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Regularisation in classification



Recall: Regularised Discriminant Analysis (RDA)

Given training samples (𝑖𝑙, 𝐱𝑙), quadratic DA models

𝑝(𝐱|𝑖) = 𝑁(𝐱|𝝁𝑖, 𝚺𝑖) and 𝑝(𝑖) = 𝜋𝑖

Estimates 𝝁𝑖 , 𝚺𝑖 and 𝜋𝑖 are straight-forward to find,. . .

. . .but evaluating the normal density requires inversion of �̂�𝑖 . If it is
(near-)singular, this can lead to numerical instability.

Regularisation can help here:

▶ Use 𝚺𝑖 = 𝚺QDA
𝑖 + 𝜆�̂�LDA for 𝜆 > 0

▶ Use LDA (i.e. 𝚺𝑖 = 𝚺) and �̂� = 𝚺LDA + 𝜆𝚫 for 𝜆 > 0 and a diagonal matrix 𝚫
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Recall: Naive Bayes LDA

Naive Bayes LDA means that we assume that 𝚺 = �̂� for a diagonal matrix �̂�. The
diagonal elements are estimated as

Δ̂(𝑗,𝑗) = 1
𝑛 − 𝐾

𝐾
∑
𝑖=1

∑
𝑖𝑙=𝑖

(𝐱(𝑗)𝑙 − 𝝁(𝑗)𝑖 )2

which is the pooled within-class variance.

Classification is performed by predicting the class with the maximal discriminant
function value

𝛿𝑖(𝐱) = −12(𝐱 − 𝝁𝑖)⊤�̂�−1(𝐱 − 𝝁𝑖) + log(𝜋𝑖)

= −12
‖
‖�̂�−1/2(𝐱 − 𝝁𝑖)‖‖

2

2
+ log(𝜋𝑖)

where (�̂�−1/2)
(𝑖,𝑖)

= 1/√�̂�(𝑖,𝑖).
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Shrunken centroids (I)

In high-dimensional problems (𝑝 > 𝑛), centroids will

▶ contain noise
▶ be hard to interpret when all variables are active

As in regression, we would like to perform variable selection and reduce noise.

Recall: The class centroids solve

𝝁𝑖 =
1
𝑛𝑖

∑
𝑖𝑙=𝑖

𝐱𝑙 = arg min
𝐯

1
2 ∑𝑖𝑙=𝑖

‖𝐱𝑙 − 𝐯‖22

Idea: Can we perform variable selection through ℓ1-/lasso-style regularisation?
How can we account for varying variance in features and stabilise against noise?
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Shrunken centroids (II)

Nearest shrunken centroids performs variable selection and stabilises centroid
estimates by solving

𝝁𝑖 = arg min
𝐯

1
2 ∑𝑖𝑙=𝑖

‖(�̂� + 𝑠0𝐈𝑝)−1/2(𝐱𝑙 − 𝐯)‖22 + 𝜆𝑛𝑖𝑚𝑖‖𝐯 − 𝝁𝑇‖1

where 𝑠0 = median(�̂�(1,1), … , �̂�(𝑝,𝑝)), 𝑚𝑖 =√
1
𝑛𝑖
− 1

𝑛
and 𝝁𝑇 =

1
𝑛
∑𝑙 𝐱𝑙.

▶ Penalises distance of class centroid to the overall centroid 𝝁𝑇
▶ �̂� + 𝑠0𝐈𝑝 is the diagonal regularised within-class covariance matrix. Features
that are highly variable across samples are scaled down (interpretability)

▶ 𝑛𝑖𝑚𝑖 scales 𝜆 in case of unequal class sizes
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Shrunken centroids (III)

The solution for component 𝑗 can be derived as

𝝁(𝑗)𝑖 = 𝝁(𝑗)𝑇 +𝑚𝑖(�̂�(𝑗,𝑗) + 𝑠0) ST (𝐭(𝑗)𝑖 , 𝜆) where 𝐭(𝑗)𝑖 = 𝝁(𝑗)𝑖 − 𝝁(𝑗)𝑇
𝑚𝑖(�̂�(𝑗,𝑗) + 𝑠0)

.

Note: 𝜆 is a tuning parameter and has to be determined through e.g.
cross-validation.

▶ Typically, misclassification rate improves first with increasing 𝜆 and declines
for too high values

▶ The larger 𝜆 the more components will be equal to the respective
component of the overall centroid.
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Application of nearest shrunken centroids (I)

A gene expression data set with 𝑛 = 63 and 𝑝 = 2308. There are four classes
(cancer subtypes) with 𝑛BL = 8, 𝑛EWS = 23, 𝑛NB = 12, and 𝑛RMS = 20.
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Application of nearest shrunken centroids (II)
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Grey lines show the original centroids and red lines show the shrunken centroids
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Extensions of the lasso



The lasso and groups of highly correlated variables

▶ The lasso does not handle groups of highly correlated variables well.
▶ Example: Two groups of highly correlated variables, e.g.

𝐗 ∼ 𝑁(𝟎, 𝚺) where 𝚺 = (𝚺1 𝟎
𝟎 𝚺1

) ∈ ℝ200×200,

where
𝚺1 ∈ ℝ100×100, 𝚺(𝑖,𝑖)1 = 1.04 and 𝚺(𝑖,𝑗)1 = 1, 𝑖 ≠ 𝑗.

The response is generated for 𝑛 = 100 samples as
𝐲 = 𝐱1 − 𝐱102 + 𝜺 where 𝜺 ∼ 𝑁(𝟎, 4𝐈𝑝).

▶ Expectation: Since the predictors in each group are strongly correlated, all
could be considered equally as predictors.

