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Goals of modelling

1. Predictive strength: How well can we reconstruct the observed data? Has
been most important so far.

2. Model/variable selection: Which variables are part of the true model? This
is about uncovering structure to allow for mechanistic understanding.
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Feature Selection



Remember ordinary least-squares (OLS)

Consider the model
𝐲 = 𝐗𝜷 + 𝜺

where
▶ 𝐲 ∈ ℝ𝑛 is the outcome, 𝐗 ∈ ℝ𝑛×(𝑝+1) is the design matrix, 𝜷 ∈ ℝ𝑝+1 are the
regression coefficients, and 𝜺 ∈ ℝ𝑛 is the additive error

▶ Five basic assumptions have to be checked
Underlying relationship is linear (1)
Zero mean (2), uncorrelated (3) errors with constant variance (4) which are
(roughly) normally distributed (5)

▶ Centring ( 1
𝑛
∑𝑛

𝑙=1 𝑥𝑙𝑗 = 0) and standardisation ( 1
𝑛
∑𝑛

𝑙=1 𝑥2𝑙𝑗 = 1) of predictors
simplifies interpretation

▶ Centring the outcome ( 1
𝑛
∑𝑛

𝑙=1 𝑦𝑙 = 0) and features removes the need to
estimate the intercept 2/25



Feature selection as motivation

Analytical solution exists when 𝐗⊤𝐗 is invertible

̂𝜷OLS = (𝐗⊤𝐗)−1𝐗⊤𝐲

The solution can be unstable or impossible to compute if

▶ there is high correlation between predictors, or
▶ if 𝑝 > 𝑛.

Solutions: Regularisation or feature selection
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Filtering for feature selection
▶ Choose features through pre-processing

▶ Features with maximum variance
▶ Use only the first 𝑘 PCA components

▶ Examples of other useful measures
▶ Use a univariate criterion, e.g. F-score: Features that correlate most with the
response

▶ Mutual Information: Reduction in uncertainty about 𝐱 after observing 𝑦
▶ Variable importance: Determine variable importance with random forests

▶ Summary
▶ Pro: Fast and easy
▶ Con: Filtering mostly operates on single features and is not geared towards a
certain method

▶ Care with cross-validation and multiple testing necessary
▶ Filtering is often more of a pre-processing step and less of a proper feature
selection step 4/25



Wrapping for feature selection

▶ Idea: Determine the best set of features by fitting models of different
complexity and comparing their performance

▶ Best subset selection: Try all possible (exponentially many) subsets of
features and compare model performance with e.g. cross-validation

▶ Forward selection: Start with just an intercept and add in each step the
variable that improves fit the most (greedy algorithm)

▶ Backward selection: Start with all variables included and then remove
sequentially the one with the least impact (greedy algorithm)

▶ As discreet procedures, all of these methods exhibit high variance (small
changes could lead to different predictors being selected, resulting in a
potentially very different model)
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Embedding for feature selection

▶ Embed/include the feature selection into the model estimation procedure
▶ Ideally, penalization on the number of included features

̂𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆
𝑝
∑
𝑗=1

1(𝛽𝑗 ≠ 0)

However, discrete optimization problems are hard to solve
▶ Softer regularisation methods can help

̂𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖𝑞𝑞

where 𝜆 is a tuning parameter and 𝑞 ≥ 1 or 𝑞 = ∞.
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Feature selection

Feature selection can be addressed in multiple ways
▶ Filtering: Remove variables before the actual model for the data is built

▶ Often crude but fast
▶ Typically only pays attention to one or two features at a time (e.g. F-Score, MIC)
or does not take the outcome variable into consideration (e.g. PCA)

▶ Wrapping: Consider the selected features as an additional hyper-parameter
▶ computationally very heavy
▶ most approximations are greedy algorithms

▶ Embedding: Include feature selection into parameter estimation through
penalisation of the model coefficients

▶ Naive form is equally computationally heavy as wrapping
▶ Soft-constraints create biased but useful approximations
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Regularised regression



Constrained and regularised regression

The optimization problem

arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 subject to ‖𝜷‖𝑞𝑞 ≤ 𝑡

for 𝑞 > 0 is equivalent to

̂𝜷 = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖𝑞𝑞

when 𝑞 ≥ 1. This is the Lagrangian of the constrained problem.

Note: Constraints are convex for all 𝑞 ≥ 1 but not differentiable in 𝜷 = 𝟎 for 𝑞 = 1.
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Ridge regression

For 𝑞 = 2 the constrained problem is ridge regression (Tikhonov regularisation)

̂𝜷ridge(𝜆) = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖22

where ‖𝜷‖22 = ∑𝑝
𝑗=1 𝛽2𝑗 .

