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Goals of modelling

1. Predictive strength: How well can we reconstruct the observed data? Has
been most important so far.

2. Model/variable selection: Which variables are part of the true model? This
is about uncovering structure to allow for mechanistic understanding.
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Feature Selection



Remember ordinary least-squares (OLS)

Consider the model
y=XB+¢
where

» y € R" is the outcome, X € R™(P+D js the design matrix, § € RP*! are the
regression coefficients, and ¢ € R" is the additive error
» Five basic assumptions have to be checked
Underlying relationship is linear (1)
Zero mean (2), uncorrelated (3) errors with constant variance (4) which are
(roughly) normally distributed (5)
> Centring (% Y1, X; = 0) and standardisation (% P x{; = 1) of predictors
simplifies interpretation
» Centring the outcome (% Z?zl y; = 0) and features removes the need to
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Feature selection as motivation

Analytical solution exists when XX is invertible
BoLs = XTX)'XTy
The solution can be unstable or impossible to compute if

» there is high correlation between predictors, or

> if p>n.

Solutions: Regularisation or feature selection
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Filtering for feature selection

» Choose features through pre-processing
» Features with maximum variance
» Use only the first k PCA components
» Examples of other useful measures
» Use a univariate criterion, e.g. F-score: Features that correlate most with the
response
» Mutual Information: Reduction in uncertainty about x after observing y
» Variable importance: Determine variable importance with random forests
» Summary
» Pro: Fast and easy
» Con: Filtering mostly operates on single features and is not geared towards a
certain method
» Care with cross-validation and multiple testing necessary
» Filtering is often more of a pre-processing step and less of a proper feature

selection step
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Wrapping for feature selection

» Idea: Determine the best set of features by fitting models of different
complexity and comparing their performance

> Best subset selection: Try all possible (exponentially many) subsets of
features and compare model performance with e.g. cross-validation

» Forward selection: Start with just an intercept and add in each step the
variable that improves fit the most (greedy algorithm)

» Backward selection: Start with all variables included and then remove
sequentially the one with the least impact (greedy algorithm)

> As discreet procedures, all of these methods exhibit high variance (small
changes could lead to different predictors being selected, resulting in a
potentially very different model)
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Embedding for feature selection

» Embed/include the feature selection into the model estimation procedure

» Ideally, penalization on the number of included features

p
B = arg;nin ly = XBII3 + 4 2, 1(B; # 0)

j=1

However, discrete optimization problems are hard to solve

» Softer regularisation methods can help

p= arg/;nin lly = XBl3 + 2118llg

where 1 is a tuning parameter and g > 1 or g = oo.
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Feature selection

Feature selection can be addressed in multiple ways

» Filtering: Remove variables before the actual model for the data is built
» Often crude but fast
» Typically only pays attention to one or two features at a time (e.g. F-Score, MIC)
or does not take the outcome variable into consideration (e.g. PCA)
» Wrapping: Consider the selected features as an additional hyper-parameter
» computationally very heavy
» most approximations are greedy algorithms
» Embedding: Include feature selection into parameter estimation through
penalisation of the model coefficients
» Naive form is equally computationally heavy as wrapping
» Soft-constraints create biased but useful approximations
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Regularised regression



Constrained and regularised regression

The optimization problem

argmin |ly — Xg|3 subjectto ||||f <t
B

for g > 0 is equivalent to
B= arg min |y XA + 2118113

when g > 1. This is the Lagrangian of the constrained problem.

Note: Constraints are convex for all g > 1 but not differentiable in § = 0 forg = 1.
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Ridge regression

For g = 2 the constrained problem is ridge regression (Tikhonov regularisation)

Briage() = argl;nin lly —X8l1Z + 18113

where (8]} = °_, 2.
An analytical solution exists if X"X + AL, is invertible
B\ridge(l) = (XTX + AIp)_ley

If XTX = I,, then

3 _ ﬁOLS
ﬁridge(l) - 1+1°

i.e. Biiage(4) is biased but has lower variance.
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SVD and ridge regression

Recall: The SVD of a matrix X € R"™P was
X =UDV'
The analytical solution for ridge regression becomes (n > p)
Bridge) = XX +21,)'XTy
= (VD*VT +1,)"'VDUy
=V(D? + A1,)"'DU"y

Zp: dj T
= 2, WY
j:],CG + A

Ridge regression acts strongest on principal components with lower
eigenvalues, e.g. in presence of correlation between features.
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Effective degrees of freedom

Recall the hat matrix H = X(X"X)~!XT in OLS. The trace of H
tr(H) = trX(X'X)™'XT) = trX"X(X"X)™) = tr(I,) = p
is equal to the trace of £ and the degrees of freedom for the regression
coefficients.
In analogy define for ridge regression
H(2) := XXX + AL,) X"

and .
d;

