
Lecture 14: Large-scale methods for data analysis

Felix Held, Mathematical Sciences

MSA220/MVE441 Statistical Learning for Big Data

21st May 2021

Low-rank approximations for
matrices

Low-rank approximations

▶ Low-rank approximations of matrices become very important to make
large-scale data manageable

𝐗
𝑛×𝑝

≈ 𝐀
𝑛×𝑞

⋅ 𝐁
𝑞×𝑝

▶ Algorithms to determine 𝐀 and 𝐁 discussed in the lecture: Low-rank SVD
and low-rank NMF

▶ Works best if original data in 𝐗 is approximately of rank 𝑞 ≪ min(𝑛, 𝑝)
▶ 𝐗 could be a really large data matrix, but it could also come from an
intermediate calculation, e.g. a Gram matrix or a distance matrix

▶ NMF and SVD are computationally efficient if either 𝑛 or 𝑝 are reasonably
small to medium sized (computational complexity 𝑂(𝑛2𝑝 + 𝑝3) for SVD)

What if both 𝑛 and 𝑝 are large?
1/27

Dimension reduction to the rescue

Assume for now that 𝐗 actually has rank 𝑞 ≪ min(𝑛, 𝑝). Then we could find an
exact factorisation 𝐗 = 𝐀𝐁, e.g. using the SVD truncated after 𝑞 terms.

SVD on the full matrix is too expensive, but can we cheaply reduce at least one
of the dimensions?

Since 𝐗 is assumed to have rank 𝑞, its image

Im(𝐗) = {𝐲 ∶ 𝐲 = 𝐗𝐰 for some 𝐰 ∈ ℝ𝑝}

is only 𝑞 dimensional. Projecting the columns of 𝐗 at least approximately to a
𝑞-dimensional space leaves the overall structure of the data intact.

But how do we choose the projection?

2/27

Dimension reduction through random projection (I)

Recall: To project the data onto the first principal component direction 𝐫1 it was
enough to compute

𝐩1 = 𝐗𝐫1.

Let 𝝎𝑖 for 𝑖 = 1, … , 𝑞 be random vectors (e.g. with standard normal entries). Then,
the vectors

𝐲𝑖 = 𝐗𝝎𝑖
are called random projections and can be shown to be linearly independent
with high probability.

This can be seen as a cheap and approximate way of exploring the range of 𝐗.

Why is this a justifable strategy?

3/27

Johnson-Lindenstrauss lemma (I)

Johnson-Lindenstrauss lemma (1984)
Given 0 < 𝜀 < 1 and an integer 𝑛 let

𝑞 ≥ 4 log(𝑛)
𝜀2/2 − 𝜀3/3

be an integer. For every set of points 𝐱1, … , 𝐱𝑛 in ℝ𝑝, there is a mapping
𝑓 ∶ ℝ𝑝 → ℝ𝑞 such that for any 𝐱𝑖 , 𝐱𝑗

(1 − 𝜀)‖𝐱𝑖 − 𝐱𝑗‖22 ≤ ‖𝑓(𝐱𝑖) − 𝑓(𝐱𝑗)‖22 ≤ (1 + 𝜀)‖𝐱𝑖 − 𝐱𝑗‖22

Note: The result is independent of 𝑝.

4/27

Johnson-Lindenstrauss lemma (II)

For small 𝜀 the exact result is mainly of interest for 𝑝 ≫ 𝑛.

𝑛 𝜀 𝑞min

3 0.1 942
50 0.05 12951

0.1 3354
0.5 188

100 0.1 3948
1000 0.1 5921

Note: In practice, the dimension of the data is reduced to any useful dimension.
However, be aware that the theoretical guarantees potentially are lost.

5/27

Random projection

There are multiple possibilities how the map 𝑓 in the Johnson-Lindenstrauss
theorem can be found.
Let 𝐗 ∈ ℝ𝑛×𝑝 be a data matrix and 𝑞 the target dimension.

