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Classification and Partitions



Classification and Partitions

A classification algorithm constructs a partition of feature space and assigns a
class to each.

▶ kNN creates local neighbourhoods in feature space and assigns a class in
each

▶ Logistic regression divides feature space implicitly by modelling 𝑝(𝑖|𝐱) and
determines decision boundaries through Bayes’ rule

▶ Discriminant analysis creates an explicit model of the feature space
conditional on the class. It models 𝑝(𝐱, 𝑖) by assuming that 𝑝(𝐱|𝑖) is a normal
distribution and either estimates 𝑝(𝑖) from data or through prior knowledge.
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New point-of-view: Partitioning

Idea: Create an explicit partition by dividing feature space into
non-overlapping regions and assign a constant conditional mean (regression)
or constant conditional class probability (classification) to each region.

Given regions 𝑅𝑚 for 𝑚 = 1,… ,𝑀, a classification rule for classes 𝑖 ∈ {1, … , 𝐾} is

̂𝑐(𝐱) = arg max
1≤𝑖≤𝐾

𝑀
∑
𝑚=1

1(𝐱 ∈ 𝑅𝑚) (
1

|𝑅𝑚|
∑

𝐱𝑙∈𝑅𝑚
1(𝑖𝑙 = 𝑖))

and a regression function is given by

𝑓(𝐱) =
𝑀
∑
𝑚=1

( 1
|𝑅𝑚|

∑
𝐱𝑙∈𝑅𝑚

𝑦𝑙)1(𝐱 ∈ 𝑅𝑚).

Note that |𝑅𝑚| denotes the number of elements in 𝑅𝑚 or its size.
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Classification and Regression Trees (CART)

Complexity of partitioning:

Arbitrary
Partition

> Rectangular
Partition

> Partition from a
sequence of binary splits

Classification and Regression Trees (CART)

▶ Create a sequence of binary axis-parallel splits
▶ in order to reduce variability of values/classes in each region
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Example of classification with CART
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CART: Tree building/growing

1. Start with all data in a root node
2. Binary splitting

2.1 Consider each feature 𝑥⋅𝑗 for 𝑗 = 1,… , 𝑝. Choose a threshold 𝑡𝑗 (for continuous
features) or a partition of the feature categories (for categorical features) that
results in the greatest improvement in node purity:

{𝑖𝑙 ∶ 𝑥𝑙𝑗 > 𝑡𝑗} and {𝑖𝑙 ∶ 𝑥𝑙𝑗 ≤ 𝑡𝑗}

2.2 Choose the feature 𝑗 that led to the best splitting of the data and create a new
child node for each subset

3. Repeat Step 2 on all child nodes until the tree reaches a stopping criterion

All nodes without descendents are called leaf nodes. The sequence of splits
preceding them defines the regions 𝑅𝑚. 5/30



Measures of node purity

Define
𝜋𝑖𝑚 ∶= 1

|𝑅𝑚|
∑

𝐱𝑙∈𝑅𝑚
1(𝑖𝑙 = 𝑖)

▶ Three common measures to determine impurity in a region 𝑅𝑚 are (for
classification trees)

Misclassification error: 1 − max𝑖 𝜋𝑖𝑚
Gini impurity: ∑𝐾

𝑖=1 𝜋𝑖𝑚(1 − 𝜋𝑖𝑚)
Entropy/deviance: −∑𝐾

𝑖=1 𝜋𝑖𝑚 log𝜋𝑖𝑚
▶ All criteria are zero when only one class is present and maximal when all
classes are equally common.

▶ For regression trees the decrease in mean squared error after a split can be
used as an impurity measure. 6/30



Node impurity in two class case

Example for a two-class problem (𝑖 = 0 or 1). 𝜋0𝑚 is the empirical frequency of
class 0 in a region 𝑅𝑚.
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Only gini impurity and entropy are used in practice (averaging problems for
misclassification error).
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Stopping criteria

Examples

▶ Minimum size of leaf nodes (e.g. 5 samples per leaf node)
▶ Minimum decrease in impurity (e.g. cutoff at 1%)
▶ Maximum tree depth, i.e. number of splits (e.g. maximum of 30 splits from
root node)

▶ Maximum number of leaf nodes

Running CART until one of these criteria is fulfilled generates a max tree.