An analytical solution exists if 𝐗⊤𝐗 + 𝜆𝐈𝑝 is invertible

̂𝜷ridge(𝜆) = (𝐗⊤𝐗 + 𝜆𝐈𝑝)−1𝐗⊤𝐲

If 𝐗⊤𝐗 = 𝐈𝑝, then
̂𝜷ridge(𝜆) =

̂𝜷OLS
1 + 𝜆 ,

i.e. ̂𝜷ridge(𝜆) is biased but has lower variance.
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SVD and ridge regression

Recall: The SVD of a matrix 𝐗 ∈ ℝ𝑛×𝑝 was

𝐗 = 𝐔𝐃𝐕⊤

The analytical solution for ridge regression becomes (𝑛 ≥ 𝑝)
̂𝜷ridge(𝜆) = (𝐗⊤𝐗 + 𝜆𝐈𝑝)−1𝐗⊤𝐲

= (𝐕𝐃2𝐕⊤ + 𝜆𝐈𝑝)−1𝐕𝐃𝐔⊤𝐲
= 𝐕(𝐃2 + 𝜆𝐈𝑝)−1𝐃𝐔⊤𝐲

=
𝑝
∑
𝑗=1

𝑑𝑗
𝑑2𝑗 + 𝜆

𝐯𝑗𝐮⊤𝑗 𝐲

Ridge regression acts strongest on principal components with lower
eigenvalues, e.g. in presence of correlation between features.
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Effective degrees of freedom

Recall the hat matrix 𝐇 = 𝐗(𝐗⊤𝐗)−1𝐗⊤ in OLS. The trace of 𝐇

tr(𝐻) = tr(𝐗(𝐗⊤𝐗)−1𝐗⊤) = tr(𝐗⊤𝐗(𝐗⊤𝐗)−1) = tr(𝐈𝑝) = 𝑝

is equal to the trace of 𝚺 and the degrees of freedom for the regression
coefficients.

In analogy define for ridge regression

𝐇(𝜆) ∶= 𝐗(𝐗⊤𝐗 + 𝜆𝐈𝑝)−1𝐗⊤

and

df(𝜆) ∶= tr(𝐇(𝜆)) =
𝑝
∑
𝑗=1

𝑑2𝑗
𝑑2𝑗 + 𝜆

,

the effective degrees of freedom.
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Lasso regression

For 𝑞 = 1 the constrained problem is known as the lasso

̂𝜷lasso(𝜆) = arg min
𝜷

‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

▶ Smallest 𝑞 in penalty such that constraint is still convex
▶ Produces sparse solutions (many coefficients exactly equal to zero) and
therefore performs feature selection
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Intuition for the penalties (I)

Assume the OLS solution 𝜷OLS exists and set

𝐫 = 𝐲 − 𝐗𝜷OLS

it follows for the residual sum of squares (RSS) that

‖𝐲 − 𝐗𝜷‖22 = ‖(𝐗𝜷OLS + 𝐫) − 𝐗𝜷‖22
= ‖(𝐗(𝜷 − 𝜷OLS) − 𝐫‖22
= (𝜷 − 𝜷OLS)⊤𝐗⊤𝐗(𝜷 − 𝜷OLS) − 2𝐫⊤𝐗(𝜷 − 𝜷OLS) + 𝐫⊤𝐫

which is an ellipse (at least in 2D) centred on 𝜷OLS.
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Intuition for the penalties (II)

The least squares RSS is minimized for 𝜷OLS. If a constraint is added (‖𝜷‖𝑞𝑞 ≤ 𝑡)
then the RSS is minimized by the closest 𝜷 possible that fulfills the constraint.
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The blue lines are the contour lines for the RSS. 14/25



Intuition for the penalties (III)

Depending on 𝑞 the different
constraints lead to different
solutions. If 𝜷OLS is in one of
the coloured areas or on a line,
the constrained solution will
be at the corresponding dot.

Sparsity only for 𝑞 ≤ 1
Convexity only for 𝑞 ≥ 1
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Computational aspects of the Lasso (I)

What estimates does the lasso produce?