▶ Gaussian random projection: Set

Ω𝑖𝑗 ∼ 𝑁 (0, 1𝑞) for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞

▶ Sparse random projection: For a given 𝑠 > 0 set

Ω𝑖𝑗 =√
𝑠
𝑞
⎧
⎨
⎩

−1 1/(2𝑠)
0 with probability 1 − 1/𝑠
1 1/(2𝑠)

for 𝑖 = 1, … , 𝑝, 𝑗 = 1,… , 𝑞 where often 𝑠 = 3 or 𝑠 = √𝑝

then 𝐘 = 𝐗𝛀 ∈ ℝ𝑛×𝑞 is a random projection for 𝐗. 6/27

Random projections and the Johnson-Lindenstrauss lemma

Let 𝐗 ∈ ℝ𝑛×𝑝 where 𝑋(𝑖,𝑗) ∼ 𝑁(0, 1/√𝑝), 𝑛 = 3, 𝜀 = 0.1 and Gaussian random
projections onto the minimum JL dimension 𝑞 = 942 were performed.

𝑝 (1 − 𝜀)‖𝐱𝑖 − 𝐱𝑗‖ ‖𝛀𝐱𝑖 −𝛀𝐱𝑗‖ (1 + 𝜀)‖𝐱𝑖 − 𝐱𝑗‖

3 0.78 0.88 0.95
1.12 1.22 1.37
0.67 0.72 0.82

1000 1.26 1.40 1.54
1.23 1.37 1.50
1.25 1.35 1.52

15000 1.26 1.40 1.54
1.27 1.42 1.56
1.28 1.44 1.56

7/27

Dimension reduction through random projection (II)

Let 𝑞 < min(𝑛, 𝑝), 𝛀 ∈ ℝ𝑝×𝑞 a random projection matrix and set 𝐘 = 𝐗𝛀.

A 𝑞-dimensional subspace of the range of 𝐗 can be found by orthonormalising 𝐘
using e.g. the QR-decomposition (computational complexity 𝑂(𝑛𝑞2 − 𝑞3/3))

𝐘 = 𝐐𝐑

where 𝐐 ∈ ℝ𝑛×𝑞 has orthogonal columns and 𝐑 ∈ ℝ𝑞×𝑞 is upper-triangular.

Assuming 𝐗 is approximately of rank 𝑞 it can be shown that

𝐗 ≈ 𝐐𝐐⊤𝐗

where 𝐐𝐐⊤ ∈ ℝ𝑛×𝑛 is a random orthogonal projection matrix to a 𝑞-dimensional
subspace of the range of 𝐗.

8/27

Randomized low-rank SVD

Original goal: Apply SVD in cases where both 𝑛 and 𝑝 are large.
Idea: Determine an approximate low-dimensional basis for the range of 𝐗 and
perform the matrix-factorisation in the low-dimensional space.

▶ Using a random projection 𝐗 ≈ 𝐐𝐐⊤𝐗 = 𝐐𝐓
▶ Note that 𝐓 ∈ ℝ𝑞×𝑝 and 𝑞 is small
▶ Calculate the SVD of 𝐓 = 𝐔0

𝑞×𝑞
⋅ 𝐃
𝑞×𝑞

⋅ 𝐕⊤
𝑞×𝑝

▶ Set 𝐔 = 𝐐𝐔0 ∈ ℝ𝑛×𝑞, then 𝐗 ≈ 𝐔𝐃𝐕⊤

The SVD of 𝐗 can therefore be found by random projection into a 𝑞-dimensional
subspace of the range of 𝐗, performing SVD in the lower-dimensional subspace
and subsequent reconstruction of the vectors into the original space.

9/27

Notes on randomized low-rank SVD

▶ In practice the matrix 𝐗 will most-likely not have rank 𝑞 but rather a
continuous spectrum of eigenvalues that go towards zero

▶ Possible solutions:
▶ Oversampling: Create a random projection matrix of size 𝑝 × (𝑞 + 𝑘) where 𝑘 is
a small integer. Setting 𝑘 = 5 or 10 is often enough in practice

▶ Power iterations: Instead of 𝐘 = 𝐗𝛀 consider 𝐘 = (𝐗𝐗⊤)𝑙𝐗𝛀 for some integer
𝑙. This ensures that small eigenvalues of 𝐗 are forced to zero and only large
eigenvalues are dominant.

▶ The idea of randomized computation can be applied to other algorithms as
well, e.g. PCA, eigenvalues, . . .