8/30



Observations about CART

▶ Pro: Outcome is easily interpretable
▶ Pro: Can easily handle missing data
▶ Neutral: Only suitable for axis-parallel decision boundaries
▶ Con: Features with more potential splits have a higher chance of being
picked

▶ Con: Prone to overfitting/unstable (only the best feature is used for splitting
and which is best might change with small changes of the data)
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CART and overfitting

How can overfitting be avoided?

Tuning of stopping criteria
Beware: This can lead to early stopping since a weak early split might lead to a
strong split later

Pruning
▶ Build a max tree first.
▶ Then reduce its size by collapsing internal nodes.

Principle: ‘The silly certainty of hindsight’

Ensemble methods
Examples are bagging, boosting, stacking, . . .
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Pruning

A common strategy is cost-complexity pruning.
▶ For a given 𝛼 > 0, the cost-complexity of a tree 𝑇 is defined as

𝐶𝛼(𝑇) = ∑
𝑅𝑚∈𝑇

( 1
|𝑅𝑚|

∑
𝐱𝑙∈𝑅𝑚

1(𝑖𝑙 ≠ ̂𝑐(𝐱)))
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

Cost

+ 𝛼|𝑇|
⏟

Complexity

where (𝑖𝑙, 𝐱𝑙) is the training data, ̂𝑐 the CART classification rule and |𝑇| is the
number of leaf nodes/regions defined by the tree.

▶ It can be shown that successive subtrees 𝑇𝑘 (i.e. 𝑇𝑘 ⊂ 𝑇𝑘−1) of the max tree
𝑇0 = 𝑇max can be found such that each tree 𝑇𝑘 minimizes 𝐶𝛼𝑘(𝑇𝑘) where
𝛼0 = 0 < 𝛼1 < ⋯ < 𝛼𝐽 .

▶ Note that for 𝛼0 = 0 the cost is minimized for 𝑇max and the subtree
minimizing cost-complexity with 𝛼𝐽 consists of only the root node.
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Pruning: Choosing the best subtree

To choose the best subtree, one either needs

▶ to have access to a test set, or
▶ perform cross-validation

1. Determine the max tree on the full training data and perform cost-complexity
pruning to get a sequence of 𝛼𝑘 .

2. Split the data into folds and for each fixed test fold build a max tree on all
remaining folds and perform cost-complexity pruning on these max trees.

3. For each 𝛼𝑘 from Step 1 compute the test error on each fold.
4. Choose subtree built in Step 1 with minimal test error in Step 3.

Note: Full dataset is only used before CV to create candidates for 𝛼𝑘.
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Recap of the bootstrap



The Bootstrap – A short recap (I)

Given a sample 𝑥𝑖 , 𝑖 = 1, … , 𝑛 from an underlying population estimate a statistic
𝜃 by ̂𝜃 = ̂𝜃(𝑥1, … , 𝑥𝑛).

What is the uncertainty of ̂𝜃?

Solution: Find confidence intervals (CIs) quantifying the variability of ̂𝜃.

Computation:
▶ Through theoretical results (e.g. linear models) if distributional
assumptions fulfilled

▶ Linearisation for more complex models (e.g. nonlinear or generalized linear
models)

▶ Nonparametric approaches using the data (e.g. bootstrap)

All of these approaches require fairly large sample sizes.
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The Bootstrap – A short recap (II)

Nonparametric bootstrap
Given a sample 𝑥1, … , 𝑥𝑛 bootstrapping performs for 𝑏 = 1,… , 𝐵

1. Sample ̃𝑥1, … , ̃𝑥𝑛 with replacement from original sample
2. Calculate ̂𝜃𝑏( ̃𝑥1, … , ̃𝑥𝑛)

▶ 𝐵 should be large (in the 100–1000s)
▶ The distribution of ̂𝜃𝑏 approximates the sampling distribution of ̂𝜃
▶ The bootstrap makes exactly one strong assumption:

