loss, the function minimizing (empirical)
expected prediction error for the class of linear functions uses the standard
least squares estimates ̂𝜷
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Recall: Statistical Learning (II)

Classification

▶ Theoretically best classification rule for 0-1 loss and 𝐾 possible classes

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑝(𝑖|𝐱)

▶ Can be solved data-driven (1) or by making model-assumptions (2)
1. k-nearest neighbour classification

𝑝(𝑖|𝐱) ≈ 1
𝑘 ∑

𝐱𝑙∈𝑁𝑘(𝐱)
1(𝑖𝑙 = 𝑖)

2. Instead of approximating 𝑝(𝑖|𝐱) from data, can we make sensible model
assumptions instead?
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Model-based classification



A model for binary classification

Consider binary classification with 𝑖 = 0 or 𝑖 = 1.

We want to model 𝑝(𝑖|𝐱) and since 𝑝(0|𝐱) + 𝑝(1|𝐱) = 1, it is enough to model one
of the probabilities.

Bernoulli model:
▶ Let 𝑝(1|𝐱) = 𝜃 ∈ (0, 1), then 𝑝(0|𝐱) = 1 − 𝜃.
▶ Given responses 𝑖𝑙 for 𝑙 = 1, … , 𝑛 we can estimate the maximum likelihood
estimate of 𝜃

▶ Specifies a model approximation for Bayes’ rule

𝑐(𝐱) = arg max
𝑖∈{0,1}

𝑝(𝑖|𝐱) = {
0 𝜃 ≤ 1

2
1 otherwise

How can we include predictors 𝐱𝑙? 5/25



Logistic function and Normal Distribution CDF
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Logistic/probit models

Include a linear predictor after transformation, i.e.

logistic model
𝑝(1|𝐱) ≈ 𝜎(𝐱⊤𝜷)

probit model
𝑝(1|𝐱) ≈ Φ(𝐱⊤𝜷)

with corresponding Bayes’ rule

𝑐(𝐱) = {
0 𝐱⊤𝜷 ≤ 0
1 otherwise

since 𝜎(𝐱⊤𝜷) ≤ 1/2 for 𝐱⊤𝜷 ≤ 0 and analogous for the probit model.
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How are the regression coefficients determined?

The maximum likelihood estimates of 𝜷 in the logistic regression model can be
determined from the log-likelihood (with 𝑖∗𝑙 = 2𝑖𝑙 − 1)

𝑙(𝜷) =
𝑛
∑
𝑙=1

𝑖𝑙 log(𝜎(𝐱⊤𝑙 𝜷)) + (1 − 𝑖𝑙) log(1 − 𝜎(𝐱⊤𝑙 𝜷))

=
𝑛
∑
𝑙=1

𝑖∗𝑙 𝐱⊤𝑙 𝜷 − log (1 + exp(𝑖∗𝑙 𝐱⊤𝑙 𝜷))

The gradient is (with 𝜎(−𝑥) = −𝜎(𝑥))

∇𝜷𝑙(𝜷) =
𝑛
∑
𝑙=1

𝑖∗𝑙 𝐱𝑙 − 𝜎(𝑖∗𝑙 𝐱⊤𝑙 𝜷)𝑖∗𝑙 𝐱𝑙 =
𝑛
∑
𝑙=1

𝐱𝑙(𝑖∗𝑙 − 𝜎(𝐱⊤𝑙 𝜷))

which can be used in gradient ascent or leads to a iteratively reweighted least
squares problem via the Newton-Raphson algorithm. (Details in ESL Ch. 4.4.1)
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Example: Logistic regression
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How can logistic regression be extended to 𝐾 > 2 classes?
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Multi-class logistic regression (I)

▶ Assume there are 𝐾 > 2 classes.
▶ Requirement: Probabilities need to be modelled, i.e. 𝑝(𝑖|𝐱) ∈ (0, 1) for each
class and∑𝑖 𝑝(𝑖|𝐱) = 1, and dependence on predictors 𝐱𝑙 should be included

▶ Use a categorical/multinomial model with

𝑝(1|𝐱) = 𝜃1, … , 𝑝(𝐾 − 1|𝐱) = 𝜃𝐾−1, 𝑝(𝐾|𝐱) = 𝜃𝐾
where 𝜃𝑗 ∈ (0, 1) and∑𝑗 𝜃𝑗 = 1.

