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Classification without classes

In classification the main idea was to determine
p(ilx) or p(x,i) = p(x|)p(i)

through model approximations (LDA, logistic regression), rules/partitioning
(CART, random forests) or directly from data (kNN).

What if we do not have any classes? Clustering
Goals

» Find groups in data

» Summarize high-dimensional data

» Data exploration
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Clustering

Clustering is a harder problem than

classification
» What is a cluster?

» How many clusters are there?
» How do we find them? Can they

have any shape?

X1

We need to able to measure dissimilarity between features to determine which

samples/objects are close together or far apart.

Note: In clustering classes are often called labels and features are attributes
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Dissimilarity measures

A dissimilarity measure for features x;, x, is a function such that
d(x,x) 20 and  d(xy,x;) = d(x;, 1)

Dissimilarity across all features can be defined as

D(xy,%;) = 2 d;(xP, x$)

Typical examples
» For quantitative features: ¢, or £, norm, correlation between whole feature

vectors, ...
» For categorical variables with K levels: Loss matrix L € RK*X sych that

L=L,,L,=0andL,; >0. Thend(r,s) =L
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Challenges in Clustering

Two main challenges

1. How many clusters are there?

2. Given a number of clusters, how do we find them?

Focus on Challenge 2 first.

Idea: Partition the observations into K groups/clusters so that pairwise
dissimilarities within groups are smaller than between groups.

Note: A partition of the observations is called a clustering C(x) = i
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Combinatorial Clustering (1)

Total amount of dissimilarity for an arbitrary clustering C

T = Z >, D1, %)

=1m<l

Total point scatter

K n
= Z Z Z D(Xl,Xm) + Z D(Xl,Xm)

i=1 I=1 m<l m<l
C(x)=1 \C(xp)=i C(Xm)?él
K n
=2 2 X Deuxm+ Z Z 2, DGaxm)
i=1 I=1 m<l i=1
( =i C(xp)=i C(Xl) lC(Xm#l
=:W(C) =:B(C)
Within cluster point scatter Between cluster point scatter
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Combinatorial Clustering (11)

Note that T does not depend on the clustering. Therefore
W(C) =T — B(C)

and minimizing within cluster point scatter is equivalent to maximizing between
cluster point scatter.

As in the case of decision trees/CART looking at all possible partitions and
finding the global minimum of W(C) is too computational expensive.

Use greedy algorithms to find local minima.
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An approximation to Combinatorical Clustering (1)

Consider the special case D(x;,X,,) = ||X; — X,,,||* then

w(C) = Z Z 2 =%y

m<lI
C(Xz) i C(xpm)=i

K n
Z Z |1, — my||?
= =i

where

E 1(C(x;) =i) and m; = 1 E X;
n;
=1 L C(Xl) i
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An approximation to Combinatorical Clustering (11)

The goal now is to solve
K n

arg minz n; Z lIx; —m;(O)||?
c i=1 I=1
C(xp)=i

which still requires to visit all possible partitions.

Observation: For a fixed clustering rule C it holds that
m;(C) = arg min Z Ix; — m||?
mo C(xp=i
Approximative solution: Consider the larger problem
K n

argmin Yo Y [x —myl

m; for 1<i<K 1=1 c(lle)lzi
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k-means

This approximation can be solved iteratively for the clustering C and the
cluster centres. This is called the k-means algorithm.

Computational procedure:

1. Initialize: Randomly choose K observations as cluster centres m; and set
Joax 1O @ positive integer.
2. Forsteps j=1,...,Jax
221 Cluster allocation: C(x;) = all"g'min [Ix; — my||?

<i<K
1
2.2 Cluster centreupdate: m; = — > x
i cé)=i
2.3 Stop if clustering C did not change
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Notes on k-means

» Dependence on initial selection: Run repeatedly to see if k-means provides
stable results

» Since k-means uses the ¢, norm it has all the typical problems (sensitive to
outliers and noise)

» Clusters tend to be circular: k-means looks in a circular fashion around each
cluster centre and assigns an observation to the closest centre

» Problems with unequal cluster size: If some clusters have less samples than
others, then k-means tends to add those to the bigger clusters

» Always finds K clusters (not unique to k-means)
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k-means and circular clusters

Simulated
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Using k-means on the wine dataset

UCI Wine dataset: K = 3 classes. Let's see if k-means recovers the classes given
only the features/attributes.
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Partition around medoids (PAM) or k-medoids

Restrictions of k-means: Features have to be continuous and the ¢, norm has
to be used as a distance measure.

