Lecture 5: A first look at dimension reduction

Felix Held, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

15t April 2021

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY




Principal Component Analysis



Projection onto a subspace

Assume x € RP. Given orthonormal vectors by, ...,b,,, i.e.
Ibjll=1 and b/b, =0forj#k

where m < p, the projection of x onto the m-dimensional linear subspace

V,, = span(by, ..., b,,) is " .
%= Z(bej)bj = (Z bjb}> X
j=1 j=1

\_'v.__/
The projection is orthogonal, i.e. AL .
_
x—%)Tb; =0 o
\ \/./\
for all b;. /:\,./
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Rayleigh Quotient

Let A € R**k be a symmetric matrix. For 0 # x € R¥ define
x'Ax
xTx

J(x) =
J(x) is called the Rayleigh Quotient for A.

Maximizing the Rayleigh Quotient
The maximization problem

max J(x) subjectto x'x=1
X

is solved by a unit eigenvector x of A corresponding to the largest eigenvalue
A of A.

Note: —x is also a solution.
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Principal Component Analysis (PCA) (1)

Goal: Given continuous data, find an orthogonal coordinate system such that
the variance of the data is maximal along each direction.

S
Given data points xy, ..., X, and a unit vector r, the e :’- .
variance of the data along r is "-N.\-'..e
" . : 58K
S(x) = ;(rT(xl ~X)’=(n-Dr'r Rt
A0
where £ is the empirical covariance matrix. .
Axes

=» Cartesian =» Principal Component
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Principal Component Analysis (PCA) (1)

Direction with maximal variance: Find r such that

max S(r) subjectto |r|?=r"r=1
r

» This is the same problem as maximizing the Rayleigh Quotient for the
matrix £.

» The solution is the eigenvector r, of £ corresponding to the largest
eigenvalue 4,.

How do we find the other directions?
Project data on orthogonal complement of ry, i.e.

)A(l = (Ip — l'll'ir) X

and repeat the procedure above.
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Intermezzo: Pre-processing

Data is often pre-processed before it is used in computational methods.

Given a data matrix X € R™P, let

» m, € R" be the vector of row-means,
» m, € RP be the vector of column-means, and
» s € RP be the vector of per-column standard deviations.

Then (with1,, = (1,...,1)T € R")

» the matrix X —m,1; has row means zero (row-centred),
» the matrix X —1,m; has column means zero (column-centred), and

» the matrix X diag(1/s) has column standard deviations one (standardised
columns)
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Principal Component Analysis (PCA) (111)

Computational Procedure:
1. Centre (and possibly standardise) the columns of the data matrix X € R"™*P

1
2. Calculate the empirical covariance matrix £ = —IXTX
3. Determine the eigenvalues 4; and corresponding orthonormal eigenvectors
r; ofzforJ =1,..,pand order them such that

4. The vectors r; give the direction of the pr|nC|pal components (PC) r! rjx and
the elgenvalues A; are the variances along the PC directions

Note: Set R = (14, ..., 1p) and D = diag(44, ... s Ap) then
$=RDR'" and R'R=RR' =1,
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PCA and Dimension Reduction

Recall: For a matrix A € RFk with eigenvalues 4,, ..., 4 it holds that

k
tr(A) = D7 4
j=1

For the empirical covariance matrix £ and the variance of the j-th feature

Var[xj] N p p

tI‘(Z) = Z Var[xj] = Z /1]
j=1 Jj=1

is called the total variation.

Using only the first m < p principal components leads to

| . .
2+ *2m 100% of explained variance
ll++lp 7121



PCA and Dimension Reduction: Example (1)

Variant of the MNIST handwritten digits dataset
(n = 7291, 16 x 16 greyscale images, i.e. p = 256)

Digit Frequency

0 0.16 6 5
1 0.14

2 0.10

3 0.09 -

5 0.08 7 3 6

6 0.09

7 0.09

8 0.07

9 0.09 8/21




PCA and Dimension Reduction: Example (11)

For standardized variables
tr(E) = p
Typical selection rule: Components with

4z 20@ (=1

Scree plot
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PCA and Dimension Reduction: Example (1)

Using the selection rule leads to 44
components. Using the projection

44
& T
X = errj X
Jj=1

creates a reconstruction of x.
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PCA and Dimension Reduction: Example (IV)

Projecting the digits onto the first two principal component directions gives a
very clear distinction of digits 0 and 1.