▶ Softmax function: 𝝈 ∶ ℝ𝐾 ↦ [0, 1]𝐾 for 𝑗 = 1,… , 𝐾 − 1

[𝝈(𝐳)](𝑗) = 𝑒𝑧𝑗

∑𝐾
𝑟=1 𝑒𝑧𝑟

= 𝑒𝑧𝑗−𝑧𝐾

1 +∑𝐾−1
𝑟=1 𝑒𝑧𝑟−𝑧𝐾

, [𝝈(𝐳)](𝐾) = 1
1 +∑𝐾−1

𝑟=1 𝑒𝑧𝑟−𝑧𝐾
,

Note that 𝐾 − 1 inputs are enough to determine the softmax function and
𝑧𝐾 = 0 could be imposed without loss of generality.
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Multi-class logistic regression (II)

▶ Use that only 𝐾 − 1 parameters are necessary and model for 𝑖 = 1, … , 𝐾 − 1

𝑝(𝑖|𝐱) = 𝑒𝐱⊤𝜷𝑖
1 +∑𝐾−1

𝑟=1 𝑒𝐱
⊤𝜷𝑟

, 𝑝(𝐾|𝐱) = 1
1 +∑𝐾−1

𝑟=1 𝑒𝐱
⊤𝜷𝑟

▶ This method has many names: multi-class logistic regression, softmax
regression, multinomial logistic regression, maximum entropy classifier, . . .

▶ Note that for any 𝑖 ∈ {1, … , 𝐾 − 1}

log 𝑝(𝑖|𝐱)
𝑝(𝐾|𝐱) = 𝐱⊤𝜷𝑖

the log-odds of class 𝑖 vs 𝐾. Class 𝐾 is called the reference class.
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Multi-class logistic regression (III)

Model for 𝑖 = 1, … , 𝐾 − 1

𝑝(𝑖|𝐱) = 𝑒𝐱⊤𝜷𝑖
1 +∑𝐾−1

𝑟=1 𝑒𝐱
⊤𝜷𝑟

, 𝑝(𝐾|𝐱) = 1
1 +∑𝐾−1

𝑟=1 𝑒𝐱
⊤𝜷𝑟

▶ Bayes rule

𝑐(𝑥) = arg max
𝑖=1,…,𝐾

𝑝(𝑖|𝐱) = {
𝐾 if 𝐱⊤𝜷𝑖 < 0 for all 𝑖 = 1, … , 𝐾 − 1
arg max𝑖 𝐱⊤𝜷𝑖 otherwise

▶ Decision boundaries are found through 𝐱⊤𝜷𝑖 = 𝐱⊤𝜷𝑗 and 𝐱⊤𝜷𝑖 = 0 for all
𝑖, 𝑗 = 1, … , 𝐾 − 1.

Multi-class logistic regression models can be estimated with a Newton-Raphson
algorithm, coordinate descent, neural networks, . . . (see ESL Ch. 4.4.1 for some
pointers) 12/25



The most over-used dataset in the world

Iris flower data set

Measurements on iris flowers1 collected by Edgar Anderson (published 1936)

▶ Three species: iris setosa, iris virginica, and iris versicolor
▶ 150 samples (50 for each species)
▶ Four features: Length and width of the sepals and petals in centimeters

1https://en.wikipedia.org/wiki/Iris_flower_data_set#/media/File:Iris_versicolor_3.jpg
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Multi-class logistic regression: An example
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Notes on Logistic Regression

A warning: Problematic situation in two-class case (occurs seldom in practice)

▶ Assume two classes can be separated perfectly by a line/hyperplane in
predictor space. The classes are then called linearly separable.

▶ In this situation, logistic regression tries to fit a step-like function, which
forces the intercept to −∞ and the corresponding predictor coefficient to
+∞.
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Classification with focus on the
feature/predictor space



Motivation for a different viewpoint: Nearest centroids
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Species setosa versicolor virginica

Determine mean predictor
vector per class

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝐱𝑙

where

𝑛𝑖 =
𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

and classify points to the class
whose mean is closest.

16/25



A change of scenery

So far

Classification problems can be solved by approximating 𝑝(𝑖|𝐱) and applying
Bayes’ rule

▶ in a data-driven way, such as kNN,
▶ by a transformed regression model, as in logistic/probit regression

Observation: Good predictors group by class in feature space

Change of focus: Let’s model the density of 𝐱 conditionally on 𝑖 instead!

How? Bayes’ law
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The setting of Discriminant Analysis

Apply Bayes’ law
𝑝(𝑖|𝐱) = 𝑝(𝐱|𝑖)𝑝(𝑖)

∑𝐾
𝑗=1 𝑝(𝐱|𝑗)𝑝(𝑗)

Instead of specifying 𝑝(𝑖|𝐱) we can specify

𝑝(𝐱|𝑖) and 𝑝(𝑖)

The main assumption of Discriminant Analysis (DA) is

𝑝(𝐱|𝑖) ∼ 𝑁(𝝁𝑖, 𝚺𝑖)

where 𝝁𝑖 ∈ ℝ𝑝 is the mean vector for class 𝑖 and 𝚺𝑖 ∈ ℝ𝑝×𝑝 the corresponding
covariance matrix.