Target function
arg min

𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1

Special case: 𝐗⊤𝐗 = 𝐈𝑝. Then

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆‖𝜷‖1 =

1
2𝐲

⊤𝐲 − 𝐲⊤𝐗⏟
=𝜷⊤OLS

𝜷 + 1
2𝜷

⊤𝜷 + 𝜆‖𝜷‖1 = 𝑔(𝜷)

How do we find the solution ̂𝜷 in presence of the non-differentiable
penalisation ‖𝜷‖1?
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Computational aspects of the Lasso (II)

For 𝐗⊤𝐗 = 𝐈𝑝 the target function can be written as

arg min
𝜷

𝑝
∑
𝑗=1

−𝛽OLS,𝑗𝛽𝑗 +
1
2𝛽

2
𝑗 + 𝜆|𝛽𝑗|

This results in 𝑝 uncoupled optimization problems.
▶ If 𝛽OLS,𝑗 > 0, then 𝛽𝑗 > 0 to minimize the target
▶ If 𝛽OLS,𝑗 ≤ 0, then 𝛽𝑗 ≤ 0

Each case results in

𝛽lasso,𝑗 = sign(𝛽OLS,𝑗)(|𝛽OLS,𝑗| − 𝜆)+ = ST(𝛽OLS,𝑗, 𝜆),
where

▶ 𝑥+ = 𝑥 if 𝑥 > 0 or 0 otherwise,
▶ and ST is called the soft-thresholding operator 17/25



Relation to OLS estimates

Both ridge regression and the lasso estimates can be written as functions of
𝜷OLS if 𝐗⊤𝐗 = 𝐈𝑝.

𝛽ridge,𝑗 =
𝛽OLS,𝑗
1 + 𝜆 and 𝛽lasso,𝑗 = sign(𝛽OLS,𝑗)(|𝛽OLS,𝑗| − 𝜆)+

λ

Ridge Lasso

Visualisation of the transformations applied to the OLS estimates. 18/25



Shrinkage and effective degrees of freedom

When 𝜆 is fixed, the shrinkage of the lasso estimate 𝜷lasso(𝜆) compared to the OLS
estimate 𝜷OLS is defined as

𝑠(𝜆) = ‖𝜷lasso(𝜆)‖1
‖𝜷OLS‖1

Note: 𝑠(𝜆) ∈ [0, 1] with 𝑠(𝜆) → 0 for increasing 𝜆 and 𝑠(𝜆) = 1 if 𝜆 = 0

Recall: For ridge regression define

𝐇(𝜆) ∶= 𝐗(𝐗⊤𝐗 + 𝜆𝐈𝑝)−1𝐗⊤

and

df(𝜆) ∶= tr(𝐇(𝜆)) =
𝑝
∑
𝑗=1

𝑑2𝑗
𝑑2𝑗 + 𝜆

,

the effective degrees of freedom.
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Prostate cancer dataset

Prostate cancer dataset

Data to examine the correlation between the level of a prostate cancer-specific
substance and a number of clinical measurements in men who just before
partial or full removal of the prostate in patients.

▶ 𝑛 = 67 samples
▶ A continuous response on the log-scale
▶ 𝑝 = 8 features

▶ e.g. log cancer volume, log prostate weight or age of patient
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Regularisation paths for varying 𝜆

Red dashed lines indicate the 𝜆 selected by cross-validation
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Notes on the lasso

▶ In the general case, i.e. 𝐗⊤𝐗 ≠ 𝐈𝑝, there is no explicit solution.
▶ Numerical solution possible, e.g. with coordinate descent where each 𝛽𝑗 is
updated separately with the remaining 𝛽𝑖 with 𝑖 ≠ 𝑗 fixed

▶ As for ridge regression, estimates are biased
▶ Degrees of freedom are equal to the number of non-zero coefficients
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Potential caveats of the lasso (I)

▶ Sparsity of the true model:
▶ The lasso only works if the data is generated from a sparse process.
▶ However, a dense process with many variables and not enough data or high
correlation between predictors can be unidentifiable either way

▶ Correlations: Many non-relevant variables correlated with relevant variables
can lead to the selection of the wrong model, even for large 𝑛

▶ Irrepresentable condition: Split 𝐗 such that 𝐗1 contains all relevant
variables and 𝐗2 contains all irrelevant variables. If

|(𝐗⊤
2𝐗1)(𝐗⊤

1𝐗1)−1| < 1 − 𝜼

for some 𝜼 > 0 then the lasso is (almost) guaranteed to pick the true model

23/25



Potential caveats of the lasso (II)

In practice, both the sparsity of the true model and the irrepresentable
condition cannot be checked.

▶ Assumptions and domain knowledge have to be used
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Take-home message

▶ Filtering and wrapping methods useful for feature selection in practice but
can be unprincipled or have high variance

▶ Regularised regression can help in numerically unstable situations (such as
in ridge regression)

▶ The lasso can in addition perform variable selection
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