▶ Implemented in R package rsvd or Python’s sklearn (as
randomized_svd)

10/27

Divide and conquer

Divide and conquer

𝐗 ⋮

𝐗2

𝐗1

𝐗𝐾−1

𝐗𝐾

⋮

𝑓(𝐗2)

𝑓(𝐗1)

𝑓(𝐗𝐾−1)

𝑓(𝐗𝐾)

sum, mean, . . .

DivideAll data Conquer Recombine

11/27

Example: Divide and Conquer for linear regression

In linear regression, we want to find the regression coefficients ̂𝜷, which can be
calculated as

̂𝜷 = (𝐗⊤𝐗)−1𝐗⊤𝐲
Divide the data into 𝐾 parts 𝐗1, … , 𝐗𝐾 , such that 𝐗 is the row concatenation of
its parts.Then estimate (conquer)

̂𝜷𝑘 = (𝐗⊤
𝑘𝐗𝑘)−1𝐗⊤

𝑘𝐲𝑘
To recombine the parts, consider that

̂𝜷 = (∑
𝑘
𝐗⊤
𝑘𝐗𝑘)

−1

(∑
𝑘
𝐗⊤
𝑘𝐗𝑘 ̂𝜷𝑘)

This means that ̂𝜷𝑘 and 𝐗⊤
𝑘𝐗𝑘 ∈ ℝ𝑝×𝑝 have to be returned from each batch.

Note: Since Cov(̂𝜷𝑘) = 𝜎2(𝐗⊤
𝑘𝐗𝑘)−1 the recombination is a weighted average of

the batch estimates. Here, 𝜎2 is the variance of the residual error. 12/27

Example: Divide and Conquer for general estimation problems

In a general estimation problem (regression or MLE) there is often a need to
solve the score equation

𝑛
∑
𝑙=1

𝚿(𝑦𝑙; 𝐱𝑙, 𝜽) = 𝟎

where 𝑦𝑙 is a response, 𝐱𝑙 a vector of predictors, and 𝜽 a vector of parameters.

Examples:

▶ Normal equations in linear regression
𝑛
∑
𝑙=1
(𝑦𝑙 − 𝐱⊤𝑙 𝜷)𝐱𝑙 = 𝟎

▶ Maximum likelihood estimation
𝑛
∑
𝑙=1

𝜕 log𝑓(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽 = 𝟎

13/27

Advanced example (II)

To apply Divide and Conquer to this problem, divide the data into 𝐾 subsets 𝑆𝑘
and solve the subproblems

𝐌𝑘(𝜽) = ∑
𝑙∈𝑆𝑘

Ψ(𝑦𝑙; 𝐱𝑙, 𝜽) = 𝟎

Per batch, the estimate is ̂𝜃𝑘.

Compute
𝐀𝑘(𝜽) ∶= −d𝐌𝑘(𝜽)

d𝜽 = − ∑
𝑙∈𝑆𝑘

𝜕𝚿(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽

and use the 1st order Taylor expansion of𝐌𝑘 in ̂𝜽𝑘 to get

𝐌𝑘(𝜽) ≈ 𝐀𝑘(̂𝜽𝑘) (𝜽 − ̂𝜽𝑘)

14/27

Advanced example (III)

Returning to the full problem of solving the score equation

𝟎 =
𝑛
∑
𝑙=1

𝚿(𝑦𝑙; 𝐱𝑙, 𝜽) =
𝐾
∑
𝑘=1

𝐌𝑘(𝜽) ≈
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘) (𝜽 − ̂𝜽𝑘)

The solution to the approximation is then given by

̂𝜽 = (
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘))
−1

(
𝐾
∑
𝑘=1

𝐀𝑘(̂𝜽𝑘) ̂𝜽𝑘)

Note: For this approximation the per-batch covariance matrices 𝐗⊤
𝑘𝐗𝑘 are

replaced by the matrices 𝐀𝑘(̂𝜽𝑘).
In case of the MLE example

𝐀𝑘(̂𝜽𝑘) = − ∑
𝑙∈𝑆𝑘

𝜕2 log𝑓(𝑦𝑙; 𝐱𝑙, 𝜽)
𝜕𝜽2

which is the observed Fisher information. 15/27

Sampling methods for big-𝑛

Recap: Random Forests

Computational procedure:
1. Given training data 𝐗 ∈ ℝ𝑛×𝑝, do for 𝑏 = 1,… , 𝐵

1.1 Draw a bootstrap sample of size 𝑛 from training data (with replacement)
1.2 Grow a tree 𝑇𝑏 until nodes are pure or reach minimal node size 𝑛min