2 ’
dj+/1

p
df(2) 1= tr(HQ) = )’

j=1

the effective degrees of freedom.
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Lasso regression

For g = 1 the constrained problem is known as the lasso

Brasso) = arg;nin lly — X813 + 21161l

» Smallest g in penalty such that constraint is still convex

» Produces sparse solutions (many coefficients exactly equal to zero) and
therefore performs feature selection
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Intuition for the penalties (1)

Assume the OLS solution B¢ exists and set
r=y—XBors
it follows for the residual sum of squares (RSS) that

lly — XBl15 = [|XBoLs + 1) — XB|3
= [|(X(B - Bors) — Il
= (B— Bors) " X"X(B— Bors) — 2r' X(B— Bors) +r'r

which is an ellipse (at least in 2D) centred on Bs.

13/25



Intuition for the penalties (11)

The least squares RSS is minimized for B s. If a constraint is added (||g]|2 < t)
then the RSS is minimized by the closest B possible that fulfills the constraint.
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Intuition for the penalties (111)
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Computational aspects of the Lasso (1)

What estimates does the lasso produce?

Target function
!
arg;mn Slly = XA15 + AllAlh

Special case: X'X =1I,,. Then
1 > 1+ . 1,
Elly—Xﬁllz + [l = Y Y-y X B+ zﬁ B+ 2Bl = g(B)
=5I>Ls

How do we find the solution g in presence of the non-differentiable
penalisation ||||;?
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Computational aspects of the Lasso (II)

For X"X = I,, the target function can be written as
P 1
arg min Z:l —Bors,jBj + Eﬁf + 1|B;]
J:
This results in p uncoupled optimization problems.

> If Bors,j > 0, then §; > 0 to minimize the target
» If Bors,j < 0,then8; <0

Each case results in

glasso,j = sign(Bors,j)(Bors,j| — D+ = ST(Bos,j» ),

where

» x, =xif x > 0 or 0 otherwise,
» and ST is called the soft-thresholding operator 17/25



Relation to OLS estimates

Both ridge regression and the lasso estimates can be written as functions of
ﬁOLS |f XTX = Ip'

BOLS,j = .
ﬁridge,j = 1+ 4 and ﬁlasso,j = Slgn(ﬁOLS,j)(l;BOLS,jl _A)+
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Visualisation of the transformations applied to the OLS estimates. 18/25



Shrinkage and effective degrees of freedom

When 1 is fixed, the shrinkage of the lasso estimate B,...,(1) compared to the OLS

estimate By is defined as
_ ||ﬁlasso(l)||l

s(4) =
lIBovslh
Note: s(1) € [0,1] with s(1) — 0 for increasing 2 and s(1) =1if1 =0

Recall: For ridge regression define
H(2) := XXX + AL,) X"

and

p c{%
i .= =
df(2) 1= tr(H(4)) ]Zzl AT

the effective degrees of freedom.
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Prostate cancer dataset

Prostate cancer dataset

Data to examine the correlation between the level of a prostate cancer-specific
substance and a number of clinical measurements in men who just before
partial or full removal of the prostate in patients.

» n =67 samples

» A continuous response on the log-scale
» p = 8 features
» e.g. log cancer volume, log prostate weight or age of patient
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Regularisation paths for varying 1

Red dashed lines indicate the 1 selected by cross-validation
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Notes on the lasso

» Inthe general case, i.e. XTX # I,,, there is no explicit solution.

» Numerical solution possible, e.g. with coordinate descent where each §; is
updated separately with the remaining 8; with i # j fixed

» As for ridge regression, estimates are biased
> Degrees of freedom are equal to the number of non-zero coefficients
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Potential caveats of the lasso (I)

> Sparsity of the true model:

» The lasso only works if the data is generated from a sparse process.
» However, a dense process with many variables and not enough data or high
correlation between predictors can be unidentifiable either way

» Correlations: Many non-relevant variables correlated with relevant variables
can lead to the selection of the wrong model, even for large n

» Irrepresentable condition: Split X such that X; contains all relevant
variables and X, contains all irrelevant variables. If

XXX X)) <1—1
for some 5 > 0 then the lasso is (almost) guaranteed to pick the true model
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Potential caveats of the lasso (I1)

In practice, both the sparsity of the true model and the irrepresentable
condition cannot be checked.

» Assumptions and domain knowledge have to be used
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Take-home message

» Filtering and wrapping methods useful for feature selection in practice but
can be unprincipled or have high variance

» Regularised regression can help in numerically unstable situations (such as
in ridge regression)

» The lasso can in addition perform variable selection
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