18/25



Finding the parameters of DA

▶ Notation: Write 𝑝(𝑖) = 𝜋𝑖 and consider them as unknown parameters
▶ Given data (𝑖𝑙, 𝐱𝑙) the likelihood maximization problem is

arg max
𝝁,𝚺,𝝅

𝑛
∏
𝑙=1

𝑁(𝐱𝑙|𝝁𝑖𝑙 , 𝚺𝑖𝑙)𝜋𝑖𝑙 subject to
𝐾
∑
𝑖=1

𝜋𝑖 = 1.

▶ Can be solved using a Lagrange multiplier (try it!) and leads to

𝜋𝑖 =
𝑛𝑖
𝑛 , with 𝑛𝑖 =

𝑛
∑
𝑙=1

1(𝑖𝑙 = 𝑖)

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝑥𝑙

𝚺𝑖 =
1

𝑛𝑖 − 1 ∑𝑖𝑙=𝑖
(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)⊤
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Performing classification in DA

Bayes’ rule implies the classification rule

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖

Note that since log is strictly increasing this is equivalent to

𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝛿𝑖(𝐱)

where
𝛿𝑖(𝐱) = log𝑁(𝐱|𝝁𝑖, 𝚺𝑖) + log𝜋𝑖

= log𝜋𝑖 −
1
2(𝐱 − 𝝁𝑖)⊤𝚺−1𝑖 (𝐱 − 𝝁𝑖) −

1
2 log |𝚺𝑖| (+𝐶)

This is a quadratic function in 𝐱.
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Different levels of complexity

▶ This method is called Quadratic Discriminant Analysis (QDA)
▶ Problem: Many parameters that grow quickly with dimension

▶ 𝐾 − 1 for all 𝜋𝑖
▶ 𝑝 ⋅ 𝐾 for all 𝝁𝑖
▶ 𝑝(𝑝 + 1)/2 ⋅ 𝐾 for all 𝚺𝑖 (most costly)

▶ Solution: Replace covariance matrices 𝚺𝑖 by a pooled estimate

𝚺 =
𝐾
∑
𝑖=1

𝚺̂𝑖
𝑛𝑖 − 1
𝑛 − 𝐾 = 1

𝑛 − 𝐾
𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝑥𝑙 − 𝝁𝑖)(𝑥𝑙 − 𝝁𝑖)⊤

▶ Simpler correlation and variance structure: All classes are assumed to have
the same correlation structure between features
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Performing classification in the simplified case

As before, consider
𝑐(𝐱) = arg max

1≤𝑖≤𝐾
𝛿𝑖(𝐱)

where
𝛿𝑖(𝐱) = log𝜋𝑖 + 𝐱⊤𝚺−1𝝁𝑖 −

1
2𝝁

⊤
𝑖 𝚺−1𝝁𝑖 (+𝐶)

This is a linear function in 𝐱. The method is therefore called Linear Discriminant
Analysis (LDA).
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Even more simplifications

Other simplifications of the correlation structure are possible

▶ Ignore all correlations between features but allow different variances, i.e.
𝚺𝑖 = 𝚲𝑖 for a diagonal matrix 𝚲𝑖 (Diagonal QDA or Naive Bayes’ Classifier)

▶ Ignore all correlations and make feature variances equal, i.e. 𝚺𝑖 = 𝚲 for a
diagonal matrix 𝚲 (Diagonal LDA)

▶ Ignore correlations and variances, i.e. 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝 (Nearest Centroids
adjusted for class frequencies 𝜋𝑖 )
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Examples of LDA and QDA
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Species setosa versicolor virginica

Decision boundaries can be found with

𝑁(𝐱|𝝁𝑖, 𝚺𝑖)𝜋𝑖 = 𝑁(𝐱|𝝁𝑗, 𝚺𝑗)𝜋𝑗 for 𝑖 ≠ 𝑗
and 𝚺𝑖 = 𝚺 for LDA and 𝚺𝑖 = 𝜎2𝐈𝑝×𝑝 for Nearest Centroids. 24/25



Take-home message

▶ Classification can be achieved through transformed regression
▶ Modelling the conditional densities of features instead of classes leads to
Discriminant Analysis (DA)

▶ There is a range of assumptions in DA about the correlation structure in
feature space→ trade-off between numerical stability and flexibility
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