▶ Possible caveat: The lasso makes a sparsity assumption and tries to set as
many coefficients to zero as possible. 8/19



The lasso and groups of highly correlated variables in practice
Lasso Elastic net (α = 0.2)
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▶ At optimal 𝜆 the lasso selects 8 non-zero coefficients 0 of which were in the
true coefficient vector.

▶ Very precise but ‘wrong’ estimates.
▶ An alternative algorithm, the elastic net estimates 95 non-zero coefficients.
(44 in the 1st group and 51 in the 2nd group, group-wise close coefficients)

▶ ‘Shares’ responsibility among correlated variables
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The elastic net (I)

The elastic net solves the problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆 (1 − 𝛼

2 ‖𝜷‖22 + 𝛼‖𝜷‖1)

striking a balance between lasso (variable selection) and ridge regression
(grouping of variables)
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Notes on the elastic net (II)

▶ The solution can be found through cyclic coordinate descent
▶ 𝛼 is an additional tuning parameter that should be determined by
cross-validation

▶ The lasso and ridge regression are special cases of the elastic net (𝛼 = 1 and
𝛼 = 0, respectively).
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Explicitly adding groups to the lasso

▶ The lasso in it’s original formulation considers each variable separately
▶ Groups in data can form through e.g.

▶ Correlation
▶ Categorical variables in dummy encoding
▶ Domain-knowledge (e.g. genes in the same signal pathway, signals that only
appear in groups in a compressed sensing problem,. . .)

▶ Ideally the whole group is either present or not
▶ The elastic net can find groups, but only does so for highly correlated
variables and without external influence. Sometimes more control is
necessary.
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The group lasso (I)

The group lasso solves the problem

arg min
𝜷

1
2‖𝐲 − 𝐗𝜷‖22 + 𝜆

𝐾
∑
𝑘=1

‖𝐁𝑘‖2

where 𝐁𝑘 is a vector of coefficients 𝛽𝑖 for the 𝑘-th group. Note that ‖𝛽𝑖‖2 = |𝛽𝑖|
for singleton groups.
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Comparison: Lasso, elastic net and group lasso

▶ The lasso sets variables exactly to zero either on a corner or along an edge.
▶ The elastic net similarly sets variables exactly to zero on a corner or along an edge.
The curved edges encourage remaining coefficients to be closer together.

▶ The group lasso has actual information about groups of variables. It encourages
whole groups to be zero or non-zero with similar coefficients.
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Penalisation in GLMs

Penalisation can also be used in generalised linear models (GLMs), e.g. to
perform sparse logistic regression.

Given 𝑝(𝑦|𝜷, 𝐱) the log-likelihood of the model is

ℒ(𝜷|𝐲, 𝐗) =
𝑛
∑
𝑙=1

log(𝑝(𝑦𝑙|𝜷, 𝐱𝑙))

Instead of penalising the minimisation of the residual sum of squares (RSS), the
minimisation of the negative log-likelihood is penalized, i.e.

arg min
𝜷

−ℒ(𝜷|𝐲, 𝐗) + 𝜆‖𝜷‖1

Note: If 𝑝(𝑦|𝜷, 𝐱) is Gaussian and the linear model 𝐲 = 𝐗𝜷 + 𝜺 is assumed, this is
equivalent to the lasso.
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Sparse logistic regression

Recall: For logistic regression with 𝑖𝑙 ∈ {0, 1} it holds that

𝑝(1|𝜷, 𝐱) = exp(𝐱⊤𝜷)
1 + exp(𝐱⊤𝜷) and 𝑝(0|𝜷, 𝐱) = 1

1 + exp(𝐱⊤𝜷)
and the penalised minimisation problem becomes

arg min
𝜷

−
𝑛
∑
𝑙=1

(𝑖𝑙𝐱⊤𝑙 𝜷 − log (1 + exp(𝐱⊤𝜷))) + 𝜆‖𝜷‖1

▶ The minimisation problem is still convex, but non-linear in 𝜷. Iterative
quadratic approximations combined with coordinate descent can be used to
solve this problem.

▶ Another way to perform sparse classification (like e.g. nearest shrunken
centroids)
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Sparse multi-class logistic regression

In multi-class logistic regression with 𝑖𝑙 ∈ {1, … , 𝐾}, there is a matrix of
coefficients 𝐁 ∈ ℝ𝑝×(𝐾−1) and it holds for 𝑖 = 1, … , 𝐾 − 1 that

𝑝(𝑖|𝐁, 𝐱) = exp(𝐱⊤𝜷𝑖)
1 +∑𝐾−1

𝑗=1 exp(𝐱⊤𝜷𝑗)
and 𝑝(𝐾|𝐁, 𝐱) = 1

1 +∑𝐾−1
𝑗=1 exp(𝐱⊤𝜷𝑗)

▶ As in two-class case, the absolute value of each entry in 𝐁 can be penalised.
▶ Another possibility is to use the group lasso on all coefficients for one
variable, i.e. penalise with ‖𝐁𝑗⋅‖2 for 𝑗 = 1,… , 𝑝.

17/19



Example for sparse multi-class logistic regression

MNIST-derived zip code digits (𝑛 = 7291, 𝑝 = 256)
Sparse multi-class logistic regression was applied to the whole data set and the
penalisation parameter was selected by 10-fold CV.
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Orange tiles show positive coefficients and blue tiles show negative coefficients. Class
averages are shown in the background.
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Take-home message

▶ Penalisation methods are not only restricted to regression, also applicable
to classification

▶ Sparsity is a very important concept when interpretability of models is
important

▶ Many extensions to the lasso exist, which make it more suitable for a variety
of different situations
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