Lecture 12: Data representations - Kernel methods

Felix Held, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

10t May 2021

CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY




Kernel-methods



Kernels

A kernel is a function k(x,y) : RP x RP — R that maps two elements of the
feature space to a real number, such that

k(x,y) = k(y,x) and k(x,y)>0

Can be seen as a (possibly non-linear) generalized inner product without
bilinearity.

Kernels measure similarity between features vectors.
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Examples of kernels

» Linear kernel k(x,y) = x"y

» Polynomial kernel k(x,y) = (yx"y + r)"

» Radial basis function (RBF) kernel k(x,y) = exp (—y|x — y]|3)
» Laplacian kernel k(x,y) = exp(—y||x — yl|1)

» Sigmoid kernel k(x,y) = tanh(ax"y + ¢)
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Mercer/positive definite kernels

For a kernel k(x,y), and a set of features x;, ..., x,, define the so-called Gram

matrix
k(xy,x1) - k(x1,%y)

K= : :
k(Xp,x1) - k(Xp, Xp)

If K is positive semi-definite for all n and all possible sets of features, then
k(x,y) is called a Mercer or positive definite kernel.

Note: All kernels shown on the last slide except for the sigmoid kernel are
positive definite.
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Importance of positive definite kernels

If the gram matrix is positive semi-definite there is an orthogonal matrix
V € R™" and a diagonal matrix A € R™" such that

K =VTAV.
Define ¢(x;) = A2V, then
KO = g(x))Td(x)

A result known as Mercer’s theorem ensures that for every positive definite
kernel k(x,y) there is a mapping ¢ from the feature space to some
g-dimensional space (with g = o allowed) such that

k(x,y) = ¢(x)"¢(y)
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Example of Mercer’s theorem

Consider the polynomial kernel fory =r =1 and m = 2 in a two-dimensional
feature space
k(x,y) = (xTy +1)% = (1 + X191 + X,9,)?
=1+ 2x191 + 2% + (X191)% + (202) 4 2X1Y1,),
Define
¢(X) = (1a \/'Exly \/EXZ,X%,X%, \/'EXIXZ)T
then
k(x,y) = ¢(x)"¢(y)

Using this kernel to measure similarity between two-dimensional feature
vectors is therefore equivalent to working in a six-dimensional feature space.
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Advantages of using kernels

Summary
Using a positive definite kernel to measure the similarity between

m-dimensional feature vectors is equivalent to

1. Using a (potentially non-linear) mapping to transform the feature vectors x
to a g-dimensional vector ¢(x)

2. Using the Euclidean scalar product to measure similarity between
transformed feature vectors ¢(x)

Problem: ¢(x) might be hard to compute.

The kernel-trick is to replace scalar products with kernel evaluations.
Computations are then done implicitly in the higher-dimensional space of the
#(x), but all we need to do is evalute the kernel. o



Recap: PCA

Recall: In PCA, the goal was to find the directions of maximum variance of the
data matrix X € R™P by decomposing the covariance matrix

XX

=VDV'
n—1

$=

where V € RP*P js orthgonal and D € RP*P is diagonal. Goals are

» Dimension-reduction (e.g. for visualisation)

» Finding important directions in the data relevant to e.g. classification or
clustering
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Limitations of PCA

PCA is linear and cannot uncover non-linear structures

Raw data Transformed with PCA

-4 -2 0 2 4 6 -5.0 -25

Augmentation of features can help

Raw data Augmented data with z = x2 + y2

a*f‘""\i
>*!

PC2
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Kernels and PCA (1)

Idea: Use the kernel-trick to define augmentations implicitly and keep
computations manageable.

Given a positive definite kernel k(x,y), how can we perform PCA in the
high-dimensional space of ¢(x)?