The data is discrete and values not seen in the data are impossible.1

1Check out this blog post!
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CI for statistics of an exponential random variable
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Data (n = 200) simulated from 𝑥 ∼ Exp(1/3), i.e. 𝔼𝑝(𝑥)[𝑥] = 3
▶ Orange histogram shows original sample
▶ Blue line is the true density
▶ Black outlined histogram shows a bootstrapped sample
▶ Vertical lines are the mean of 𝑥 (dashed) and the 99% quantile (dotted) [red =
empirical, blue = theoretical]
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CI calculation: Normal approximation and percentile method

1. Normal approximation: Set 𝜃 = 1
𝐵

𝐵
∑
𝑏=1

̂𝜃𝑏 and estimate the standard error of

̂𝜃 as

𝜎𝑠𝑒 =√
∑𝐵

𝑏=1( ̂𝜃𝑏 − 𝜃)2
𝐵 − 1

Assume the distribution of ̂𝜃 is approximately 𝑁( ̂𝜃, 𝜎𝑠𝑒) giving CI

̂𝜃 ± 𝑧1−𝛼/2𝜎𝑠𝑒

2. Percentile/quantile method: Take the 𝛼 and 𝛼/2 quantiles of the bootstrap
estimates ̂𝜃𝑏 as boundaries of CI
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CI calculation: Applied to example
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Based on 𝐵 = 1000 bootstrap samples

For the mean value, normal
approximation assumption seems
reasonable

95% CIs
Normal Approx. (2.71, 3.62)
Perc. Method (2.73, 3.64)

For the quantile, bootstrapping
requires much larger 𝑛 and shows
high uncertainty
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Modifications to nonparametric bootstrap

▶ Different sampling strategies. Some examples:
▶ 𝑚-out-of-𝑛 bootstrap: Draw 𝑚 < 𝑛 samples without replacement
▶ Draw from a smooth density estimate of the data
▶ Draw from a parametric distribution fitted to the original data

▶ Normal approximation doesn’t always apply and percentile method is
unstable for complicated statistics. Example of alternative

▶ Bootstrap-t: Instead of normal quantiles, estimate quantiles from

̂𝜃𝑏 − ̂𝜃
𝜎𝑏

where 𝜎𝑏 is an estimate of the standard error
▶ Many other alternatives exist . . .
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Limitations of the bootstrap

▶ Number of samples needs to be quite large
▶ Extreme values (minimum, maximum very small or large quantiles) can be
hard to estimate since they might not even appear in data

▶ Many basic CI estimation algorithms assume that the bootstrap distribution
is approximately normal (often not the case in reality)
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Bootstrap aggregation



Bootstrap aggregation (bagging)

1. Given a training sample (𝑦𝑙, 𝐱𝑙) or (𝑖𝑙, 𝐱𝑙), we want to fit a predictive model
𝑓(𝐱)

2. For 𝑏 = 1,… , 𝐵, form bootstrap samples of the training data and fit the
model, resulting in 𝑓𝑏(𝐱)

3. Define

𝑓bag(𝐱) =
1
𝐵

𝐵
∑
𝑏=1

𝑓𝑏(𝐱)

where 𝑓𝑏(𝐱) is a continuous value for a regression problem or a vector of
class probabilities for a classification problem

Majority vote can be used for classification problems instead of averaging
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Bagging and variance reduction

▶ Bagging using averages approximates

𝑓ag(𝐱) = 𝔼𝑝(𝒯) [𝑓(𝐱)]

▶ If a squared error loss is used, the following relation holds

𝔼𝑝(𝒯,𝑦|𝐱)[(𝑦 − 𝑓(𝐱))2] ≥ 𝔼𝑝(𝒯,𝑦|𝐱)[(𝑦 − 𝑓ag(𝐱))2]

which implies that total prediction error for the averaged estimator is lower.
▶ Some notes:

▶ Remember the graphs of kNN from last lecture: Noisy individually, more stable
(less variable) on average

▶ Bagging shows no effect on linear models
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Correlation and bagged variance

For identically distributed (i.d.) random variables 𝑥𝑖 , 𝑖 = 1, … , 𝑛

Var (1𝑛
𝑛
∑
𝑖=1

𝑥𝑖) =
1 − 𝜌
𝑛 𝜎2 + 𝜌𝜎2

where 𝜌 ∈ [0, 1) is the (positive) pairwise correlation coefficient and 𝜎2 is the
variance of each 𝑥𝑖 .

