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Density-based clustering



Yet another approach to clustering

▶ Most methods discussed so far have problems with
odd, non-convex shapes

▶ What about noise? Some observations might not fit
into any cluster

▶ Clusters are dense regions in feature space
▶ What is dense?
▶ How to find groups and separate the noise?

▶ Naive approach: Find points surrounded by many
other points and connect them to a cluster. Points
that do not end up in a cluster are noise.

k−means

Single linkage

k−means
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Notation in density-based clustering

Let 𝜀 > 0 and 𝑛min ∈ ℕ be two tuning parameters. Assume each observation is a
point 𝑝 in a database/dataset 𝐷 and there is a distance measure 𝑑(𝑝, 𝑞).

▶ 𝜀-neighbourhood of 𝑝: 𝑁𝜀(𝑝) = {𝑞 ∈ 𝐷|𝑑(𝑝, 𝑞) ≤ 𝜀}
▶ Core point: A 𝑝 ∈ 𝐷 s.th. |𝑁𝜀(𝑝)| ≥ 𝑛min

▶ 𝑝 is directly density-reachable from a core-point 𝑞 if 𝑝 ∈ 𝑁𝜀(𝑞)
▶ 𝑝 is density-reachable from a core-point 𝑞 if there is a chain
𝑞 = 𝑝1, 𝑝2, … , 𝑝𝑚 = 𝑝 s.th. 𝑝𝑖+1 is directly density-reachable from 𝑝𝑖

▶ 𝑝 and 𝑞 are density-connected if there is a core-point 𝑜 s.th. 𝑝 and 𝑞 are
density-reachable from 𝑜
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Concepts in density-based clustering

Let 𝑛min = 5 then
▶ 𝑝 and 𝑞 are core points, 𝑟 is not
▶ 𝑞 is directly density-reachable from 𝑝 and
vice versa

▶ 𝑟 is density-reachable from 𝑝
▶ 𝑝 and 𝑟 are density-connected
▶ 𝑠 is neither density-connected nor
density-reachable

𝑠

𝑝

𝑁𝜀(𝑝)

𝑞 𝑟
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Density-based clusters

A cluster 𝐶 is a set of points in 𝐷 s.th.

1. If 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝 then 𝑞 ∈ 𝐶 (maximality)
2. For all 𝑝, 𝑞 ∈ 𝐶: 𝑝 and 𝑞 are density-connected (connectivity)

This leads to three types of points

1. Core points: Part of a cluster and at least 𝑛min points in neighbourhood
2. Border points: Part of a cluster but not core points
3. Noise: Not part of any cluster

Note: Border points can have non-unique cluster assignments
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DBSCAN algorithm

Computational procedure:

1. Go through each point 𝑝 in the dataset 𝐷
2. If it has already been processed take the next one
3. Else determine its 𝜀-neighbourhood. If less than 𝑛min points in
neighbourhood, label as noise. Otherwise, start a new cluster.

4. Find all points that are density-reachable from 𝑝 and add them to the
cluster, unless they were previously assigned to a different cluster.
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Dependence on 𝑛min

▶ Controls how easy it is to connect components in a cluster
▶ Too small and most points are core points, creating many small clusters
▶ Too large and few points are core points, leading to many noise-labelled
observations

▶ A cluster has by definition at least 𝑛min points
▶ Choice of 𝑛min is very dataset dependent
▶ Tricky in high-dimensional data (curse of dimensionality, everything is far
apart)
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Dependence on 𝜀

▶ Controls how much of the data will be clustered
▶ Too small and small gaps in clusters cannot be
bridged, leading to isolated islands in the data

▶ Too large and everything is connected
▶ Choice of 𝜀 is also dataset dependent but there is a
decision tool.

▶ For each point in the dataset, determine distance to
its 𝑘 nearest neighbours (typically 𝑘 = 𝑛min) and
pick the largest distance

▶ Sort the distances from smallest to largest and plot
▶ The optimal 𝜀 will be roughly at the elbow
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DBSCAN example

▶ DBSCAN is able to cluster points in the situations
advertised and correctly identifies noise points

▶ Very sensitive to the choice of tuning parameters

DBSCAN (ε = 0.35, nmin = 5)

DBSCAN (ε = 0.4, nmin = 5)
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High-dimensional clustering



One version of the curse of dimensionality

Samples tend to be further away from the origin

Let 𝐱 ∈ [−1, 1]𝑝 be a uniformly distributed
random variable. For 0 ≤ 𝑡 ≤ 1 consider

𝑞 = ℙ(−𝑡 ≤ 𝑥(1) ≤ 𝑡, … ,−𝑡 ≤ 𝑥(𝑝) ≤ 𝑡) = (2𝑡2 )
𝑝

⇒ 𝑡 = 𝑞1/𝑝

In a large enough sample about 𝑞 percent of
observations will be in [−𝑡, 𝑡]𝑝.

In high dimensions, most data points are far
away from the origin.

How should 𝑡 be chosen so that
about 𝑞 percent of observations
lie in [−𝑡, 𝑡]𝑝?