1.2.1 Randomly select𝑚 variables out of 𝑝 variables
1.2.2 Find best splitting variable among these𝑚
1.2.3 Split the node

2. For a new 𝐱 predict

Regression: 𝑓𝑟𝑓(𝐱) =
1
𝐵
∑𝐵

𝑏=1 𝑇𝑏(𝐱)
Classification: Majority vote at 𝐱 across trees

For big-𝑛: In principal all trees can be grown in parallel. However, this requires 𝐵
bootstrap samples of size 𝑛 which can be infeasibly large in a big-𝑛 scenario.

16/27

Big-𝑛 and the bootstrap

The𝑚-out-of-𝑛 bootstrap
Instead of drawing a bootstrap sample of 𝑛 samples with replacement (as in the
standard bootstrap), a smaller sample of size 𝑚 < 𝑛 is drawn with replacement.

▶ Note: If 𝑚 < 𝑛 samples are drawn without replacement, then this is called
subsampling.

▶ Surprisingly, the 𝑚-out-of-𝑛 bootstrap (moon bootstrap) works even in
situations where the standard bootstrap fails

▶ For the theoretical guarantees to hold, it is required that when 𝑚, 𝑛 → ∞
then 𝑚/𝑛 → 0

▶ 𝑚 = 2√𝑛 is a possible choice

17/27

Example: 𝑚-out-of-𝑛 bootstrap

▶ Let 𝑥1, … , 𝑥𝑛 ∼ Uniform(0, 𝜃) and ̂𝜃𝑛 = max𝑖 𝑥𝑖 .
▶ Consider the statistics

▶ 𝑇𝑛 = 𝑛(𝜃 − ̂𝜃𝑛), the statistic to be approximated
▶ 𝑇∗𝑛 = 𝑛(̂𝜃𝑛 − ̂𝜃∗𝑛) where ̂𝜃∗𝑛 = max𝑖 𝑥∗𝑖 for a standard bootstrap sample 𝑥∗1 , … , 𝑥∗𝑛
▶ 𝑇∗𝑛,𝑚 = 𝑚(̂𝜃𝑛 − ̂𝜃∗𝑛,𝑚) where ̂𝜃∗𝑛,𝑚 = max𝑖 𝑥∗𝑖 for a standard bootstrap sample
𝑥∗1 , … , 𝑥∗𝑚

▶ Simulated data with 𝑛 = 1000, 𝑚 = 2√1000 ≈ 64, 𝐵 = 10000, and 𝜃 = 1
Tn

∗ Tn,m
∗

0 2 4 6 8 0 2 4 6 8
0

1

2

Statistic

D
en

si
ty

The red line is the density of 𝑇𝑛 given the true 𝜃.
18/27

Bag of little bootstraps (BLB)

A two-stage bootstrapping technique

1. Draw 𝐾 subsets of size 𝑚 < 𝑛 from original data (with or without
replacement)

2. For each subset
2.1 Draw 𝐵 set of weights (𝑛1, … , 𝑛𝑚) ∼ Multinomial(𝑛, 1/𝑚) (oversampling)
2.2 Estimate the statistic of interest from the 𝐵 weighted samples
2.3 Combine values of the statistic for each subset, e.g. by averaging

3. Recombine statistics from each subset, e.g. by averaging

This is known as the bag of little bootstraps (BLB) (Kleiner et al. 2014)

19/27

Notes on the BLB

▶ One of the computational burdens of the standard bootstrap is having to
create resamples of size 𝑛

▶ The BLB circumvents that by resampling from a limited amount of samples
and thereby being able to use weights instead of a full sample

▶ Typically 𝑚 ≥ 𝑛𝛾 for 𝛾 ∈ [0.5, 1] works well (e.g. for 𝛾 = 0.6: when 𝑛 = 106
choose 𝑚 = 3982)

▶ The BLB is easier to parallelise, since less data has to be propagated to each
batch.