▶ Bootstrap samples, and therefore the resulting estimators 𝑓𝑏(𝐱), are
correlated

▶ By letting 𝐵 → ∞ we can bring the first term towards zero, but the second
term remains

▶ Decreasing correlation between bootstrap samples would decrease the
variance of a bagging estimate
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Random Forests



Random Forests

1. Given a training sample with 𝑝 features, do for 𝑏 = 1,… , 𝐵
1.1 Draw a bootstrap sample of size 𝑛 from training data (with replacement)
1.2 Grow a tree 𝑇𝑏 until each node reaches minimal node size 𝑛min

1.2.1 Randomly select𝑚 variables from the 𝑝 available
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict

Regression: 𝑓𝑟𝑏(𝐱) =
1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

Note: Step 1.2.1 leads to less correlation between trees built on bootstrapped
data.
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Comparison of RF, Bagging and CART

Toy example
𝑦 = 𝑥21 + 𝜀 where 𝜀 ∼ 𝑁(0, 1)
𝐱 ∼ 𝑁(𝟎, 𝚺), 𝐱 ∈ ℝ5, 𝚺𝑙𝑙 = 1, 𝚺𝑙𝑘 = 0.98, 𝑙 ≠ 𝑘

Training and test data were sampled from the true model. Results for RF, bagged CART
and a single CART, using 𝑥1, … , 𝑥5 as predictor variables. (𝑛𝑡𝑟 = 50, 𝑛𝑡𝑒 = 100)
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Variable importance

1. Impurity index: Splitting on a feature leads to a reduction of node impurity.
Summing all improvements over all trees per feature gives a measure for
variable importance

2. Out-of-bag error
▶ During bootstrapping for large enough 𝑛, each sample has a chance of about
63% to be selected

▶ For bagging the remaining samples are out-of-bag.
▶ These out-of-bag samples for tree 𝑇𝑏 can be used as a test set for that
particular tree, since they were not used during training. Call the resulting test
error 𝐸0

▶ Permute variable 𝑗 in the out-of-bag samples and calculate test error again 𝐸(𝑗)1
▶ The increase in error

𝐸(𝑗)1 − 𝐸0 ≥ 0
serves as an importance measure for variable 𝑗
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Monica dataset

Monica dataset2 Data from the WHO project ‘Multinational MONItoring of trends
and determinants in CArdiovascular disease’

▶ Observations on whether or not patients survive a 10 year period given a
number of cardiovascular risk factors

▶ Collected from the 1970s to the 1990s
▶ 𝑛 = 6367 samples (3525 alive, 2842 dead)
▶ 𝑝 = 11 features

▶ e.g. sex, age at onset, year of onset, hospitalisation status, cholesterol, blood
pressure, . . .

2http://thl.fi/monica
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RF applied to cardiovascular dataset
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South African coronary heart disease (SAheart) dataset

South African coronary heart disease (SAheart) dataset A retrospective sample
of males in a heart-disease high-risk region of the Western Cape, South Africa.

▶ Meant as a classification data set with response whether or not coronary
heart disease was diagnosed

▶ 𝑛 = 462 samples (160 diagnosed, 302 not diagnosed)
▶ 𝑝 = 9 features

▶ e.g. cumulative tobacco consumption (in kg), low density lipoprotein
cholesterol (ldl), adiposity, family history, . . .

To demonstrate random forests for regression, we will try to predict ldl from
the other features and response.
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RF applied to heart disease dataset
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Take-home message

▶ Direct partitioning of feature space is a complex task
▶ Binary splits resulting in simple tree models
▶ CART is highly interpretability, but very instable/variable
▶ Random Forests introduce variance reduction to bagging and allow to
measure variable importance
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