𝑝 𝑞 = 1% 𝑞 = 10%

2 𝑡 ≈ 0.01 𝑡 ≈ 0.32
3 𝑡 ≈ 0.22 𝑡 ≈ 0.46
10 𝑡 ≈ 0.63 𝑡 ≈ 0.79
100 𝑡 ≈ 0.95 𝑡 ≈ 0.98
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Another version of the curse of dimensionality

Pairwise distances grow with dimension

If 𝐱, 𝐲 ∈ [0, 1]𝑝 uniformly distributed, then their
pairwise distance ‖𝐱 − 𝐲‖2 grow with 𝑝.

The last column suggests that the mean
pairwise distance grows as 𝑂(√𝑝).

The standard deviations stay constant
suggesting that observations have increasingly
similar pairwise distances in high dimensions.

Mean and standard deviation of
the pairwise distances of
𝑛 = 500 simulated observations.

𝑝 Mean SD Mean / √𝑝

2 0.52 0.25 0.37
3 0.66 0.25 0.38
10 1.28 0.25 0.40
100 4.07 0.24 0.41
500 9.13 0.25 0.41
1000 12.91 0.24 0.41
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High-dimensional clustering

All clustering relies on pairwise distances between observations. For increasing
feature space dimension, these become increasingly meaningless.

What can be done about this dilemma?
1. Feature selection: Deciding on a subset of the original features

▶ There is no response in clustering, making it harder to judge feature quality
▶ Selecting features with large variance across all samples can be used. However,
features very relevant to only a subset of samples might get filtered out.

2. Feature transformation: Combining existing features while reducing
dimension (e.g. PCA)

▶ Clusters might become hard to interpret in the original context
▶ The feature transformation might destroy/obscure relationships in the original
data that it cannot capture

▶ Since features are transformed, it is not guaranteed that uninformative
features are actually filtered out 11/20



Subspace clustering



Data in many subspaces
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Subspace clustering

Instead of selecting single features, sometimes it would be better if we could
select whole subspaces of features.
How can these be found?

▶ It is infeasible to look at all possible subspaces
▶ As in combinatorial clustering or stepwise selection methods in regression
there are two approaches
1. Top-down: Start with all dimensions and search for relevant dimensions
2. Bottom-up: Start with a grid in each dimension and combine them step-wise

Examples:
▶ CLIQUE: Bottom-up algorithm; grid-based and density-based
▶ ProClus: Top-down algorithm; variant of k-medoids
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Apriori principle

A dense region in 𝑞 dimensions should lead to dense regions in every
(𝑞 − 1)-dimensional projection (‘Clusters cast shadows’)
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The CLIQUE algorithm

Input parameters: A positive integer 𝑚 and 1 > 𝜏 > 0
1. For 1D:

1.1 Partition each dimension 𝑖 = 1, … , 𝑝 into 𝑚 intervals and compute the
proportions of contained one-dimensional projections of the data
(one-dimensional histograms)

1.2 Keep those intervals containing proportions > 𝜏
1.3 Among the remaining intervals, merge neighbouring ones

2. Moving from dimension 𝑞 − 1 to 𝑞:
2.1 Create volumes in 𝑞 dimensions by combining those found in 𝑞 − 1 dimensions.
2.2 Recompute proportions per constructed volume
2.3 Keep those volumes containing proportions > 𝜏
2.4 Among the remaining volumes, merge neighbouring ones

3. Post-processing: Filter out remaining volumes with low contained
proportion and try to enlarge found clusters as much as possible 15/20



Subspace clustering: CLIQUE
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The ProClus algorithm

Input parameters: Number 𝐾 of clusters to be found and the average number of
dimensions 𝑑 > 0 in which clusters reside
1. Initialisation:

▶ Find𝑀 > 𝐾 medoids in a greedy fashion
▶ Use a random sample of size 𝐾

2. Iterations: Until no change within some threshold
2.1 For each medoid: Locally find best dimensions where data is dense

• Dimensions in which average distance to the medoid < overall avg. distance
• 𝑑 influences how many dimensions are picked

2.2 Assign data points to medoids measuring distance only in the selected
dimensions of the medoid

2.3 Evaluate clustering quality and remove medoids with small numbers of points.
Replace them with others from the initial set of medoids

3. Post-Processing: Determine the best dimensions once more for each medoid and
assign points to clusters
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Subspace clustering: ProClus
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Notes on subspace clustering

▶ Pro: Can deal with complex structures and high-dimensions
▶ Pro: The variable selection/subspace discovery that is performed per
cluster can lead to mechanistic insight into a problem

▶ Con: Hard to tune since it is difficult to get an understanding for the data
(e.g. grid-size, average number of subspace dimensions, . . .)

▶ Some adaptive algorithms exist to e.g. estimate optimal grid-size from data
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Take-home message

▶ Density-based clustering allows to capture complex shapes and the
identification of noise during clustering

▶ The curse of dimensionality makes pairwise distances in high-dimensions
relatively meaningless

▶ Subspace clustering attempts to find clusters that are only active in some
dimensions of the feature space
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