▶ Fits well within the Divide and Conquer framework

20/27

Random forests for big-𝑛

Instead of the standard RF with normal bootstrapping, multiple strategies can be
taken

▶ Subsampling (once): Take a subsample of size 𝑚 and grow RF from there.
Very simple to implement, but difficult to ensure that the subsample is
representative.

▶ 𝑚-out-of-𝑛 sampling: Instead of standard bootstrapping, draw repeatedly 𝑚
samples and grow a tree on each subsample. Recombine trees in the usual
fashion.

▶ BLB sampling: Grow a forest on each subset by repeatedly oversampling to
𝑛 samples.

▶ Divide and Conquer: Split original data in 𝐾 parts and grow a random forest
on each.

21/27

Subsampling for big-𝑛

Leverage

Problem: Representativeness
How can we ensure that a subsample is still representative?

We need additional information about the samples. Consider the special case of
linear regression and 𝑛 ≫ 𝑝.

Recall: For least squares predictions it holds that
𝐲̂ = 𝐗 ̂𝜷 = 𝐗(𝐗⊤𝐗)−1𝐗⊤𝐲 = 𝐇𝐲

with the hat-matrix 𝐇 = 𝐗(𝐗⊤𝐗)−1𝐗⊤.

Specifically 𝐲̂(𝑖) = ∑𝑛
𝑗=1𝐇(𝑖,𝑗)𝐲(𝑗), which means that 𝐇(𝑖,𝑖) influences its own fitted

values.

Element 𝐇(𝑖,𝑖) is called the leverage of the 𝑖-th observation. Leverage captures if
the observation 𝑖 is close or far from the centre of the data in feature space. 22/27

Leveraging (I)

Goal: Subsample the data, but make the more influential data points, those with
high leverage, more likely to be sampled.

Computational approach

▶ Weight sample 𝑖 by
𝜋𝑖 =

𝐇(𝑖,𝑖)

∑𝑛
𝑗=1𝐇(𝑗,𝑗)

▶ Draw a weighted subsample of size 𝑚 ≪ 𝑛
▶ Use the subsample to solve the regression problem

This procedure is called Leveraging (Ma and Sun, 2013).

23/27

Leveraging (II)

Problem: How to perform regression?

1. Ordinary least squares: Biased with regard to the full sample estimate, due
to subsampling, but unbiased with respect to the true coefficients and
generally small variance

2. Weighted least squares: Use the inverse sampling weights 1/𝜋𝑖 as weights
during the regression. Unstable for very small weights, i.e. high variance.
Weights can be stabilized by using

𝜏𝑖 = 𝛼𝜋𝑖 + (1 − 𝛼) 1𝑛
instead of 𝜋𝑖 for 𝛼 recommended at 0.8–0.9.

24/27

Leveraging (III)

Problem: How should the diagonal entries of the hat matrix be determined
without having to solve the original regression problem?

Let 𝐗 = 𝐔𝐃𝐕⊤ be the SVD of the data matrix, then

𝐇 = 𝐗(𝐗⊤𝐗)−1𝐗⊤ = 𝐔𝐔⊤

and therefore, with 𝐮𝑖 being the 𝑖-th row of 𝐔,

𝐇(𝑖,𝑖) = ‖𝐮𝑖‖22

Using e.g. randomized SVD or other fast computational approaches, this is
feasible for very large data.

25/27

Notes on leveraging

▶ Pro: Fast and simple approach to make subsampling more focused on the
important samples

▶ Pro: Smaller datasets are easier to use computationally, but also
visualisations get feasible again

▶ Caveat: Careful with outliers! These often have large leverage, but are
misrepresentative of the actual shape of the data.

26/27

Take-home message

▶ Large-scale data brings its own challenges, many of which are
computational

▶ Randomization can help to speed up classical algorithms in practice
▶ Divide and Conquer can help in 𝑛 ≫ 𝑝 and big-𝑛 scenarios; can be
non-trivial to determine how to recombine

▶ Subsampling/clever bootstrapping can reduce the necessary computational
load tremendously

27/27

	Low-rank approximations for matrices
	Divide and conquer
	Sampling methods for big-n
	Subsampling for big-n