Idea: Similar approximation but use general distance measure. Also, use one of
the observations as cluster centre (a medoid), not the centroid.

Solve

argmm an Z D(x,%;,)

I; for 1<1<K C(lx_l) i

Notation: For observed feature vectors x; and x,,, set D, ,,, = D(x}, X,). This
results in D € R™",
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PAM/k-medoids algorithm

Computational procedure:

1. Initialize: Randomly choose K observation indices as cluster centres [; and
set J,,.. t0 a positive integer
2. Forsteps j=1,..,J ax

21 Cluster allocation: C(x;) = argmin Dy,
1<i<K
2.2 Cluster centre update: [; = argmin D, Dy,

1<l<n —i
Clxyi Clxm)=i

2.3 Stop if clustering C did not change

Computational Complexity: Step 2.2 is now quadratic in n; instead of linear as in
k-means

Note: All PAM requires is a matrix of distances D and no additional distance

computations are necessary. Very diverse types of features can be used. 14/23



Cluster validation and selection of
cluster count




Cluster validation

Internal indices

» Focus on between and within cluster scatter

» Aim is to achieve high between cluster scatter and low within cluster scatter
External indices

» Focus on comparison of final clustering with reference classes

» Used to e.g. determine which types of clusters can be found in data, or to
evaluate different clustering algorithms on a reference dataset
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Examples of internal indices




Elbow heuristic for k-means

Actual classes
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» W(C) decreases with cluster count K

» Decreases are less substantial if data does not support more clusters
» K is chosen such that following decreases are substantially smaller.

Within cluster scatter
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Silhouette Width

For every observation x; define (with D, ,,, = D(x;, X;,))

1. Average distance within cluster:
1

a, =

= p Dl,m
CGa) C(xpm)=C(x))

2. Average distance to nearest cluster:

1
b; = argmin — Z D;
1<i<K i oy
i#C(xp) m
b —a

3. Silhouette width: 8] = m
1> Yl

e [-1,1]

n
and overall average silhouette width: S = % Z Sy
=1
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Notes on silhouette width

» Interpretation
» Close to 1 when observation is well located inside the cluster and separated
from the nearest cluster
» Close to 0 when observation is between two clusters
» Negative if observation on average closer to another cluster.
Warning sign: Hints at which observations should be investigated.
» Average silhouette width should be maximal for a good clustering

» Limitations

» Needs at least two clusters
» Based on the same ideas as PAM/k-medoids and therefore considers clusters
to be spherical
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Silhouette Width: Example

Clustering of the UCI wine data using k-medoids with the ¢, metric. Sorted per
cluster and arranged in decreasing order of silhouette width.
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» Silhouette width gives a clear signal that more than three clusters lead to
decreasing performance
» However, two and three clusters are indicated of similar quality.
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Observations with negative Silhouette width

Observations in orange have negative silhouette width. Cluster medoids are
shown in blue.
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An example of an external index




Mutual information and entropy

Let C be a clustering for K clusters and ¢ a classification rule for M classes.
Denote S; = {x; : C(x)) =i}, S/ = {x; : c(x;) = j},and S} = S; n S.

We are interested in how well the two rules agree on a dataset.

Mutual Information: Amount of information that can be obtained about one rule
by knowing the other rule

1C=3 3 pshiog P S 318l sl
,C) = Dlog ———— = —lo .
i=1j=1 l PKS )P(SJ) i=1j=1 |Si”SJ|

Entropy: Information present in each rule
|Sil

n

K K'lS'
H(C) ==Y P(S)logP(S) ~ = ). T lo
i=1 i=1

and analogously for c. 21/23



Normalised mutual information

Mutual information can be seen as a measure for how much more information
about the true classes we obtain by being given the cluster labels.

If the clustering is completely random, we gain no knowledge, i.e. I(C,c) = 0. If
the clustering is perfect, then mutual information is maximal.

However, mutual information is also maximal if K = n, i.e. each observation is in
its own cluster. Since H(C) is maximal if K = n, normalisation can solve this
problem.

Note that I(C,c) < (H(C) + H(c))/2 which leads to the definition of normalised
mutual information

I(C,¢)
(H(C) + H(c))/2

NMI(C, ¢) = € [0,1].
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Take-home message

» Clustering is a more challenging problem than classification and needs to
answer two questions:

» What is a cluster?
» How many clusters are there?

» The clustering algorithm defines what shapes are considered as clusters.

» Clustering results can be validated by external indices and cluster count can
be selected through internal indices.
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