PC2

X
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Importance of standardisation (1)

The overall issue: Subjectivity vs Objectivity

(Co-)variance is scale dependent: If we have a sample (size n) of variables x and
y, then their empirical covariance is
n

L S - B - )

n—ll:1

Sxy =

If x is scaled by a factorc, i.e. z=c- x, then
n

1 — —
Szy = n_llzzl(zl_z)(yl_y)
L&
= (e xi—c- W=y =c- sy
n—14&
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Importance of standardisation (I1)

(Co-)variance is scale dependent: s,;, = c - s,, wherez=c - x

» By scaling variables we can therefore make them as large/influential or
small/insignificant as we want, which is a very subjective process

» By standardising variables we can get of rid of scaling and reach an
objective point-of-view

» Do we get rid of information?

» The typical range of a variable is compressed
» The overall shape of the data is preserved
» Outliers will still be outliers
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UCI Wine Data Set

UCI Wine Data Set’

» Results of a chemical analysis on multiple samples from three different
origins of wine
» n =178 samples (59 origin 1, 71 origin 2, 48 origin 3)

» p =13 features
» e.g. alcohol in %, ash, colour intensity, magnesium, ...

Thttps://archive.ics.uci.edu/ml/datasets/Wine
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https://archive.ics.uci.edu/ml/datasets/Wine

Importance of standardisation (I11)
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Singular Value Decomposition




Singular Value Decomposition (SVD)

The singular value decomposition (SVD) of a matrix X € R™P, n > p, is
X =UDV'
where U € R™P and V € RP*P with
U'U=1, and V'V=VV'=1I,
and D € RP*P is diagonal. Usually
dyy 2dy 2 2dy)

Note: Due to the orthogonality conditions on U and V

XX'U = UD?

XXV = VD?
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SVD and PCA

In PCA the empirical covariance matrix £ is in focus, whereas SVD focuses on the
data matrix X directly.

Connection: For centred variables

s =

)(T)( T T 2
=VDU UDV _v D vT
n—1 n—1 n—1

The PC directions are in V and the eigenvalues of £ are dfj/(n —1).

Note: This is how PCA is typically calculated. SVD is a more general tool and is
used in many other contexts as well.
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SVD and best rank-g-approximation / dimension reduction

Write u; and v; for the columns of U and V, respectively. Then

p
= T = . v
X=UDV' =) dj; wyv
=il rank-1-matrix

Best rank-g-approximation: For g < p
d T
Xy =, djju;v;
j=1

with approximation error

2
2 p p
_ cuvill = 2 2
HX—XqHF = E d”uJVJ = dJ
j=q+1 Jj=q+1

F
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Connections to Discriminant
Analysis




Discriminant Analysis and the Inverse Covariance Matrix

From PCA or SVD we get £ = VDV where VIV =VVT =1, and
dyy > -+ > dp, > 0. Then

$-1 —_ ypD-lvT = vD-12p-12yT — (g—l/z)T $-1/2
-1/2 . S$-1/2 . _ n-12yT
where (D~V?);; :=1/,/d;; and Z =DV,

In LDA the term involving the inverse covariance matrix is then
AN AN T AN
E-@EIx-p)=x-DT(E7?) E1x-p)
AN T p— AN
=(Vix-@) D (VIx-p)

_Zd #J

Inverse of the eigenvalues can lead to numerical instability. 19/21



Regularised Discriminant Analysis (RDA)

The empirical covariance matrix used by LDA can be stabilized:
$, :=E 4L, = V(D + AL,)V"

where 4 > 0 is a tuning parameter.

» Using £, in LDA is called regularised discriminant analysis (RDA).
» Instead of 1/d;; the scaling factors are now 1/(d;; + 4).
> For small dj; this can lead to numerical stability, whereas large d;; are not

much affected.
> For increasingly large A the d;; will have diminishing impact and RDA starts

to become nearest centroids.
» RDA can be used with QDA as well by considering:

1= 5 +1 8
QDA DA 20/21



Take-home message

» Principal component analysis gives a convenient decomposition of the
variance of the data

» Pre-processing (centring and standardisation) is important if data is
collected on different scales

» Singular value decomposition is a universal workhorse for in numerical
methods
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