Assume we have access to ¢(x;) for [ =1,...,n and these transformed vectors are
centred. Then we can perform PCA on

$# = = 3 $(x)p(x)T = VDV
=1

where v; are the principal component axes and d; the corresponding variances.
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Kernels and PCA (l1)

Note that
“ 1<
v, = o D)) v = dyv;
=1

& v = Z ¢(7;l.)TVi ¢(Xl) — Z al(l)¢(xl)
I=1 in I=1

Multiplying this presentation of v; from the left on both sides with ¢(x;)" leads
to(forallk =1,...,n)

n n
dinagk) = ¢(xp)"v; = Z agl)qs(xk)TqS(xl) = Z al(l)k(xk, X))

In total, a; is a solution to the eigenvalue problem

Kai = dl-nai
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Kernels and PCA (lll)

The coefficients a; to determine the principal component directions v; in the
space of the ¢(x;) can therefore be found by

» Solving the eigenvalue problem for Ka; = d;na; requiring that

n
1 k
1=vlv;= Y al’al¢(x)T¢(x;) = a] Ka,
Lk=1

» This is the Rayleigh quotient problem for the matrix K. Note that both a;
and d; have to be determined.

The i-th principal component projection of an arbitrary mapped feature vector
#(x) is therefore

30TV = > alk(x,x))
=1

This procedure is called kernel-PCA (kPCA). /19



Centring and kernel PCA

» The derivation assumed that the implicitly defined feature vectors ¢(x;)
were centred. What if they are not?

» In the derivation we look at scalar products ¢(x;)T¢(x;). Centring in the
implicit space leads to

.
(¢(xi) - % ¢(x,~)) (qs(xl) - % ¢(x,~)) =
g _ 1 Z K@ _ 1 Z KU-D LZ i Z KU-m)

» Using the centring matrixJ =1,, — ST centring in the implicit space is
n
equivalent to transforming K as

K' =JKJ
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General algorithm for kPCA

1. Choose a kernel k(-,-) and possible hyper-parameters
2. Compute the Gram matrix K € R™" for the data xy, ..., X,
3. Centre K usingJ =1, — %11T to get

K' =JKJ

4, Perform a normal linear PCA on K’ = AAAT.
5. The columns of A are the vectors a; and set d; = 1;/n.

6. The projection of the [-th observation onto the i-th principal component
axis is computed as
ngl) = K’(l’:)ai eR
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Example: kPCA

Raw data Transformed with PCA
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Transformed with kKPCA
RBF kernel, y=0.7

’ "A’f
0 5 10

10

PC2
o

e =

-5 w
o

-10

-10 -5
PC1

14/19



Kernel trick in other algorithms




Recap: Ridge regression

Ridge regression solves the problem
B = arg;nin lly — XBl13 + 2118113

with analytical solution
B=X"X+11,) Xy.

The kernel trick requires scalar products between feature vectors. Note that
(XX = Xlij

but here we have X™X.
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Woodbury matrix identity

Assume that matrices A € RP*P and C € R™" are invertible and let U € RP*"
and V € R™P, The Woodbury matrix identity then holds

(A+UCV) ! =A1-AlUC!+VAlU) VAL
For a data matrix X e R™P, letU=X", V=X, A = AL, for A >0,and C =1,,.

1. 1 1o\ o1 .
71 — 71X (In+X—IX) X—IP)X

=il
(XTX +11p) XT=( p— 7l 7l P

1 -1

= X (T, — (A1, +XXT) " XX")

- %XT ((ax, +XXT) ™" (AL, + XXT) - (AT, + XX7)" XX
- %XT (1, +Xx7)™" (A1, + XXT - XXT))

=XT (AL, + XX7) "’
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Kernel ridge regression

Using the Woodbury matrix regression we get that
f=XT(XXT + A1) y.
We can now replace XX' with a Gram matrix K for an arbitrary kernel k(., -).

The variables f are called the primal variables. Define the dual variables
n
&=K+1L,)ly > f=X'a=) alx,.
=1
Using the dual variables, computed with a chosen kernel, as weights for the

observations to compute the primal variables is called kernel ridge regression.

Standard ridge regression is recovered when using the linear kernel

k(x,y) =x"y.
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Prediction in kernel ridge regression

In normal ridge ression, we predict for unseen test data x as
n
Jx) =fTx =3 a0x/x
=0

Using the kernel trick and replacing scalar products with kernel evaluations
leads to

o) = aPk(x;,x)
=1

for kernel ridge regression.
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Take-home message

» Kernels in combination with Mercer’s theorem are a powerful tool to make
high-dimensional computation manageable

» kPCA is a first example demonstrating the power of kernels

» The kernel trick can also be used in other established methods like ridge
regression
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